S-8209BAO-I8T1U [ABLIC]

BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION;
S-8209BAO-I8T1U
型号: S-8209BAO-I8T1U
厂家: ABLIC    ABLIC
描述:

BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION

局域网
文件: 总26页 (文件大小:473K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S-8209B Series  
BATTERY PROTECTION IC  
WITH CELL-BALANCE FUNCTION  
www.ablic.com  
© ABLIC Inc., 2008-2019  
Rev.3.8_00  
The S-8209B Series is a protection IC for lithium-ion / lithium polymer rechargeable batteries and includes a high-accuracy  
voltage detection circuit and a delay circuit.  
The S-8209B Series has a transmission function and two types of cell-balance function so that users are also able to configure  
a protection circuit with series multi-cell.  
Features  
High-accuracy voltage detection circuit  
Overcharge detection voltage*1  
Overcharge release voltage*1  
Cell-balance detection voltage*1  
Cell-balance release voltage*1  
Overdischarge detection voltage  
Overdischarge release voltage  
3.55 V to 4.40 V (5 mV step)  
3.50 V to 4.40 V*2  
3.55 V to 4.40 V (5 mV step)*3  
3.50 V to 4.40 V*4  
2.0 V to 3.0 V (10 mV step)  
2.0 V to 3.4 V*5  
Accuracy 25 mV  
Accuracy 50 mV  
Accuracy 25 mV  
Accuracy 50 mV  
Accuracy 50 mV  
Accuracy 100 mV  
Settable delay time by external capacitor for output pin  
Control charging, discharging, cell-balance by CTLC pin, CTLD pin  
Two types of cell-balance function; charge / discharge*6  
Wide range of operation temperature  
Low current consumption  
Ta = 40°C to +85°C  
7.0 μA max.  
Lead-free, Sn 100%, halogen-free*7  
*1. Regarding selection of overcharge detection voltage, overcharge release voltage, cell-balance detection voltage  
and cell-balance release voltage, refer to Remark 3 in "3. Product name list" of "Product Name Structure".  
*2. Overcharge release voltage = Overcharge detection voltage Overcharge hysteresis voltage  
(Overcharge hysteresis voltage is selectable in 0 V to 0.4 V in 50 mV step.)  
*3. Select as to overcharge detection voltage > cell-balance detection voltage.  
*4. Cell-balance release voltage = Cell-balance detection voltage Cell-balance hysteresis voltage  
(Cell-balance hysteresis voltage is selectable in 0 V to 0.4 V in 50 mV step.)  
*5. Overdischarge release voltage = Overdischarge detection voltage + Overdischarge hysteresis voltage  
(Overdischarge hysteresis voltage is selectable in 0 V to 0.7 V in 100 mV step.)  
*6. Also available the product without discharge cell-balance function  
*7. Refer to "Product Name Structure" for details.  
Applications  
Lithium-ion rechargeable battery pack  
Lithium polymer rechargeable battery pack  
Packages  
SNT-8A  
8-Pin TSSOP  
1
BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION  
S-8209B Series  
Rev.3.8_00  
Block Diagram  
Delay circuit  
DO  
8.31 M  
Ω
CDT  
VDD  
CO  
+
Overcharge  
CB  
detection  
comparator  
+
Cell-balance  
detection  
comparator  
CTLD  
+
400 nA  
CTLC  
Overdischarge  
detection  
comparator  
VSS  
400 nA  
Remark The diodes in the IC are parasitic diodes.  
Figure 1  
2
BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION  
S-8209B Series  
Rev.3.8_00  
Product Name Structure  
1. Product name  
1. 1 8-Pin TSSOP  
S-8209B xx  
-
T8T1  
x
Environmental code  
U: Lead-free (Sn 100%), halogen-free  
S: Lead-free, halogen-free  
Package name abbreviation and IC packing specifications*1  
T8T1: 8-Pin TSSOP, Tape  
Serial code  
Sequentially set from AA to ZZ  
*1. Refer to the tape drawing.  
1. 2 SNT-8A  
S-8209B xx  
-
I8T1  
U
Environmental code  
U: Lead-free (Sn 100%), halogen-free  
Package name abbreviation and IC packing specifications*1  
I8T1: SNT-8A, Tape  
Serial code  
Sequentially set from AA to ZZ  
*1. Refer to the tape drawing.  
2. Packages  
Table 1 Package Drawing Codes  
Package Name  
Environmental code = S  
Environmental code = U FT008-A-P-SD FT008-E-C-SD FT008-E-R-S1  
Dimension  
Tape  
Reel  
Land  
FT008-A-P-SD FT008-E-C-SD FT008-E-R-SD  
8-Pin TSSOP  
SNT-8A  
PH008-A-P-SD PH008-A-C-SD PH008-A-R-SD PH008-A-L-SD  
3
BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION  
S-8209B Series  
Rev.3.8_00  
3. Product name list  
3. 1 8-Pin TSSOP  
Table 2  
Overcharge  
Detection  
Voltage  
Overcharge  
Release  
Voltage  
Cell-balance  
Detection  
Voltage  
Cell-balance Overdischarge Overdischarge  
Discharge  
Cell-balance  
Function  
Release  
Voltage  
Detection  
Voltage  
Release  
Voltage  
Product Name  
(VCU  
)
(VCL  
)
(VBU  
)
(VBL  
)
(VDL  
)
(VDU)  
S-8209BAA-T8T1y  
S-8209BAD-T8T1y  
S-8209BAG-T8T1y  
S-8209BAH-T8T1y  
S-8209BAI-T8T1y  
S-8209BAJ-T8T1y  
S-8209BAK-T8T1y  
S-8209BAL-T8T1y  
S-8209BAN-T8T1U  
S-8209BAO-T8T1U  
S-8209BAP-T8T1U  
S-8209BAU-T8T1U  
S-8209BAW-T8T1U  
S-8209BAX-T8T1U  
S-8209BAY-T8T1U  
S-8209BAZ-T8T1U  
S-8209BBA-T8T1U  
S-8209BBB-T8T1U  
S-8209BBC-T8T1U  
4.100 V  
4.150 V  
3.800 V  
4.250 V  
4.250 V  
4.150 V  
4.215 V  
4.300 V  
4.250 V  
4.300 V  
3.900 V  
4.225 V  
4.225 V  
4.210 V  
4.210 V  
4.195 V  
3.700 V  
4.275 V  
4.200 V  
4.000 V  
3.950 V  
3.650 V  
4.150 V  
4.150 V  
3.950 V  
4.215 V  
4.100 V  
4.150 V  
4.200 V  
3.900 V  
4.175 V  
4.175 V  
4.160 V  
4.160 V  
4.145 V  
3.500 V  
4.225 V  
4.100 V  
4.050 V  
3.900 V  
3.700 V  
4.200 V  
4.100 V  
3.900 V  
4.190 V  
4.225 V  
4.200 V  
4.200 V  
3.700 V  
4.215 V  
4.215 V  
4.190 V  
4.190 V  
4.100 V  
3.550 V  
4.145 V  
4.145 V  
4.000 V  
3.900 V  
3.700 V  
4.200 V  
4.050 V  
3.900 V  
4.190 V  
4.225 V  
4.200 V  
4.200 V  
3.700 V  
4.165 V  
4.165 V  
4.140 V  
4.140 V  
4.050 V  
3.550 V  
4.095 V  
4.095 V  
2.50 V  
2.00 V  
2.20 V  
2.50 V  
2.50 V  
2.30 V  
2.00 V  
2.00 V  
2.00 V  
2.30 V  
2.00 V  
2.30 V  
2.30 V  
2.50 V  
2.50 V  
2.50 V  
2.00 V  
2.00 V  
2.00 V  
2.70 V  
2.70 V  
2.50 V  
2.80 V  
2.70 V  
3.00 V  
2.50 V  
2.50 V  
2.10 V  
3.00 V  
2.50 V  
3.00 V  
3.00 V  
3.20 V  
3.00 V  
2.70 V  
2.50 V  
2.30 V  
2.30 V  
Yes  
Yes  
No  
No  
Yes  
No  
Yes  
Yes  
No  
No  
Yes  
Yes  
No  
No  
No  
No  
Yes  
No  
No  
3. 2 SNT-8A  
Table 3  
Overcharge  
Detection  
Voltage  
Overcharge  
Release  
Voltage  
Cell-balance  
Detection  
Voltage  
Cell-balance Overdischarge Overdischarge  
Discharge  
Cell-balance  
Function  
Release  
Voltage  
Detection  
Voltage  
Release  
Voltage  
Product Name  
(VCU  
)
(VCL  
)
(VBU  
)
(VBL  
)
(VDL  
)
(VDU)  
S-8209BAA-I8T1U  
S-8209BAM-I8T1U  
S-8209BAO-I8T1U  
S-8209BAP-I8T1U  
S-8209BAR-I8T1U  
4.100 V  
4.000 V  
4.300 V  
3.900 V  
4.230 V  
4.000 V  
3.800 V  
4.200 V  
3.900 V  
4.170 V  
4.050 V  
3.900 V  
4.200 V  
3.700 V  
4.180 V  
4.000 V  
3.850 V  
4.200 V  
3.700 V  
4.180 V  
2.50 V  
3.00 V  
2.30 V  
2.00 V  
2.80 V  
2.70 V  
3.40 V  
3.00 V  
2.50 V  
3.00 V  
Yes  
No  
No  
Yes  
No  
Remark 1. y: S or U  
2. Please select products of environmental code = U for Sn 100%, halogen-free products.  
4
BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION  
S-8209B Series  
Rev.3.8_00  
3. Please contact our sales representatives for products other than the above.  
Users are able to select the overcharge detection voltage, overcharge release voltage, cell-balance  
detection voltage and cell-balance release voltage from the range shown in Figure 2 and Figure 3.  
Users are able to select how to combine the overcharge detection voltage (VCU) and the overcharge release  
voltage (VCL) from the range A or B shown in Figure 2*1.  
Similarly, select how to combine the cell-balance detection voltage (VBU) and the cell-balance release  
voltage (VBL) from the range of C or D in Figure 3*2.  
In selecting the combination of VCU and VCL from the range A, select the combination of VBU and VBL from  
the range C. Similarly, in selecting the combination of VCU and VCL from the B range, select the combination  
of VBU and VBL from the range D*3.  
4.40  
4.20  
4.40  
A
4.20  
3.90  
C
3.90  
3.55  
B
D
3.55  
3.50 3.55  
3.80 3.90 4.00  
4.40  
3.50 3.55  
3.80 3.90 4.00  
4.40  
Overcharge release voltage (VCL) [V]  
Cell-balance release voltage (VBL) [V]  
Figure 2  
Figure 3  
*1. Users are able to select the overcharge hysteresis voltage (VCU VCL) in 0 V to 0.4 V, in 50 mV step.  
*2. Users are able to select the cell-balancce hysteresis voltage (VBU VBL) in 0 V to 0.4 V, in 50 mV step.  
*3. Select as to set VCU > VBU  
.
5
BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION  
S-8209B Series  
Rev.3.8_00  
Pin Configurations  
1. 8-Pin TSSOP  
Table 4  
Top view  
Pin No.  
Symbol  
CTLC  
Description  
Pin for charge control  
1
2
1
2
3
4
8
7
6
5
CTLD  
Pin for dischage control  
Input pin for positive power supply;  
3
VDD  
Connection pin for battery's positive voltage  
Capacitor connection pin for overcharge detection  
delay, cell-balance detection delay and  
overdischarge detection delay  
4
CDT  
Figure 4  
Input pin for negative power supply;  
Connection pin for batter's negative voltage  
Output pin for discharge control  
(Pch open-drain output)  
5
6
7
8
VSS  
DO  
CO  
CB  
Output pin for charge control  
(Pch open-drain output)  
Output pin for cell-balance control  
(CMOS output)  
2. SNT-8A  
Table 5  
Top view  
Pin No.  
Symbol  
Description  
1
2
CTLC  
CTLD  
Pin for charge control  
1
2
3
4
8
7
6
5
Pin for dischage control  
Input pin for positive power supply;  
Connection pin for battery's positive voltage  
Capacitor connection pin for overcharge detection  
delay, cell-balance detection delay and  
overdischarge detection delay  
Input pin for negative power supply;  
Connection pin for battery's negative voltage  
Output pin for discharge control  
(Pch open-drain output)  
3
VDD  
4
CDT  
Figure 5  
5
6
7
8
VSS  
DO  
CO  
CB  
Output pin for charge control  
(Pch open-drain output)  
Output pin for cell-balance control  
(CMOS output)  
6
BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION  
S-8209B Series  
Rev.3.8_00  
Absolute Maximum Ratings  
Table 6  
(Ta = +25°C unless otherwise specified)  
Item  
Input voltage between VDD and VSS  
CB pin output voltage  
CDT pin voltage  
Symbol Applied pin  
Absolute Maximum Rating  
VSS 0.3 to VSS + 12  
VSS 0.3 to VDD + 0.3  
VSS 0.3 to VDD + 0.3  
VDD 24 to VDD + 0.3  
VDD 24 to VDD + 0.3  
VSS 0.3 to VSS + 24  
VSS 0.3 to VSS + 24  
700*1  
Unit  
V
VDS  
VDD  
CB  
VCB  
V
VCDT  
VDO  
CDT  
DO  
V
DO pin output voltage  
CO pin output voltage  
CTLC pin input voltage  
CTLD pin input voltage  
V
VCO  
CO  
V
VCTLC  
VCTLD  
CTLC  
CTLD  
V
V
8-Pin TSSOP  
Power dissipation  
mW  
mW  
°C  
°C  
PD  
SNT-8A  
450*1  
Operating ambient temperature  
Storage temperature  
Topr  
Tstg  
40 to +85  
55 to +125  
*1. When mounted on board  
[Mounted board]  
(1) Board size: 114.3 mm × 76.2 mm × t1.6 mm  
(2) Board name: JEDEC STANDARD51-7  
Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical  
damage. These values must therefore not be exceeded under any conditions.  
800  
600  
8-Pin TSSOP  
400  
200  
SNT-8A  
0
100  
Ambient Temperature (Ta) [°C]  
Figure 6 Power Dissipation of Package (When mounted on board)  
150  
50  
0
7
BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION  
S-8209B Series  
Rev.3.8_00  
Electrical Characteristics  
Table 7  
(Ta = +25°C unless otherwise specified)  
Test  
Circuit  
Item  
Symbol  
VCU  
Condition  
Min.  
Typ.  
Max.  
Unit  
Overcharge detection  
voltage  
VCU 0.025  
VCU  
VCU + 0.025  
V
1
VCL VCU  
VCL = VCU  
VCL 0.05  
VCL 0.05  
VCL  
VCL  
VCL + 0.05  
VCL + 0.025  
V
V
1
1
Overcharge release  
voltage  
VCL  
Cell-balance detection  
voltage  
VBU  
VBU 0.025  
VBU  
VBU + 0.025  
V
1
VBL VBU  
VBL = VBU  
VBL 0.05  
VBL 0.05  
VBL  
VBL  
VBL + 0.05  
VBL + 0.025  
V
V
1
1
Cell-balance release  
voltage  
VBL  
Overdischarge  
detection  
voltage  
VDL  
VDL 0.05  
VDL  
VDL + 0.05  
V
V
1
Overdischarge release  
voltage  
VDU  
VDU 0.10  
4.76  
VDU  
8.31  
VDU + 0.10  
10.9  
1
2
3
CDT pin resistance*1  
RCDT  
VCDET  
MΩ  
VDS = 3.5 VVCDT = 0 V  
CDT pin  
detection voltage*1  
VDS = 3.5 V  
VDS × 0.65  
VDS × 0.70  
VDS × 0.75  
V
Operating voltage  
between VDD and VSS  
CTLC pin H voltage  
CTLD pin H voltage  
CTLC pin L voltage  
CTLD pin L voltage  
Current consumption  
during operation*2  
Sink current CTLC*2  
Sink current CTLD*2  
Source current CB  
Sink current CB  
Output voltage of CO pin, DO  
pin and CB pin are determined  
VDSOP  
1.5  
8.0  
V
VCTLCH VDS = 3.5 V  
VCTLDH VDS = 3.5 V  
VCTLCL VDS = 3.5 V  
VCTLDL VDS = 3.5 V  
VDS × 0.55  
VDS × 0.55  
VDS × 0.10  
VDS × 0.10  
VDS × 0.90  
VDS × 0.90  
VDS × 0.45  
VDS × 0.45  
V
V
V
V
4
4
4
4
IOPE  
VDS = 3.5 V  
3.5  
7.0  
μA  
5
ICTLCL  
ICTLDL  
ICBH  
VDS = 3.5 V, VCTLC = 3.5 V  
VDS = 3.5 V, VCTLD = 3.5 V  
VCB = 4.0 V, VDS = 4.5 V  
VCB = 0.5 V, VDS = 3.5 V  
VCO = 3.0 V, VDS = 3.5 V  
VCO = 24 V, VDS = 4.5 V  
VDO = 3.0 V, VDS = 3.5 V  
VDO = 24 V, VDS = 1.8 V  
320  
320  
30  
30  
30  
400  
400  
480  
480  
nA  
nA  
μA  
μA  
μA  
μA  
μA  
μA  
6
6
7
7
7
8
7
8
ICBL  
Source current CO  
Leakage current CO  
Source current DO  
Leakage current DO  
ICOH  
ICOL  
IDOH  
IDOL  
0.1  
30  
0.1  
*1. In the S-8209B Series, users are able to set delay time for the output pins. By using the following formula, delay time is  
calculated with the value of CDT pin’s resistance in the IC (RCDT) and the value of capacitor set externally at the CDT pin  
(CCDT).  
tD [s] = ln (1VCDET / VDS) × CCDT [μF] × RCDT [MΩ]  
= ln (10.7 (typ.) ) × CCDT [μF] × 8.31 MΩ (typ.)  
= 10.0 MΩ (typ.) × CCDT [μF]  
In case of the capacitance of CDT pin CCDT = 0.01 μF, the output pin delay time tD is calculated by using the above  
formula and as follows.  
tD [s] = 10.0 MΩ (typ.) × 0.01 μF = 0.1 s (typ.)  
Test RCDT and the CDT pin detection voltage (VCDET) by test circuits shown in this datasheet after applying the power  
supply while pulling-up the CTLC pin, CTLD pin to the level of VDD pin outside the IC.  
*2. In case of using CTLC pin, CTLD pin pulled-up to the level of VDD pin externally, the current flows from the VSS pin (ISS) is  
calculated by the following formula.  
ISS = IOPE + ICTLCL + ICTLDL  
8
BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION  
S-8209B Series  
Rev.3.8_00  
Test Circuits  
CTLC  
CTLD  
CB  
CO  
CTLC  
CTLD  
CB  
CO  
S-8209B Series  
S-8209B Series  
VDD  
DO  
VDD  
DO  
100 100  
kΩ kΩ  
CDT  
VSS  
CDT  
VSS  
V
V
V
A
COM  
COM  
Figure 8 Test circuit 2  
Figure 7 Test circuit 1  
CTLC  
CTLD  
CTLC  
CTLD  
CB  
CO  
CB  
CO  
S-8209B Series  
S-8209B Series  
VDD  
DO  
VDD  
DO  
100  
kΩ  
100 100  
kΩ kΩ  
CDT  
VSS  
CDT  
VSS  
V
V
V
COM  
COM  
Figure 9 Test circuit 3  
Figure 10 Test circuit 4  
CTLC  
CTLD  
A
A
CTLC  
CTLD  
CB  
CO  
CB  
CO  
S-8209B Series  
S-8209B Series  
A
VDD  
DO  
VDD  
DO  
CDT  
VSS  
CDT  
VSS  
COM  
Figure 11 Test circuit 5  
COM  
Figure 12 Test circuit 6  
9
BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION  
S-8209B Series  
Rev.3.8_00  
A
A
CTLC  
CTLD  
CB  
CO  
CTLC  
CTLD  
CB  
CO  
S-8209B Series  
S-8209B Series  
VDD  
DO  
DO  
VDD  
A
A
A
CDT  
VSS  
CDT  
VSS  
COM  
COM  
Figure 13 Test circuit 7  
Figure 14 Test circuit 8  
10  
BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION  
S-8209B Series  
Rev.3.8_00  
Operation  
Figure 15 shows the operation transition of the S-8209B Series  
[Overcharge status]  
VCTLD VCTLDL  
VCTLD VCTLDH  
VCTLC VCTLCL  
VCTLC VCTLCH  
CO = High-Z  
DO = High-Z  
CB = H *1  
CO = High-Z  
DO = H  
CB = H *1  
CO = High-Z  
DO = H  
CB = H *1  
Charge  
VDS VCL  
VDS VCU  
VDS VCL  
VDS VCU  
VDS VCL  
VCTLD VCTLDL  
VCTLD VCTLDH  
CO = H  
DO = High-Z  
CB = H *1  
CO = High-Z  
DO = H  
CB = H *1  
CO = H  
DO = H  
CB = H *1  
VCTLC VCTLCL  
VCTLC VCTLCH  
VDS VBL  
VDS VBU  
[Normal status]  
VDS VBL  
VDS VBL  
VDS VBU  
VCTLD VCTLDL  
VCTLD VCTLDH  
VCTLC VCTLCL  
VCTLC VCTLCH  
CO = H  
DO = High-Z  
CB = H *2  
CO = H  
DO = H  
CB = L  
CO = High-Z  
DO = H  
CB = L  
VDS VDL  
VDS VDU  
VDS VDL  
VDS VDU  
[Overdischarge status]  
VDS VDL  
Discharge  
VCTLC VCTLCL  
VCTLC VCTLCH  
CO = H  
DO = High-Z  
CB = L  
CO = H  
DO = High-Z  
CB = L  
CO = High-Z  
DO = High-Z  
CB = L  
VCTLD VCTLDL  
VCTLD VCTLDH  
VDS < 1.5 V  
Indefinite status  
CO = Indefinite  
DO = Indefinite  
CB = Indefinite  
*1. Operation of charge cell-balance function  
*2. Operation of discharge cell-balance function  
Figure 15 Operation Transition  
11  
BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION  
S-8209B Series  
Rev.3.8_00  
1. Normal status  
In the S-8209B Series, both of CO and DO pin get the VDD level; the voltage between VDD and VSS (VDS) is more  
than the overdischarge detection voltage (VDL), and is less than the overcharge detection voltage (VCU) and  
respectively, the CTLC pin input voltage (VCTLC) > the CTLC pin voltage "L" (VCTLCL), the CTLD pin input voltage  
(VCTLD) > the CTLD pin voltage "L" (VCTLDL). This is the normal status.  
2. Overcharge status  
In the S-8209B Series, the CO pin is in high impedance; when VDS gets VCU or more, or VCTLC gets VCTLCL or less.  
This is the overcharge status.  
If VDS gets the overcharge release voltage (VCL) or less, and VCTLC gets the CTLC pin voltage "H" (VCTLCH) or more,  
the S-8209B Series releases the overcharge status to return to the normal status.  
3. Overdischarge status  
In the S-8209B Series, the DO pin is in high impedance; when VDS gets VDL or less, or VCTLD gets VCTLDL or less. This  
is the overdischarge status.  
If VDS gets the overdischarge release voltage (VDU) or more, and VCTLD gets the CTLD pin voltage "H" (VCTLDH) or  
more, the S-8209B Series releases the overdischarge status to return to the normal status.  
4. Cell-balance function  
In the S-8209B Series, the CB pin gets the level of VDD pin; when VDS gets the cell-balance detection voltage (VBU  
)
or more. This is the charge cell-balance function.  
If VDS gets the cell-balance release voltage (VBL) or less again, the S-8209B Series sets the CB pin the level of VSS  
pin.  
In addition, the CB pin gets the level of VDD pin; when VDS is more than VDL, and VCTLD is VCTLDL or less. This is the  
discharge cell-balance function.  
If VCTLD gets VCTLDH or more, or VDS is VDL or less again, the S-8209B Series sets the CB pin the level of VSS pin.  
5. Delay circuit  
In the S-8209B Series, users are able to set delay time which is from detection of changes in VDS, VCTLC, VCTLD to  
output to the CO, DO, CB pin.  
For example in the detection of overcharge status, when VDS exceeds VCU, or VCTLC gets VCTLCH or less, charging to  
CCDT starts via RCDT. If the voltage between CDT and VSS (VCDT) reaches the CDT pin detection voltage (VCDET), the  
CO pin is in high impedance. The output pin delay time tD is calculated by the following formula.  
tD [s] = 10.0 M (typ.) × CCDT [μF]  
Ω
The electric charge in CCDT starts to be discharged when the delay time has finished.  
The delay time that users have set for the CO pin, as seen above, is settable for each output pin DO, CB.  
12  
BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION  
S-8209B Series  
Rev.3.8_00  
Battery Protection IC Connection Examples  
Regarding the operation of protection circuit with the S-8209B Series for series-connected batteries, refer to the  
application note "S-8209B Series Usage Guidelines".  
1. Example of Protection Circuit with the S-8209B Series (Without Discharge Cell-balance Function)  
for Series Multi-Cells  
Figure 16 shows the example of protection circuit with the S-8209B Series (without discharge cell-balance function)  
for series multi-cells.  
P+  
CFET DFET  
1 M  
Ω
1 k  
Ω
1 M  
Ω
1 kΩ  
CO1  
VDD1  
CDT1  
0.1 μF  
DO1  
S-8209B  
(1)  
CB1  
1 k  
Ω
1 k  
Ω
BAT1  
CTLC1  
VSS1  
CTLD1  
470  
0.1  
Ω
CO2  
DO2  
VDD2  
CDT2  
μ
F
S-8209B  
(2)  
1 k  
Ω
1 k  
Ω
CB2  
BAT2  
CTLC2  
VSS2  
CTLD2  
470  
Ω
CO3  
DO3  
VDD3  
CDT3  
0.01 μF  
0.1  
μF  
S-8209B  
(3)  
CB3  
BAT3  
CTLC3  
510 k  
Ω
510 k  
Ω
VSS3  
CTLD3  
470  
Ω
1 M  
Ω
1 M  
Ω
P−  
Figure 16  
13  
BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION  
S-8209B Series  
Rev.3.8_00  
2. Example of Protection Circuit with the S-8209B Series (With Discharge Cell-balance Function) for  
Series Multi-Cells  
Figure 17 shows the example of protection circuit with the S-8209B Series (with discharge cell-balance function) for  
series multi-cells.  
P+  
1 M  
Ω
CFET DFET  
1 M  
Ω
1 M  
Ω
1 k  
Ω
4.7 M  
Ω
CO1  
DO1  
VDD1  
CDT1  
4.7 M  
Ω
0.1 μF  
1 k  
Ω
S-8209B  
(1)  
1 M  
Ω
CB1  
1 k  
Ω
1 k  
Ω
BAT1  
CTLC1  
VSS1  
CTLD1  
470  
0.1  
Ω
CO2  
DO2  
VDD2  
CDT2  
μ
F
S-8209B  
(2)  
1 k  
Ω
1 kΩ  
CB2  
BAT2  
CTLC2  
VSS2  
CTLD2  
470  
Ω
CO3  
DO3  
VDD3  
CDT3  
0.01 μF  
0.1 μF  
S-8209B  
(3)  
CB3  
BAT3  
CTLC3  
510 k  
Ω
510 k  
Ω
VSS3  
CTLD3  
470  
Ω
1 M  
Ω
1 M  
Ω
P−  
Figure 17  
Caution 1. The constants may be changed without notice.  
2. It has not been confirmed whether the operation is normal or not in circuits other than the  
connection examples. In addition, the connection examples and the constants do not guarantee  
proper operation. Perform thorough evaluation using the actual application to set the constants.  
14  
BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION  
S-8209B Series  
Rev.3.8_00  
Precautions  
The application conditions for the input voltage, output voltage, and load current should not exceed the package power  
dissipation.  
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic  
protection circuit.  
ABLIC Inc. claims no responsibility for any and all disputes arising out of or in connection with any infringement by  
products including this IC of patents owned by a third party.  
15  
BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION  
S-8209B Series  
Rev.3.8_00  
Characteristics (Typical Data)  
1. Current consumption  
1. 1 IOPE vs. Ta  
1. 2 IOPE vs. VDS  
8
7
6
5
4
3
2
1
0
0
5
4
3
2
1
0
40 25  
0
25  
Ta [C]  
50  
75 85  
1
2
3
4
5
6
7
8
V
DS [V]  
2. Overcharge detection / release voltages, Cell-balance detection / release voltages, Overdischarge  
detection / release voltages  
2. 1 VCU vs. Ta  
2. 2 VCL vs. Ta  
4.12  
4.11  
4.10  
4.09  
4.08  
4.07  
4.04  
4.02  
4.00  
3.98  
3.96  
3.94  
40 25  
0
0
0
25  
50  
50  
50  
75 85  
75 85  
75 85  
40 25  
0
0
0
25  
50  
50  
50  
75 85  
75 85  
75 85  
Ta [C]  
Ta [C]  
2. 3 VBU vs. Ta  
2. 4 VBL vs. Ta  
4.07  
4.06  
4.05  
4.04  
4.03  
4.02  
4.04  
4.02  
4.00  
3.98  
3.96  
3.94  
40 25  
25  
Ta [C]  
40 25  
25  
Ta [C]  
2. 5 VDU vs. Ta  
2. 6 VDL vs. Ta  
2.82  
2.78  
2.74  
2.70  
2.66  
2.62  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
40 25  
25  
Ta [C]  
40 25  
25  
Ta [C]  
16  
BATTERY PROTECTION IC WITH CELL-BALANCE FUNCTION  
S-8209B Series  
Rev.3.8_00  
3. CO / DO / CB pin current  
3. 1 ICOH vs. VCO (VDS = 3.5 V)  
3. 2 IDOH vs. VDO (VDS = 3.5 V)  
2000  
1750  
1500  
1250  
1000  
750  
2000  
1750  
1500  
1250  
1000  
750  
500  
500  
250  
250  
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
VCO [V]  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
V
DO [V]  
3. 3 ICBH vs. VCB (VDS = 4.5 V)  
3. 4 ICBL vs. VCB (VDS = 3.5 V)  
2000  
1750  
1500  
1250  
1000  
750  
2000  
1750  
1500  
1250  
1000  
750  
500  
500  
250  
250  
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5  
V
CB [V]  
VCB [V]  
4. CTLC / CTLD pin current  
4. 1 ICTLCL vs. Ta (VDS = 3.5 V)  
4. 2 ICTLDL vs. Ta (VDS = 3.5 V)  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
40 25  
0
25  
Ta [C]  
50  
75 85  
40 25  
0
25  
Ta [C]  
50  
75 85  
5. CDT pin resistance / CDT pin detection voltage  
5. 1 RCDT vs. Ta  
5. 2 VCDET / VDS vs. Ta  
12.0  
10.0  
8.0  
6.0  
4.0  
2.0  
0
0.720  
0.715  
0.710  
0.705  
0.700  
0.695  
0.690  
0.685  
0.680  
40 25  
40 25  
0
25  
Ta [C]  
50  
75 85  
0
25  
Ta [C]  
50  
75 85  
17  
+0.3  
-0.2  
3.00  
5
8
1
4
0.17±0.05  
0.2±0.1  
0.65  
No. FT008-A-P-SD-1.2  
TSSOP8-E-PKG Dimensions  
FT008-A-P-SD-1.2  
TITLE  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
4.0±0.1  
2.0±0.05  
ø1.55±0.05  
0.3±0.05  
+0.1  
-0.05  
8.0±0.1  
ø1.55  
(4.4)  
+0.4  
-0.2  
6.6  
8
1
4
5
Feed direction  
No. FT008-E-C-SD-1.0  
TITLE  
TSSOP8-E-Carrier Tape  
FT008-E-C-SD-1.0  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
13.4±1.0  
17.5±1.0  
Enlarged drawing in the central part  
ø21±0.8  
2±0.5  
ø13±0.5  
No. FT008-E-R-SD-1.0  
TSSOP8-E-Reel  
FT008-E-R-SD-1.0  
TITLE  
No.  
3,000  
QTY.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
13.4±1.0  
17.5±1.0  
Enlarged drawing in the central part  
ø21±0.8  
2±0.5  
ø13±0.5  
No. FT008-E-R-S1-1.0  
TITLE  
TSSOP8-E-Reel  
FT008-E-R-S1-1.0  
No.  
QTY.  
ANGLE  
UNIT  
4,000  
mm  
ABLIC Inc.  
1.97±0.03  
6
5
8
7
+0.05  
-0.02  
0.08  
1
2
3
4
0.5  
0.48±0.02  
0.2±0.05  
No. PH008-A-P-SD-2.1  
TITLE  
SNT-8A-A-PKG Dimensions  
PH008-A-P-SD-2.1  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
+0.1  
-0  
4.0±0.1  
2.0±0.05  
0.25±0.05  
ø1.5  
0.65±0.05  
ø0.5±0.1  
4.0±0.1  
2.25±0.05  
4 3 2 1  
5 6 7 8  
Feed direction  
No. PH008-A-C-SD-2.0  
TITLE  
SNT-8A-A-Carrier Tape  
PH008-A-C-SD-2.0  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
12.5max.  
9.0±0.3  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. PH008-A-R-SD-1.0  
SNT-8A-A-Reel  
TITLE  
No.  
PH008-A-R-SD-1.0  
5,000  
QTY.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
0.52  
2
2.01  
0.52  
1
0.2  
0.3  
1.  
2.  
(0.25 mm min. / 0.30 mm typ.)  
(1.96 mm ~ 2.06 mm)  
1.  
2.  
0.03 mm  
3.  
4.  
SNT  
1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).  
2. Do not widen the land pattern to the center of the package (1.96 mm to 2.06mm).  
Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.  
2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm  
or less from the land pattern surface.  
3. Match the mask aperture size and aperture position with the land pattern.  
4. Refer to "SNT Package User's Guide" for details.  
(0.25 mm min. / 0.30 mm typ.)  
(1.96 mm ~ 2.06 mm)  
1.  
2.  
SNT-8A-A  
-Land Recommendation  
TITLE  
No.  
No. PH008-A-L-SD-4.1  
PH008-A-L-SD-4.1  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
Disclaimers (Handling Precautions)  
1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and  
application circuit examples, etc.) is current as of publishing date of this document and is subject to change without  
notice.  
2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of  
any specific mass-production design.  
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products  
described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other  
right due to the use of the information described herein.  
3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described  
herein.  
4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute  
maximum ratings, operation voltage range and electrical characteristics, etc.  
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to  
the use of the products outside their specified ranges.  
5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they  
are used and verify suitability, safety and other factors for the intended use.  
6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related  
laws, and follow the required procedures.  
7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of  
weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands  
caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear,  
biological or chemical weapons or missiles, or use any other military purposes.  
8. The products are not designed to be used as part of any device or equipment that may affect the human body, human  
life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control  
systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment,  
aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by  
ABLIC, Inc. Do not apply the products to the above listed devices and equipments.  
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of  
the products.  
9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should  
therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread  
prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social  
damage, etc. that may ensue from the products' failure or malfunction.  
The entire system in which the products are used must be sufficiently evaluated and judged whether the products are  
allowed to apply for the system on customer's own responsibility.  
10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the  
product design by the customer depending on the intended use.  
11. The products do not affect human health under normal use. However, they contain chemical substances and heavy  
metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be  
careful when handling these with the bare hands to prevent injuries, etc.  
12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.  
13. The information described herein contains copyright information and know-how of ABLIC Inc. The information  
described herein does not convey any license under any intellectual property rights or any other rights belonging to  
ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this  
document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express  
permission of ABLIC Inc.  
14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales  
representative.  
15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into  
the English language and the Chinese language, shall be controlling.  
2.4-2019.07  
www.ablic.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY