S-8245DAA-FGT1U [ABLIC]

BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK;
S-8245DAA-FGT1U
型号: S-8245DAA-FGT1U
厂家: ABLIC    ABLIC
描述:

BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK

文件: 总43页 (文件大小:935K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S-8245B/D Series  
BATTERY PROTECTION IC  
FOR 3-SERIAL TO 5-SERIAL CELL PACK  
www.ablic.com  
© ABLIC Inc., 2018  
Rev.1.4_00  
The S-8245B/D Series is a protection IC for 3-serial to 5-serial cell lithium-ion rechargeable batteries, which includes  
high-accuracy voltage detection circuits and delay circuits. It is suitable for protecting 3-serial to 5-serial cell lithium-ion  
rechargeable battery packs from overcharge, overdischarge, and overcurrent.  
Connecting an NTC, it allows for the temperature detection at four different points: high temperature detection during  
charging, low temperature detection during charging, high temperature detection during discharging, and low temperature  
detection during discharging.  
Features  
High-accuracy voltage detection for each cell  
Overcharge detection voltage n (n = 1 to 5):  
Overcharge release voltage n (n = 1 to 5):  
Overdischarge detection voltage n (n = 1 to 5):  
Overdischarge release voltage n (n = 1 to 5):  
Three-level discharge overcurrent detection:  
Discharge overcurrent 1 detection voltage:  
Discharge overcurrent 2 detection voltage:  
Load short-circuiting detection voltage:  
3.550 V to 4.600 V (50 mV step)  
3.150 V to 4.600 V*1  
2.000 V to 3.200 V (100 mV step)  
2.000 V to 3.400 V*2  
Accuracy 20 mV  
Accuracy 50 mV  
Accuracy 80 mV  
Accuracy 100 mV  
0.020 V to 0.300 V (10 mV step)  
0.040 V to 0.500 V (20 mV step)  
0.100 V to 1.000 V (25 mV step)  
Accuracy 10 mV  
Accuracy 15 mV  
Accuracy 50 mV  
Charge overcurrent detection:  
Charge overcurrent detection voltage:  
0.300 V to 0.020 V (10 mV step)  
Accuracy 10 mV  
Each delay time is settable by an external capacitor  
(Load short-circuiting detection delay time and temperature detection delay time are internally fixed)  
Independent control of charge inhibition, discharge inhibition, and power-saving by each control pin  
0 V battery charge function is selectable:  
Power-down function is selectable:  
CIT pin internal resistance value is selectable:  
Available, unavailable  
Available, unavailable  
831 ktyp., 8.31 Mtyp.  
CO and DO pin output voltage is limited to 15 V max. respectively  
Switching control for 3-serial to 5-serial cell is possible by inputting voltage to the SEL1 pin and the SEL2 pin  
Temperature detection is possible at four different points by connecting an NTC  
High temperature detection ratio during charging / discharging: 0.600 to 0.900 (0.005 step)  
Low temperature detection ratio during charging / discharging: 0.030 to 0.400 (0.005 step)  
Accuracy 0.005  
Accuracy 0.005  
High-withstand voltage:  
Wide operation voltage range:  
Wide operation temperature range:  
Low current consumption  
During operation:  
Absolute maximum rating 28 V  
5 V to 24 V  
Ta = 40C to 85C  
20 A max. (Ta = 25C)  
0.5 A max. (Ta = 25C)  
0.1 A max. (Ta = 25C)  
During power-down:  
During power-saving:  
Lead-free (Sn 100%), halogen-free  
*1. Overcharge release voltage = Overcharge detection voltage Overcharge hysteresis voltage  
(Overcharge hysteresis voltage n (n = 1 to 5) is selectable in 0 V to 0.4 V in 50 mV step)  
*2. Overdischarge release voltage = Overdischarge detection voltage Overdischarge hysteresis voltage  
(Overdischarge hysteresis voltage n (n = 1 to 5) is selectable in 0 V to 0.7 V in 100 mV step)  
Application  
Lithium-ion rechargeable battery pack  
Package  
24-Pin SSOP  
1
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
Block Diagram  
VDD  
TH  
Temperature detection circuit  
VC1  
Overcharge 1  
VREG  
CTLC  
Voltage regulator  
Overdischarge 1  
VC2  
VC3  
VC4  
VC5  
CTLD  
Overcharge 2  
Overdischarge 2  
PSI  
CCT  
Overcharge 3  
CDT  
CIT  
Overdischarge 3  
CIT2  
CICT  
Control circuit  
Overcharge 4  
Overdischarge 4  
CO pin output voltage  
limit circuit  
Overcharge 5  
CO  
DO pin output voltage  
limit circuit  
Overdischarge 5  
VSS  
DO  
SEL1  
SEL2  
Discharge  
overcurrent 1  
PSO  
VM  
Discharge  
overcurrent 2  
Load  
short-circuiting  
RVMD  
RVMS  
Charge  
overcurrent  
VINI  
Remark Diodes in the figure are parasitic diodes.  
Figure 1  
2
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
Product Name Structure  
1. Product name  
S-8245  
x
xx  
-
FGT1  
U
Environmental code  
U:  
Lead-free (Sn 100%), halogen-free  
Package abbreviation and IC packing specifications*1  
FGT1: 24-Pin SSOP, Tape  
Serial code*2  
Sequentially set from AA to ZZ  
Product type  
B:  
D:  
For application circuit with an integrated charge and discharge path  
For application circuit with separate charge and discharge paths  
*1. Refer to the tape drawing.  
*2. Refer to "3. Product name list".  
2. Package  
Table 1 Package Drawing Code  
Package Name  
24-Pin SSOP  
Dimension  
FS024-B-P-SD  
Tape  
Reel  
FS024-B-C-SD  
FS024-B-R-SD  
3
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
3. Product name list  
3. 1 S-8245B Series  
Table 2 (1 / 2)  
Discharge Discharge  
Overcurrent Overcurrent Short-circuiting Overcurrent  
1 Detection 2 Detection  
Voltage Voltage  
Load  
Charge  
Overcharge Overcharge Overdischarge Overdischarge  
Detection  
Voltage  
Release  
Voltage  
[VCL]  
Detection  
Voltage  
[VDL]  
Release  
Voltage  
[VDU]  
Product Name  
Detection  
Voltage  
[VSHORT  
Detection  
Voltage  
[VCIOV]  
[VCU  
]
[VDIOV1  
0.020 V  
0.100 V  
]
[VDIOV2  
0.040 V  
0.200 V  
]
]
S-8245BAA-FGT1U 4.100 V  
S-8245BAB-FGT1U 4.250 V  
4.050 V  
4.150 V  
2.600 V  
2.500 V  
2.700 V  
3.000 V  
0.100 V  
0.500 V  
0.020 V  
0.100 V  
Table 2 (2 / 2)  
CIT Pin High Temperature Low Temperature High Temperature Low Temperature  
0 V Battery  
Power-  
down  
Internal  
Resistance  
Value*3  
Detection Ratio  
during  
Detection Ratio  
during  
Detection Ratio  
during  
Discharging  
Detection Ratio  
during  
Discharging  
Product Name  
Charge  
Function*1 Function*2  
Charging  
Charging  
[RCIT  
]
[rTHCH  
]
[rTHCL  
]
[rTHDH  
]
[rTHDL]  
S-8245BAA-FGT1U Available Available 831 k  
S-8245BAB-FGT1U Unavailable Available 831 k  
0.670  
0.670  
0.270  
0.270  
0.795  
0.795  
0.190  
0.190  
*1. 0 V battery charge function "available" / "unavailable" is selectable.  
*2. Power-down function "available" / "unavailable" is selectable.  
*3. CIT pin internal resistance value 831 ktyp. / 8.31 Mtyp. is selectable.  
Remark Please contact our sales office for products other than those specified above.  
3. 2 S-8245D Series  
Table 3 (1 / 2)  
Discharge Discharge  
Overcurrent Overcurrent Short-circuiting Overcurrent  
1 Detection 2 Detection  
Voltage Voltage  
Load  
Charge  
Overcharge Overcharge Overdischarge Overdischarge  
Detection  
Voltage  
Release  
Voltage  
[VCL]  
Detection  
Voltage  
[VDL]  
Release  
Voltage  
[VDU]  
Product Name  
Detection  
Voltage  
[VSHORT  
Detection  
Voltage  
[VCIOV]  
[VCU  
]
[VDIOV1  
0.020 V  
0.100 V  
]
[VDIOV2  
0.040 V  
0.200 V  
]
]
S-8245DAA-FGT1U 4.100 V  
S-8245DAB-FGT1U 4.250 V  
4.050 V  
4.150 V  
2.600 V  
2.500 V  
2.700 V  
3.000 V  
0.100 V  
0.500 V  
0.020 V  
0.100 V  
Table 3 (2 / 2)  
CIT Pin High Temperature Low Temperature High Temperature Low Temperature  
0 V Battery  
Power-  
down  
Internal  
Resistance  
Value*3  
Detection Ratio  
during  
Detection Ratio  
during  
Detection Ratio  
during  
Discharging  
Detection Ratio  
during  
Discharging  
Product Name  
Charge  
Function*1 Function*2  
Charging  
Charging  
[RCIT  
]
[rTHCH  
]
[rTHCL  
]
[rTHDH  
]
[rTHDL]  
S-8245DAA-FGT1U Unavailable Available 831 k  
S-8245DAB-FGT1U Unavailable Available 831 k  
0.670  
0.670  
0.270  
0.270  
0.795  
0.795  
0.190  
0.190  
*1. 0 V battery charge function "available" / "unavailable" is selectable.  
*2. Power-down function "available" / "unavailable" is selectable.  
*3. CIT pin internal resistance value 831 ktyp. / 8.31 Mtyp. is selectable.  
Remark Please contact our sales office for products other than those specified above.  
4
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
Pin Configuration  
1. 24-Pin SSOP  
Table 4  
Top view  
Pin No. Symbol  
Description  
1
2
3
4
TH  
Input pin for temperature detection  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
Input pin for positive power supply,  
VDD  
VC1  
VC2  
3
connection pin for positive voltage of battery 1  
Connection pin for positive voltage of battery 1  
Connection pin for negative voltage of battery 1,  
connection pin for positive voltage of battery 2  
Connection pin for negative voltage of battery 2,  
connection pin for positive voltage of battery 3  
Connection pin for negative voltage of battery 3,  
connection pin for positive voltage of battery 4  
Connection pin for negative voltage of battery 4,  
connection pin for positive voltage of battery 5  
Input pin for negative power supply,  
4
5
6
7
8
9
5
6
7
VC3  
VC4  
VC5  
10  
11  
12  
Figure 2  
8
9
VSS  
VINI  
connection pin for negative voltage of battery 5  
Voltage detection pin between VSS pin and VINI pin  
Switching pins for number of cells in series  
10  
11  
SEL1  
SEL2  
[SEL1, SEL2] = ["L", "L"] :  
[SEL1, SEL2] = ["L", "H"] :  
[SEL1, SEL2] = ["H", "L"] :  
[SEL1, SEL2] = ["H", "H"] :  
5-serial cell  
4-serial cell  
3-serial cell  
Setting inhibited  
Capacitor connection pin for delay  
for charge overcurrent detection  
12  
13  
14  
15  
16  
CICT  
CCT  
CDT  
CIT  
Capacitor connection pin for delay  
for overcharge detection voltage  
Capacitor connection pin for delay  
for overdischarge detection voltage  
Capacitor connection pin for delay  
for discharge overcurrent 1 detection  
Capacitor connection pin for delay  
for discharge overcurrent 2 detection  
Output pin for power-saving signal (CMOS output)  
Connection pin of discharge control FET gate (CMOS output)  
Connection pin of charge control FET gate  
(Pch open-drain output)  
CIT2  
17  
18  
PSO  
DO  
19  
CO  
20  
21  
22  
23  
24  
VM  
Voltage detection pin between VSS pin and VM pin  
Control pin for CO pin output  
CTLC  
CTLD  
PSI  
Control pin for DO pin output  
Control pin for Power-saving  
VREG  
Voltage output pin for temperature detection  
5
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
Absolute Maximum Ratings  
Table 5  
(Ta = 25°C unless otherwise specified)  
Item  
Symbol  
Applied Pin  
Absolute Maximum Rating Unit  
Input voltage between VDD pin and VSS pin VDS  
VDD  
VSS 0.3 to VSS 28  
V
VC1, VC2, VC3, VC4, VC5,  
CCT, CDT, CIT, CIT2, CICT,  
SEL1, SEL2, TH,  
Input pin voltage 1  
VIN1  
VSS 0.3 to VDD 0.3  
V
CTLC, CTLD, PSI  
Input pin voltage 2  
VIN2  
VM, VINI  
VDD 28 to VDD 0.3  
VSS 0.3 to VDD 0.3  
VDD 28 to VDD 0.3  
40 to 85  
V
V
Output pin voltage 1  
Output pin voltage 2  
Operation ambient temperature  
Storage temperature  
VOUT1  
VOUT2  
Topr  
DO, PSO, VREG  
CO  
V
°C  
°C  
Tstg  
40 to 125  
Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical  
damage. These values must therefore not be exceeded under any conditions.  
Thermal Resistance Value  
Table 6  
Item  
Symbol  
Condition  
Board A  
Min.  
  
  
  
  
Typ.  
70  
60  
  
  
  
Max.  
  
  
  
  
Unit  
C/W  
C/W  
C/W  
C/W  
C/W  
Board B  
Board C  
Board D  
Board E  
Junction-to-ambient thermal resistance*1 JA  
24-Pin SSOP  
  
  
*1. Test environment: compliance with JEDEC STANDARD JESD51-2A  
Remark Refer to "Power Dissipation" and "Test Board" for details.  
6
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
Electrical Characteristics  
Table 7 (1 / 3)  
(V1 = V2 = V3 = V4 = V5 = 3.5 V, Ta = 25°C unless otherwise specified)  
Test  
Circuit  
Item  
Detection Voltage  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Overcharge detection voltage n  
(n = 1 to 5)  
V1 = V2 = V3 = V4 = V5 =  
VCUn 0.050 V  
VCUn  
0.020  
VCUn   
0.020  
VCUn  
VCUn  
VCLn  
V
V
V
V
V
V
V
V
1
1
1
1
1
1
1
1
Overcharge release voltage n  
(n = 1 to 5)  
VCLn  
0.050  
VDLn  
0.080  
VCLn  
0.050  
VDLn  
0.080  
VCLn  
  
  
  
  
  
  
  
Overdischarge detection voltage n  
(n = 1 to 5)  
VDLn  
VDLn  
Overdischarge release voltage n  
(n = 1 to 5)  
VDUn  
0.100  
VDUn   
0.100  
VDUn  
VDUn  
Discharge overcurrent 1  
detection voltage  
VDIOV1  
0.010  
VDIOV1  
VDIOV1  
VDIOV2  
VSHORT  
VCIOV  
VDIOV1  
VDIOV2  
VSHORT  
VCIOV  
0.010  
Discharge overcurrent 2  
detection voltage  
VDIOV2  
0.015  
VSHORT  
0.050  
VDIOV2  
0.015  
VSHORT  
0.050  
Load short-circuiting detection  
voltage  
Charge overcurrent detection  
voltage  
VCIOV  
0.010  
VCIOV  
0.010  
Delay Time Function*1  
CCT pin internal resistance  
CDT pin internal resistance  
RCCT  
RCDT  
V1 = VCU 0.025  
V1 = VDL 0.085  
RCIT = 831 k  
RCIT = 8.31 M  
  
6.15  
615  
615  
6.15  
123  
123  
8.31  
831  
831  
8.31  
166  
166  
10.20  
1020  
1020  
10.20  
204  
M  
k  
k  
M  
k  
k  
1
1
1
1
1
1
CIT pin internal resistance  
RCIT  
CIT2 pin internal resistance  
CICT pin internal resistance  
RCIT2  
RCICT  
  
204  
VDS  
0.68  
VDS  
0.70  
VDS  
0.72  
CCT pin detection voltage  
CDT pin detection voltage  
CIT pin detection voltage  
CIT2 pin detection voltage  
CICT pin detection voltage  
VCCT  
VCDT  
VCIT  
V1 = VCU 0.025  
V
V
1
1
1
1
1
1
VDS  
0.68  
VDS  
0.70  
VDS   
0.72  
V1 = VDL 0.085  
VDS  
0.68  
VDS  
0.70  
VDS   
0.72  
  
  
  
V
VDS  
0.68  
VDS  
0.70  
VDS   
0.72  
VCIT2  
VCICT  
V
VDS  
0.68  
VDS  
0.70  
VDS   
0.72  
V
Load short-circuiting detection  
delay time  
tSHORT Internally fixed delay time  
100  
5
300  
600  
24  
s  
Input Voltage  
Operation voltage between  
VDD pin and VSS pin  
Fixed output voltage of DO pin  
and CO pin  
VDSOP  
  
V
  
*1. Refer to "6. Delay time setting" in "Operation" for details of the delay time function.  
7
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
Table 7 (2 / 3)  
(V1 = V2 = V3 = V4 = V5 = 3.5 V, Ta = 25°C unless otherwise specified)  
Test  
Circuit  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Input Current  
Current consumption during  
operation  
IOPE  
IPDN  
IPSV  
  
  
  
  
10  
  
20  
0.5  
0.1  
A  
A  
A  
1
1
1
Current consumption during  
power-down  
V1 = V2 = V3 = V4 = V5 = 1.5 V  
Current consumption during  
power-saving  
  
  
VC1 pin current  
IVC1  
IVC2  
IVC3  
IVC4  
IVC5  
  
  
  
  
  
  
0.25  
0.0  
0.0  
0.0  
0.0  
0.50  
0.8  
0.8  
0.8  
0.8  
A  
A  
A  
A  
A  
1
1
1
1
1
VC2 pin current  
0.8  
0.8  
0.8  
0.8  
VC3 pin current  
VC4 pin current  
VC5 pin current  
Internal Resistance  
Resistance between VM pin and  
VDD pin  
RVMD  
RVMS  
V1 = V2 = V3 = V4 = V5 = 1.5 V  
1.35  
7.5  
2.70  
15.0  
5.40  
30.0  
M  
k  
1
1
Resistance between VM pin and  
VSS pin  
  
Output Pin  
CO pin voltage "H"*1  
DO pin voltage "H"*2  
CO pin source current  
CO pin leakage current  
DO pin source current  
DO pin sink current  
PSO pin source current  
PSO pin sink current  
0 V Battery Charge Function  
VCOH  
VDOH  
ICOH  
ICOL  
VCOH VDS  
VDOH VDS  
11.0  
11.0  
10  
  
10  
10  
1
13.0  
13.0  
  
  
  
  
  
  
15.0  
15.0  
  
0.1  
  
10  
10  
V
1
1
1
1
1
1
1
1
V
  
A  
A  
A  
A  
A  
A  
V1 = V2 = V3 = V4 = V5 = 5.6 V  
IDOH  
IDOL  
IPSOH  
IPSOL  
  
  
  
V1 = V2 = V3 = V4 = V5 = 1.9 V  
1
0 V battery charge function  
"available",  
V1 = V2 = V3 = V4 = V5 = 0 V  
0 V battery charge function  
"unavailable"  
0 V battery charge starting  
charger voltage  
V0CHA  
  
0.8  
1.3  
1.5  
1.5  
V
V
1
1
0 V battery charge inhibition  
battery voltage n (n = 1 to 5)  
V0INHn  
1.0  
*1. When VCOH VDS, VCOH = VDD  
*2. When VDOH VDS, VDOH = VDD  
Remark VDS: Input voltage between the VDD pin and VSS pin (V1 V2 V3 V4 V5)  
8
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
Table 7 (3 / 3)  
(V1 = V2 = V3 = V4 = V5 = 3.5 V, Ta = 25°C unless otherwise specified)  
Test  
Circuit  
Item  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
Control Pin  
SEL1 pin voltage "H"  
VSEL1H  
VSEL2H  
VSEL1L  
VSEL2L  
VCTLC  
VCTLD  
VPSI  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
VDS 0.95  
VDS 0.95  
  
  
  
  
  
0.7  
  
  
V
V
  
  
  
  
1
SEL2 pin voltage "H"  
SEL1 pin voltage "L"  
VDS 0.05  
VDS 0.05  
2.0  
V
SEL2 pin voltage "L"  
  
0.1  
V
CTLC pin reverse voltage  
CTLD pin reverse voltage  
PSI pin reverse voltage  
CTLC pin response delay time  
CTLD pin response delay time  
PSI pin response delay time  
CTLC pin curent "H"  
V
0.1  
0.7  
2.0  
V
1
0.1  
4.0  
8.0  
V
1
tCTLC  
0.275  
0.275  
0.3  
0.500  
0.500  
0.9  
0.725  
0.725  
3.0  
ms  
ms  
ms  
A  
A  
A  
A  
A  
A  
1
tCTLD  
1
tPSI  
1
ICTLCH  
ICTLCL  
ICTLDH  
ICTLDL  
IPSIH  
0.1  
0.45  
0.1  
0.45  
0.0  
0.0  
0.1  
1
CTLC pin curent "L"  
0.20  
0.0  
0.05  
0.1  
1
CTLD pin curent "H"  
1
CTLD pin curent "L"  
0.20  
0.2  
0.05  
0.4  
1
PSI pin curent "H"  
1
PSI pin curent "L"  
IPSIL  
0.1  
0.0  
0.1  
1
Temperature Detection Function  
Output voltage for temperature  
detection  
Voltage between VDD pin and  
VREG pin  
VREG  
rTHCH  
rTHCL  
rTHDH  
rTHDL  
VCHG  
4.0  
5.0  
6.0  
V
2
2
2
2
2
High temperature detection ratio  
during charging  
rTHCH  
0.005  
rTHCH  
0.005  
rTHCH = (VREG VTH) / VREG  
rTHCL = (VREG VTH) / VREG  
rTHDH = (VREG VTH) / VREG  
rTHDL = (VREG VTH) / VREG  
rTHCH  
rTHCL  
rTHDH  
rTHDL  
  
  
  
  
Low temperature detection ratio  
during charging  
rTHCL  
0.005  
rTHCL   
0.005  
High temperature detection ratio  
during discharging  
rTHDH  
0.005  
rTHDH   
0.005  
Low temperature detection ratio  
during discharging  
rTHDL  
0.005  
rTHDL   
0.005  
Charge-discharge discriminating  
voltage  
  
  
0.03  
0.02  
0.01  
V
s
2
2
Temperature detection delay time tTH  
1.0  
2.0  
3.0  
9
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
Test Circuits  
Unless otherwise specified, for the CO pin output voltage (VCO), DO pin output voltage (VDO) and PSO pin output voltage  
(VPSO), "L" or "H" is judged as follows.  
L : [VCO, VDO, VPSO] VDS 0.1 V  
H : [VCO, VDO, VPSO] VDS 0.1 V  
Remark VDS: Input voltage between the VDD pin and VSS pin (V1 V2 V3 V4 V5)  
1. Test circuit 1  
10 k  
0.1 F  
10 k  
1 TH  
VREG 24  
2 VDD  
3 VC1  
4 VC2  
5 VC3  
6 VC4  
PSI 23  
CTLD 22  
CTLC 21  
VM 20  
A
A
A
A
A
A
A
V1  
V2  
V3  
A
A
CO 19  
DO 18  
A
A
S-8245B/D  
V4  
V5  
7 VC5  
8 VSS  
9 VINI  
PSO 17  
CIT2 16  
CIT 15  
A
A
A
10 SEL1  
11 SEL2  
12 CICT  
A
A
CDT 14  
A
A
CCT 13  
SW3 SW4 SW5  
SW6  
SW7  
SW8 SW9  
SW2  
SW1  
V
V
V
V7  
V8 V9 V10 V11  
V12  
V13  
V14 V15 V16 V17 V18  
V6  
1 M  
Figure 3 Test Circuit 1  
This section provides explanations of Test items using Test circuit 1.  
Perform each test after setting as shown in Table 8.  
Table 8 Initial Setting of Test Circuit 1 (1 / 2)  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
V9  
V10  
V11  
V12  
V13  
V14  
3.5 V 3.5 V 3.5 V 3.5 V 3.5 V  
0 V  
Table 8 Initial Setting of Test Circuit 1 (2 / 2)  
V15  
0 V  
V16  
VDS  
V17  
VDS  
V18  
VDS  
SW1  
OFF  
SW2  
OFF  
SW3  
OFF  
SW4  
OFF  
SW5  
OFF  
SW6  
OFF  
SW7  
OFF  
SW8  
ON  
SW9  
OFF  
10  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
1. 1 Overcharge detection voltage n (VCUn), overcharge release voltage n (VCLn  
)
When the voltage V1 is gradually increased after setting V1 = V2 = V3 = V4 = V5 = VCUn 0.05 V and VCO  
changes from "H" to "L", V1 is defined as the overcharge detection voltage 1 (VCU1). When the voltage V1 is then  
gradually decreased after setting V2 = V3 = V4 = V5 = 3.5 V and V15 = 5 mV and VCO changes from "L" to "H",  
V1 is defined as the overcharge release voltage 1 (VCL1).  
Overcharge detection voltage n (VCUn) and overcharge release voltage n (VCLn) (n = 2 to 5) can be determined in  
the same way as when n = 1.  
1. 2 Overdischarge detection voltage n (VDLn), overdischarge release voltage n (VDUn  
)
When the voltage V1 is gradually decreased and VDO changes from "H" to "L", V1 is defined as the overdischarge  
detection voltage 1 (VDL1). When the voltage V1 is then gradually increased after setting V15 = 0.1 V and VDO  
changes from "L" to "H", V1 is defined as the overdischarge release voltage 1 (VDU1).  
Overdischarge detection voltage n (VDLn) and overdischarge release voltage n (VDUn) (n = 2 to 5) can be  
determined in the same way as when n = 1.  
1. 3 Discharge overcurrent 1 detection voltage (VDIOV1  
)
When the voltage V6 is gradually increased and VDO changes from "H" to "L", V6 is defined as the discharge  
overcurrent 1 detection voltage (VDIOV1).  
1. 4 Discharge overcurrent 2 detection voltage (VDIOV2  
)
When the voltage V6 is gradually increased after setting V10 = 0 V and SW4 to ON and VDO changes from "H" to  
"L", V6 is defined as the discharge overcurrent 2 detection voltage (VDIOV2).  
1. 5 Load short-circuiting detection voltage (VSHORT  
)
When the voltage V6 is gradually increased after setting V10 = V11 = 0 V and SW4 and SW5 to ON and VDO  
changes from "H" to "L", V6 is defined as the load short-circuiting detection voltage (VSHORT).  
1. 6 Charge overcurrent detection voltage (VCIOV  
)
When the voltage V6 is gradually decreased and VCO changes from "H" to "L", V6 is defined as the charge  
overcurrent detection voltage (VCIOV).  
1. 7 CCT pin internal resistance (RCCT), CCT pin detection voltage (VCCT  
)
The CCT pin internal resistance (RCCT) is defined by RCCT = VDS / ICCT under the set conditions of V1 = VCU1  
0.025 V after setting V8 = 0 V and setting SW2 to ON. When the voltage V8 is then gradually increased and VCO  
changes from "H" to "L", V8 is defined as the CCT pin detection voltage (VCCT).  
1. 8 CDT pin internal resistance (RCDT), CDT pin detection voltage (VCDT  
)
The CDT pin internal resistance (RCDT) is defined by RCDT = VDS / ICDT under the set conditions of V1 = VDL1  
0.085 V after setting V9 = 0 V and setting SW3 to ON. When the voltage V9 is then gradually increased and VDO  
changes from "H" to "L", V9 is defined as the CDT pin detection voltage (VCDT).  
1. 9 CIT pin internal resistance (RCIT), CIT pin detection voltage (VCIT  
)
The CIT pin internal resistance (RCIT) is defined by RCIT = VDS / ICIT under the set conditions of V6 = VDIOV1 0.015  
V after setting V10 = 0 V and setting SW4 to ON. When the voltage V10 is then gradually increased and VDO  
changes from "H" to "L", V10 is defined as the CIT pin detection voltage (VCIT).  
1. 10 CIT2 pin internal resistance (RCIT2), CIT2 pin detection voltage (VCIT2  
)
The CIT2 pin internal resistance (RCIT2) is defined by RCIT2 = VDS / ICIT2 under the set conditions of V6 = VDIOV2  
0.020 V after setting V10 = V11 = 0 V and setting SW4 and SW5 to ON. When the voltage V11 is then gradually  
increased and VDO changes from "H" to "L", V11 is defined as the CIT2 pin detection voltage (VCIT2).  
11  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
1. 11 CICT pin internal resistance (RCICT), CICT pin detection voltage (VCICT  
)
The CICT pin internal resistance (RCICT) is defined by RCICT = VDS / ICICT under the set conditions of V6 = VCIOV  
0.015 V after setting V7 = 0 V and setting SW1 to ON. When the voltage V7 is then gradually increased and VCO  
changes from "H" to "L", V7 is defined as the CICT pin detection voltage (VCICT).  
1. 12 Load short-circuiting detection delay time (tSHORT  
)
The load short-circuiting detection delay time (tSHORT) is the time period from when the voltage V6 changes to V6 =  
VSHORT 0.055 V until when VDO changes from "H" to "L" after setting V10 = V11 = 0 V and setting SW4 and SW5  
to ON.  
1. 13 Current consumption during operation (IOPE  
)
The current consumption during operation (IOPE) is IVSS when SW8 is OFF.  
1. 14 Current consumption during power-down (IPDN  
)
The current consumption during power-down (IPDN) is IVSS when V1 = V2 = V3 = V4 = V5 = 1.5 V, V15 = VDS and  
SW8 is OFF.  
1. 15 Current consumption during power-saving (IPSV  
)
The current consumption during power-saving (IPSV) is IVSS when V18 = 0 V and SW8 is OFF.  
1. 16 Resistance between VM pin and VDD pin (RVMD  
)
The resistance between VM pin and VDD pin (RVMD) is defined by RVMD = VDS / IVM when setting V1 = V2 = V3 =  
V4 = V5 = 1.5 V.  
1. 17 Resistance between VM pin and VSS pin (RVMS  
)
The resistance between VM pin and VSS pin (RVMS) is defined by RVMS = V15 / IVM when setting V6 = VDIOV1  
0.015 V and V15 = 2.0 V.  
1. 18 CO pin source current (ICOH  
)
The CO pin source current (ICOH) is ICO when V14 = VCOH 0.5 V, SW8 is OFF, and SW9 is ON.  
1. 19 CO pin leakage current (ICOL  
)
The CO pin leakage current (ICOL) is ICO when V1 = V2 = V3 = V4 = V5 = 5.6 V, V14 = 0 V, SW8 is OFF, and SW9  
is ON.  
1. 20 DO pin source current (IDOH  
)
The DO pin source current (IDOH) is IDO when V13 = VDOH 0.5 V and SW7 is ON.  
1. 21 DO pin sink current (IDOL  
)
The DO pin sink current (IDOL) is IDO when V1 = V2 = V3 = V4 = V5 = 1.9 V, V13 = 0.5 V, and SW7 is ON.  
1. 22 PSO pin source current (IPSOH  
)
The PSO pin source current (IPSOH) is IPSO when V18 = 0 V, V12 = VDS 0.5 V, and SW6 is ON.  
1. 23 PSO pin sink current (IPSOL  
)
The PSO pin sink current (IPSOL) is IPSO when V12 = 0.5 V and SW6 is ON.  
12  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
1. 24 0 V battery charge starting charger voltage (V0CHA) (0 V battery charge function "available")  
When the voltage V15 is gradually decreased after setting V1 = V2 = V3 = V4 = V5 = 0 V and VCO is "H", the  
absolute value of V15 is defined as the 0 V battery charge starting charger voltage (V0CHA).  
1. 25 0 V battery charge inhibition battery voltage n (V0INHn) (0 V battery charge function "unavailable")  
When the voltage V1 is gradually decreased and VCO changes from "H" to "L", V1 is defined as the 0 V battery  
charge inhibition battery voltage 1 (V0INH1).  
0 V battery charge inhibition battery voltage n (V0INHn) (n = 2 to 5) can be determined in the same way as when n =  
1.  
1. 26 CTLC pin reverse voltage (VCTLC  
)
When the voltage V16 is gradually decreased and VCO changes from "H" to "L", V16 is defined as the CTLC pin  
reverse voltage (VCTLC).  
1. 27 CTLD pin reverse voltage (VCTLD  
)
When the voltage V17 is gradually decreased and VDO changes from "H" to "L", V17 is defined as the CTLD pin  
reverse voltage (VCTLD).  
1. 28 PSI pin reverse voltage (VPSI  
)
When the voltage V18 is gradually decreased and VPSO changes from "L" to "H", V18 is defined as the PSI pin  
reverse voltage (VPSI).  
1. 29 CTLC pin response delay time (tCTLC  
)
The CTLC pin response delay time (tCTLC) is the time period from when the voltage V16 changes to V16 = 0 V until  
when VCO changes from "H" to "L".  
1. 30 CTLD pin response delay time (tCTLD  
)
The CTLD pin response delay time (tCTLD) is the time period from when the voltage V17 changes to V17 = 0 V until  
when VDO changes from "H" to "L".  
1. 31 PSI pin response delay time (tPSI  
)
The PSI pin response delay time (tPSI) is the time period from when the voltage V18 changes to V18 = 0 V until  
when VPSO changes from "L" to "H".  
1. 32 CTLC pin current "H" (ICTLCH), CTLC pin current "L" (ICTLCL  
)
The CTLC pin current "H" (ICTLCH) is ICTLC when V16 = VDS  
The CTLC pin current "L" (ICTLCL) is ICTLC when V16 = 0 V.  
.
1. 33 CTLD pin current "H" (ICTLDH), CTLD pin current "L" (ICTLDL  
)
The CTLD pin current "H" (ICTLDH) is ICTLD when V17 = VDS  
The CTLD pin current "L" (ICTLDL) is ICTLD when V17 = 0 V.  
.
1. 34 PSI pin current "H" (IPSIH), PSI pin current "L" (IPSIL  
)
The PSI pin current "H" (IPSIH) is IPSI when V18 = VDS  
The PSI pin current "L" (IPSIL) is IPSI when V18 = 0 V.  
.
13  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
2. Test circuit 2  
V
20 k  
0.1 F  
V7  
1 TH  
VREG 24  
2 VDD  
3 VC1  
4 VC2  
5 VC3  
6 VC4  
PSI 23  
CTLD 22  
CTLC 21  
VM 20  
V1  
V2  
V3  
V4  
V5  
CO 19  
S-8245B/D  
7 VC5  
8 VSS  
9 VINI  
DO 18  
PSO 17  
CIT2 16  
CIT 15  
10 SEL1  
11 SEL2  
CDT 14  
12 CICT  
CCT 13  
V
V
V6  
1 M  
Figure 4 Test Circuit 2  
This section provides explanations of Test items using Test circuit 2.  
Perform each test after setting as shown in Table 9.  
Table 9 Initial Setting of Test Circuit 2  
V1  
V2  
V3  
V4  
V5  
V6  
V7*1  
2.5 V  
3.5 V  
3.5 V  
3.5 V  
3.5 V  
3.5 V  
0 V  
*1. V7 is an absolute value.  
14  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
2. 1 Output voltage for temperature detection (VREG  
)
The maximum voltage between the VDD pin and VREG pin is defined as the output voltage for temperature  
detection (VREG).  
2. 2 High temperature detection ratio during charging (rTHCH  
)
When the voltage V7 is gradually decreased after setting V6 = 0.03 V and VCO changes from "H" to "L" and VDO  
changes from "H" to "L", the high temperature detection ratio during charging (rTHCH) is defined by (VREG V7) /  
VREG  
.
2. 3 Low temperature detection ratio during charging (rTHCL  
)
When the voltage V7 is gradually increased after setting V6 = 0.03 V and VCO changes from "H" to "L" and VDO  
changes from "H" to "L", the low temperature detection ratio during charging (rTHCL) is defined by (VREG V7) /  
VREG  
.
2. 4 High temperature detection ratio during discharging (rTHDH  
When the voltage V7 is gradually decreased and VCO changes from "H" to "L" and VDO changes from "H" to "L", the  
high temperature detection ratio during discharging (rTHDH) is defined by (VREG V7) / VREG  
)
.
2. 5 Low temperature detection ratio during discharging (rTHDL  
When the voltage V7 is gradually increased and VCO changes from "H" to "L" and VDO changes from "H" to "L", the  
low temperature detection ratio during discharging (rTHDL) is defined by (VREG V7) / VREG  
)
.
2. 6 Charge-discharge discriminating voltage (VCHG  
)
When the voltage V6 is gradually decreased after setting (1 rTHDH) VREG V7 (1 rTHCH) VREG and VCO  
changes from "H" to "L" and VDO changes from "H" to "L", V6 is defined as the charge-discharge discriminating  
voltage (VCHG).  
2. 7 Temperature detection delay time (tTH  
The temperature detection delay time (tTH) is the time period from when the voltage V7 changes to 0 V until when  
CO changes from "H" to "L" and VDO changes from "H" to "L".  
)
V
15  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
Operation  
Remark Refer to "Connection Examples of Battery Protection IC".  
1. Normal status  
The status when the CO pin output voltage (VCO) = "H", DO pin output voltage (VDO) = "H" and PSO pin output voltage  
(VPSO) = "L" is the normal status.  
All the conditions mentioned below should be satisfied for returning to normal status.  
The voltage of each of the batteries is in the range from the overcharge detection voltage n (VCUn) to  
overdischarge detection voltage n (VDLn).  
The VINI pin voltage is in the range of the charge overcurrent detection voltage (VCIOV) to the discharge  
overcurrent 1 detection voltage (VDIOV1).  
The CTLC pin voltage, CTLD pin voltage, and PSI pin voltage are higher than the CTLC pin reverse voltage  
(VCTLC), CTLD pin reverse voltage (VCTLD), and PSI pin reverse voltage (VPSI), respectively.  
Either (1) or (2) below is satisfied for the TH pin voltage (VTH).  
(1) When VVM VCHG  
(2) When VVM VCHG  
:
:
(1 rTHCH) VREG VTH (1 rTHCL) VREG  
(1 rTHDH) VREG VTH (1 rTHDL) VREG  
Caution After a battery is connected, there may be cases when discharging cannot be performed. In this  
case, the S-8245B/D Series returns to the normal status when any of the following conditions is  
satisfied.  
(1) Connecting a charger  
(2) Shorting between the VM pin and the VSS pin  
(3) Changing the PSI pin voltage to be VDS 0 V VDS  
Remark VVM  
VCHG  
rTHCH  
rTHCL  
rTHDH  
:
VM pin voltage  
Charge-discharge discriminating voltage  
:
:
:
:
High temperature detection ratio during charging  
Low temperature detection ratio during charging  
High temperature detection ratio during discharging  
Low temperature detection ratio during discharging  
Output voltage for temperature detection  
rTHDL  
:
VREG  
:
VDS  
:
Input voltage between the VDD pin and VSS pin (V1 V2 V3 V4 V5)  
2. Overcharge status  
When the voltage of any of the batteries exceeds the overcharge detection voltage n (VCUn) and the status continues  
*1  
for the overcharge detection delay time (tCU  
)
or longer, the CO pin changes to high impedance. This is the  
overcharge status. The CO pin is pulled down to EBby an external resistor so that the charge control FET is turned  
off to stop charging.  
The overcharge status is released if either condition mentioned below is satisfied.  
(1) VVM 0 V, and voltage of battery VCLn  
(2) VVM 0 V, and voltage of all batteries VCUn  
*1. Refer to "6. Delay time setting" for details.  
Remark VVM  
VDS  
VCUn  
VCLn  
:
:
VM pin voltage  
Input voltage between the VDD pin and VSS pin (V1 V2 V3 V4 V5)  
Overcharge detection voltage n (n = 1 to 5)  
Overcharge release voltage n (n = 1 to 5)  
:
:
16  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
3. Overdischarge status  
When the voltage of any of the batteries falls below the overdischarge detection voltage n (VDLn) and the status  
continues for the overdischarge detection delay time (tDL)*1 or longer, the DO pin changes to the VSS level. This is the  
overdischarge status. The discharge control FET is turned off to stop discharging.  
The overdischarge status is released if either condition mentioned below is satisfied.  
(1) VVM VCHG, and voltage of all batteries VDLn  
(2) VVM VCHG, and voltage of battery VDUn  
*1. Refer to "6. Delay time setting" for details.  
Remark VVM  
VCHG  
VDLn  
VDUn  
:
VM pin voltage  
:
Charge-discharge discriminating voltage  
Overdischarge detection voltage n (n = 1 to 5)  
Overdischarge release voltage n (n = 1 to 5)  
:
:
3. 1 With power-down function  
When S-8245B/D Series reaches the overdischarge status, the VM pin is pulled up to the VDD level by a resistance  
between VM pin and VDD pin (RVMD). If the voltage difference between the VDD pin and the VM pin decreases to  
1.0 V typ. or lower, the power-down function starts to operate and most operations in the S-8245B/D Series halt. In  
this case, the CO pin changes to high impedance, and the PSO pin changes to the VDD level.  
The power-down function is released when the VM pin voltage changes to 0.7 V typ. or lower.  
4. Discharge overcurrent status  
When the discharge current increases to a certain value or more, the VINI pin voltage increases to the level of  
discharge overcurrent 1 detection voltage (VDIOV1) or higher. If the status continues for the discharge overcurrent 1  
detection delay time (tDIOV1)  
*1 or longer, the DO pin changes to the VSS level. This is the discharge overcurrent status.  
The discharge control FET is turned off to stop discharging. The VM pin is pulled down to the VSS level by resistance  
between VM pin and VSS pin (RVMS).  
Discharge overcurrent is detected at the following three levels: VDIOV1, VDIOV2, and VSHORT. When discharge  
overcurrent 2 detection voltage (VDIOV2) and load short-circuiting detection voltage (VSHORT) are detected, the same  
operations as VDIOV1 detection are performed.  
The discharge overcurrent status is released if the following conditions are satisfied.  
S-8245B Series: VVM VDS / 2 typ.  
S-8245D Series: VVM VDS / 4 typ.  
*1. Refer to "6. Delay time setting" for details.  
Remark VVM  
:
VM pin voltage  
VDS  
:
Input voltage between the VDD pin and VSS pin (V1 V2 V3 V4 V5)  
5. Charge overcurrent status  
When the charge current increases to a certain value or more, the VINI pin voltage decreases to the level of charge  
overcurrent detection voltage (VCIOV) or lower. If the status continues for the charge overcurrent detection delay time  
*1  
(tCIOV  
)
or longer, the CO pin changes to high impedance. This is the charge overcurrent status. The charge control  
FET is turned off to stop charging. The VM pin is pulled up to the VDD level by resistance between VM pin and VDD  
pin (RVMD).  
The charge overcurrent status is released if VVM 0 V typ.  
*1. Refer to "6. Delay time setting" for details.  
Remark VVM  
:
VM pin voltage  
VDS  
:
Input voltage between the VDD pin and VSS pin (V1 V2 V3 V4 V5)  
17  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
6. Delay time setting  
Users are able to set delay time for the period from when the S-8245B/D Series detects change in the voltage of any  
of the batteries or the VINI pin until when it outputs to the CO pin or the DO pin. Each delay time is determined by a  
resistor in the S-8245B/D Series and an external capacitor.  
In the overchage detection, when the voltage of any of the batteries exceeds overcharge detection voltage n (VCUn),  
the S-8245B/D Series starts charging to the CCT pin's capacitor (CCCT) via the CCT pin internal resistance (RCCT).  
After a certain period, the CO pin changes to high impedance when the CCT pin reaches the CCT pin detection  
voltage (VCCT). This period is overcharge detection delay time (tCU).  
t
CU is calculated using the following equation.  
t
CU [s] = ln (1 VCCT / VDS) CCCT [F] RCCT [M]  
= ln (1 0.7 typ.) CCCT [F] 8.31 [M] typ.  
= 10.0 [M] typ. CCCT [F]  
Overdischarge detection delay time (tDL), discharge overcurrent 1 detection delay time (tDIOV1), discharge overcurrent 2  
detection delay time (tDIOV2) and charge overcurrent detection delay time (tCIOV) are calculated using the following  
equations as well.  
t
t
t
t
DL [ms] = ln (1 VCDT / VDS) CCDT [F] RCDT [k]  
DIOV1 [ms] = ln (1 VCIT / VDS) CCIT [F] RCIT [k]  
DIOV2 [ms] = ln (1 VCIT2 / VDS) CCIT2 [F] RCIT2 [k]  
CIOV [ms] = ln (1 VCICT / VDS) CCICT [F] RCICT [k]  
When CCCT = CCDT = CCIT = CCIT2 = CCICT = 0.1 [F], each delay time is calculated as follows.  
t
t
t
t
t
t
CU [s] = 10.0 [M] typ. 0.1 [F] = 1.0 [s] typ.  
DL [ms] = 1000 [k] typ. 0.1 [F] = 100 [ms] typ.  
DIOV1 [ms] = 1000 [k] typ. 0.1 [F] = 100 [ms] typ. (when RCIT = 831 ktyp.)  
DIOV1 [ms] = 10.0 [M] typ. 0.1 [F] = 1.0 [s] typ. (when RCIT = 8.31 Mtyp.)  
DIOV2 [ms] = 200 [k] typ. 0.1 [F] = 20 [ms] typ.  
CIOV [ms] = 200 [k] typ. 0.1 [F] = 20 [ms] typ.  
Load short-circuiting detection delay time (tSHORT) is fixed internally.  
Remark VDS Input voltage between the VDD pin and VSS pin (V1 V2 V3 V4 V5)  
:
7. 0 V Battery charge function  
Regarding how to charge a self-discharged battery (0 V battery), users are able to select either function mentioned  
below.  
(1) 0 V battery charge function "available"  
A 0 V battery is charged when charger voltage is higher than V0CHA  
(2) 0 V battery charge function "unavailable"  
.
A 0 V battery is not charged when the voltage of any of the batteries is V0INHn or lower.  
Caution When the VDD pin voltage is lower than the minimum value of operation voltage between the VDD  
pin and VSS pin (VDSOP), the S-8245B/D Series' operation is not assured.  
Remark V0CHA  
:
0 V battery charge starting charger voltage  
V0INHn  
:
0 V battery charge inhibition battery voltage n (n = 1 to 5)  
18  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
8. SEL1 pin and SEL2 pin  
Switching control for 3-serial to 5-serial cell is possible by inputting voltage to the SEL1 pin and the SEL2 pin.  
Be sure to use the SEL1 pin and the SEL2 pin at the "H" or "L" level.  
Table 10 Settings of SEL1 Pin and SEL2 Pin  
SEL1 Pin  
SEL2 Pin  
Setting  
"L"  
"L"  
"H"  
"H"  
"L"  
"H"  
"L"  
"H"  
5-serial cell  
4-serial cell  
3-serial cell  
Setting inhibited  
Remark "H" is the status when VSEL1 VSEL1H, VSEL2 VSEL2H, and "L" is the status when VSEL1  
VSEL1L, VSEL2 VSEL2L  
.
VSEL1H  
VSEL2H  
:
:
SEL1 pin voltage "H"  
SEL2 pin voltage "H"  
SEL1 pin voltage "L"  
SEL2 pin voltage "L"  
VSEL1L  
VSEL2L  
:
:
9. CTLC pin and CTLD pin  
The CTLC pin controls the CO pin, and the CTLD pin controls the DO pin. Thus it is possible for users to control the  
CO pin and the DO pin respectively. These controls precede the battery protection circuit.  
Table 11 Status Set by CTLC Pin  
CTLC Pin  
CO Pin  
High impedance  
"H"  
VSS level CTLC pin voltage VCTLC  
VCTLC CTLC pin voltage VDD level  
Remark VCTLC  
:
CTLC pin reverse voltage  
Table 12 Status Set by CTLD Pin  
CTLD Pin  
DO Pin  
VSS level CTLD pin voltage VCTLD  
VCTLD CTLD pin voltage VDD level  
VSS level  
"H"  
Remark VCTLD  
:
CTLD pin reverse voltage  
19  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
10. PSI pin  
When the PSI pin is activated, the power-saving function starts to operate and most operations halt. In this case, the  
CO pin changes to high impedance, DO pin changes to the VSS level, and the PSO pin changes to the VDD level.  
Table 13 Status Set by PSI Pin  
PSI Pin  
CO Pin  
DO Pin  
PSO Pin  
VSS level  
VDD level  
VPSI PSI pin voltage VDD level  
VSS level PSI pin voltage VPSI  
"H"  
High impedance  
"H"  
VSS level  
Remark VPSI: PSI pin reverse voltage  
The S-8245B/D Series is initialized and the power-saving function is released by deactivating the PSI pin. As a result,  
each detection operation is carried out after returning to the normal status.  
11. Temperature detection  
Serially connect an NTC and a low temperature-dependent resistor (RTH) between the VDD pin and the VREG pin,  
and then connect their middle point to the TH pin. It allows for temperature detection at four different points: high  
temperature detection during charging, low temperature detection during charging, high temperature detection during  
discharging, low temperature detection during discharging.  
When the temperature rises, according to the NTC temperature characteristics, the resistance (RNTC) decreases, and  
the ratio between RNTC and RTH changes, and then the TH pin voltage (VTH) increases.  
When the temperature falls, according to the NTC temperature characteristics, the resistance (RNTC) increases, and  
the ratio between RNTC and RTH changes, and then the TH pin voltage (VTH) decreases.  
The temperature detection during charging and temperature detection during discharging switch by comparing the VM  
pin voltage (VVM) and charge-discharge discriminating voltage (VCHG).  
If the relation between RNTC, RTH, and VVM satisfies the itemized condition in Table 14 in each temperature detection,  
and each status continues for the temperature detection delay time (tTH) or longer, the CO pin changes to high  
impedance, and the DO pin changes to the VSS level. This is the temperature protection status.  
If the itemized condition in Table 14 is not satisfied in each temperature detection, and each status continues for tTH or  
longer, the temperature protection status is released.  
Table 14 Conditions for Each Temperature Detection  
Item  
TH Pin  
VM Pin  
VVM VCHG  
VVM VCHG  
VVM VCHG  
VVM VCHG  
CO Pin  
DO Pin  
High temperature detection during charging  
Low temperature detection during charging  
rTHCH RTH / (RNTC RTH  
rTHCL RTH / (RNTC RTH  
)
)
High impedance VSS level  
High temperature detection during discharging rTHDH RTH / (RNTC RTH  
Low temperature detection during discharging rTHDL RTH / (RNTC RTH  
)
)
Remark rTHCH  
rTHCL  
rTHDH  
rTHDL  
:
:
:
:
High temperature detection ratio during charging  
Low temperature detection ratio during charging  
High temperature detection ratio during discharging  
Low temperature detection ratio during discharging  
20  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
The detection temperature can be set according to the NTC and RTH characteristics.  
For example, if RNTC*1 and RTH (10 k) are connected to the S-8245BAA, each detection temperature is as follows.  
Table 15  
Item  
Temperature Detection Ratio  
THCH = 0.670  
RNTC  
Detection Temperature  
Temperature for high temperature detection  
during charging  
r
r
r
r
4.9 k  
45C  
Temperature for low temperature detection  
during charging  
THCL = 0.270  
THDH = 0.795  
THDL = 0.190  
27.0 k  
2.6 k  
0C  
65C  
10C  
Temperature for high temperature detection  
during discharging  
Temperature for low temperature detection  
during discharging  
42.6 k  
*1. The calculation method for RNTC is as follows.  
rTHCL = RTH / (RNTC RTH  
)
RNTC = RTH / rTHCL RTH  
= 10 k/ 0.270 10 k  
= 27.0 k  
When low temperature during charging is detected, RNTC = 27.0 k, so detection temperature = 0C according to  
the RNTC characteristics shown in Figure 5.  
RNTC = 10 k, Ta = 25C, B constant (25 / 85C) = 3434K  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
25  
50  
75 85  
40  
25  
Ta [C]  
Figure 5 Example of RNTC Characteristics  
Remark Temperature detection is carried out intermittently for 512 ms typ. per cycle, of which 1 ms typ. is the  
detection operation period.  
The VREG pin voltage is output only during detection operation. During other periods, the VREG pin is at  
the VDD level.  
Regarding details of intermittent operation, refer to "4. Temperature detection (High temperature  
detection during charging)" in "Timing Charts".  
21  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
Timing Charts  
1. Overcharge detection, overdischarge detection  
VCUn  
VCLn  
Battery voltage  
VDUn  
VDLn  
(n = 1 to 5)  
VDD  
DO pin voltage  
VSS  
VCOH  
CO pin voltage  
High-Z  
High-Z  
VEB  
VDD  
VDD 0.7 V typ.  
VM pin voltage  
VSS  
VEB  
Charger connection  
Load connection  
Overdischarge detection  
Overcharge detection  
delay time (tDL  
)
delay time (tCU  
)
Status*1  
(With power-down function)  
(1)  
(2)  
(1)  
(3)  
(4)  
(1)  
*1. (1) : Normal status  
(2) : Overcharge status  
(3) : Overdischarge status  
(4) : Power-down status  
Figure 6  
22  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
2. Discharge overcurrent detection  
VHC  
VCUn  
VCLn  
Battery voltage  
VDUn  
VDLn  
VHD  
(n = 1 to 5)  
VDOH  
DO pin voltage  
VSS  
VCOH  
CO pin voltage  
VEB  
VDD  
VM pin voltage  
VSS  
VDD  
VSHORT  
VDIOV2  
VDIOV1  
VSS  
VINI pin voltage  
Load connection  
Discharge overcurrent 1  
detection delay time (tDIOV1  
Load short-circuiting  
detection delay time (tSHORT  
Discharge overcurrent 2  
detection delay time (tDIOV2  
)
)
)
(2)  
(1)  
(2)  
(1)  
(2)  
(1)  
(1)  
Status*1  
*1. (1) : Normal status  
(2) : Discharge overcurrent status  
Figure 7  
23  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
3. Charge overcurrent detection  
VHC  
VCUn  
VCLn  
Battery voltage  
VHD  
VDUn  
VDLn  
(n = 1 to 5)  
VDOH  
DO pin voltage  
VSS  
VCOH  
High-Z  
High-Z  
High-Z  
CO pin voltage  
VEB  
VDD  
VM pin voltage  
VINI pin voltage  
VSS  
VEB  
VDD  
VSS  
VCIOV  
Charger connection  
Load connection  
Charge overcurrent detection  
delay time (tCIOV  
Charge overcurrent detection  
delay time (tCIOV  
)
)
Status*1  
(4) (3)  
(2)  
(1)  
(1)  
(1)  
(2)  
(With power-down function)  
*1. (1) : Normal status  
(2) : Charge overcurrent status  
(3) : Overdischarge status  
(4) : Power-down status  
Figure 8  
24  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
4. Temperature detection (High temperature detection during charging)  
VDD  
VTHCH = (1 rTHCH) VREG  
TH pin voltage  
V
THCL = (1 rTHCL) VREG  
VREG  
VDOH  
DO pin voltage  
VSS  
VCOH  
CO pin voltage  
High-Z  
VEB  
VDD  
VM pin voltage  
VSS  
VCHG  
VEB  
Charger connection  
Status*1  
Temperature detection delay time (tTH  
)
(3)  
(3)  
(2)  
(3)  
(3)  
(2)  
(2)  
(3)  
(2)  
(2)  
(2)  
(1)  
(4)  
*1. (1) : Normal status  
(2) : Temperature detection sleep time  
(3) : Temperature detection awake time  
(4) : Temperature protection status  
Figure 9  
25  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
Connection Examples of Battery Protection IC  
1. S-8245B Series (5-serial cell with an integrated charge and discharge path)  
EB  
NTC  
CTH  
RTH  
1 TH  
VREG 24  
2 VDD  
3 VC1  
4 VC2  
5 VC3  
6 VC4  
7 VC5  
8 VSS  
9 VINI  
PSI 23  
RPSI  
RVDD  
RVC1  
RVC2  
CVDD  
CVC1  
CVC2  
CVC3  
CVC4  
CVC5  
CTLD 22  
RCTLD  
RCTLC  
CTLC 21  
VM 20  
RVC3  
RVC4  
RVC5  
CO 19  
S-8245B  
DO 18  
PSO 17  
CIT2 16  
CIT 15  
10 SEL1  
11 SEL2  
12 CICT  
CDT 14  
CCT 13  
RVM  
RDO  
RCO  
CCICT  
RVINI  
CCCT  
CCIT2  
EB  
CCDT CCIT  
R
SEL1 RSEL2  
RSENSE  
Charge control FET  
Discharge control FET  
Remark Regarding the recommended values for external components, refer to "Table 16 Constants for External  
Components".  
Figure 10  
26  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
2. S-8245B Series (4-serial cell with an integrated charge and discharge path)  
EB  
NTC  
CTH  
RTH  
1 TH  
VREG 24  
2 VDD  
3 VC1  
4 VC2  
5 VC3  
6 VC4  
7 VC5  
8 VSS  
9 VINI  
PSI 23  
RPSI  
RVDD  
RVC1  
RVC2  
CVDD  
CVC1  
CVC2  
CVC3  
CVC4  
CTLD 22  
RCTLD  
RCTLC  
CTLC 21  
VM 20  
RVC3  
RVC4  
RVC5  
CO 19  
S-8245B  
DO 18  
PSO 17  
CIT2 16  
CIT 15  
RSEL2  
10 SEL1  
11 SEL2  
12 CICT  
CDT 14  
CCT 13  
RVM  
RDO  
RCO  
CCICT  
RVINI  
CCCT  
CCIT2  
EB  
CCDT CCIT  
RSEL1  
RSENSE  
Discharge control FET Charge control FET  
Remark Regarding the recommended values for external components, refer to "Table 16 Constants for External  
Components".  
Figure 11  
27  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
3. S-8245B Series (3-serial cell with an integrated charge and discharge path)  
EB  
NTC  
CTH  
RTH  
1 TH  
VREG 24  
2 VDD  
3 VC1  
4 VC2  
5 VC3  
6 VC4  
7 VC5  
8 VSS  
9 VINI  
PSI 23  
RPSI  
RVDD  
RVC1  
RVC2  
CVDD  
CVC1  
CVC2  
CVC3  
CTLD 22  
RCTLD  
RCTLC  
CTLC 21  
VM 20  
RVC3  
RVC4  
RVC5  
CO 19  
S-8245B  
DO 18  
PSO 17  
CIT2 16  
CIT 15  
RSEL1  
10 SEL1  
11 SEL2  
12 CICT  
CDT 14  
CCT 13  
RVM  
RDO  
RCO  
CCICT  
RVINI  
CCCT  
CCIT2  
EB  
CCDT CCIT  
RSEL2  
RSENSE  
Discharge control FET Charge control FET  
Remark Regarding the recommended values for external components, refer to "Table 16 Constants for External  
Components".  
Figure 12  
28  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
4. S-8245D Series (5-serial cell with separate charge and discharge paths)  
EB  
NTC  
CTH  
RTH  
1 TH  
VREG 24  
2 VDD  
3 VC1  
4 VC2  
5 VC3  
6 VC4  
7 VC5  
8 VSS  
9 VINI  
PSI 23  
RPSI  
CVDD  
RVDD  
CTLD 22  
CVC1  
CVC2  
RCTLD  
RCTLC  
RVC1  
RVC2  
CTLC 21  
VM 20  
REB  
RVC3  
RVC4  
RVC5  
CVC3  
CVC4  
CVC5  
CO 19  
S-8245D  
DO 18  
PSO 17  
CIT2 16  
CIT 15  
10 SEL1  
11 SEL2  
12 CICT  
CDT 14  
RVM  
RCO  
CCT 13  
RDO  
CCICT  
RVINI  
CCCT  
CCIT2  
EB  
CCDT CCIT  
RSEL1 RSEL2  
RSENSE  
DIS  
Charge control FET  
Discharge control FET  
Remark Regarding the recommended values for external components, refer to "Table 16 Constants for External  
Components".  
Figure 13  
29  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
Table 16 Constants for External Components  
Symbol  
Min.  
68  
Typ.  
100  
1.00  
1
Max.  
100  
1.00  
5.1  
5.1  
5.1  
20.0  
10  
10.00  
1.000  
0.1  
Unit  
*1  
RVDD  
k  
k  
k  
k  
k  
M  
k  
M  
k  
k  
m  
F  
F  
F  
F  
F  
F  
F  
F  
RVCn (n = 1 to 5)*1  
0.68  
1
RSEL1, RSEL2  
RVINI  
1.0  
1.0  
1.0  
1.0  
1.0  
0.68  
0.068  
0.01  
0.01  
0.01  
0.01  
0.01  
0.1  
1.0  
2.0  
5.1  
5.1  
5.1  
10  
RCTLC, RCTLD, RPSI  
RVM  
RCO  
RDO  
REB  
NTC  
RTH  
10  
10  
RSENSE  
*1  
CVDD  
1.00  
0.100  
0.10  
0.10  
0.10  
0.10  
0.10  
0.1  
CVCn (n = 1 to 5)*1  
CCCT  
CCDT  
CCIT  
CCIT2  
CCICT  
CTH  
D1  
*1. RVDD CVDD = 100 F   is recommended.  
Set filter constants to satisfy RVC1 CVC1 = RVC2 CVC2 = RVC3 CVC3 = RVC4 CVC4 = RVC5 CVC5 = RVDD CVDD  
.
Caution 1. The above constants may be changed without notice.  
2. Sufficient evaluation of transient power supply fluctuation and overcurrent protection function with  
the actual application is needed to determine the proper constants when setting the filter constants  
between the VDD pin and VSS pin. Contact our sales office if setting the constants between the  
VDD pin and VSS pin to anything other than the recommended values.  
3. It has not been confirmed whether the operation is normal or not in circuits other than the  
connection examples. In addition, the connection examples and the constants do not guarantee  
proper operation. Perform thorough evaluation using the actual application to set the constants.  
30  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
Precautions  
The application conditions for the input voltage, output voltage, and load current should not exceed the power  
dissipation.  
Batteries can be connected in any order; however, there may be cases when discharging cannot be performed after a  
battery is connected. In this case, the S-8245B/D Series returns to the normal status when any of the following  
conditions is satisfied.  
(1) Connecting a charger  
(2) Shorting between the VM pin and the VSS pin  
(3) Changing the PSI pin voltage to be VDS 0 V VDS  
Remark VDS: Input voltage between the VDD pin and VSS pin (V1 V2 V3 V4 V5)  
If an overcharged battery and an overdischarged battery intermix, the S-8245B/D Series will change to the overcharge  
and overdischarge statuses. Therefore, in this case, both charging and discharging are impossible.  
Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic  
protection circuit.  
ABLIC Inc. claims no responsibility for any disputes arising out of or in connection with any infringement by products  
including this IC of patents owned by a third party.  
31  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
Characteristics (Typical Data)  
1. Current consumption  
1. 1 IOPE vs. VDS  
1. 2 IOPE vs. Ta  
Ta = 25C  
VDS = 17.5 V  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
40  
25  
0
0
0
25  
50  
75 85  
0
5
10  
10  
10  
15  
20  
20  
20  
25  
30  
Ta [  
C]  
V
V
V
DS [V]  
1. 3 IPDN vs. VDS  
1. 4 IPDN vs. Ta  
Ta = 25C  
VDS = 7.5 V  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
40  
25  
25  
50  
75 85  
0
5
15  
25  
30  
Ta [C]  
DS [V]  
1. 5 IPSV vs. VDS  
1. 6 IPSV vs. Ta  
Ta = 25C  
VDS = 17.5 V  
0.5  
0.4  
0.3  
0.2  
0.1  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.0  
40 25  
25  
50  
75 85  
0
5
15  
25  
30  
Ta [C]  
DS [V]  
32  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
2. Detection voltage, release voltage  
2. 1 VCU vs. Ta  
2. 2 VCL vs. Ta  
S-8245BAA  
4.12  
S-8245BAA  
4.100  
4.11  
4.10  
4.09  
4.08  
4.075  
4.050  
4.025  
4.000  
40  
25  
0
25  
50  
75 85  
40  
25  
0
25  
50  
75 85  
Ta [C]  
Ta [C]  
2. 3 VDL vs. Ta  
2. 4 VDU vs. Ta  
S-8245BAA  
2.68  
S-8245BAA  
2.80  
2.75  
2.70  
2.65  
2.60  
2.64  
2.60  
2.56  
2.52  
40  
25  
0
25  
50  
75 85  
40  
25  
0
0
0
25  
50  
75 85  
Ta [C]  
Ta [C]  
2. 5 VDIOV1 vs. Ta  
2. 6 VDIOV2 vs. Ta  
S-8245BAA  
0.030  
VDS = 17.5 V  
S-8245BAA  
0.055  
VDS = 17.5 V  
0.050  
0.045  
0.040  
0.035  
0.030  
0.025  
0.025  
0.020  
0.015  
0.010  
40  
25  
25  
50  
75 85  
40  
25  
0
25  
50  
75 85  
Ta [  
C]  
Ta [  
C]  
2. 7  
V
SHORT vs. Ta  
2. 8 VCIOV vs. Ta  
S-8245BAA  
0.150  
VDS = 17.5 V  
S-8245BAA  
VDS = 17.5 V  
0.010  
0.125  
0.100  
0.075  
0.050  
0.015  
0.020  
0.025  
0.030  
40  
25  
25  
50  
75 85  
40  
25  
0
25  
50  
75 85  
Ta [  
C]  
Ta [C]  
33  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
3. Delay time function  
3. 1 RCCT vs. Ta  
3. 2 VCCT vs. Ta  
VDS = 19 V  
VDS = 19 V  
16  
12  
8
14.0  
13.5  
13.0  
12.5  
12.0  
4
0
40  
25  
0
0
0
0
25  
50  
75 85  
40  
25  
0
0
0
0
25  
50  
75 85  
Ta [  
C]  
Ta [  
C]  
3. 3 RCDT vs. Ta  
3. 4 VCDT vs. Ta  
VDS = 15.5 V  
VDS = 15.5 V  
1500  
1250  
1000  
750  
500  
250  
0
12  
11  
10  
9
8
40  
25  
25  
50  
75 85  
40  
25  
25  
50  
75 85  
Ta [  
C]  
Ta [  
C]  
3. 5 RCIT vs. Ta  
3. 6 VCIT vs. Ta  
VDS = 17.5 V  
VDS = 17.5 V  
1500  
1250  
1000  
750  
500  
250  
0
14  
13  
12  
11  
10  
40  
25  
25  
50  
75 85  
40  
25  
25  
50  
75 85  
Ta [  
C]  
Ta [  
C]  
3. 7 RCIT2 vs. Ta  
3. 8 VCIT2 vs. Ta  
VDS = 17.5 V  
VDS = 17.5 V  
300  
250  
200  
150  
100  
50  
14  
13  
12  
11  
10  
0
40  
25  
25  
50  
75 85  
40  
25  
25  
50  
75 85  
Ta [  
C]  
Ta [C]  
34  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
3. 9  
RCICT vs. Ta  
3. 10 VCICT vs. Ta  
VDS = 17.5 V  
VDS = 17.5 V  
300  
250  
200  
150  
100  
50  
14  
13  
12  
11  
10  
0
40  
25  
0
25  
50  
75 85  
40  
25  
0
25  
Ta [ C]  
50  
75 85  
Ta [  
C]  
3. 11 tSHORT vs. Ta  
VDS = 17.5 V  
340  
320  
300  
280  
260  
40  
25  
0
25  
50  
75 85  
Ta [C]  
35  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
4. Output pin  
4. 1 ICOH vs. VDS  
4. 2 ICOL vs. VDS  
Ta = 25C  
Ta = 25C  
1600  
1200  
800  
400  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
0
5
10  
15  
20  
20  
20  
25  
30  
0
5
10  
15  
20  
20  
20  
25  
30  
V
DS [V]  
V
DS [V]  
4. 3 IDOH vs. VDS  
4. 4 IDOL vs. VDS  
Ta = 25C  
Ta = 25C  
6000  
5000  
4000  
3000  
2000  
1000  
0
2500  
2000  
1500  
1000  
500  
0
0
5
10  
10  
0
15  
25  
30  
0
5
10  
10  
0
15  
25  
30  
V
DS [V]  
V
DS [V]  
4. 5 IPSOH vs. VDS  
4. 6 IPSOL vs. VDS  
Ta = 25C  
Ta = 25C  
10  
8
10  
8
6
6
4
4
2
2
0
0
0
5
15  
25  
30  
0
5
15  
25  
30  
V
DS [V]  
VDS [V]  
4. 7 VCOH vs. Ta  
4. 8 VDOH vs. Ta  
VDS = 17.5 V  
VDS = 17.5 V  
15  
14  
13  
12  
11  
15  
14  
13  
12  
11  
40  
25  
25  
Ta [ C]  
50  
75 85  
40  
25  
25  
Ta [ C]  
50  
75 85  
36  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
5. Temperature detection function  
5. 1 rTHCH vs. Ta  
5. 2 rTHCL vs. Ta  
VDS = 17.5 V  
VDS = 17.5 V  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
40  
25  
0
25  
50  
75 85  
40  
25  
0
0
0
25  
50  
75 85  
Ta [  
C]  
Ta [  
C]  
5. 3 rTHDH vs. Ta  
5. 4 rTHDL vs. Ta  
VDS = 17.5 V  
VDS = 17.5 V  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
40  
25  
0
25  
50  
75 85  
40  
25  
25  
50  
75 85  
Ta [  
C]  
Ta [  
C]  
5. 5 VREG vs. Ta  
5. 6 VCHG vs. Ta  
VDS = 17.5 V  
VDS = 17.5 V  
6.0  
5.5  
5.0  
4.5  
4.0  
0.010  
0.015  
0.020  
0.025  
0.030  
40  
25  
0
25  
50  
75 85  
40  
25  
25  
50  
75 85  
Ta [  
C]  
Ta [C]  
5. 7  
tTH vs. Ta  
VDS = 17.5 V  
3.0  
2.5  
2.0  
1.5  
1.0  
40  
25  
0
25  
50  
75 85  
Ta [C]  
37  
BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK  
S-8245B/D Series  
Rev.1.4_00  
Power Dissipation  
24-Pin SSOP  
T = 125C max.  
j
2.0  
1.5  
1.0  
0.5  
0.0  
B
A
0
25  
50  
75  
100 125 150 175  
Ambient temperature (Ta) [C]  
Board  
Power Dissipation (PD)  
A
B
C
D
E
1.43 W  
1.67 W  
  
  
  
38  
24-Pin SSOP Test Board  
No. SSOP24-A-Board-SD-1.0  
ABLIC Inc.  
7.9±0.2  
24  
13  
+0.1  
-0.05  
0.15  
12  
1
0.65  
0.22±0.1  
No. FS024-B-P-SD-1.0  
TITLE  
SSOP24-B-PKG Dimensions  
FS024-B-P-SD-1.0  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
+0.1  
-0  
4.0±0.1  
ø1.5  
2.0±0.1  
1.5±0.05  
+0.1  
ø1.5  
-0  
0.3±0.05  
12.0±0.1  
8.15±0.1  
24  
13  
1
12  
Feed direction  
No. FS024-B-C-SD-1.0  
TITLE  
No.  
SSOP24-B-Carrier Tape  
FS024-B-C-SD-1.0  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
60°  
17.4±1.0  
21.4±1.0  
Enlarged drawing in the central part  
ø21±0.8  
2±0.5  
ø13±0.2  
No. FS024-B-R-SD-1.0  
TITLE  
SSOP24-B-Reel  
No.  
FS024-B-R-SD-1.0  
ANGLE  
UNIT  
3000  
QTY.  
mm  
ABLIC Inc.  
Disclaimers (Handling Precautions)  
1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and  
application circuit examples, etc.) is current as of publishing date of this document and is subject to change without  
notice.  
2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of  
any specific mass-production design.  
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the reasons other than the products  
described herein (hereinafter "the products") or infringement of third-party intellectual property right and any other  
right due to the use of the information described herein.  
3. ABLIC Inc. is not liable for any losses, damages, claims or demands caused by the incorrect information described  
herein.  
4. Be careful to use the products within their ranges described herein. Pay special attention for use to the absolute  
maximum ratings, operation voltage range and electrical characteristics, etc.  
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by failures and / or accidents, etc. due to  
the use of the products outside their specified ranges.  
5. Before using the products, confirm their applications, and the laws and regulations of the region or country where they  
are used and verify suitability, safety and other factors for the intended use.  
6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related  
laws, and follow the required procedures.  
7. The products are strictly prohibited from using, providing or exporting for the purposes of the development of  
weapons of mass destruction or military use. ABLIC Inc. is not liable for any losses, damages, claims or demands  
caused by any provision or export to the person or entity who intends to develop, manufacture, use or store nuclear,  
biological or chemical weapons or missiles, or use any other military purposes.  
8. The products are not designed to be used as part of any device or equipment that may affect the human body, human  
life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control  
systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment,  
aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses by  
ABLIC, Inc. Do not apply the products to the above listed devices and equipments.  
ABLIC Inc. is not liable for any losses, damages, claims or demands caused by unauthorized or unspecified use of  
the products.  
9. In general, semiconductor products may fail or malfunction with some probability. The user of the products should  
therefore take responsibility to give thorough consideration to safety design including redundancy, fire spread  
prevention measures, and malfunction prevention to prevent accidents causing injury or death, fires and social  
damage, etc. that may ensue from the products' failure or malfunction.  
The entire system in which the products are used must be sufficiently evaluated and judged whether the products are  
allowed to apply for the system on customer's own responsibility.  
10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the  
product design by the customer depending on the intended use.  
11. The products do not affect human health under normal use. However, they contain chemical substances and heavy  
metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be  
careful when handling these with the bare hands to prevent injuries, etc.  
12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.  
13. The information described herein contains copyright information and know-how of ABLIC Inc. The information  
described herein does not convey any license under any intellectual property rights or any other rights belonging to  
ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any part of this  
document described herein for the purpose of disclosing it to a third-party is strictly prohibited without the express  
permission of ABLIC Inc.  
14. For more details on the information described herein or any other questions, please contact ABLIC Inc.'s sales  
representative.  
15. This Disclaimers have been delivered in a text using the Japanese language, which text, despite any translations into  
the English language and the Chinese language, shall be controlling.  
2.4-2019.07  
www.ablic.com  

相关型号:

S-8245DAB-FGT1U

BATTERY PROTECTION IC FOR 3-SERIAL TO 5-SERIAL CELL PACK
ABLIC

S-8249

VOLTAGE MONITORING IC WITH CELL BALANCING FUNCTION
ABLIC

S-8249AAA-M6T1U

VOLTAGE MONITORING IC WITH CELL BALANCING FUNCTION
SII

S-8249AAA-M6T1U

VOLTAGE MONITORING IC WITH CELL BALANCING FUNCTION
ABLIC

S-8249AAB-M6T1U

VOLTAGE MONITORING IC WITH CELL BALANCING FUNCTION
SII

S-8249AAB-M6T1U

VOLTAGE MONITORING IC WITH CELL BALANCING FUNCTION
ABLIC

S-8249AAC-M6T1U

VOLTAGE MONITORING IC WITH CELL BALANCING FUNCTION
SII

S-8249AAC-M6T1U

VOLTAGE MONITORING IC WITH CELL BALANCING FUNCTION
ABLIC

S-8249AAD-M6T1U

VOLTAGE MONITORING IC WITH CELL BALANCING FUNCTION
SII

S-8249AAD-M6T1U

VOLTAGE MONITORING IC WITH CELL BALANCING FUNCTION
ABLIC

S-8249AAE-M6T1U

VOLTAGE MONITORING IC WITH CELL BALANCING FUNCTION
SII

S-8249AAE-M6T1U

VOLTAGE MONITORING IC WITH CELL BALANCING FUNCTION
ABLIC