S-85S0PD10-I8T1U [ABLIC]

SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT;
S-85S0PD10-I8T1U
型号: S-85S0PD10-I8T1U
厂家: ABLIC    ABLIC
描述:

SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT

输入元件 开关 输出元件
文件: 总38页 (文件大小:1367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S-85S0P Series  
SUPPLY VOLTAGE DIVIDED OUTPUT,  
5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN  
SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
www.ablic.com  
© ABLIC Inc., 2018  
Rev.1.2_00  
The S-85S0P Series introduces own distinctive low power consumption control and COT (Constant On-Time) control,  
features ultra low current consumption (260 nA quiescent current) and fast transient response, operates at PFM control.  
The S-85S0P Series realizes high efficiency in a wide range of load current consumption and provides strong support for  
extended period operation of mobile devices and wearable devices which are equipped with compact batteries.  
The function of the supply voltage divided output is prepared in the S-85S0P Series. The supply voltage divided output is a  
function that divides the input voltage (VIN) of the DC-DC converter into VIN/2 or VIN/3 and outputs the voltage. For example,  
this function makes it possible that the IC connects to a low voltage microcontroller A/D converter directly and the  
microcontroller monitors a battery voltage.  
Features  
Applications  
DC-DC converter block  
Ultra low current consumption:  
Efficiency (when under 100 μA load):  
Fast transient response:  
Input voltage:  
Wearable device  
260 nA quiescent current  
90.5%  
COT control  
Bluetooth device  
Wireless sensor network device  
Healthcare equipment  
Smart meter  
2.2 V to 5.5 V  
Output voltage:  
0.7 V to 2.5 V, in 0.05 V step  
2.6 V to 3.9 V, in 0.1 V step  
1.5% (1.0 V VOUT 3.9 V)  
15 mV (0.7 V VOUT < 1.0 V)  
420 mΩ  
Portable game device  
Output voltage accuracy:  
Package  
High side power MOS FET on-resistance:  
Low side power MOS FET on-resistance:  
Soft-start function:  
SNT-8A  
(2.46 mm  
320 mΩ  
1 ms typ.  
× 1.97 mm × t0.5 mm max.)  
Under voltage lockout function (UVLO):  
Thermal shutdown function:  
1.8 V typ. (detection voltage)  
135°C typ. (detection temperature)  
300 mA (at L = 2.2 μH)  
Overcurrent protection function:  
Automatic recovery type short-circuit protection function:Hiccup control  
Input and output capacitors:  
Ceramic capacitor compatible  
Supply voltage divider block  
Low current consumption:  
Input voltage:  
280 nA typ.  
1.5 V to 5.5 V  
VIN/2 (S-85S0PCxx)  
VIN/3 (S-85S0PDxx)  
Output voltage:  
Overall  
Operation temperature range:  
Lead-free (Sn 100%), halogen-free  
Ta = 40°C to +85°C  
Typical Application Circuit  
Efficiency  
L
VOUT(S) = 1.8 V  
2.2 μH  
VIN  
V
OUT  
100  
80  
60  
40  
20  
0
VIN  
SW  
C
4.7 μF  
OUT  
C
IN  
V
IN = 2.5 V  
4.7 μF  
PVSS  
EN  
VOUT  
V
IN = 3.6 V  
VIN = 4.2 V  
PMEN  
PMOUT  
0.01  
0.1  
1
10  
100  
C
PM  
VSS  
0.22 μF  
I
OUT [mA]  
1
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
S-85S0P Series  
Rev.1.2_00  
Block Diagram  
CIN  
VIN  
VIN  
VOUT  
+
+
L
VOUT  
SW  
+
COUT  
+
PVSS  
EN  
UVLO  
VIN  
PMEN  
PMOUT  
+
CPM  
VSS  
Figure 1  
2
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
Rev.1.2_00  
S-85S0P Series  
Product Name Structure  
Users can select supply voltage divider block output voltage and DC-DC converter block output voltage for the  
S-85S0P Series. Refer to "1. Product name" regarding the contents of product name, "2. Package" regarding  
the package, "3. Product name list" regarding details of the product name.  
1. Product name  
S-85S0P  
x
xx  
-
I8T1  
U
Environmental code  
U:  
Lead-free (Sn 100%), halogen-free  
Package name abbreviation and packing specification*1  
I8T1: SNT-8A, Tape  
DC-DC converter block output voltage*2, *3  
07 to 39  
(e.g., when the output voltage is 0.7 V, it is expressed as 07.)  
Supply voltage divider block output voltage  
C: VIN/2  
D: VIN/3  
*1. Refer to the tape drawing.  
*2. Refer to "3. Product name list".  
*3. In the range from 0.7 V to 2.5 V, the products which have 0.05 V step are also available.  
Contact our sales office when the product is necessary.  
2. Package  
Table 1 Package Drawing Codes  
Package Name  
SNT-8A  
Dimension  
PH008-A-P-SD  
Tape  
Reel  
Land  
PH008-A-C-SD  
PH008-A-R-SD  
PH008-A-L-SD  
3
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
S-85S0P Series  
Rev.1.2_00  
3. Product name list  
Table 2  
Output Voltage (VOUT  
)
S-85S0PCxx  
S-85S0PDxx  
0.7 V 15 mV  
0.8 V 15 mV  
0.9 V 15 mV  
1.0 V 1.5%  
1.1 V 1.5%  
1.2 V 1.5%  
1.3 V 1.5%  
1.4 V 1.5%  
1.5 V 1.5%  
1.6 V 1.5%  
1.7 V 1.5%  
1.8 V 1.5%  
1.9 V 1.5%  
2.0 V 1.5%  
2.1 V 1.5%  
2.2 V 1.5%  
2.3 V 1.5%  
2.4 V 1.5%  
2.5 V 1.5%  
2.6 V 1.5%  
2.7 V 1.5%  
2.8 V 1.5%  
2.9 V 1.5%  
3.0 V 1.5%  
3.1 V 1.5%  
3.2 V 1.5%  
3.3 V 1.5%  
3.4 V 1.5%  
3.5 V 1.5%  
3.6 V 1.5%  
3.7 V 1.5%  
3.8 V 1.5%  
3.9 V 1.5%  
S-85S0PC07-I8T1U  
S-85S0PC08-I8T1U  
S-85S0PC09-I8T1U  
S-85S0PC10-I8T1U  
S-85S0PC11-I8T1U  
S-85S0PC12-I8T1U  
S-85S0PC13-I8T1U  
S-85S0PC14-I8T1U  
S-85S0PC15-I8T1U  
S-85S0PC16-I8T1U  
S-85S0PC17-I8T1U  
S-85S0PC18-I8T1U  
S-85S0PC19-I8T1U  
S-85S0PC20-I8T1U  
S-85S0PC21-I8T1U  
S-85S0PC22-I8T1U  
S-85S0PC23-I8T1U  
S-85S0PC24-I8T1U  
S-85S0PC25-I8T1U  
S-85S0PC26-I8T1U  
S-85S0PC27-I8T1U  
S-85S0PC28-I8T1U  
S-85S0PC29-I8T1U  
S-85S0PC30-I8T1U  
S-85S0PC31-I8T1U  
S-85S0PC32-I8T1U  
S-85S0PC33-I8T1U  
S-85S0PC34-I8T1U  
S-85S0PC35-I8T1U  
S-85S0PC36-I8T1U  
S-85S0PC37-I8T1U  
S-85S0PC38-I8T1U  
S-85S0PC39-I8T1U  
S-85S0PD07-I8T1U  
S-85S0PD08-I8T1U  
S-85S0PD09-I8T1U  
S-85S0PD10-I8T1U  
S-85S0PD11-I8T1U  
S-85S0PD12-I8T1U  
S-85S0PD13-I8T1U  
S-85S0PD14-I8T1U  
S-85S0PD15-I8T1U  
S-85S0PD16-I8T1U  
S-85S0PD17-I8T1U  
S-85S0PD18-I8T1U  
S-85S0PD19-I8T1U  
S-85S0PD20-I8T1U  
S-85S0PD21-I8T1U  
S-85S0PD22-I8T1U  
S-85S0PD23-I8T1U  
S-85S0PD24-I8T1U  
S-85S0PD25-I8T1U  
S-85S0PD26-I8T1U  
S-85S0PD27-I8T1U  
S-85S0PD28-I8T1U  
S-85S0PD29-I8T1U  
S-85S0PD30-I8T1U  
S-85S0PD31-I8T1U  
S-85S0PD32-I8T1U  
S-85S0PD33-I8T1U  
S-85S0PD34-I8T1U  
S-85S0PD35-I8T1U  
S-85S0PD36-I8T1U  
S-85S0PD37-I8T1U  
S-85S0PD38-I8T1U  
S-85S0PD39-I8T1U  
Remark Please contact our sales office for products with specifications other than the above.  
4
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
Rev.1.2_00  
S-85S0P Series  
Pin Configuration  
1. SNT-8A  
Table 3  
Top view  
Pin No.  
Symbol  
PMOUT  
Description  
1
2
3
4
5
6
Supply voltage divided output pin  
Voltage output pin  
GND pin  
1
2
3
4
8
7
6
5
VOUT  
VSS  
SW  
External inductor connection pin  
Power GND pin  
PVSS  
VIN  
Figure 2  
Power supply pin  
Enable pin  
7
8
EN  
"H"  
"L"  
: Enable (normal operation)  
: Disable (standby)  
Supply voltage divided output enable pin  
PMEN  
"H"  
"L"  
: Enable (normal operation)  
: Disable (standby)  
5
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
S-85S0P Series  
Rev.1.2_00  
Absolute Maximum Ratings  
Table 4  
(Unless otherwise specified: Ta = +25°C, VSS = 0 V)  
Item  
Symbol  
Absolute Maximum Rating  
Unit  
V
VIN pin voltage  
VIN  
VEN  
Supply voltage divider block VPMEN  
DC-DC converter block VOUT  
VSS 0.3 to VSS + 6.0  
VSS 0.3 to VIN + 0.3 VSS + 6.0  
VSS 0.3 to VSS + 6.0  
VSS 0.3 to VIN + 0.3 VSS + 6.0  
VSS 0.3 to VIN + 0.3 VSS + 6.0  
VSS 0.3 to VIN + 0.3 VSS + 6.0  
VSS 0.3 to VSS + 0.3 VSS + 6.0  
40 to +85  
EN pin voltage  
DC-DC converter block  
V
PMEN pin voltage  
VOUT pin voltage  
V
V
PMOUT pin voltage Supply voltage divider block VPMOUT  
V
SW pin voltage  
VSW  
VPVSS  
Topr  
V
PVSS pin voltage  
Operation temperature  
Storage temperature  
V
°C  
°C  
Tstg  
40 to +125  
Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical  
damage. These values must therefore not be exceeded under any conditions.  
Thermal Resistance Value  
Table 5  
Item  
Symbol  
Condition  
Board A  
Min.  
Typ.  
211  
173  
Max.  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Board B  
Board C  
Board D  
Board E  
Junction-to-ambient thermal resistance*1 θJA  
SNT-8A  
*1. Test environment: compliance with JEDEC STANDARD JESD51-2A  
Remark Refer to "Power Dissipation" and "Test Board" for details.  
6
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
Rev.1.2_00  
S-85S0P Series  
Electrical Characteristics  
1. DC-DC converter block  
Table 6  
(VIN = 3.6 V*1, Ta = +25°C unless otherwise specified)  
Item  
Symbol  
VIN  
Condition  
Min.  
Typ.  
3.6  
Max.  
Unit  
V
Operating input voltage  
2.2  
5.5  
VOUT(S)  
× 0.985  
VOUT(S)  
0.015  
VOUT(S)  
× 1.015  
VOUT(S)  
+ 0.015  
1.0 V VOUT 3.9 V, no external parts  
0.7 V VOUT < 1.0 V, no external parts  
VEN = 0 V  
VOUT(S)  
VOUT(S)  
1
V
V
Output voltage*2  
VOUT  
Current consumption  
during shutdown  
ISSS  
100  
nA  
VOUT = VOUT(S) + 0.1 V, VEN = VIN,  
no external parts,  
no switching operation  
Current consumption  
during switching off  
ISS1  
260  
500  
nA  
High level input voltage  
Low level input voltage  
High level input current  
Low level input current  
High side power  
MOS FET on-resistance  
Low side power  
MOS FET on-resistance  
High side power  
MOS FET leakage current  
Low side power  
MOS FET leakage current  
Current limit*3  
VSH  
VSL  
ISH  
VIN = 2.2 V to 5.5 V, EN pin  
VIN = 2.2 V to 5.5 V, EN pin  
VIN = 2.2 V to 5.5 V, EN pin, VEN = VIN  
VIN = 2.2 V to 5.5 V, EN pin, VEN = 0 V  
1.1  
100  
100  
V
V
0.3  
100  
100  
nA  
nA  
ISL  
RHFET  
RLFET  
IHSW  
ISW = 100 mA  
420  
320  
1
mΩ  
mΩ  
nA  
ISW = 100 mA  
VIN = 2.2 V to 5.5 V, VEN = 0 V, VSW = 0 V  
100  
ILSW  
VIN = 2.2 V to 5.5V, VEN = 0 V, VSW = VIN  
100  
1
nA  
ILIM  
L = 2.2 μH  
300  
mA  
t
V
ON(S) = 1 μs × VOUT/VIN,  
OUT = VOUT(S) × 0.9  
ON time*4  
tON  
tON(S)/1.3 tON(S) tON(S)/0.7 ns  
Minimum OFF time  
tOFF(MIN)  
1.7  
100  
1.8  
1.9  
ns  
V
UVLO detection voltage  
UVLO release voltage  
VUVLO  
VUVLO  
When VIN falls  
When VIN rises  
+
1.9  
2.0  
2.1  
V
VOUT(S)  
× 0.7  
1.5  
UVP detection voltage  
Soft-start wait time  
Soft-start time  
VUVP  
tSSW  
tSS  
V
Time until VOUT starts rising  
Time until VOUT reaches 90% after it  
starts rising  
ms  
ms  
1.0  
135  
115  
Thermal shutdown  
detection temperature  
Thermal shutdown  
release temperature  
TSD  
TSR  
Junction temperature  
Junction temperature  
°C  
°C  
*1. VIN = VOUT(S) + 1.0 V (VOUT(S) 2.6 V)  
*2. VOUT: Actual output voltage  
VOUT(S): Set output voltage  
*3. The current limit changes according to the L value for the inductor to be used, input voltage, and output voltage.  
Refer to "Operation" for details.  
*4. tON: Actual ON time  
tON(S): Set ON time  
7
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
S-85S0P Series  
Rev.1.2_00  
2. Supply voltage divider block  
Table 7  
(VIN = 3.6 V, Ta = +25°C unless otherwise specified)  
Item  
Symbol  
VIN  
Condition  
Min.  
1.5  
Typ.  
3.6  
VIN/2  
VIN/3  
2.2  
Max.  
5.5  
10  
Unit  
V
Operating input voltage  
S-85S0PCxx  
S-85S0PDxx  
V
Output voltage*1  
VPMOUT(S) 10 μA IPMOUT 10 μA  
V
Load current  
IPMOUT  
VPOF  
RPS  
10  
30  
20  
μA  
mV  
mV  
Ω
S-85S0PCxx  
S-85S0PDxx  
30  
Output offset voltage  
Output impedance  
Set-up time  
10 μA IPMOUT 10 μA  
10 μA IPMOUT 10 μA  
CPM = 0.22 μF, no load  
20  
1000  
10  
S-85S0PCxx  
S-85S0PDxx  
ms  
tPU  
1.1  
10  
ms  
Current consumption  
during operation*2  
PMEN pin input voltage  
"H"  
ISS1P  
VPSH  
VPSL  
IPSH  
VPMEN = VIN, no load (VEN = 0 V)  
1.0  
280  
550  
nA  
V
V
IN = 3.6 V,  
Determined by VPMOUT output level  
PMEN pin input voltage  
"L"  
Determined by VPMOUT output level  
0.25  
100  
100  
V
PMEN pin input current  
"H"  
VPMEN = VIN  
100  
100  
nA  
nA  
kΩ  
PMEN pin input current  
"L"  
IPSL  
VPMEN = 0 V  
Discharge shunt resistance  
during power-off  
RPLOW  
VPMEN = 0 V, VPMOUT = 0.1 V  
2.8  
*1. VPMOUT(S): Set output voltage  
VPMOUT(S) + VPOF: Actual output voltage  
*2. Current consumption when only the supply voltage divider block is in operation.  
8
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
Rev.1.2_00  
S-85S0P Series  
Operation  
1. DC-DC converter block  
1. 1 Fast transient response  
Distinctive COT (Constant On-Time) control is used for DC-DC converter control.  
The S-85S0P Series monitors the output voltage (VOUT) using a comparator and if VOUT falls below the targeted  
value, the high side power MOS FET will turn on for a certain amount of time. Since the high side power MOS FET  
turns on and VOUT rises immediately after the load current fluctuates rapidly and VOUT falls, the fast transient  
response is realized.  
The S-85S0P Series outputs ON time in proportion to VOUT and in inverse proportion to power supply voltage.  
1. 2 PFM control (pulse frequency modulation method)  
The S-85S0P Series operates at PFM control and skip the pulse according to the load current. This reduces  
switching loss and improves efficiency.  
The S-85S0P Series has a built-in reverse current detection circuit. The reverse current detection circuit monitors  
the current flowing through the inductor. If the bottom of ripple current in the inductor falls to 0 mA, the high side  
power MOS FET and low side power MOS FET will turn off and switching operation will stop. Switching frequency  
(fSW) will fall by skipping a pulse. This means that the smaller IOUT is, the more the switching frequency will drop,  
and it reduces switching loss.  
If the power supply voltage decreases and then the potential difference between input and output becomes smaller,  
the S-85S0P Series will stop skipping the pulse.  
1. 3 Ultra low current consumption  
When in discontinuous mode, the S-85S0P Series reduces current consumption to 260 nA typ. by intermittently  
operating a control circuit and a protection circuit. If switching operation stops and a certain amount of time elapses  
after the high side power MOS FET and low side power MOS FET turn off, only the necessary circuits will operate.  
Under voltage lockout function (UVLO), thermal shutdown function, current limit function, and automatic recovery  
type short-circuit protection function are prepared in the S-85S0P Series, and each protection function will carry out  
detection operation for a certain amount of time from when the high side power MOS FET turns on. It is thus able  
to realize ultra low current consumption.  
1. 4 EN pin  
This pin starts and stops switching operation. When the EN pin is set to "L", the operation of all internal circuits,  
including the high side power MOS FET, is stopped, reducing current consumption. Current consumption  
increases when a voltage of 0.3 V to VIN 0.3 V is applied to the EN pin. When not using the EN pin, connect it to  
the VIN pin. Since the EN pin is neither pulled down nor pulled up internally, do not use it in the floating status.  
The structure of the EN pin is shown in Figure 3.  
Table 8  
EN Pin  
Internal Circuit  
Enable (normal operation)  
Disable (standby)  
VOUT Pin Voltage  
*1  
"H"  
"L"  
VOUT  
"High-Z"  
*1. Refer to *2 in Table 6 in "Electrical Characteristics".  
VIN  
EN  
VSS  
Figure 3  
9
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
S-85S0P Series  
Rev.1.2_00  
1. 5 Under voltage lockout function (UVLO)  
The S-85S0P Series has a built-in UVLO circuit to prevent the IC from malfunctioning due to a transient status at  
power-on or a momentary drop in the supply voltage. When UVLO status is detected, the high side power MOS  
FET and low side power MOS FET will turn off, and the SW pin will change to "High-Z". For this reason, switching  
operation will stop. The soft-start function is reset if UVLO status is detected once, and is restarted by releasing  
the UVLO status.  
Note that the other internal circuits operate normally and the status is different from the disabled status.  
Also, there is a hysteresis width for avoiding malfunctions due to generation of noise etc. in the input voltage.  
1. 6 Thermal shutdown function  
The S-85S0P Series has a built-in thermal shutdown circuit to limit overheating. When the junction temperature  
increases to 135°C typ., the thermal shutdown circuit becomes the detection status, and the switching operation is  
stopped. When the junction temperature decreases to 115°C typ., the thermal shutdown circuit becomes the  
release status, and the switching operation is restarted.  
If the thermal shutdown circuit becomes the detection status due to self-heating, the switching operation is stopped  
and output voltage (VOUT) decreases. For this reason, the self-heating is limited and the temperature of the IC  
decreases. The thermal shutdown circuit becomes release status when the temperature of the IC decreases, and  
the switching operation is restarted, thus the self-heating is generated again. Repeating this procedure makes the  
waveform of VOUT into a pulse-like form. Switching operation stopping and starting can be stopped by either setting  
the EN pin to "L", lowering the output current (IOUT) to reduce internal power consumption, or decreasing the  
ambient temperature.  
Table 9  
Thermal Shutdown Circuit  
Release: 115°C typ.*1  
VOUT Pin Voltage  
VOUT  
"High-Z"  
Detection: 135°C typ.*1  
*1. Junction temperature  
1. 7 Overcurrent protection function  
The S-85S0P Series has a built-in current limit circuit.  
The overcurrent protection circuit monitors the current that flows through the low side power MOS FET and limits  
current to prevent thermal destruction of the IC due to an overload, magnetic saturation in the inductor, etc.  
When a current exceeding the current limit (ILIM) flows through the low side power MOS FET, the current limit  
circuit operates and prohibits turning on the high side power MOS FET until the current falls below the low side  
current limit (ILIMDET). If the value of the current that flows through the low side power MOS FET falls to the ILIMDET  
or lower, the S-85S0P Series returns to normal operation. ILIMDET is fixed at 120 mA typ. in the IC, and ILIM will vary  
depending on the external parts to be used.  
The relation between ILIM, the inductor value (L), the input voltage (VIN), and the output voltage (VOUT) are shown in  
the following expression.  
1
(VIN  
VOUT) × VOUT  
VIN  
I
LIM = ILIMDET  
+
×
2 × L × fSW  
10  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
Rev.1.2_00  
S-85S0P Series  
1. 8 Automatic recovery type short-circuit protection function (Hiccup control)  
The S-85S0P Series has a built-in automatic recovery type short-circuit protection function for Hiccup control.  
Hiccup control is a method for periodically carrying out automatic recovery when the IC detects overcurrent and  
stops the switching operation.  
1. 8. 1 When over load status is released  
<1> Overcurrent detection  
<2> Under voltage protection circuit (UVP circuit) detects a drop in the output voltage (VOUT).  
<3> 220 μs elapse  
<4> Switching operation stop (for 9 ms typ.)  
<5> Overload status release  
<6> The IC restarts, soft-start function starts.  
In this case, it is unnecessary to input an external reset signal for restart.  
<7> VOUT reaches VOUT(S) after 1.0 ms typ. elapses.  
<1>  
<5>  
Overload status  
Normal load status  
I*1  
L
I
LIMDET = 120 mA typ.  
OUT = 50 mA max.  
I
0 A  
V
SW  
0 V  
VOUT(S)  
VOUT  
V
UVP typ.  
0 V  
<3>  
<7>  
1.0 ms typ.  
220 s  
9.0 ms typ.  
<2>  
<4>  
<6>  
*1. Inductor current  
Figure 4  
1. 8. 2 When over load status continues  
<1> Overcurrent detection  
<2> The UVP circuit detects a drop in VOUT  
.
<3> 220  
<4> Switching operation stop (for 9 ms typ.)  
<5> The IC restarts, soft-start function starts.  
μs elapse  
<6> The status returns to <2> when over load status continues after 1.25 ms typ. elapses.  
<1>  
Overload status  
I
LIMDET = 120 mA typ.  
OUT = 50 mA max.  
I*1  
L
I
0 A  
VSW  
0 V  
VOUT(S)  
VOUT  
V
UVP typ.  
0 V  
<3>  
<6>  
<3>  
220 s  
9.0 ms typ.  
1.25 ms typ.  
220 s  
9.0 ms typ.  
<2>  
<4>  
<5>  
<2>  
<4>  
*1. Inductor current  
Figure 5  
11  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
S-85S0P Series  
Rev.1.2_00  
1. 9 Pre-bias compatible soft-start function  
The S-85S0P Series has a built-in pre-bias compatible soft-start circuit.  
If the pre-bias compatible soft-start circuit starts when electrical charge remains in the output voltage (VOUT) as a  
result of power supply restart, etc., or when VOUT is biased beforehand (pre-bias status), switching operation is  
stopped until the soft-start voltage exceeds the internal feedback voltage, and then VOUT is maintained. If the  
soft-start voltage exceeds the internal feedback voltage, switching operation will restart and VOUT will rise to the  
output voltage setting value (VOUT(S)). This allows VOUT(S) to be reached without lowering the pre-biased VOUT  
.
In soft-start circuits which are not pre-bias compatible, a large current flows as a result of the discharge of the  
residual electric charge through the low side power MOS FET when switching operation starts, which could cause  
damage, however in a pre-bias compatible soft-start circuit, the IC is protected from the large current when  
switching operation starts, and it makes power supply design for the application circuit simpler.  
In the S-85S0P Series, VOUT reaches VOUT(S) gradually due to the soft-start circuit.  
In the following cases, rush current and VOUT overshoot are reduced.  
At power-on  
When the EN pin changes from "L" to "H".  
When UVLO operation is released.  
When thermal shutdown is released.  
At short-circuit recovery  
In addition, the soft-start circuit operates under the following conditions.  
The soft-start circuit starts operating after "H" is input to the EN pin and the soft-start wait time (tSSW) = 1.5 ms typ.  
elapses. The soft-start time (tSS) is set to 1.0 ms typ.  
At power supply restart (the IC restart)  
At UVLO detection (after UVLO release)  
At thermal shutdown detection (after thermal shutdown release)  
After Hiccup control  
Soft-start wait time Soft-start time  
Soft-start operation during pre-bias  
(tSSW  
)
(tSS)  
V
EN  
VOUT  
V
SW  
Figure 6  
12  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
Rev.1.2_00  
S-85S0P Series  
2. Supply voltage divider block  
The supply voltage divided output is a function that divides the input voltage (VIN) of the DC-DC converter into VIN/2  
or VIN/3 and outputs the voltage. For example, the microcontroller can monitor battery voltage by inputting the output  
voltage (VPMOUT) to the A/D converter in the microcontroller. Connecting the IC and the microcontroller makes it  
possible that it is used as a remained battery capacity monitor for lithium-ion rechargeable batteries, coin batteries,  
and other batteries.  
V
IN is divided into VIN/2 in S-85S0PCxx, and VIN/3 in S-85S0PDxx.  
Low output impedance is realized since the buffer amp in the supply voltage divider block constitutes a voltage  
follower.  
Each the supply voltage divider block and DC-DC converter block operate independently. When the PMEN pin is "L"  
and the supply voltage divider block is in standby status, the electrical charge in the output capacitor connected to the  
PMOUT pin is discharged by an impedance of approximately 2.8 kΩ.  
2. 1 Basic operation  
Figure 7 shows the block diagram of the supply voltage divider block to describe basic operation.  
Reference voltage (Vrefpm) is generated by dividing the input voltage (VIN) to VIN/2 or VIN/3 using the dividing  
resistance (Rpm1 and Rpm2). Since the buffer amplifier constitutes a voltage follower, it can perform the feedback  
control so that VPMOUT and Vrefpm are the same. Low output impedance is realized by the buffer amplifier, while  
outputting VPMOUT according to VIN.  
When "L" is input to the PMEN pin the current which flows to Rpm1 and Rpm2 and the current which flows to the  
buffer amplifier can be stopped. The buffer amplifier output is pulled down to VSS by the built-in N-channel  
transistor, and VPMOUT is set to the VSS level.  
The difference, the output offset voltage (VPOF), is generated between VPMOUT and VPMOUT(S), and it is expressed  
with VPMOUT = VPMOUT(S) + VPOF  
.
In addition, VPMOUT will change slightly according to the load current, and the value of change is expressed as the  
output impedance (RPS).  
VIN  
SW  
Buffer amplifier  
Rpm1  
Vrefpm  
+
PMOUT  
Rpm2  
Supply voltage  
divided output  
enable circuit  
PMEN  
VSS  
Figure 7  
13  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
S-85S0P Series  
Rev.1.2_00  
2. 2 PMEN pin  
The PMEN pin controls the supply voltage divided output enable circuit.  
When "H" is input to the PMEN pin, the supply voltage divided output enable circuit operates. This enables the  
supply voltage divided output and allows for monitoring of the power supply voltage. When "L" is input to the  
PMEN pin, the supply voltage divided output enable circuit stops. This disables the supply voltage divided output,  
reducing the IC current consumption. In addition, the PMEN pin has absolutely no effect on the operation of the  
DC-DC converter block.  
Table 10  
PMEN Pin  
Supply Voltage Divided Output  
Enable (normal operation)  
Disable (standby)  
Output Voltage (VPMOUT  
)
*1  
"H"  
"L"  
VPMOUT  
VSS level  
*1. Refer to *1 in Table 7 in "Electrical Characteristics".  
Figure 8 shows the internal equivalent circuit structure in relation to the PMEN pin. The PMEN pin is neither pulled  
up nor pulled down, so do not use it in the floating status. When not using the PMEN pin, connect it to the VIN pin.  
Note that the current consumption increases when a voltage of 0.25 V to VIN 0.3 V is applied to the PMEN pin.  
VIN  
PMEN  
VSS  
Figure 8  
14  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
Rev.1.2_00  
S-85S0P Series  
2. 3 PMEN pin voltage and output voltage (VPMOUT  
)
Figure 9 shows the relation between the PMEN pin voltage and the supply voltage divided output.  
When "H" is input to the PMEN pin, the supply voltage divided output is enabled. Once set-up time (tPU) = 10 ms  
max.*1 elapses, the output voltage (VPMOUT) will settle and the power supply voltage can be monitored.  
When "L" is input to the PMEN pin, the supply voltage divided output is disabled. VPMOUT is set to the VSS level by  
the built-in N-channel transistor.  
By inputting "H" and "L" alternately to the PMEN pin, allowing for minimization of current consumption during the  
period when the power supply voltage is not monitored.  
*1. Ta = +25°C, VIN = 3.6 V, CPM = 0.22 μF, no load  
Active "H"  
VPMEN  
tPU  
tPU  
VPMOUT(S) + VPOF  
VPMOUT(S) + VPOF  
VPMOUT  
Figure 9  
Remark VPMEN = VIN VSS  
15  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
S-85S0P Series  
Rev.1.2_00  
Typical Application  
Figure 10 shows the circuit diagram of the typical application in the S-85S0P Series, and Figure 11 shows the timing  
chart.  
As shown in Figure 10, connect the PMOUT pin to an analog input pin (AIN pin) of the A/D converter in the  
microcontroller. The microcontroller can monitor the battery voltage by inputting the output voltage (VPMOUT) to the A/D  
converter.  
The input voltage from the battery is converted to output voltage by the switching operation, and the microcontroller  
starts driving with the voltage. The supply voltage divided output can be controlled by inputting "H" and "L" signals  
output from the microcontroller I/O pin to the PMEN pin. Control the supply voltage divided output according to the A/D  
converter operation timing.  
When inputting "H" to the PMEN pin, the microcontroller monitors the battery voltage. The IC current consumption can  
be minimized by inputting "L" to the PMEN pin when battery voltage is not monitored.  
S-85S0P Series  
Microcontroller  
L
VDD  
SW  
VIN  
COUT  
VOUT  
PMOUT  
VSS  
A/D  
converter  
EN  
PMEN  
PVSS  
AIN  
CIN  
Battery  
VSS  
I/O  
CPM  
Figure 10  
Active "H"  
VPMEN  
tPU  
tPU  
tPU  
VPMOUT(S) + VPOF  
VPMOUT  
Voltage monitoring timing  
Figure 11  
16  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
Rev.1.2_00  
S-85S0P Series  
Typical Circuit  
VIN  
VOUT  
V
IN  
C
IN  
4.7 μF  
+
+
L
VOUT  
SW  
2.2 μH  
+
SS  
COUT  
4.7 μF  
+
PVSS  
EN  
UVLO  
VIN  
PMEN  
+
C
PM  
0.22 μF  
VSS  
Figure 12  
Caution The above connection diagram and constants will not guarantee successful operation.  
Perform thorough evaluation using an actual application to set the constants.  
17  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
S-85S0P Series  
Rev.1.2_00  
External Parts Selection  
Selectable values and recommended values for external parts are shown in Table 11.  
Use ceramic capacitors for CIN and COUT  
.
Table 11  
Input Capacitor Output Capacitor  
Supply Voltage Divider Block  
Item  
Inductor (L)  
(CIN)  
2.2 μF or larger  
4.7 μF  
(COUT  
)
Output Capacitor (CPM)  
Selectable value  
Recommended value  
4.7 μF to 100 μF 1.5 μH to 10 μH  
0.10 μF to 0.22 μF  
4.7 μF 2.2 μH  
1. DC-DC converter block input capacitor (CIN)  
CIN can lower the power supply impedance, average the input current, improve the efficiency and noise tolerance.  
Select a capacitor according to the impedance of the power supply to be used. Also take into consideration the DC  
bias characteristics of the capacitor to be used.  
2. DC-DC converter block output capacitor (COUT  
)
COUT is used to smooth output voltage. If the capacitance is large, the overshoot and undershoot during load  
transient and output ripple voltage can be improved even more. Select a proper capacitor after the sufficient  
evaluation under actual conditions.  
Table 12 Recommended Capacitors (CIN, COUT) List (at VOUT(S) 2.5 V)  
Withstanding  
Manufacturer  
Part Number  
Capacitance  
Dimensions (L × W × H)  
Voltage  
Murata Manufacturing Co., Ltd. GRM035R60J475ME15  
Murata Manufacturing Co., Ltd. GRJ155R61A106ME12  
4.7 μF  
10 μF  
6.3 V  
10 V  
0.6 mm × 0.3 mm × 0.5 mm  
1.0 mm × 0.5 mm × 0.5 mm  
Table 13 Recommended Capacitors (CIN, COUT) List (at VOUT(S) > 2.5 V)  
Withstanding  
Manufacturer  
Part Number  
Capacitance  
Dimensions (L × W × H)  
Voltage  
Murata Manufacturing Co., Ltd. GRJ155R61A106ME12  
10 μF  
10 V  
1.0 mm × 0.5 mm × 0.5 mm  
3. DC-DC converter block inductor (L)  
When selecting L, note the allowable current. If a current exceeding this allowable current flows through the inductor,  
magnetic saturation may occur, and there may be risks which substantially lower efficiency and damage the IC as a  
result of large current.  
Therefore, select an inductor so that peak current value (IPK), even during overcurrent detection, does not exceed  
the allowable current.  
When prioritizing the load response, select an inductor with a small L value such as 2.2 μH. When prioritizing the  
efficiency, select an inductor with a large L value such as 4.7 μH. IPK is calculated using the following expression.  
1
(VIN  
VOUT) × VOUT  
VIN  
I
PK = IOUT  
+
×
2 × L × fSW  
Table 14 Recommended Inductors (L) List (at VIN 4.2 V)  
Rated  
Current  
520 mA  
Manufacturer  
Part Number  
Inductance  
Dimensions (L × W × H)  
TAIYO YUDEN CO.,LTD.  
Murata Manufacturing Co., Ltd.  
MBKK1608T2R2M  
DFE201210S-2R2M=P2  
2.2 μH  
2.2 μH  
2.2 μH  
2.2 μH  
1.6 mm × 0.8 mm × 1.0 mm  
2000 mA 2.0 mm × 1.2 mm × 1.0 mm  
850 mA  
800 mA  
Würth Elektronik GmbH & Co. KG 74438313022  
TDK Corporation  
MLP2012S2R2MT0S1  
1.6 mm × 1.6 mm × 1.0 mm  
2.0 mm × 1.25 mm × 0.85 mm  
Table 15 Recommended Inductors (L) List (at VIN > 4.2 V)  
Rated  
Current  
Manufacturer  
Part Number  
Inductance  
Dimensions (L × W × H)  
Murata Manufacturing Co., Ltd.  
DFE201210S-2R2M=P2  
2.2 μH  
2.2 μH  
2.2 μH  
2000 mA 2.0 mm × 1.2 mm × 1.0 mm  
Würth Elektronik GmbH & Co. KG 74438313022  
TDK Corporation MLP2012S2R2MT0S1  
850 mA  
800 mA  
1.6 mm × 1.6 mm × 1.0 mm  
2.0 mm × 1.25 mm × 0.85 mm  
18  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
Rev.1.2_00  
S-85S0P Series  
4. Supply voltage divider block output capacitor (CPM  
)
When selecting CPM, take into consideration the operation stability. If the capacitance is large, the rising time until  
V
PMOUT reaches the intended voltage (set-up time (tPU)) will be longer.  
Table 16 Recommended Capacitors (CPM) List  
Withstanding  
Voltage  
Manufacturer  
Part Number  
Capacitance  
Dimensions (L × W × H)  
TDK Corporation  
TDK Corporation  
CGA2B2X5R1A104M050BA  
C0603X5R0J224M030BB  
0.10 μF  
0.22 μF  
0.10 μF  
0.22 μF  
6.3 V  
6.3 V  
6.3 V  
6.3 V  
1.0 mm × 0.5 mm × 0.5 mm  
0.6 mm × 0.3 mm × 0.3 mm  
0.6 mm × 0.3 mm × 0.3 mm  
0.6 mm × 0.3 mm × 0.3 mm  
Murata Manufacturing Co., Ltd. GRM033R60J104ME19  
Murata Manufacturing Co., Ltd. GRM033R60J224ME90  
19  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
S-85S0P Series  
Rev.1.2_00  
Board Layout Guidelines  
Note the following cautions when determining the board layout for the S-85S0P Series.  
Place CIN as close to the VIN pin and the PVSS pin as possible.  
Make the VIN pattern and GND pattern as wide as possible.  
Place thermal vias in the GND pattern to ensure sufficient heat dissipation.  
Keep thermal vias near CIN and COUT approximately 3 mm to 4 mm away from capacitor pins.  
Large current flows through the SW pin. Make the wiring area of the pattern to be connected to the SW pin small to  
minimize parasitic capacitance and emission noise.  
Do not wire the SW pin pattern under the IC.  
Total size: 5.0 mm × 2.2 mm = 11.0 mm2  
Figure 13 Reference Board Pattern  
Caution The above pattern diagram does not guarantee successful operation. Perform thorough evaluation  
using the actual application to determine the pattern.  
Remark Refer to the land drawing of SNT-8A and "SNT Package User's Guide".  
20  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
Rev.1.2_00  
S-85S0P Series  
Precautions  
Mount external capacitors and inductors as close as possible to the IC, and make single GND.  
Characteristic ripple voltage and spike noise occur in the IC containing switching regulators. Moreover rush current  
flows at the time of a power supply injection. Because these largely depend on the inductor, the capacitor and  
impedance of power supply to be used, fully check them using an actually mounted model.  
The 4.7 μF capacitor connected between the VIN pin and the VSS pin is a bypass capacitor. It stabilizes the power  
supply in the IC when application is used with a heavy load, and thus effectively works for stable switching  
regulator operation. Allocate the bypass capacitor as close to the IC as possible, prioritized over other parts.  
Although the IC contains a static electricity protection circuit, static electricity or voltage that exceeds the limit of  
the protection circuit should not be applied.  
The power dissipation of the IC greatly varies depending on the size and material of the board to be connected.  
Perform sufficient evaluation using an actual application before designing.  
ABLIC Inc. assumes no responsibility for the way in which this IC is used on products created using this IC or for  
the specifications of that product, nor does ABLIC Inc. assume any responsibility for any infringement of patents or  
copyrights by products that include this IC either in Japan or in other countries.  
21  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
S-85S0P Series  
Rev.1.2_00  
Characteristics (Typical Data)  
1. Example of major power supply dependence characteristics (Ta = +25°C)  
DC-DC converter block  
1. 1 Current consumption during switching off (ISS1  
vs. Input voltage (VIN)  
)
1. 2 Current consumption during shutdown (ISSS)  
vs. Input voltage (VIN)  
500  
400  
300  
200  
100  
100  
80  
60  
40  
20  
0
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VIN [V]  
VIN [V]  
1. 3 Output voltage (VOUT) vs. Input voltage (VIN)  
1. 4 Output voltage (VOUT) vs. Input voltage (VIN)  
VOUT(S) = 1.2 V  
VOUT(S) = 1.8 V  
1.230  
1.840  
1.220  
1.210  
1.200  
1.190  
1.180  
1.820  
1.800  
1.780  
1.760  
1.170  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
V
IN [V]  
VIN [V]  
1. 5 Output voltage (VOUT) vs. Input voltage (VIN)  
VOUT(S) = 2.5 V  
2.600  
2.400  
2.200  
2.000  
1.800  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
V
IN [V]  
1. 6 ON time (tON) vs. Input voltage (VIN)  
VOUT(S) = 1.8 V  
1. 7 Switching frequency (fSW) vs. Input voltage (VIN)  
VOUT(S) = 1.8 V  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.4  
1.2  
1.0  
0.8  
0.6  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VIN [V]  
VIN [V]  
22  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
Rev.1.2_00  
S-85S0P Series  
1. 8 Soft-start wait time (tSSW) vs. Input voltage (VIN) 1. 9 Soft-start time (tSS) vs. Input voltage (VIN)  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VIN [V]  
VIN [V]  
1. 10 High side power MOS FET on-resistance (RHFET  
vs. Input voltage (VIN)  
)
1. 11 Low side power MOS FET on-resistance (RLFET  
vs. Input voltage (VIN)  
)
800  
800  
700  
700  
600  
600  
500  
500  
400  
400  
300  
300  
200  
200  
100  
100  
0
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VIN [V]  
VIN [V]  
1. 12 High side power MOS FET leakage current (IHSW  
vs. Input voltage (VIN)  
)
1. 13 Low side power MOS FET leakage current (ILSW  
vs. Input voltage (VIN)  
)
100  
80  
60  
40  
20  
100  
80  
60  
40  
20  
0
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VIN [V]  
VIN [V]  
1. 14 High level input voltage (VSH) vs. Input voltage (VIN)  
1. 15 Low level input voltage (VSL) vs. Input voltage (VIN)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.0  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
V
IN [V]  
VIN [V]  
23  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
S-85S0P Series  
Rev.1.2_00  
Supply voltage divider block  
1. 16 Output voltage (VPMOUT) vs. Input voltage (VIN) 1. 17 Output voltage (VPMOUT) vs. Input voltage (VIN)  
PMOUT(S) = VIN/2 PMOUT(S) = VIN/3  
V
V
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
V
IN [V]  
VIN [V]  
1. 18 Current consumption during operation (ISS1P  
vs. Input voltage (VIN)  
)
1. 19 Output offset voltage (VPOF) vs. Input voltage (VIN)  
1000  
800  
600  
400  
200  
40  
20  
0
20  
40  
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
V
IN [V]  
VIN [V]  
1. 20 Set-up time (tPU) vs. Input voltage (VIN)  
PMOUT(S) = VIN/2, CPM = 0.22 μF  
1. 21 Set-up time (tPU) vs. Input voltage (VIN)  
PMOUT(S) = VIN/3, CPM = 0.22 μF  
V
V
10  
10  
8
8
6
6
4
4
2
2
0
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
V
IN [V]  
VIN [V]  
1. 22 PMEN pin input voltage "H" (VPSH  
vs. Input voltage (VIN)  
)
1. 23 PMEN pin input voltage "L" (VPSL  
vs. Input voltage (VIN)  
)
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
V
IN [V]  
VIN [V]  
24  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
Rev.1.2_00  
S-85S0P Series  
2. Example of major temperature characteristics (Ta = 40°C to +85°C)  
DC-DC converter block  
2. 1 Current consumption during switching off (ISS1  
vs. Temperature (Ta)  
)
2. 2 Current consumption during shutdown (ISSS  
vs. Temperature (Ta)  
)
500  
200  
150  
V
DD = 2.2 V  
400  
300  
200  
100  
0
V
DD = 5.5 V  
V
DD = 2.2 V  
100  
50  
0
V
DD = 3.6 V  
V
DD = 3.6 V  
V
DD = 5.5 V  
40  
25  
0
25  
50  
75 85  
40  
25  
0
25  
50  
75 85  
Ta [C]  
Ta [C]  
2. 4 Output voltage (VOUT) vs. Temperature (Ta)  
OUT(S) = 1.8 V  
2. 3 Output voltage (VOUT) vs. Temperature (Ta)  
V
OUT(S) = 1.2 V  
V
1.230  
1.220  
1.210  
1.200  
1.190  
1.180  
1.170  
1.840  
1.820  
1.800  
1.780  
1.760  
V
DD = 2.2 V  
V
DD = 2.2 V  
V
DD = 5.5 V  
V
DD = 3.6 V  
V
DD = 3.6 V  
50  
V
DD = 5.5 V  
25  
40  
25  
0
25  
Ta [C]  
75 85  
40  
25  
0
50  
75 85  
Ta [C]  
2. 5 Output voltage (VOUT) vs. Temperature (Ta)  
VOUT(S) = 2.5 V  
2.560  
2.540  
V
DD = 5.5 V  
2.520  
2.500  
2.480  
2.460  
2.440  
V
DD = 3.6 V  
50  
40  
25  
0
25  
Ta [C]  
75 85  
2. 6 ON time (tON) vs. Temperature (Ta)  
2. 7 Switching frequency (fSW) vs. Temperature (Ta)  
1.2  
1.0  
1.4  
1.2  
1.0  
0.8  
0.6  
V
DD = 3.6 V  
0.8  
0.6  
0.4  
0.2  
0.0  
V
DD = 3.6 V  
V
DD = 2.2 V  
V
DD = 2.2 V  
50 75 85  
V
DD = 5.5 V  
0
V
DD = 5.5 V  
25  
Ta [C]  
40  
25  
0
50  
75 85  
40  
25  
25  
Ta [C]  
25  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
S-85S0P Series  
Rev.1.2_00  
2. 8 Soft-start wait time (tSSW) vs. Temperature (Ta)  
2. 9 Soft-start time (tSS) vs. Temperature (Ta)  
2.50  
2.00  
1.50  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
V
DD = 2.2 V  
V
DD = 5.5 V  
1.00  
0.50  
0.00  
V
DD = 3.6 V  
V
DD = 2.2 V  
V
DD = 5.5 V  
25  
VDD = 3.6 V  
40  
25  
0
25  
50  
75 85  
40  
0
25  
Ta [C]  
50  
75 85  
Ta [C]  
2. 10 High side power MOS FET on-resistance (RHFET  
vs. Temperature (Ta)  
)
2. 11 Low side power MOS FET on-resistance (RLFET  
vs. Temperature (Ta)  
)
800  
800  
700  
V
DD = 2.2 V  
700  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
V
DD = 2.2 V  
V
DD = 3.6 V  
50  
V
DD = 3.6 V  
50 75 85  
VDD = 5.5 V  
V
DD = 5.5 V  
40 25  
0
25  
Ta [C]  
75 85  
40 25  
0
25  
Ta [C]  
2. 12 High side power MOS FET leakage current (IHSW  
vs. Temperature (Ta)  
)
2. 13 Low side power MOS FET leakage current (ILSW  
vs. Temperature (Ta)  
)
300  
250  
200  
150  
300  
250  
V
DD = 5.5 V  
200  
150  
100  
50  
V
DD = 3.6 V  
V
DD = 5.5 V  
V
DD = 3.6 V  
100  
50  
0
V
DD = 2.2 V  
V
DD = 2.2 V  
0
40  
25  
0
25  
50  
75 85  
40  
25  
0
25  
50  
75 85  
Ta [C]  
Ta [C]  
2. 14 High level input voltage (VSH) vs. Temperature (Ta) 2. 15 Low level input voltage (VSL) vs. Temperature (Ta)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
DD = 5.5 V  
V
DD = 5.5 V  
V
DD = 3.6 V  
50  
V
DD = 3.6 V  
V
DD = 2.2 V  
0
V
DD = 2.2 V  
25  
40  
25  
25  
75 85  
40  
0
25  
Ta [C]  
50  
75 85  
Ta [C]  
26  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
Rev.1.2_00  
S-85S0P Series  
2. 16 UVLO detection voltage (VUVLO) vs. Temperature (Ta)  
2. 17 UVLO release voltage (VUVLO+) vs. Temperature (Ta)  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
40  
25  
0
25  
50  
75 85  
40  
25  
0
25  
50  
75 85  
Ta [C]  
Ta [C]  
27  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
S-85S0P Series  
Rev.1.2_00  
Supply voltage divider block  
2. 18 Output voltage (VPMOUT) vs. Temperature (Ta)  
2. 19 Output voltage (VPMOUT) vs. Temperature (Ta)  
VPMOUT(S) = VIN/2  
VPMOUT(S) = VIN/3  
3.0  
2.0  
2.5  
1.5  
V
DD = 5.5 V  
VDD = 5.5 V  
2.0  
1.5  
1.0  
0.5  
0.0  
V
DD = 1.5 V  
VDD = 1.5 V  
1.0  
0.5  
0.0  
V
DD = 3.6 V  
VDD = 3.6 V  
40  
25  
0
25  
Ta [C]  
50  
75 85  
40  
25  
0
25  
Ta [C]  
50  
75 85  
2. 20 Current consumption during operation (ISS1P  
vs. Temperature (Ta)  
)
2. 21 Output offset voltage (VPOF) vs. Temperature (Ta)  
1000  
800  
40  
V
DD = 5.5 V  
20  
0
V
DD = 5.5 V  
V
DD = 3.6 V  
600  
400  
200  
0
V
DD = 1.5 V  
20  
40  
V
DD = 3.6 V  
V
DD = 1.5 V  
40  
25  
0
25  
50  
75 85  
40  
25  
0
25  
Ta [C]  
50  
75 85  
Ta [C]  
2. 22 Set-up time (tPU) vs. Temperature (Ta)  
2. 23 Set-up time (tPU) vs. Temperature (Ta)  
V
PMOUT(S) = VIN/2, CPM = 0.22 μF  
V
PMOUT(S) = VIN/3, CPM = 0.22 μF  
10  
8
10  
8
V
DD = 5.5 V  
V
DD = 5.5 V  
V
DD = 3.6 V  
V
DD = 3.6 V  
6
6
VDD = 1.5 V  
4
4
V
DD = 1.5 V  
2
2
0
0
40  
25  
0
25  
Ta [C]  
50  
75 85  
40  
25  
0
25  
50  
75 85  
Ta [C]  
2. 24 PMEN pin input voltage (VPSH) vs. Temperature (Ta) 2. 25 PMEN pin input voltage (VPSL) vs. Temperature (Ta)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
DD = 5.5 V  
V
DD = 5.5 V  
V
DD = 3.6 V  
V
DD = 3.6 V  
V
DD = 1.5 V  
V
DD = 1.5 V  
40  
25  
0
25  
50  
75 85  
40  
25  
0
25  
50  
75 85  
Ta [C]  
Ta [C]  
28  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
Rev.1.2_00  
S-85S0P Series  
3. Transient response characteristics  
The external parts shown in Table 17 are used in "3. Transient response characteristics".  
Table 17  
Element Name  
Inductor  
Constant  
2.2 μH  
10 μF  
Manufacturer  
Part Number  
Murata Manufacturing Co., Ltd.  
Murata Manufacturing Co., Ltd.  
Murata Manufacturing Co., Ltd.  
DFE201210S-2R2M=P2  
GRJ155R61A106ME12  
GRJ155R61A106ME12  
Input capacitor  
Output capacitor  
10 μF  
3. 1 Power-on (VOUT = 1.8 V, VIN = 0 V 3.6 V, Ta = +25°C)  
3. 1. 1 IOUT = 0.1 mA  
3. 1. 2 IOUT = 50 mA  
1,400  
1,200  
1,000  
800  
1,400  
1,200  
1,000  
800  
4
3
2
4
3
2
V
IN  
V
OUT  
1
1
600  
400  
200  
0
600  
400  
200  
0
0
0
I
L
1  
2  
3  
4  
1  
2  
3  
4  
200  
200  
0
1
2
3
4
5
0
1
2
3
4
5
Time [ms]  
Time [ms]  
3. 2 Transient response characteristics of EN pin  
(VOUT = 1.8 V, VIN = 3.6 V, VEN = 0 V 3.6 V, Ta = +25°C)  
3. 2. 1 IOUT = 0.1 mA  
3. 2. 2 IOUT = 50 mA  
1,400  
1,200  
1,000  
800  
1,400  
1,200  
1,000  
800  
4
3
2
4
3
2
V
EN  
V
EN  
V
OUT  
V
OUT  
1
1
600  
400  
200  
0
600  
400  
200  
0
0
0
I
L
1  
2  
3  
4  
1  
2  
3  
4  
I
L
200  
200  
0
1
2
3
4
5
0
1
2
3
4
5
Time [ms]  
Time [ms]  
3. 3 Power supply fluctuation (VOUT = 1.8 V, Ta = +25°C)  
3. 3. 1 IOUT = 0.1 mA  
3. 3. 2 IOUT = 50 mA  
VIN = 3.6 V 4.2 V 3.6 V  
VIN = 3.6 V 4.2 V 3.6 V  
2.10  
2.00  
1.90  
1.80  
1.70  
2.10  
5
4
3
2
1
5
4
3
2
1
V
IN  
2.00  
1.90  
1.80  
1.70  
V
IN  
V
OUT  
V
OUT  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
Time [ms]  
Time [ms]  
29  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
S-85S0P Series  
Rev.1.2_00  
3. 4 Load fluctuation (VOUT = 1.8 V, VIN = 3.6 V, Ta = +25°C)  
3. 4. 1 IOUT = 0.1 mA 10 mA 0.1 mA  
3. 4. 2 IOUT = 0.1 mA 50 mA 0.1 mA  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
100  
100  
50  
0
50  
0
I
OUT  
I
OUT  
50  
100  
150  
200  
50  
100  
150  
200  
V
OUT  
V
OUT  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
Time [ms]  
Time [ms]  
Reference Data  
The external parts shown in Table 18 are used in "Reference Data".  
Table 18  
Condition  
<1>  
Inductor (L)  
MBKK1608T2R2M (2.2 μH)  
TAIYO YUDEN CO.,LTD.  
DFE201210S-2R2M=P2 (2.2 μH) GRJ155R61A106ME12 (10 μF)  
Murata Manufacturing Co., Ltd. Murata Manufacturing Co., Ltd.  
Input Capacitor (CIN)  
GRM035R60J475ME15 (4.7 μF) GRM035R60J475ME15 (4.7 μF)  
Murata Manufacturing Co., Ltd.  
Output Capacitor (COUT)  
Murata Manufacturing Co., Ltd.  
GRJ155R61A106ME12 (10 μF)  
Murata Manufacturing Co., Ltd.  
<2>  
1. VOUT = 1.2 V (External parts: Condition<1>)  
1. 1 Efficiency (η) vs. Output current (IOUT  
)
1. 2 Output voltage (VOUT) vs. Output current (IOUT)  
100  
1.5  
80  
1.4  
60  
40  
20  
0
1.3  
1.2  
1.1  
1.0  
VIN = 3.6 V  
V
IN = 3.6 V  
V
IN = 5.5 V  
VIN = 5.5 V  
0.001 0.01 0.1  
1
10  
100 1000  
0.001 0.01 0.1  
1
10  
100 1000  
I
OUT [mA]  
IOUT [mA]  
2. VOUT = 1.8 V (External parts: Condition<1>)  
2. 1 Efficiency (η) vs. Output current (IOUT  
)
2. 2 Output voltage (VOUT) vs. Output current (IOUT)  
100  
2.0  
80  
1.9  
1.8  
1.7  
1.6  
1.5  
V
IN = 5.5 V  
60  
40  
20  
0
V
IN = 3.6 V  
V
IN = 3.6 V  
V
IN = 5.5 V  
0.001 0.01 0.1  
1
10  
100 1000  
0.001 0.01 0.1  
1
10  
100 1000  
I
OUT [mA]  
IOUT [mA]  
30  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
Rev.1.2_00  
S-85S0P Series  
3. VOUT = 1.2 V (External parts: Condition<2>)  
3. 1 Efficiency (η) vs. Output current (IOUT  
)
3. 2 Output voltage (VOUT) vs. Output current (IOUT)  
100  
1.5  
80  
1.4  
V
IN = 3.6 V  
60  
40  
20  
0
1.3  
1.2  
1.1  
1.0  
V
IN = 3.6 V  
V
IN = 5.5 V  
V
IN = 5.5 V  
0.001 0.01 0.1  
1
10  
100 1000  
0.001 0.01 0.1  
1
10  
100 1000  
I
OUT [mA]  
I
OUT [mA]  
4. VOUT = 1.8 V (External parts: Condition<2>)  
4. 1 Efficiency (η) vs. Output current (IOUT  
)
4. 2 Output voltage (VOUT) vs. Output current (IOUT)  
100  
2.0  
V
IN = 5.5 V  
80  
1.9  
1.8  
1.7  
1.6  
1.5  
V
IN = 3.6 V  
60  
40  
20  
0
V
IN = 5.5 V  
V
IN = 3.6 V  
0.001 0.01 0.1  
1
10  
100 1000  
0.001 0.01 0.1  
1
10  
100 1000  
I
OUT [mA]  
IOUT [mA]  
31  
SUPPLY VOLTAGE DIVIDED OUTPUT, 5.5 V INPUT, 50 mA SYNCHRONOUS STEP-DOWN SWITCHING REGULATOR WITH 260 nA QUIESCENT CURRENT  
S-85S0P Series  
Rev.1.2_00  
Power Dissipation  
SNT-8A  
Tj = 125C max.  
1.0  
0.8  
B
0.6  
A
0.4  
0.2  
0.0  
0
25  
50  
75  
100 125 150 175  
Ambient temperature (Ta) [C]  
Board  
Power Dissipation (PD)  
A
B
C
D
E
0.47 W  
0.58 W  
32  
SNT-8A Test Board  
No. SNT8A-A-Board-SD-1.0  
ABLIC Inc.  
1.97±0.03  
6
5
8
7
+0.05  
-0.02  
0.08  
1
2
3
4
0.5  
0.48±0.02  
0.2±0.05  
No. PH008-A-P-SD-2.1  
TITLE  
SNT-8A-A-PKG Dimensions  
PH008-A-P-SD-2.1  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
+0.1  
-0  
4.0±0.1  
2.0±0.05  
0.25±0.05  
ø1.5  
0.65±0.05  
ø0.5±0.1  
4.0±0.1  
2.25±0.05  
4 3 2 1  
5 6 7 8  
Feed direction  
No. PH008-A-C-SD-2.0  
TITLE  
SNT-8A-A-Carrier Tape  
PH008-A-C-SD-2.0  
No.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
12.5max.  
9.0±0.3  
Enlarged drawing in the central part  
ø13±0.2  
(60°)  
(60°)  
No. PH008-A-R-SD-1.0  
SNT-8A-A-Reel  
TITLE  
No.  
PH008-A-R-SD-1.0  
5,000  
QTY.  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
0.52  
2
2.01  
0.52  
1
0.2  
0.3  
1.  
2.  
(0.25 mm min. / 0.30 mm typ.)  
(1.96 mm ~ 2.06 mm)  
1.  
2.  
0.03 mm  
3.  
4.  
SNT  
1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).  
2. Do not widen the land pattern to the center of the package (1.96 mm to 2.06mm).  
Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.  
2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm  
or less from the land pattern surface.  
3. Match the mask aperture size and aperture position with the land pattern.  
4. Refer to "SNT Package User's Guide" for details.  
(0.25 mm min. / 0.30 mm typ.)  
(1.96 mm ~ 2.06 mm)  
1.  
2.  
SNT-8A-A  
-Land Recommendation  
TITLE  
No.  
No. PH008-A-L-SD-4.1  
PH008-A-L-SD-4.1  
ANGLE  
UNIT  
mm  
ABLIC Inc.  
Disclaimers (Handling Precautions)  
1. All the information described herein (product data, specifications, figures, tables, programs, algorithms and application  
circuit examples, etc.) is current as of publishing date of this document and is subject to change without notice.  
2. The circuit examples and the usages described herein are for reference only, and do not guarantee the success of  
any specific mass-production design.  
ABLIC Inc. is not responsible for damages caused by the reasons other than the products described herein  
(hereinafter "the products") or infringement of third-party intellectual property right and any other right due to the use  
of the information described herein.  
3. ABLIC Inc. is not responsible for damages caused by the incorrect information described herein.  
4. Be careful to use the products within their specified ranges. Pay special attention to the absolute maximum ratings,  
operation voltage range and electrical characteristics, etc.  
ABLIC Inc. is not responsible for damages caused by failures and / or accidents, etc. that occur due to the use of the  
products outside their specified ranges.  
5. When using the products, confirm their applications, and the laws and regulations of the region or country where they  
are used and verify suitability, safety and other factors for the intended use.  
6. When exporting the products, comply with the Foreign Exchange and Foreign Trade Act and all other export-related  
laws, and follow the required procedures.  
7. The products must not be used or provided (exported) for the purposes of the development of weapons of mass  
destruction or military use. ABLIC Inc. is not responsible for any provision (export) to those whose purpose is to  
develop, manufacture, use or store nuclear, biological or chemical weapons, missiles, or other military use.  
8. The products are not designed to be used as part of any device or equipment that may affect the human body, human  
life, or assets (such as medical equipment, disaster prevention systems, security systems, combustion control  
systems, infrastructure control systems, vehicle equipment, traffic systems, in-vehicle equipment, aviation equipment,  
aerospace equipment, and nuclear-related equipment), excluding when specified for in-vehicle use or other uses. Do  
not apply the products to the above listed devices and equipments without prior written permission by ABLIC Inc.  
Especially, the products cannot be used for life support devices, devices implanted in the human body and devices  
that directly affect human life, etc.  
Prior consultation with our sales office is required when considering the above uses.  
ABLIC Inc. is not responsible for damages caused by unauthorized or unspecified use of our products.  
9. Semiconductor products may fail or malfunction with some probability.  
The user of the products should therefore take responsibility to give thorough consideration to safety design including  
redundancy, fire spread prevention measures, and malfunction prevention to prevent accidents causing injury or  
death, fires and social damage, etc. that may ensue from the products' failure or malfunction.  
The entire system must be sufficiently evaluated and applied on customer's own responsibility.  
10. The products are not designed to be radiation-proof. The necessary radiation measures should be taken in the  
product design by the customer depending on the intended use.  
11. The products do not affect human health under normal use. However, they contain chemical substances and heavy  
metals and should therefore not be put in the mouth. The fracture surfaces of wafers and chips may be sharp. Be  
careful when handling these with the bare hands to prevent injuries, etc.  
12. When disposing of the products, comply with the laws and ordinances of the country or region where they are used.  
13. The information described herein contains copyright information and know-how of ABLIC Inc.  
The information described herein does not convey any license under any intellectual property rights or any other  
rights belonging to ABLIC Inc. or a third party. Reproduction or copying of the information from this document or any  
part of this document described herein for the purpose of disclosing it to a third-party without the express permission  
of ABLIC Inc. is strictly prohibited.  
14. For more details on the information described herein, contact our sales office.  
2.2-2018.06  
www.ablic.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY