A1280A-1PL84M [ACTEL]

Field Programmable Gate Array, 1232 CLBs, 8000 Gates, CMOS, PQCC84, PLASTIC, LCC-84;
A1280A-1PL84M
型号: A1280A-1PL84M
厂家: Actel Corporation    Actel Corporation
描述:

Field Programmable Gate Array, 1232 CLBs, 8000 Gates, CMOS, PQCC84, PLASTIC, LCC-84

栅 可编程逻辑
文件: 总38页 (文件大小:652K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v4.0.1  
ACT2 Family FPGAs  
Features  
Up to 8000 Gate Array Gates  
Datapath Performance at 105 MHz  
(20,000 PLD equivalent gates)  
16-Bit Accumulator Performance to 39 MHz  
Replaces up to 200 TTL Packages  
Replaces up to eighty 20-Pin PAL® Packages  
Design Library with over 500 Macro Functions  
Single-Module Sequential Functions  
Wide-Input Combinatorial Functions  
Up to 1232 Programmable Logic Modules  
Up to 998 Flip-Flops  
Two In-Circuit Diagnostic Probe Pins Support Speed  
Analysis to 50 MHz  
Two High-Speed, Low-Skew Clock Networks  
I/O Drive to 10 mA  
Nonvolatile, User Programmable  
Logic Fully Tested Prior to Shipment  
1.0-micron CMOS Technology  
Product Family Profile  
Device  
A1225A  
A1240A  
A1280A  
Capacity  
2,500  
6,250  
63  
4,000  
10,000  
100  
8,000  
20,000  
200  
Gate Array Equivalent Gates  
PLD Equivalent Gates  
TTL Equivalent Packages  
20-Pin PAL Equivalent Packages  
25  
40  
80  
Logic Modules  
S-Modules  
C-Modules  
451  
231  
220  
684  
348  
336  
1,232  
624  
608  
Flip-Flops (maximum)  
382  
568  
998  
Routing Resources  
Horizontal Tracks/Channel  
Vertical Tracks/Channel  
PLICE Antifuse Elements  
36  
15  
250,000  
36  
15  
400,000  
36  
15  
750,000  
User I/Os (maximum)  
Packages1  
83  
104  
140  
100 CPGA  
100 PQFP  
100 VQFP  
84 PLCC  
132 CPGA  
144 PQFP  
176 TQFP  
84 PLCC  
176 CPGA  
160 PQFP  
176 TQFP  
84 PLCC  
172 CQFP  
Performance2  
16-Bit Prescaled Counters  
16-Bit Loadable Counters  
16-Bit Accumulators  
105 MHz  
70 MHz  
39 MHz  
100 MHz  
69 MHz  
38 MHz  
85 MHz  
67 MHz  
36 MHz  
Notes:  
1. See the “Product Plan” on page 3 for package availability.  
2. Performance is based on ‘–2’ speed devices at commercial worst-case operating conditions using PREP Benchmarks, Suite #1, Version 1.2,  
dated 3-28-93, any analysis is not endorsed by PREP.  
December 2000  
1
© 2000 Actel Corporation  
ACT2 Family FPGAs  
Description  
The ACT2 family represents Actels second generation of  
field programmable gate arrays (FPGAs). The ACT 2 family  
presents a two-module architecture, consisting of C-modules  
and S-modules. These modules are optimized for both  
combinatorial and sequential designs. Based on Actels  
patented channeled array architecture, the ACT 2 family  
provides significant enhancements to gate density and  
performance while maintaining downward compatibility  
technology. This revolutionary architecture offers gate array  
design flexibility, high performance, and fast  
time-to-production with user programming. The ACT 2  
family is supported by the Designer and Designer Advantage  
Systems, which offers automatic pin assignment, validation  
of electrical and design rules, automatic placement and  
routing, timing analysis, user programming, and diagnostic  
probe capabilities. The systems are supported on the  
following platforms: 386/486PC, Sun, and HP™  
workstations. The systems provide CAE interfaces to the  
following design environments: Cadence, Viewlogic®,  
Mentor Graphics®, and OrCAD.  
with the ACT  
1 design environment and upward  
compatibility with the ACT 3 design environment. The  
devices are implemented in silicon gate, 1.0-µm, two-level  
metal CMOS, and employ Actels PLICE® antifuse  
Ordering Information  
A1280  
A
1
PG  
176  
C
Application (Temperature Range)  
C = Commercial (0 to +70°C)  
I
= Industrial (–40 to +85°C)  
M = Military (–55 to +125°C)  
B = MIL-STD-883  
Package Lead Count  
Package Type  
PL = Plastic J-Leaded Chip Carrier  
PQ = Plastic Quad Flat Pack  
CQ = Ceramic Quad Flat Pack  
PG = Ceramic Pin Grid Array  
TQ = Thin (1.4 mm) Quad Flat Pack  
VQ = Very Thin (1.0 mm) Quad Flat Pack  
Speed Grade  
Blank = Standard Speed  
–1 = Approximately 15% faster than Standard  
–2 = Approximately 25% faster than Standard  
Die Revision  
A = 1.0-µm CMOS process  
Part Number  
A1225 = 2500 Gates  
A1240 = 4000 Gates  
A1280 = 8000 Gates  
2
v4.0  
ACT2 Family FPGAs  
Product Plan  
Speed Grade*  
Application  
Std  
1  
2  
C
I
M
B
A1225A Device  
100-pin Ceramic Pin Grid Array (PG)  
100-pin Plastic Quad Flat Pack (PQ)  
100-pin Very Thin (1.0 mm) Quad Flat Pack (VQ)   
84-pin Plastic Leaded Chip Carrier (PL)  
A1240A Device  
132-pin Ceramic Pin Grid Array (PG)  
176-pin Thin (1.4 mm) Quad Flat Pack (TQ)  
144-pin Plastic Quad Flat Pack (PQ)  
84-pin Plastic Leaded Chip Carrier (PL)  
A1280A Device  
176-pin Ceramic Pin Grid Array (PG)  
176-pin Thin (1.4 mm) Quad Flat Pack (TQ)  
160-pin Plastic Quad Flat Pack (PQ)  
172-pin Ceramic Quad Flat Pack (CQ)  
Contact your Actel sales representatives for product availability.  
Applications: C = Commercial Availability: = Available  
= Industrial  
*Speed Grade: 1 = Approx. 15% faster than Standard  
2 = Approx. 25% faster than Standard  
I
P = Planned  
M = Military  
= Not Planned  
B = MIL-STD-883  
Device Resources  
User I/Os  
CPGA  
PQFP  
PLCC CQFP  
TQFP  
VQFP  
Device  
Logic  
Series Modules Gates 176-pin 132-pin 100-pin 160-pin 144-pin 100-pin 84-pin 172-pin 176-pin 100-pin  
A1225A  
A1240A  
A1280A  
451  
684  
2500  
4000  
8000  
104  
83  
104  
83  
72  
72  
72  
83  
104  
140  
1232  
140  
125  
140  
.
v4.0  
3
ACT2 Family FPGAs  
Operating Conditions  
Absolute Maximum Ratings1  
Recommended Operating Conditions  
Free air temperature range  
Commercia Industria  
Parameter  
l
l
Military Units  
Symbol  
Parameter  
Limits  
Units  
Temperature  
Range1  
40 to  
+85  
55 to  
°C  
VCC  
VI  
DC Supply Voltage  
Input Voltage  
0.5 to +7.0  
0.5 to VCC +0.5  
0.5 to VCC +0.5  
20  
V
V
0 to +70  
+125  
Power  
Supply  
Tolerance  
VO  
Output Voltage  
V
5
10  
10  
%VCC  
I/O Source/Sink  
Current2  
mA  
IIO  
Note:  
1. Ambient temperature (TA) is used for commercial and  
industrial; case temperature (TC) is used for military.  
TSTG Storage Temperature  
Notes:  
65 to +150  
°C  
1. Stresses beyond those listed under Absolute Maximum  
Ratingsmay cause permanent damage to the device.  
Exposure to absolute maximum rated conditions for extended  
periods may affect device reliability. Device should not be  
operated outside the Recommended Operating Conditions.  
2. Device inputs are normally high impedance and draw  
extremely low current. However, when input voltage is greater  
than VCC + 0.5 V or less than GND 0.5 V, the internal  
protection diode will be forward biased and can draw excessive  
current.  
Electrical Specifications  
Commercial  
Industrial  
Military  
Max.  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Units  
1
VOH  
(IOH = 10 mA) 2  
(IOH = 6 mA)  
(IOH = 4 mA)  
(IOL = 10 mA) 2  
(IOL = 6 mA)  
2.4  
V
V
3.84  
3.7  
3.7  
V
1
VOL  
0.5  
0.33  
0.8  
V
0.40  
0.8  
0.40  
0.8  
V
VIL  
0.3  
0.3  
0.3  
V
VIH  
2.0  
VCC + 0.3  
500  
2.0  
VCC + 0.3  
500  
2.0  
VCC + 0.3  
500  
V
2
Input Transition Time tR, tF  
CIO I/O Capacitance2, 3  
Standby Current, ICC4 (typical = 1 mA)  
Leakage Current5  
ns  
pF  
mA  
µA  
10  
10  
10  
2
10  
20  
10  
10  
10  
10  
10  
10  
Notes:  
1. Only one output tested at a time. VCC = min.  
2. Not tested, for information only.  
3. Includes worst-case 176 CPGA package capacitance. VOUT = 0 V, f = 1 MHz.  
4. All outputs unloaded. All inputs = VCC or GND, typical ICC = 1 mA. ICC limit includes IPP and ISV during normal operation.  
5. VOUT , VIN = VCC or GND.  
4
v4.0  
ACT2 Family FPGAs  
Package Thermal Characteristics  
The device junction to case thermal characteristic is θjc,  
and the junction to ambient air characteristic is θja. The  
thermal characteristics for θja are shown with two different  
air flow rates.  
Maximum junction temperature is 150°C.  
A sample calculation of the absolute maximum power  
dissipation allowed for a PQFP 160-pin package at  
commercial temperature is as follows:  
Max. junction temp. (°C) – Max. commercial temp.  
----------------------------------------------------------------------------------------------------------------------------  
150°C – 70°C  
---------------------------------  
=
= 2.4 W  
θja (°C/W)  
33°C/W  
θja  
Still Air  
θja  
300 ft/min  
Package Type  
Pin Count  
θjc  
Units  
Ceramic Pin Grid Array  
100  
132  
176  
5
5
8
35  
30  
23  
17  
15  
12  
°C/W  
°C/W  
°C/W  
Ceramic Quad Flat Pack  
Plastic Quad Flat Pack1  
172  
8
25  
15  
°C/W  
100  
144  
160  
13  
15  
15  
48  
40  
38  
40  
32  
30  
°C/W  
°C/W  
°C/W  
Plastic Leaded Chip Carrier2  
Very Thin Quad Flat Pack3  
Thin Quad Flat Pack4  
84  
12  
12  
15  
37  
43  
32  
28  
35  
25  
°C/W  
°C/W  
°C/W  
100  
176  
Notes:(Maximum Power in Still Air)  
1. Maximum Power Dissipation for PQFP packages are 1.9 Watts (100-pin), 2.3 Watts (144-pin), and 2.4 Watts (160-pin).  
2. Maximum Power Dissipation for PLCC packages is 2.7 Watts.  
3. Maximum Power Dissipation for VQFP packages is 2.3 Watts.  
4. Maximum Power Dissipation for TQFP packages is 3.1 Watts.  
Power Dissipation  
greater reduction in board-level power dissipation can be  
achieved.  
P = [ICCstandby + ICCactive] * VCC + IOL * VOL * N +  
I
OH * (VCC VOH) * M  
The power due to standby current is typically a small  
component of the overall power. Standby power is  
calculated below for commercial, worst case conditions.  
Where:  
ICC standby is the current flowing when no inputs or outputs  
are changing.  
ICC  
VCC  
Power  
2 mA  
5.25V  
10.5 mW  
I
CC active is the current flowing due to CMOS switching.  
OL, IOH are TTL sink/source currents.  
The static power dissipated by TTL loads depends on the  
number of outputs driving high or low and the DC load  
current. Again, this value is typically small. For instance, a  
32-bit bus sinking 4 mA at 0.33 V will generate 42 mW with  
all outputs driving low, and 140 mW with all outputs driving  
high. The actual dissipation will average somewhere  
between as I/Os switch states with time.  
I
VOL, VOH are TTL level output voltages.  
N equals the number of outputs driving TTL loads to VOL  
.
M equals the number of outputs driving TTL loads to VOH  
.
An accurate determination of N and M is problematical  
because their values depend on the family type, design  
details, and on the system I/O. The power can be divided  
into two components: static and active.  
Active Power Component  
Power dissipation in CMOS devices is usually dominated by  
the active (dynamic) power dissipation. This component is  
frequency dependent, a function of the logic and the  
external I/O. Active power dissipation results from charging  
internal chip capacitances of the interconnect,  
unprogrammed antifuses, module inputs, and module  
outputs, plus external capacitance due to PC board traces  
Static Power Component  
Actel FPGAs have small static power components that  
result in lower power dissipation than PALs or PLDs. By  
integrating multiple PALs/PLDs into one FPGA, an even  
v4.0  
5
ACT2 Family FPGAs  
and load device inputs. An additional component of the  
active power dissipation is the totem-pole current in CMOS  
transistor pairs. The net effect can be associated with an  
equivalent capacitance that can be combined with  
frequency and voltage to represent active power dissipation.  
r2  
= Fixed capacitance due to second routed array  
clock  
CEQM = Equivalent capacitance of logic modules in pF  
CEQI = Equivalent capacitance of input buffers in pF  
CEQO = Equivalent capacitance of output buffers in pF  
Equivalent Capacitance  
CEQCR = Equivalent capacitance of routed array clock in  
pF  
The power dissipated by a CMOS circuit can be expressed by  
the Equation 1.  
Power (µW) = CEQ * VCC2 * F  
(1)  
CL  
fm  
fn  
= Output lead capacitance in pF  
Where:  
CEQ is the equivalent capacitance expressed in pF.  
CC is the power supply in volts.  
= Average logic module switching rate in MHz  
= Average input buffer switching rate in MHz  
= Average output buffer switching rate in MHz  
= Average first routed array clock rate in MHz  
= Average second routed array clock rate in MHz  
V
fp  
F is the switching frequency in MHz.  
fq1  
fq2  
Equivalent capacitance is calculated by measuring ICC  
active at a specified frequency and voltage for each circuit  
component of interest. Measurements have been made over  
a range of frequencies at a fixed value of VCC. Equivalent  
capacitance is frequency independent so that the results  
may be used over a wide range of operating conditions.  
Equivalent capacitance values are shown below.  
Fixed Capacitance Values for Actel FPGAs  
(pF)  
r1  
r2  
Device Type  
routed_Clk1  
routed_Clk2  
A1225A  
A1240A  
A1280A  
106  
134  
168  
106.0  
134.2  
167.8  
CEQ Values for Actel FPGAs  
Determining Average Switching Frequency  
To determine the switching frequency for a design, you must  
have a detailed understanding of the data input values to  
the circuit. The following guidelines are meant to represent  
worst-case scenarios so that they can be generally used to  
predict the upper limits of power dissipation. These  
guidelines are as follows:  
Modules (CEQM  
Input Buffers (CEQI  
Output Buffers (CEQO  
Routed Array Clock Buffer Loads (CEQCR  
)
5.8  
12.9  
23.8  
3.9  
)
)
)
To calculate the active power dissipated from the complete  
design, the switching frequency of each part of the logic  
must be known. Equation 2 shows a piece-wise linear  
summation over all components.  
Power = VCC2 * [(m * CEQM* fm)modules +(n * CEQI* fn)inputs  
+ (p * (CEQO+ CL) * fp)outputs + 0.5 * (q1 * CEQCR  
fq1)routed_Clk1 + (r1 * fq1)routed_Clk1 + 0.5 * (q2 * CEQCR  
fq2)routed_Clk2  
Logic Modules (m)  
80% of modules  
# inputs/4  
Inputs switching (n)  
Outputs switching (p)  
First routed array clock loads (q1)  
# outputs/4  
*
40%of  
*
sequential  
modules  
+ (r2 * fq2)routed_Clk2  
]
(2)  
Second routed array clock loads (q2)  
40%of  
Where:  
sequential  
modules  
m
n
= Number of logic modules switching at fm  
= Number of input buffers switching at fn  
= Number of output buffers switching at fp  
Load capacitance (CL)  
35 pF  
p
Average logic module switching rate (fm) F/10  
q1  
= Number of clock loads on the first routed array  
clock  
Average input switching rate (fn)  
Average output switching rate (fp)  
Average first routed array clock rate (fq1)  
F/5  
F/10  
F
q2  
r1  
= Number of clock loads on the second routed  
array clock  
Average second routed array clock rate F/2  
(fq2)  
= Fixed capacitance due to first routed array  
clock  
6
v4.0  
ACT2 Family FPGAs  
ACT 2 Timing Model*  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
I/O Module  
Combinatorial  
Logic Module  
I/O Module  
t
INYL = 2.6 ns  
tIRD2 = 4.8 ns  
tDLH = 8.0 ns  
tRD1 = 1.4 ns  
tRD2 = 1.7 ns  
D
Q
tPD = 3.8 ns  
tRD4 = 3.1 ns  
tRD8 = 4.7 ns  
I/O Module  
G
t
DLH = 8.0 ns  
Sequential  
Logic Module  
tINH = 2.0 ns  
tINSU = 4.0 ns  
tINGL = 4.7 ns  
Combin-  
atorial  
Logic  
D
D
G
Q
Q
tRD1 = 1.4 ns  
tENHZ = 7.1 ns  
included  
in t  
SUD  
tOUTH = 0.0 ns  
tOUTSU = 0.4 ns  
tGLH = 9.0 ns  
tCO = 3.8 ns  
tSUD = 0.4 ns  
tHD = 0.0 ns  
ARRAY  
CLOCKS  
tCKH = 11.8 ns  
FO = 256  
FMAX = 100 MHz  
*Values shown for A1240A-2 at worst-case commercial conditions.  
Input Module Predicted Routing Delay  
v4.0  
7
ACT2 Family FPGAs  
Parameter Measurement  
Output Buffer Delays  
E
D
PAD To AC test loads (shown below)  
TRIBUFF  
VCC  
VCC  
VCC  
In  
GND  
1.5 V  
50%  
VOH  
E
GND  
10%  
50%  
E
GND  
90%  
50%  
50%  
VCC  
50%  
VOH  
50%  
1.5 V  
VOL  
PAD  
VOL  
PAD  
PAD  
GND  
1.5 V  
1.5 V  
tDLH  
tDHL  
tENZL  
tENLZ  
tENZH  
tENHZ  
AC Test Loads  
Load 1  
Load 2  
(Used to measure propagation delay)  
(Used to measure rising/falling edges)  
VCC  
GND  
To the output under test  
50 pF  
R to VCC for tPLZ/tPZL  
R to GND for tPHZ/tPZH  
R = 1 kΩ  
To the output under test  
50 pF  
Input Buffer Delays  
Module Delays  
S
A
B
Y
Y
PAD  
INBUF  
VCC  
GND  
S, A or B  
50% 50%  
VCC  
3 V  
50%  
Y
50%  
PAD  
0 V  
50%  
1.5 V  
VCC  
1.5 V  
GND  
tPLH  
tPHL  
Y
GND  
50%  
VCC  
50%  
Y
GND  
tPLH  
50%  
tPHL  
tINYH  
tINYL  
8
v4.0  
ACT2 Family FPGAs  
Sequential Module Timing Characteristics  
Flip-Flops and Latches  
D
E
CLK  
Y
PRE  
CLR  
(Positive edge triggered)  
tHD  
D1  
tA  
tWCLKA  
tSUD  
G, CLK  
tSUENA  
tWCLKI  
tHENA  
E
tCO  
Q
tRS  
PRE, CLR  
tWASYN  
Note: D represents all data functions involving A, B, and S for multiplexed flip-flops.  
v4.0  
9
ACT2 Family FPGAs  
Sequential Timing Characteristics (continued)  
Input Buffer Latches  
PAD  
DATA  
IBDL  
G
PAD  
CLK  
CLKBUF  
DATA  
G
tINH  
tINSU  
tHEXT  
CLK  
tSUEXT  
Output Buffer Latches  
D
G
PAD  
OBDLHS  
D
G
tOUTSU  
tOUTH  
10  
v4.0  
ACT2 Family FPGAs  
Timing Derating Factor (Temperature and Voltage)  
Industrial  
Military  
Min.  
0.69  
Max.  
1.11  
Min.  
0.67  
Max.  
1.23  
(Commercial Minimum/Maximum Specification) x  
Timing Derating Factor for Designs at Typical Temperature (TJ = 25°C) and  
Voltage (5.0 V)  
(Commercial Maximum Specification) x  
0.85  
Temperature and Voltage Derating Factors  
(normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)  
55  
40  
0
25  
70  
85  
125  
4.50  
4.75  
5.00  
5.25  
5.50  
0.75  
0.71  
0.69  
0.68  
0.67  
0.79  
0.75  
0.72  
0.69  
0.69  
0.86  
0.82  
0.80  
0.77  
0.76  
0.92  
0.87  
0.85  
0.82  
0.81  
1.06  
1.00  
0.97  
0.95  
0.93  
1.11  
1.05  
1.02  
0.98  
0.97  
1.23  
1.16  
1.13  
1.09  
1.08  
Junction Temperature and Voltage Derating Curves  
(normalized to Worst-Case Commercial, TJ = 4.75V, 70°C)  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
125˚C  
85˚C  
70˚C  
25˚C  
0˚C  
–40˚C  
–55˚C  
4.50  
4.75  
5.00  
5.25  
5.50  
Voltage (V)  
Note: This derating factor applies to all routing and propagation delays.  
v4.0  
11  
ACT2 Family FPGAs  
A1225A Timing Characteristics  
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)  
Logic Module Propagation Delays1  
‘–2Speed  
‘–1Speed  
StdSpeed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
tPD1  
tCO  
tGO  
tRS  
Single Module  
3.8  
3.8  
3.8  
3.8  
4.3  
4.3  
4.3  
4.3  
5.0  
5.0  
5.0  
5.0  
ns  
ns  
ns  
ns  
Sequential Clk to Q  
Latch G to Q  
Flip-Flop (Latch) Reset to Q  
Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.1  
1.7  
2.3  
2.8  
4.4  
1.2  
1.9  
2.6  
3.1  
4.9  
1.4  
2.2  
3.0  
3.7  
5.8  
ns  
ns  
ns  
ns  
ns  
Sequential Timing Characteristics3,4  
tSUD  
Flip-Flop (Latch) Data Input  
Setup  
0.4  
0.4  
0.5  
ns  
tHD  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Setup  
Flip-Flop (Latch) Enable Hold  
0.0  
0.8  
0.0  
0.0  
0.9  
0.0  
0.0  
1.0  
0.0  
ns  
ns  
ns  
tSUENA  
tHENA  
tWCLKA  
Flip-Flop (Latch) Clock Active  
Pulse Width  
4.5  
4.5  
5.0  
5.0  
6.0  
6.0  
ns  
ns  
tWASYN  
Flip-Flop (Latch) Asynchronous  
Pulse Width  
tA  
Flip-Flop Clock Input Period  
Input Buffer Latch Hold  
Input Buffer Latch Setup  
Output Buffer Latch Hold  
Output Buffer Latch Setup  
9.4  
0.0  
0.4  
0.0  
0.4  
11.0  
0.0  
0.4  
0.0  
0.4  
13.0  
0.0  
0.5  
0.0  
0.5  
ns  
ns  
ns  
ns  
ns  
tINH  
tINSU  
tOUTH  
tOUTSU  
fMAX  
Flip-Flop (Latch) Clock  
Frequency  
105.0  
90.0  
75.0  
MHz  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained  
from the DirectTime Analyzer utility.  
4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold  
timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input  
subtracts (adds) to the internal setup (hold) time.  
12  
v4.0  
ACT2 Family FPGAs  
A1225A Timing Characteristics (continued)  
(Worst-Case Commercial Conditions)  
Input Module Propagation Delays  
‘–2Speed  
‘–1Speed  
StdSpeed  
Unit  
s
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
tINYH  
tINYL  
tINGH  
tINGL  
Pad to Y High  
Pad to Y Low  
G to Y High  
G to Y Low  
2.9  
2.6  
5.0  
4.7  
3.3  
3.0  
5.7  
5.4  
3.8  
3.5  
6.6  
6.3  
ns  
ns  
ns  
ns  
Input Module Predicted Routing Delays1  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
4.1  
4.6  
5.3  
5.7  
7.4  
4.6  
5.2  
6.0  
6.4  
8.3  
5.4  
6.1  
7.1  
7.6  
9.8  
ns  
ns  
ns  
ns  
ns  
Global Clock Network  
tCKH Input Low to High  
tCKL  
FO = 32  
FO = 256  
10.2  
11.8  
11.0  
13.0  
12.8  
15.7  
ns  
ns  
FO = 32  
FO = 256  
10.2  
12.0  
11.0  
13.2  
12.8  
15.9  
Input High to Low  
Minimum Pulse Width  
High  
FO = 32  
FO = 256  
3.4  
3.8  
4.1  
4.5  
4.5  
5.0  
tPWH  
tPWL  
tCKSW  
tSUEXT  
tHEXT  
tP  
ns  
Minimum Pulse Width  
Low  
FO = 32  
FO = 256  
3.4  
3.8  
4.1  
4.5  
4.5  
5.0  
ns  
FO = 32  
FO = 256  
0.7  
3.5  
0.7  
3.5  
0.7  
3.5  
Maximum Skew  
ns  
Input Latch External  
Setup  
FO = 32  
FO = 256  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
Input Latch External  
Hold  
FO = 32  
FO = 256  
7.0  
11.2  
7.0  
11.2  
7.0  
11.2  
ns  
FO = 32  
FO = 256  
7.7  
8.1  
8.3  
8.8  
9.1  
10.0  
Minimum Period  
ns  
FO = 32  
FO = 256  
130.0  
125.0  
120.0  
115.0  
110.0  
100.0  
fMAX  
Maximum Frequency  
MHz  
Note:  
1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns.  
Routing delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to  
determine actual worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device  
prior to shipment.  
v4.0  
13  
ACT2 Family FPGAs  
A1225A Timing Characteristics (continued)  
(Worst-Case Commercial Conditions)  
Output Module Timing  
‘–2Speed  
‘–1Speed  
Min. Max.  
StdSpeed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
TTL Output Module Timing1  
tDLH  
Data to Pad High  
Data to Pad Low  
Enable Pad Z to High  
Enable Pad Z to Low  
Enable Pad High to Z  
Enable Pad Low to Z  
G to Pad High  
8.0  
10.1  
8.9  
9.0  
11.4  
10.0  
13.2  
8.0  
10.6  
13.4  
11.8  
15.5  
9.4  
ns  
ns  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
ns  
11.6  
7.1  
ns  
ns  
8.3  
9.5  
11.1  
11.9  
14.9  
0.09  
0.16  
ns  
8.9  
10.2  
12.7  
0.08  
0.13  
ns  
tGHL  
G to Pad Low  
11.2  
0.07  
0.12  
ns  
dTLH  
dTHL  
Delta Low to High  
ns/pF  
ns/pF  
Delta High to Low  
CMOS Output Module Timing1  
tDLH  
Data to Pad High  
Data to Pad Low  
Enable Pad Z to High  
Enable Pad Z to Low  
Enable Pad High to Z  
Enable Pad Low to Z  
G to Pad High  
10.1  
8.4  
11.5  
9.6  
13.5  
11.2  
11.8  
15.5  
9.4  
ns  
ns  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
8.9  
10.0  
13.2  
8.0  
ns  
11.6  
7.1  
ns  
ns  
8.3  
9.5  
11.1  
11.9  
14.9  
0.16  
0.12  
ns  
8.9  
10.2  
12.7  
0.13  
0.10  
ns  
tGHL  
G to Pad Low  
11.2  
0.12  
0.09  
ns  
dTLH  
dTHL  
Note:  
Delta Low to High  
Delta High to Low  
ns/pF  
ns/pF  
1. Delays based on 50 pF loading.  
2. SSO information can be found at http://www.actel.com/support/appnotes/appnotes_design.html#board.  
14  
v4.0  
ACT2 Family FPGAs  
A1240A Timing Characteristics  
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)  
Logic Module Propagation Delays1  
‘–2Speed  
‘–1Speed  
StdSpeed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
tPD1  
tCO  
tGO  
tRS  
Single Module  
3.8  
3.8  
3.8  
3.8  
4.3  
4.3  
4.3  
4.3  
5.0  
5.0  
5.0  
5.0  
ns  
ns  
ns  
ns  
Sequential Clk to Q  
Latch G to Q  
Flip-Flop (Latch) Reset to Q  
Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.4  
1.7  
2.3  
3.1  
4.7  
1.5  
2.0  
2.6  
3.5  
5.4  
1.8  
2.3  
3.0  
4.1  
6.3  
ns  
ns  
ns  
ns  
ns  
Sequential Timing Characteristics3, 4  
Flip-Flop (Latch) Data Input  
Setup  
tSUD  
0.4  
0.0  
0.4  
0.0  
0.5  
0.0  
ns  
ns  
Flip-Flop (Latch) Data Input  
Hold  
tHD  
tSUENA  
tHENA  
Flip-Flop (Latch) Enable Setup  
Flip-Flop (Latch) Enable Hold  
0.8  
0.0  
0.9  
0.0  
1.0  
0.0  
ns  
ns  
Flip-Flop (Latch) Clock Active  
Pulse Width  
tWCLKA  
tWASYN  
4.5  
4.5  
6.0  
6.0  
6.5  
6.5  
ns  
ns  
Flip-Flop (Latch)  
Asynchronous Pulse Width  
tA  
Flip-Flop Clock Input Period  
Input Buffer Latch Hold  
Input Buffer Latch Setup  
Output Buffer Latch Hold  
Output Buffer Latch Setup  
9.8  
0.0  
0.4  
0.0  
0.4  
12.0  
0.0  
0.4  
0.0  
0.4  
15.0  
0.0  
0.5  
0.0  
0.5  
ns  
ns  
ns  
ns  
ns  
tINH  
tINSU  
tOUTH  
tOUTSU  
Flip-Flop (Latch) Clock  
Frequency  
fMAX  
100.0  
80.0  
66.0  
MHz  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained  
from the DirectTime Analyzer utility.  
4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold  
timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input  
subtracts (adds) to the internal setup (hold) time.  
v4.0  
15  
ACT2 Family FPGAs  
A1240A Timing Characteristics (continued)  
(Worst-Case Commercial Conditions)  
Input Module Propagation Delays  
‘–2Speed  
‘–1Speed  
StdSpeed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
tINYH  
tINYL  
tINGH  
tINGL  
Pad to Y High  
Pad to Y Low  
G to Y High  
G to Y Low  
2.9  
2.6  
5.0  
4.7  
3.3  
3.0  
5.7  
5.4  
3.8  
3.5  
6.6  
6.3  
ns  
ns  
ns  
ns  
Input Module Predicted Routing Delays1  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
4.2  
4.8  
5.4  
5.9  
7.9  
4.8  
5.4  
6.1  
6.7  
8.9  
5.6  
6.4  
ns  
ns  
ns  
ns  
ns  
7.2  
7.9  
10.5  
Global Clock Network  
tCKH Input Low to High  
tCKL  
FO = 32  
FO = 256  
10.2  
11.8  
11.0  
13.0  
12.8  
15.7  
ns  
ns  
FO = 32  
FO = 256  
10.2  
12.0  
11.0  
13.2  
12.8  
15.9  
Input High to Low  
Minimum Pulse Width  
High  
FO = 32  
FO = 256  
3.8  
4.1  
4.5  
5.0  
5.5  
5.8  
tPWH  
tPWL  
tCKSW  
tSUEXT  
tHEXT  
tP  
ns  
FO = 32  
FO = 256  
3.8  
4.1  
4.5  
5.0  
5.5  
5.8  
Minimum Pulse Width Low  
Maximum Skew  
ns  
FO = 32  
FO = 256  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
ns  
FO = 32  
FO = 256  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
Input Latch External Setup  
Input Latch External Hold  
Minimum Period  
ns  
FO = 32  
FO = 256  
7.0  
11.2  
7.0  
11.2  
7.0  
11.2  
ns  
FO = 32  
FO = 256  
8.1  
8.8  
9.1  
10.0  
11.1  
11.7  
ns  
FO = 32  
FO = 256  
125.0  
115.0  
110.0  
100.0  
90.0  
85.0  
fMAX  
Maximum Frequency  
MHz  
Note:  
These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing  
delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required todetermine actual  
worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.  
16  
v4.0  
ACT2 Family FPGAs  
A1240A Timing Characteristics (continued)  
(Worst-Case Commercial Conditions)  
Output Module Timing  
‘–2Speed  
Min. Max.  
‘–1Speed  
Min. Max.  
StdSpeed  
Min. Max.  
Parameter  
Description  
Units  
TTL Output Module Timing1  
tDLH  
Data to Pad High  
Data to Pad Low  
Enable Pad Z to High  
Enable Pad Z to Low  
Enable Pad High to Z  
Enable Pad Low to Z  
G to Pad High  
8.0  
10.1  
8.9  
9.0  
11.4  
10.0  
13.2  
8.0  
10.6  
13.4  
11.8  
15.5  
9.4  
ns  
ns  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
ns  
11.7  
7.1  
ns  
ns  
8.4  
9.5  
11.1  
11.9  
14.9  
0.09  
0.16  
ns  
9.0  
10.2  
12.7  
0.08  
0.13  
ns  
tGHL  
G to Pad Low  
11.2  
0.07  
0.12  
ns  
dTLH  
dTHL  
Delta Low to High  
ns/pF  
ns/pF  
Delta High to Low  
CMOS Output Module Timing1  
tDLH  
Data to Pad High  
Data to Pad Low  
Enable Pad Z to High  
Enable Pad Z to Low  
Enable Pad High to Z  
Enable Pad Low to Z  
G to Pad High  
10.2  
8.4  
11.5  
9.6  
13.5  
11.2  
11.8  
15.5  
9.4  
ns  
ns  
tDHL  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
8.9  
10.0  
13.2  
8.0  
ns  
11.7  
7.1  
ns  
ns  
8.4  
9.5  
11.1  
11.9  
14.9  
0.16  
0.12  
ns  
9.0  
10.2  
12.7  
0.13  
0.10  
ns  
tGHL  
G to Pad Low  
11.2  
0.12  
0.09  
ns  
dTLH  
dTHL  
Note:  
Delta Low to High  
Delta High to Low  
ns/pF  
ns/pF  
1. Delays based on 50 pF loading.  
2. SSO information can be found at http://www.actel.com/support/appnotes/appnotes_design.html#board.  
v4.0  
17  
ACT2 Family FPGAs  
A1280A Timing Characteristics  
(Worst-Case Commercial Conditions, VCC = 4.75 V, TJ = 70°C)  
Logic Module Propagation Delays1  
‘–2Speed  
‘–1Speed  
StdSpeed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
tPD1  
tCO  
tGO  
tRS  
Single Module  
3.8  
3.8  
3.8  
3.8  
4.3  
4.3  
4.3  
4.3  
5.0  
5.0  
5.0  
5.0  
ns  
ns  
ns  
ns  
Sequential Clk to Q  
Latch G to Q  
Flip-Flop (Latch) Reset to Q  
Predicted Routing Delays2  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.7  
2.5  
3.0  
3.7  
6.7  
2.0  
2.8  
3.4  
4.2  
7.5  
2.3  
3.3  
4.0  
4.9  
8.8  
ns  
ns  
ns  
ns  
ns  
Sequential Timing Characteristics3,4  
tSUD  
Flip-Flop (Latch) Data Input  
Setup  
0.4  
0.4  
0.5  
ns  
tHD  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Setup  
Flip-Flop (Latch) Enable Hold  
0.0  
0.8  
0.0  
0.0  
0.9  
0.0  
0.0  
1.0  
0.0  
ns  
ns  
ns  
tSUENA  
tHENA  
tWCLKA  
Flip-Flop (Latch) Clock Active  
Pulse Width  
5.5  
5.5  
6.0  
6.0  
7.0  
7.0  
ns  
ns  
tWASYN  
Flip-Flop (Latch) Asynchronous  
Pulse Width  
tA  
Flip-Flop Clock Input Period  
Input Buffer Latch Hold  
Input Buffer Latch Setup  
Output Buffer Latch Hold  
Output Buffer Latch Setup  
11.7  
0.0  
0.4  
0.0  
0.4  
13.3  
0.0  
0.4  
0.0  
0.4  
18.0  
0.0  
0.5  
0.0  
0.5  
ns  
ns  
ns  
ns  
ns  
tINH  
tINSU  
tOUTH  
tOUTSU  
fMAX  
Flip-Flop (Latch) Clock  
Frequency  
85.0  
75.0  
50.0  
MHz  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn , tCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained  
from the DirectTime Analyzer utility.  
4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold  
timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input  
subtracts (adds) to the internal setup (hold) time.  
18  
v4.0  
ACT2 Family FPGAs  
A1280A Timing Characteristics (continued)  
(Worst-Case Commercial Conditions)  
Input Module Propagation Delays  
Parameter Description  
‘–2Speed  
‘–1Speed  
StdSpeed  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
tINYH  
tINYL  
tINGH  
tINGL  
Pad to Y High  
Pad to Y Low  
G to Y High  
G to Y Low  
2.9  
2.7  
5.0  
4.8  
3.3  
3.0  
5.7  
5.4  
3.8  
3.5  
6.6  
6.3  
ns  
ns  
ns  
ns  
Input Module Predicted Routing Delays1  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
4.6  
5.2  
5.6  
6.5  
9.4  
5.1  
5.9  
6.0  
6.9  
ns  
ns  
ns  
ns  
ns  
6.3  
7.4  
7.3  
8.6  
10.5  
12.4  
Global Clock Network  
tCKH Input Low to High  
tCKL  
FO = 32  
FO = 384  
10.2  
13.1  
11.0  
14.6  
12.8  
17.2  
ns  
ns  
FO = 32  
FO = 384  
10.2  
13.3  
11.0  
14.9  
12.8  
17.5  
Input High to Low  
Minimum Pulse Width  
High  
FO = 32  
FO = 384  
5.0  
5.8  
5.5  
6.4  
6.6  
7.6  
tPWH  
tPWL  
tCKSW  
tSUEXT  
tHEXT  
tP  
ns  
FO = 32  
FO = 384  
5.0  
5.8  
5.5  
6.4  
6.6  
7.6  
Minimum Pulse Width Low  
Maximum Skew  
ns  
FO = 32  
FO = 384  
0.5  
2.5  
0.5  
2.5  
0.5  
2.5  
ns  
FO = 32  
FO = 384  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
Input Latch External Setup  
Input Latch External Hold  
Minimum Period  
ns  
FO = 32  
FO = 384  
7.0  
11.2  
7.0  
11.2  
7.0  
11.2  
ns  
FO = 32  
FO = 384  
9.6  
10.6  
11.2  
12.6  
13.3  
15.3  
ns  
FO = 32  
FO = 384  
105.0  
95.0  
90.0  
80.0  
75.0  
65.0  
fMAX  
Maximum Frequency  
MHz  
Note:  
These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing  
delays are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual  
worst-case performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.  
v4.0  
19  
ACT2 Family FPGAs  
A1280A Timing Characteristics (continued)  
(Worst-Case Commercial Conditions)  
Output Module Timing  
‘–2Speed  
Min. Max.  
‘–1Speed  
Min. Max.  
StdSpeed  
Parameter  
Description  
Min.  
Max.  
Units  
TTL Output Module Timing1  
tDLH  
Data to Pad High  
Data to Pad Low  
Enable Pad Z to High  
Enable Pad Z to Low  
Enable Pad High to Z  
Enable Pad Low to Z  
G to Pad High  
8.1  
9.0  
10.6  
13.4  
11.8  
15.5  
9.4  
ns  
tDHL  
10.2  
9.0  
11.4  
10.0  
13.2  
8.0  
ns  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
ns  
11.8  
7.1  
ns  
ns  
8.4  
9.5  
11.1  
11.9  
14.9  
0.09  
0.16  
ns  
9.0  
10.2  
12.7  
0.08  
0.13  
ns  
tGHL  
G to Pad Low  
11.3  
0.07  
0.12  
ns  
dTLH  
dTHL  
Delta Low to High  
Delta High to Low  
ns/pF  
ns/pF  
CMOS Output Module Timing1  
tDLH  
Data to Pad High  
Data to Pad Low  
Enable Pad Z to High  
Enable Pad Z to Low  
Enable Pad High to Z  
Enable Pad Low to Z  
G to Pad High  
10.3  
8.5  
11.5  
9.6  
13.5  
11.2  
11.8  
15.5  
9.4  
ns  
tDHL  
ns  
tENZH  
tENZL  
tENHZ  
tENLZ  
tGLH  
9.0  
10.0  
13.2  
8.0  
ns  
11.8  
7.1  
ns  
ns  
8.4  
9.5  
11.1  
11.9  
14.9  
0.16  
0.12  
ns  
9.0  
10.2  
12.7  
0.13  
0.10  
ns  
tGHL  
G to Pad Low  
11.3  
0.12  
0.09  
ns  
dTLH  
dTHL  
Note:  
Delta Low to High  
Delta High to Low  
ns/pF  
ns/pF  
1. Delays based on 50 pF loading.  
2. SSO information can be found at http://www.actel.com/support/appnotes/appnotes_design.html#board.  
20  
v4.0  
ACT2 Family FPGAs  
Pin Description  
CLKA  
Clock A (Input)  
PRA  
Probe A (Output)  
TTL Clock input for clock distribution networks. The Clock  
input is buffered prior to clocking the logic modules. This  
pin can also be used as an I/O.  
The Probe A pin is used to output data from any  
user-defined design node within the device. This  
independent diagnostic pin is used in conjunction with the  
Probe B pin to allow real-time diagnostic output of any  
signal path within the device. The Probe A pin can be used  
as a user-defined I/O when debugging has been completed.  
The pins probe capabilities can be permanently disabled to  
protect programmed design confidentiality. PRA is active  
when the MODE pin is HIGH. This pin functions as an I/O  
when the MODE pin is LOW.  
CLKB  
Clock B (Input)  
TTL Clock input for clock distribution networks. The Clock  
input is buffered prior to clocking the logic modules. This  
pin can also be used as an I/O.  
DCLK  
Diagnostic Clock (Input)  
TTL Clock input for diagnostic probe and device  
programming. DCLK is active when the MODE pin is HIGH.  
This pin functions as an I/O when the MODE pin is LOW.  
PRB  
Probe B (Output)  
The Probe B pin is used to output data from any  
user-defined design node within the device. This  
independent diagnostic pin is used in conjunction with the  
Probe A pin to allow real-time diagnostic output of any  
signal path within the device. The Probe B pin can be used  
as a user-defined I/O when debugging has been completed.  
The pins probe capabilities can be permanently disabled to  
protect programmed design confidentiality. PRB is active  
when the MODE pin is HIGH. This pin functions as an I/O  
when the MODE pin is LOW.  
GND  
Ground  
LOW supply voltage.  
I/O  
Input/Output (Input, Output)  
The I/O pin functions as an input, output, three-state, or  
bidirectional buffer. Input and output levels are compatible  
with standard TTL and CMOS specifications. Unused I/O  
pins are automatically driven LOW by the ALS software.  
MODE  
Mode (Input)  
The MODE pin controls the use of multifunction pins  
(DCLK, PRA, PRB, SDI). When the MODE pin is HIGH, the  
special functions are active. When the MODE pin is LOW,  
the pins function as I/Os. To provide Actionprobe capability,  
the MODE pin should be terminated to GND through a 10K  
resistor so that the MODE pin can be pulled high when  
required.  
SDI  
Serial Data Input (Input)  
Serial data input for diagnostic probe and device  
programming. SDI is active when the MODE pin is HIGH.  
This pin functions as an I/O when the MODE pin is LOW.  
VCC  
5.0V Supply Voltage  
HIGH supply voltage.  
NC  
No Connection  
This pin is not connected to circuitry within the device.  
v4.0  
21  
ACT2 Family FPGAs  
Package Pin Assignments  
84-Pin PLCC  
1
84  
84-Pin  
PLCC  
Signal  
A1225A Function  
A1240A Function  
A1280A Function  
2
CLKB, I/O  
PRB, I/O  
GND  
CLKB, I/O  
PRB, I/O  
GND  
CLKB, I/O  
PRB, I/O  
GND  
4
6
10  
12  
22  
23  
28  
DCLK, I/O  
MODE  
VCC  
DCLK, I/O  
MODE  
VCC  
DCLK, I/O  
MODE  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
GND  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.  
22  
v4.0  
ACT2 Family FPGAs  
Package Pin Assignments  
84-Pin PLCC  
1
84  
84-Pin  
PLCC  
Signal  
A1225A Function  
A1240A Function  
A1280A Function  
43  
49  
63  
64  
65  
70  
76  
81  
83  
84  
VCC  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
GND  
SDI, I/O  
PRA, I/O  
CLKA, I/O  
VCC  
SDI, I/O  
PRA, I/O  
CLKA, I/O  
VCC  
SDI, I/O  
PRA, I/O  
CLKA, I/O  
VCC  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.  
v4.0  
23  
ACT2 Family FPGAs  
Package Pin Assignments (continued)  
100-Pin PQFP  
100-Pin  
PQFP  
100  
1
Pin Number  
A1225A Function  
Pin Number  
A1225A Function  
2
DCLK, I/O  
MODE  
GND  
66  
67  
72  
79  
84  
87  
89  
90  
92  
94  
96  
VCC  
4
VCC  
9
GND  
16  
17  
22  
34  
40  
46  
57  
64  
65  
VCC  
SDI, I/O  
GND  
VCC  
GND  
PRA, I/O  
CLKA, I/O  
VCC  
GND  
VCC  
GND  
CLKB, I/O  
PRB, I/O  
GND  
GND  
GND  
VCC  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.  
24  
v4.0  
ACT2 Family FPGAs  
Package Pin Assignments (continued)  
144-Pin PQFP  
1
144  
144-Pin  
PQFP  
v4.0  
25  
ACT2 Family FPGAs  
144-Pin PQFP  
Pin Number  
A1240A Function  
Pin Number  
A1240A Function  
2
MODE  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
89  
VCC  
9
90  
VCC  
10  
91  
VCC  
11  
92  
VCC  
18  
93  
VCC  
19  
100  
101  
102  
110  
116  
117  
118  
123  
125  
126  
127  
128  
130  
132  
136  
137  
138  
144  
GND  
20  
GND  
21  
GND  
28  
SDI, I/O  
GND  
29  
30  
GND  
44  
GND  
45  
PRA, I/O  
CLKA, I/O  
VCC  
46  
54  
55  
VCC  
56  
VCC  
64  
CLKB, I/O  
PRB, I/O  
GND  
65  
79  
80  
GND  
81  
GND  
88  
DCLK, I/O  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.  
26  
v4.0  
ACT2 Family FPGAs  
Package Pin Assignments (continued)  
160-Pin PQFP  
160  
1
160-Pin  
PQFP  
v4.0  
27  
ACT2 Family FPGAs  
160-Pin PQFP  
Pin Number  
A1280A Function  
Pin Number  
A1280A Function  
2
DCLK, I/O  
VCC  
69  
80  
GND  
GND  
VCC  
GND  
VCC  
GND  
GND  
VCC  
GND  
GND  
GND  
VCC  
VCC  
VCC  
GND  
GND  
VCC  
GND  
MODE  
GND  
6
11  
GND  
86  
16  
PRB, I/O  
CLKB, I/O  
VCC  
89  
18  
98  
20  
99  
21  
CLKA, I/O  
PRA, I/O  
GND  
109  
114  
120  
125  
130  
135  
138  
139  
140  
145  
150  
155  
159  
160  
23  
30  
35  
VCC  
38  
SDI, I/O  
GND  
40  
44  
GND  
49  
GND  
54  
VCC  
57  
VCC  
58  
VCC  
59  
GND  
60  
VCC  
61  
GND  
64  
GND  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.  
28  
v4.0  
ACT2 Family FPGAs  
Package Pin Assignments (continued)  
100-Pin VQFP  
100  
1
100-Pin  
VQFP  
100-Pin VQFP  
Pin Number  
A1225A Function  
Pin Number  
A1225A Function  
2
MODE  
GND  
VCC  
VCC  
GND  
GND  
VCC  
GND  
GND  
GND  
VCC  
VCC  
65  
70  
77  
82  
85  
87  
88  
90  
92  
94  
100  
VCC  
7
GND  
14  
15  
20  
32  
38  
44  
55  
62  
63  
64  
SDI, I/O  
GND  
PRA, I/O  
CLKA, I/O  
VCC  
CLKB, I/O  
PRB, I/O  
GND  
DCLK, I/O  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.  
v4.0  
29  
ACT2 Family FPGAs  
Package Pin Assignments (continued)  
176-Pin TQFP  
176  
1
176-Pin  
TQFP  
30  
v4.0  
ACT2 Family FPGAs  
176-Pin TQFP  
Pin Number A1240A Function A1280A Function  
Pin Number A1240A Function A1280A Function  
1
GND  
MODE  
NC  
GND  
MODE  
NC  
101  
103  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
121  
124  
125  
126  
133  
135  
136  
140  
143  
144  
145  
147  
151  
152  
154  
155  
156  
158  
160  
161  
165  
166  
168  
170  
173  
175  
NC  
NC  
2
NC  
I/O  
8
GND  
NC  
GND  
I/O  
10  
11  
13  
18  
19  
20  
22  
23  
24  
25  
26  
27  
28  
29  
33  
37  
38  
45  
52  
54  
55  
57  
61  
64  
66  
67  
68  
74  
77  
78  
80  
82  
86  
89  
96  
97  
NC  
I/O  
NC  
I/O  
NC  
I/O  
NC  
VCC  
GND  
I/O  
GND  
VCC  
GND  
VCC  
VCC  
NC  
GND  
VCC  
GND  
VCC  
VCC  
I/O  
GND  
NC  
NC  
I/O  
NC  
I/O  
GND  
NC  
GND  
VCC  
VCC  
I/O  
NC  
I/O  
VCC  
NC  
NC  
VCC  
NC  
NC  
NC  
I/O  
NC  
I/O  
VCC  
NC  
VCC  
I/O  
NC  
I/O  
NC  
NC  
NC  
NC  
GND  
SDI, I/O  
NC  
GND  
SDI, I/O  
I/O  
NC  
I/O  
NC  
NC  
GND  
NC  
GND  
VCC  
I/O  
NC  
VCC  
I/O  
NC  
NC  
NC  
I/O  
NC  
I/O  
NC  
NC  
NC  
NC  
NC  
I/O  
NC  
I/O  
NC  
I/O  
NC  
I/O  
PRA, I/O  
CLKA, I/O  
VCC  
GND  
CLKB, I/O  
PRB, I/O  
NC  
PRA, I/O  
CLKA, I/O  
VCC  
GND  
CLKB, I/O  
PRB, I/O  
I/O  
NC  
I/O  
GND  
VCC  
NC  
GND  
VCC  
I/O  
NC  
NC  
NC  
I/O  
NC  
I/O  
NC  
NC  
NC  
VCC  
I/O  
NC  
I/O  
NC  
NC  
I/O  
GND  
NC  
GND  
I/O  
NC  
VCC  
I/O  
NC  
NC  
I/O  
DCLK, I/O  
DCLK, I/O  
Notes:  
1. NC: Denotes No Connection  
2. All unlisted pin numbers are user I/Os.  
3. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.  
v4.0  
31  
ACT2 Family FPGAs  
Package Pin Assignments (continued)  
172-Pin CQFP  
172  
Pin #1  
Index  
1
172-Pin  
CQFP  
172-Pin CQFP  
Pin Number  
A1280A Function  
Pin Number  
A1280A Function  
1
7
MODE  
GND  
VCC  
GND  
GND  
VCC  
VCC  
VCC  
GND  
GND  
VCC  
GND  
GND  
VCC  
GND  
VCC  
GND  
GND  
GND  
107  
108  
109  
110  
113  
118  
123  
131  
136  
141  
148  
150  
151  
152  
154  
156  
161  
166  
171  
VCC  
GND  
12  
17  
22  
23  
24  
27  
32  
37  
50  
55  
65  
66  
75  
80  
98  
103  
106  
VCC  
VCC  
VCC  
GND  
GND  
SDI, I/O  
VCC  
GND  
PRA, I/O  
CLKA, I/O  
VCC  
GND  
CLKB, I/O  
PRB, I/O  
GND  
VCC  
DCLK, I/O  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.  
32  
v4.0  
ACT2 Family FPGAs  
Package Pin Assignments (continued)  
100-Pin CPGA  
1
2
3
4
5
6
7
8
9
10 11  
A
B
C
D
E
F
G
H
J
A
B
C
D
E
F
G
H
J
100-Pin  
CPGA  
K
L
K
L
1
2
3
4
5
6
7
8
9
10 11  
Orientation Pin  
Pin Number  
A1225A Function  
Pin Number  
A1225A Function  
A4  
A7  
B6  
C2  
C3  
C5  
C6  
C7  
C8  
D6  
D10  
E3  
PRB, I/O  
PRA, I/O  
VCC  
E11  
F3  
VCC  
VCC  
VCC  
VCC  
GND  
VCC  
GND  
GND  
GND  
GND  
VCC  
F9  
MODE  
DCLK, I/O  
GND  
F10  
F11  
G1  
G3  
G9  
J5  
CLKA, I/O  
GND  
SDI, I/O  
CLKB, I/O  
GND  
J7  
K6  
GND  
Note:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.  
v4.0  
33  
ACT2 Family FPGAs  
Package Pin Assignments (continued)  
132-Pin CPGA  
1
2
3
4
5
6
7
8
9
10 11 12 13  
A
B
C
D
E
F
A
B
C
D
E
F
132-Pin  
CPGA  
G
H
J
G
H
J
K
L
K
L
M
N
M
N
1
2
3
4
5
6
7
8
9
10 11 12 13  
Orientation Pin  
Pin Number  
A1240A Function  
Pin Number  
A1240A Function  
A1  
B5  
B6  
B7  
B8  
B9  
B12  
C3  
C5  
C6  
C7  
C9  
D7  
E3  
E11  
E12  
F4  
MODE  
GND  
G2  
G3  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
GND  
GND  
GND  
GND  
VCC  
GND  
GND  
VCC  
GND  
GND  
CLKB, I/O  
CLKA, I/O  
PRA, I/O  
GND  
G4  
G10  
G11  
G12  
G13  
H13  
J2  
SDI, I/O  
DCLK, I/O  
GND  
PRB, I/O  
VCC  
J3  
J11  
K7  
GND  
VCC  
K12  
L5  
GND  
GND  
L7  
GND  
L9  
GND  
M9  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.  
34  
v4.0  
ACT2 Family FPGAs  
Package Pin Assignments (continued)  
176-Pin CPGA  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
176-Pin  
CPGA  
K
L
K
L
M
N
P
R
M
N
P
R
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Pin Number  
A1280A Function  
Pin Number  
A1280A Function  
A9  
B3  
CLKA, I/O  
DCLK, I/O  
CLKB, I/O  
SDI, I/O  
MODE  
GND  
H2  
H3  
VCC  
VCC  
GND  
GND  
VCC  
VCC  
VCC  
GND  
GND  
VCC  
GND  
GND  
GND  
GND  
VCC  
GND  
GND  
GND  
VCC  
GND  
VCC  
B8  
H4  
B14  
C3  
H12  
H13  
H14  
J4  
C8  
C9  
PRA, I/O  
GND  
D4  
J12  
J13  
J14  
K4  
D5  
VCC  
D6  
GND  
D7  
PRB, I/O  
VCC  
D8  
K12  
L4  
D10  
D11  
D12  
E4  
GND  
VCC  
M4  
GND  
M5  
GND  
M6  
E12  
F4  
GND  
M8  
VCC  
M10  
M11  
M12  
N8  
F12  
G4  
G12  
GND  
GND  
VCC  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. MODE pin should be terminated to GND through a 10K resistor to enable Actionprobe usage, otherwise it can be terminated directly to GND.  
v4.0  
35  
ACT2 Family FPGAs  
List of Changes  
The following table lists critical changes that were made in the current version of the document.  
Previous version Changes in current version (production (unmarked) v4.0.1web-only)  
Page  
In the 176-Pin CPGA package, pin A3 was incorrectly assigned as CLKA, I/O. A3 is a  
user I/O. Pin A9 is CLKA, I/O  
unspecified  
35  
Data Sheet Categories  
In order to provide the latest information to designers, some data sheets are published before data has been fully  
characterized. These data sheets are marked as Advancedor Preliminarydata sheets. The definition of these categories  
are as follows:  
Advanced  
The data sheet contains initial estimated information based on simulation, other products, devices, or speed grades. This  
information can be used as estimates, but not for production.  
Preliminary  
The data sheet contains information based on simulation and/or initial characterization. The information is believed to be  
correct, but changes are possible.  
Unmarked (production)  
The data sheet contains information that is considered to be final.  
36  
v4.0  
ACT2 Family FPGAs  
v4.0  
37  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
http://www.actel.com  
Actel Europe Ltd.  
Actel Corporation  
955 East Arques Avenue  
Sunnyvale, California 94086  
USA  
Actel Asia-Pacific  
Daneshill House, Lutyens Close  
Basingstoke, Hampshire RG24 8AG  
United Kingdom  
EXOS Ebisu Bldg. 4F  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Tel: +44 (0)1256 305600  
Fax: +44 (0)1256 355420  
Tel: (408) 739-1010  
Fax: (408) 739-1540  
Tel: +81 03-3445-7671  
Fax: +81 03-3445-7668  
5172104-6/12.00  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY