A14100BP-1RQ208C [ACTEL]

Field Programmable Gate Array, 1377 CLBs, 10000 Gates, 125MHz, 1377-Cell, CMOS, PQFP208, HEAT SINK, POWER, PLASTIC, MO-143, RQFP-208;
A14100BP-1RQ208C
型号: A14100BP-1RQ208C
厂家: Actel Corporation    Actel Corporation
描述:

Field Programmable Gate Array, 1377 CLBs, 10000 Gates, 125MHz, 1377-Cell, CMOS, PQFP208, HEAT SINK, POWER, PLASTIC, MO-143, RQFP-208

文件: 总40页 (文件大小:1250K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Accelerator Series FPGAs:  
ACT 3 PCI-Compliant Family  
Features  
Highly Predictable, Synthesis-Friendly Architecture  
Supports High-Level Design Methodologies.  
Up to 10,000 Gate Array Equivalent Gates.  
Up to 250 MHz On-Chip Performance.  
9.0 ns Clock-to-Output.  
100% Module Utilization with Automatic Place and Route  
Tools.  
Deterministic, User-Controllable Timing via DirectTime  
Software Tool.  
Up to 1,153 Dedicated Flip-Flops.  
Up to 228 User-Programmable I/O Pins.  
PCI-Compliant I/O Drivers.  
VHDL and Verilog-HDL Models for PCI Target, Master, and  
Bridge Functions.  
Four High-Speed, Low-Skew Clocks.  
ACT 3 PCI-Compliant Devices  
Device  
A1460BP  
A14100BP  
Capacity  
Gate Array Equivalent Gates  
PLD Equivalent Gates  
TTL Equivalent Packages (40 Gates)  
20-Pin PAL Equivalent Packages (100 Gates)  
6,000  
15,000  
150  
10,000  
25,000  
250  
60  
100  
Logic Modules  
S-Module  
C-Module  
848  
432  
416  
1,377  
697  
680  
1
Dedicated Flip-Flops  
768  
168  
1,153  
228  
User I/Os (Maximum)  
2
Packages (By Pin Count)  
PQFP  
RQFP  
TQFP  
BGA  
160, 208  
208  
176  
225  
313  
3
Performance (Maximum, Worst-Case Commercial)  
4
Chip-to-Chip  
97 MHz  
63 MHz  
110 MHz  
150 MHz  
150 MHz  
9.0 ns  
93 MHz  
63 MHz  
105 MHz  
150 MHz  
150 MHz  
9.5 ns  
Accumulators (16-Bit)  
Loadable Counter (16-Bit)  
Prescaled Loadable Counters (16-Bit)  
Datapath, Shift Registers  
Clock-to-Output (Pad-to-Pad)  
Notes:  
1. One flip-flop per S-module, two flip-flops per I/O module.  
2. See Product Plan on page 3 for package availability.  
3. Based on A1460BP-2, and A14100BP-2.  
4. Clock-to-Output + Set-Up  
March 1997  
1
© 1997 Actel Corporation  
Description  
Actel enhanced the popular ACT 3 Accelerator Series family timing specifications detailed in the PCI specification.  
version 2.1. ACT 3 devices comply 100% to the electrical and  
of FPGAs to include PCI-compliant I/O drivers. ACT 3 FPGAs  
are based upon Actels proprietary antifuse technology and  
However, as with all programmable logic devices, the  
performance of the final product depends upon the users  
design and optimization techniques.  
0.6 micron CMOS process. ACT 3 devices offer  
a
high-performance, PCI-compliant programmable solution.  
The ACT 3 PCI-compliant family delivers 200 MHz on-chip  
operation and 9.0 nanosecond clock-to-output performance  
with capacities spanning from 6,000 to 10,000 gate array  
equivalent gates. The PCI-compliant ACT 3 devices are  
denoted with a BP” designator and are shown in the ordering  
information chart.  
Predictable Performance* (Worst-Case Commercial)  
Accumulators (16-Bit)  
Loadable Counters (16-Bit)  
63 MHz  
110 MHz  
Actels ACT 3 PCI-compliant devices provide a high-capacity,  
synthesis-friendly programmable solution to PCI applications.  
The following headings detail the pertinent PCI Local Bus  
Specifications along with the corresponding ACT 3  
parameters. The section numbers in the notes denote the  
pertinent section in the PCI Local Bus Specification  
Prescaled Loadable Counters (16-Bit)  
Shift Registers  
250 MHz  
250 MHz  
Ordering Information  
A14100  
BP –  
RQ  
208  
C
Application (Temperature Range)  
C = Commercial (0 to +70°C)  
I
= Industrial (–40 to +85°C)  
Package Lead Count  
Package Type  
PQ = Plastic Quad Flatpack  
RQ = Plastic Power Quad Flatpack  
TQ = Thin (1.4 mm) Quad Flatpack  
BG = Plastic Ball Grid Array  
Speed Grade  
Std = Standard Speed  
–1 = Approximately 15% Faster than Standard  
–2 = Approximately 25% Faster than Standard  
–3 = Approximately 35% Faster than Standard  
Die Revision  
Part Number  
A1460BP = 6000 Gates  
A14100BP = 10000 Gates  
2
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
Product Plan  
Speed Grade*  
Application  
Std  
–1  
–2  
–3  
C
I
A1460BP Device  
160-Pin Plastic Quad Flatpack (PQFP)  
176-Pin Thin Quad Flatpack (TQFP)  
208-Pin Plastic Quad Flatpack (PQFP)  
225-Pin Plastic Ball Grid Array (BGA)  
P
P
P
P
P
P
P
P
P
P
P
P
P
A14100BP Device  
208-Pin Power Quad Flatpack (RQFP)  
313-Pin Plastic Ball Grid Array (BGA)  
P
P
P
P
P
P
Note: P = Planned, = Availiable.  
Plastic Device Resources  
User I/Os  
TQFP  
PQFP, RQFP  
BGA  
Device Series  
Logic Modules  
Gates  
160-Pin  
208-Pin  
176-Pin  
225-Pin  
313-Pin  
A1460BP  
848  
6000  
131  
167  
175  
151  
168  
A14100BP  
1377  
10000  
228  
IOPCL  
Dedicated (Hard-Wired)  
I/O Preset/Clear (Input)  
Pin Description  
CLKA  
Clock A (Input)  
TTL input for I/O preset or clear. This global input is directly  
wired to the preset and clear inputs of all I/O registers. This  
pin functions as an I/O when no I/O preset or clear macros  
are used.  
TTL clock input for clock distribution networks. The clock  
input is buffered prior to clocking the logic modules. This pin  
can also be used as an I/O.  
CLKB  
Clock B (Input)  
NC  
No Connection  
TTL clock input for clock distribution networks. The clock  
input is buffered prior to clocking the logic modules. This pin  
can also be used as an I/O.  
This pin is not connected to circuitry within the device.  
MODE  
Mode (Input)  
The MODE pin controls the use of diagnostic pins (DCLK,  
PRA, PRB, SDI). When the MODE pin is HIGH, the special  
functions are active. When the MODE pin is LOW, the pins  
function as I/Os. To provide ActionProbe capability, the  
MODE pin should be terminated to GND through a 10K  
resistor, allowing the MODE pin to be pulled HIGH when  
required.  
HCLK  
Dedicated (Hard-Wired)  
Array Clock (Input)  
TTL clock input for sequential modules. This input is directly  
wired to each S-module, and offers clock speeds independent  
of the number of S-modules being driven. This pin can also be  
used as an I/O.  
IOCLK  
Dedicated (Hard-Wired)  
I/O Clock (Input)  
SDI  
Serial Data Input (Input)  
Serial data input for diagnostic probe and device  
programming. SDI is active when the MODE pin is HIGH. This  
pin functions as an I/O when the MODE pin is LOW.  
TTL clock input for I/O modules. This input is directly wired  
to each I/O module, and offers clock speeds independent of  
the number of I/O modules being driven. This pin can also be  
used as an I/O.  
DCLK  
Diagnostic Clock (Input)  
TTL clock input for diagnostic probe and device  
programming. DCLK is active when the MODE pin is HIGH.  
This pin functions as an I/O when the MODE pin is LOW.  
I/O  
Input/Output (Input, Output)  
The I/O pin functions as an input, output, three-state, or  
bi-directional buffer. Input and output levels are compatible  
with standard TTL and CMOS specifications. Unused I/O pins  
are automatically driven LOW by the Designer Series software.  
3
PRA  
Probe A (Output)  
functionally equivalent to the 1200XL C-module and  
implements high fanin combinatorial macros, such as 5-input  
ANDs and 5-input ORs, and is available for use as a CM8 hard  
The Probe A pin is used to output data from any user-defined  
design node within the device. This independent diagnostic  
pin can be used in conjunction with the Probe B pin to allow macro. The S-module is designed to implement high-speed  
real-time diagnostic output of any signal path within the  
device. The PRA pin can be used as a user-defined I/O when  
debugging has been completed. The pins probe capabilities  
can be permanently disabled to protect programmed design  
confidentiality. PRA is accessible when the MODE pin is  
HIGH. This pin functions as an I/O when the MODE pin is  
LOW.  
sequential functions within a single module. S-modules  
consist of a full C-module driving a flip-flop, allowing an  
additional level of logic to be implemented without additional  
propagation delay. It is available for use as DFM8A/B and  
DLM8A/B hard macros. C-modules and S-modules are  
arranged in pairs called module pairs; module pairs are  
arranged in alternating patterns and make up the bulk of the  
array. This arrangement allows the placement software to  
support two-module macros of four types: CC, CS, SC, and SS.  
The C-module implements the following function:  
PRB  
Probe B (Output)  
The Probe B pin is used to output data from any user-defined  
design node within the device. This independent diagnostic  
pin can be used in conjunction with the Probe A pin to allow  
real-time diagnostic output of any signal path within the  
device. The PRB pin can be used as a user-defined I/O when  
debugging has been completed. The pins probe capabilities  
can be permanently disabled to protect programmed design  
confidentiality. PRB is accessible when the MODE pin is  
HIGH. This pin functions as an I/O when the MODE pin is  
LOW.  
Y = !S1 * !S0 * D00 + !S1 * S0 * D01 + S1 * !S0 * D10 + S1 * S0  
* D11  
where: S0 = A0 * B0 and S1 = A1 + B1  
The S-module contains a full implementation of the C-module  
plus a clearable sequential element that can either  
implement a latch or flip-flop function. The S-module can  
implement any function implemented by the C-module,  
allowing complex combinatorial-sequential functions to be  
implemented with no delay penalty. The Designer Series  
development system will automatically combine any  
C-module macro driving an S-module macro into the  
S-module, freeing up a logic module and eliminating a module  
delay.  
V
5V Supply Voltage  
CC  
HIGH supply voltage.  
GND  
Ground  
LOW supply voltage.  
The clear input (CLR) is accessible from the routing channel.  
In addition, the clock input may be connected to one of three  
clock networks: CLK0, CLK1, or HCLK. The C-module and  
S-module functional descriptions are shown in Figures 2  
and 3. The clock selection multiplexor selects the clock input  
to the S-module.  
Architecture  
This section of the data sheet is meant to familiarize the user  
with the architecture of the ACT 3 family of FPGA devices. A  
generic description of the family will be presented first,  
followed by a detailed description of the logic blocks, routing  
structure, antifuses, and special function circuits. The  
on-chip circuitry required to program the devices is not  
covered.  
I/O Modules  
I/O modules provide an interface between the array and the  
I/O pad drivers. I/O modules are located in the array and  
access the routing channels in a fashion similar to logic  
modules. There are two types of I/O modules: side/side and  
top/bottom. The I/O module schematic is shown in Figure 4.  
UO1 and UO2 are inputs from the routing channel: one for the  
routing channel above and one for the routing channel below  
the module. The top/bottom I/O modules interact with only  
one channel and therefore have only one UO input. The  
signals DataIn and DataOut connect to the I/O pad driver.  
Each I/O module contains two D-type flip-flops, and each  
flip-flop is connected to the dedicated I/O clock (IOCLK).  
Topology  
The ACT 3 family architecture is composed of six key  
elements: logic modules, I/O modules, I/O pad drivers, routing  
tracks, clock networks, and programming and test circuits.  
The basic structure is similar for all devices in the family,  
differing only in the number of rows, columns, and I/Os. The  
array itself consists of alternating rows of modules and  
channels. The logic modules and channels are in the center  
of the array; the I/O modules are located along the array  
periphery. A simplified floor plan is depicted in Figure 1.  
Logic Modules  
Each flip-flop can be bypassed by non-sequential I/Os. In  
addition, each flip-flop contains a data enable input that can  
be accessed from the routing channels (ODE and IDE). The  
asynchronous preset/clear input is driven by the dedicated  
ACT 3 logic modules are enhanced versions of the 1200XL  
family logic modules. As in the 1200XL family, there are two  
types of modules: C-modules and S-modules. The C-module is  
4
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
An Array with n Rows and m Columns  
0
1
2
3
4
5
c–1  
c
c+1  
m m+1 m+2 m+3  
Columns  
Rows  
n+1  
Channels  
n+2  
IO IO IO IO IO IO  
Top I/Os  
IO IO IO CLKM  
n+1  
n
IO IO BIN S  
IO IO BIN S  
IO IO BIN S  
S
S
S
S
C
C
C
C
C
C
C
C
S
S
S
S
S
S
S
S
C
C
C
C
C
C
C
C
S
S
S
S
C
C
C
C
S
S
S
S
IO IO  
n
IO IO  
IO IO  
n–1  
n–1  
2
2
IO IO  
IO IO BIN S  
Left I/Os  
1
0
1
0
Right I/Os  
Bottom I/Os  
BIO IO IO IO IO IO  
IO IO IO IO IO IO  
Figure 1 Generalized Floor Plan of ACT 3 Device  
The I/O module output Y is used to bring pad signals into the  
array or to feed the output register back into the array. This  
allows the output register to be used in high-speed state  
machine applications. Side I/O modules have a dedicated  
output segment for Y extending into the routing channels  
above and below (similar to logic modules). Top/Bottom I/O  
modules have no dedicated output segment. Signals coming  
into the chip from the top or bottom are routed using F-fuses  
and LVTs (F-fuses and LVTs are explained in detail in the  
routing section).  
D00  
D01  
OUT  
Y
D10  
D11  
S1  
S0  
I/O Pad Drivers  
All pad drivers are capable of being tri-state. Each buffer  
connects to an associated I/O module with four signals: OE  
(Output Enable), IE (Input Enable), DataOut, and DataIn.  
Special signals used only during programming and test also  
connect to the pad drivers: OUTEN (global output enable),  
INEN (global input enable), and SLEW (individual slew  
selection). See Figure 5.  
A1 B1  
A0 B0  
Figure 2 C-Module Diagram  
preset/clear network (IOPCL). Either preset or clear can be  
selected individually on an I/O-module-by-I/O-module basis.  
5
D00  
D01  
Y
D
Q
OUT  
D10  
D11  
S1  
S0  
CLK  
CLR  
A1 B1  
A0 B0  
Figure 3 S-Module Diagram  
OTB  
0
U01  
U02  
MUX  
DATAOUT  
0
1
MUX  
Q
D
1
CLR/PRE  
ODE  
IDE  
IEN  
0
1
2
3
S0  
S1  
Y
MUX  
1
MUX  
D
Q
0
DATAIN  
CLR/PRE  
IOPCL  
IOCLK  
Figure 4 Function Diagram for I/O Module  
6
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
the input of S-modules or I/O modules. There are two  
dedicated clock networks: one for the array registers (HCLK),  
and one for the I/O registers (IOCLK). The clock networks  
are accessed by special I/Os.  
OE  
SLEW  
Routed Clocks  
The routed clock networks are referred to as CLK0 and CLK1.  
Each network is connected to a clock module (CLKMOD)  
that selects the source of the clock signal, and may be driven  
as follows (see Figure 6):  
DATAOUT  
Externally from the CLKA Pad  
Externally from the CLKB Pad  
Internally from the CLKINA Input  
Internally from the CLKINB Input  
PAD  
DATAIN  
IEN  
The clock modules are located in the top row of the I/O  
modules. Clock drivers and a dedicated horizontal clock track  
are located in each horizontal routing channel. The function  
of the clock module is determined by the selection of clock  
macros from the macro library. The macro CLKBUF is used to  
connect one of the two external clock pins to a clock network,  
and the macro CLKINT is used to connect an internally  
generated clock signal to a clock network. Since both clock  
networks are identical, the user may use either CLK0 or  
CLK1. Routed clocks can also be used to drive high-fanout  
nets like resets, output enables, or data enables. This saves  
logic modules and results in performance increases in some  
cases.  
INEN  
OUTEN  
Figure 5 Function Diagram for I/O Pad Driver  
Special I/Os  
The special I/Os are of two types: temporary and permanent.  
Temporary special I/Os are used during programming and  
testing, and function as normal I/Os when the MODE pin is  
inactive. Permanent special I/Os are user-programmed as  
either normal I/Os or special I/Os. Their function does not  
change once the device has been programmed. The  
permanent special I/Os consist of the array clock input  
buffers (CLKA and CLKB), the hard-wired array clock input  
buffer (HCLK), the hard-wired I/O clock input buffer  
(IOCLK), and the hard-wired I/O register preset/clear input  
buffer (IOPCL). Their function is determined by the I/O  
macros selected.  
CLKB  
CLKA  
CLKINB  
CLKINA  
From  
Pads  
S0  
S1  
Internal  
Signal  
CLKMOD  
CLKO(17)  
CLKO(16)  
CLKO(15)  
Clock Networks  
The ACT 3 architecture contains four clock networks: two  
high-performance dedicated clock networks and two  
general-purpose routed networks. The high-performance  
networks function up to 200 MHz, while the general-purpose  
routed networks function up to 150 MHz.  
Clock  
Drivers  
CLKO(2)  
CLKO(1)  
Dedicated Clocks  
Dedicated clock networks support high performance by  
providing sub-nanosecond skew and predictable  
performance. Dedicated clock networks contain no  
programming elements in the path from the I/O pad driver to  
Clock Tracks  
Figure 6 Clock Networks  
7
 
Routing Structure  
shown in Figure 7. Undedicated horizontal routing tracks are  
used to route signal nets. Dedicated routing tracks are used  
for the global clock networks, and for power and ground  
tie-off tracks.  
The ACT 3 architecture uses vertical and horizontal routing  
tracks to connect the various logic and I/O modules. These  
routing tracks are metal interconnects that may either be of  
continuous length or broken into segments. Segments can be  
joined together at the ends using antifuses to increase their  
lengths up to the full length of the track.  
Vertical Routing  
Vertical tracks are of three types: input, output, and long.  
Vertical tracks are also divided into one or more segments,  
with each segment in an input track dedicated to the input of  
a particular module. Each segment in an output track is  
dedicated to the output of a particular module. Long  
segments are uncommitted and can be assigned during  
routing. Each output segment spans four channels (two above  
and two below), except near the top and bottom of the array  
where edge effects occur. LVTs contain either one or two  
segments. An example of vertical routing tracks and segments  
is shown in Figure 8.  
Horizontal Routing  
Horizontal channels are located between the rows of modules,  
and are composed of several routing tracks. The horizontal  
routing tracks within the channel are divided into one or  
more segments. The minimum horizontal segment length is  
the width of a module pair, and the maximum horizontal  
segment length is the full length of the channel. Any segment  
that spans more than one-third of the row’s length is  
considered a long horizontal segment. A typical channel is  
Module Row  
HCLK  
CLK0  
NVCC  
SIGNAL  
Track  
SIGNAL  
(LHT)  
Segment  
|
|
|
|
|
|
|
HF  
SIGNAL  
NVSS  
CLK1  
Module Row  
Figure 7 Horizontal Routing Tracks and Segments  
8
 
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
LVTs  
Module Row  
Channel  
S-Module  
C-Module  
VF  
XF  
Verticle Input  
Segment  
FF  
S-Module  
C-Module  
Figure 8 Vertical Routing Tracks and Segments  
Antifuse Connections  
Module Interface  
An antifuse is a “normally open” structure as opposed to the  
normally closed” fuse structure used in PROMs or PALs. The  
use of antifuses to implement a programmable logic device  
results in highly testable structures, as well as an efficient  
programming architecture. The structure is highly testable  
because there are no pre-existing connections; temporary  
connections can be made using pass transistors. These  
temporary connections can isolate individual antifuses to be  
programmed, as well as isolate individual circuit structures to  
be tested. This can be done both before and after  
programming. For example, all metal tracks can be tested for  
continuity and shorts between adjacent tracks, and the  
functionality of all logic modules can be verified.  
Connections to logic and I/O modules are made through  
vertical segments that connect to the module inputs and  
outputs. These vertical segments lie on vertical tracks that  
span the entire height of the array.  
Module Input Connections  
The tracks dedicated to module inputs are segmented by pass  
transistors in each module row. During normal user  
operation, the pass transistors are inactive, which isolates the  
inputs of a module from the inputs of the module directly  
above or below it. During certain test modes, the pass  
transistors are active to verify the continuity of the metal  
tracks. Vertical input segments span only the channel above  
or the channel below. The logic modules are arranged such  
that half of the inputs are connected to the channel above  
and half of the inputs to segments in the channel below, as  
shown in Figure 9.  
Four types of antifuse connections are used in the routing  
structure of the ACT 3 array. The physical structure of the  
antifuse is identical in each case; only the usage differs.  
Table 1 shows four types of antifuses.  
Module Output Connections  
Table 1 Antifuse Types  
Module outputs have dedicated output segments. Output  
segments extend vertically two channels above and two  
channels below, except at the top or bottom of the array.  
Output segments twist, as shown in Figure 10, so that only  
four vertical tracks are required.  
XF  
HF  
VF  
FF  
Horizontal-to-Vertical Connection  
Horizontal-to-Horizontal Connection  
Vertical-to-Vertical Connection  
“Fast” Vertical Connection  
LVT Connections  
Examples of all four types of connections are shown in  
Figures 7 and 8.  
Outputs may also connect to non-dedicated segments called  
long vertical tracks (LVTs). Each module pair in the array  
shares four LVTs that span the length of the column. Any  
module in the column pair can connect to one of the LVTs in  
9
 
 
the column using an FF connection. The FF connection uses  
antifuses connected directly to the driver stage of the module  
output, bypassing the isolation transistor. FF antifuses are  
programmed at a higher current level than HF, VF, or XF  
antifuses to produce a lower resistance value.  
C-module and S-module inputs can be connected to the clock  
networks. To further reduce loading on the clock network,  
only a subset of the horizontal routing tracks can connect to  
the clock inputs of the S-module.  
Programming and Test Circuits  
Antifuse Connections  
The array of logic and I/O modules is surrounded by test and  
programming circuits controlled by the temporary special I/O  
pins MODE, SDI, and DCLK. The function of these pins is  
similar in all ACT family devices. The ACT 3 family also  
includes support for two ActionProbe circuits, allowing  
complete observability of any logic or I/O module in the array  
using the temporary special I/O pins PRA and PRB.  
In general, every intersection of a vertical segment and a  
horizontal segment contains an unprogrammed antifuse  
(XF-type). One exception is in the case of the clock networks.  
Clock Connections  
To minimize loading on the clock networks, a subset of the  
input has antifuses on the clock tracks. Only a few of the  
Y+2  
Y+1  
Y+2  
Y+1  
B1 B0  
A1 D10 D11  
D01 D00  
B0  
B1 D01  
Y
Y
A0  
D10  
A0 D11 A1  
Y-1  
Y-1  
Y-2  
Y-2  
LVTs  
C-Modules  
S-Modules  
Figure 9 Logic Module Routing Interface  
10  
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
5V Operating Conditions  
Recommended Operating Conditions  
Parameter  
Commercial Industrial Military Units  
1
Absolute Maximum Ratings  
Free Air Temperature Range  
Temperature 0 to +70  
–40 to +85 –55 to  
+125  
°C  
1
Range  
Symbol Parameter  
Limits  
–0.5 to +7.0  
Units  
5V Power  
Supply  
Tolerance  
±5  
±10  
±10  
%V  
CC  
V
V
V
DC Supply Voltage  
Input Voltage  
V
CC  
–0.5 to V +0.5  
CC  
V
I
Note:  
Output Voltage  
I/O Source Sink  
–0.5 to V +0.5  
CC  
V
1. Ambient temperature (T ) is used for commercial and  
O
A
industrial; case temperature (T ) is used for military.  
C
I
±20  
mA  
IO  
2
Current  
Electrical Specifications  
T
Storage Temperature –65 to +150  
°C  
STG  
The PCI bus specifies I/O drivers in terms of the DC and AC  
characteristics. However, since the PCI bus drivers spend a  
relatively large proportion of time transitioning from one  
power rail to the other, PCI drivers are primarily  
characterized by their V/I curves (Tables 2 and 3).  
Notes:  
1. Stresses beyond those listed under “Absolute Maximum Ratings”  
may cause permanent damage to the device. Exposure to  
absolute maximum rated conditions for extended periods may  
affect device reliability. Device should not be operated outside  
the Recommended Operating Conditions.  
2. Device inputs are normally high impedance and draw  
extremely low current. However, when input voltage is greater  
than V + 0.5V or less than GND – 0.5V, the internal protection  
CC  
diodes will forward-bias and can draw excessive current.  
11  
Output Drive Characteristics  
for 5.0V Signaling  
ACT 3 PCI device I/O drivers were designed specifically for  
typical output drive characteristics of the 5.0V ACT 3 devices.  
ACT 3 output drivers are compliant with the PCI Local Bus  
Specification.  
high-performance PCI systems. Figures 10 and 11 show the  
Table 2 DC Specification for 5.0V Signaling1  
PCI  
ACT 3  
Symbol Parameter  
Condition  
Minimum  
Maximum  
Minimum  
Maximum  
Units  
2
V
V
V
Supply Voltage  
4.75  
2
5.25  
4.75  
2
5.25  
V + 0.5  
CC  
V
V
CC  
IH  
IL  
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
Output High Voltage  
V
+ 0.5  
CC  
–0.5  
0.8  
–0.3  
0.8  
V
I
I
V
V
= 2.7  
=0.5  
70  
10  
µA  
µA  
V
IH  
IL  
IN  
–70  
–10  
IN  
V
V
I
= –2 mA  
= 3 mA,  
2.4  
3.7  
OH  
OUT  
I
OUT  
Output Low Voltage  
0.55  
0.33  
V
OL  
6 mA  
C
C
Input Pin Capacitance  
CLK Pin Capacitance  
Pin Inductance  
10  
12  
20  
10  
10  
pF  
pF  
nH  
IN  
5
CLK  
PIN  
3
L
< 8 nH  
Notes:  
1. PCI Local Bus Specification Section 4.2.1.1.  
2. Maximum rating for V –0.5V to 7.0V. Refer to Accelerator Series FPGAs ACT 3 family data sheet.  
CC  
3. Dependent upon the chosen package. PCI recommends QFP packaging to reduce pin inductance and capacitance.  
Table 3 AC Specifications for 5.0V Signaling1  
PCI  
Minimum  
ACT 3  
Maximum Minimum Maximum Units  
Symbol Parameter  
Low Clamp Current  
Condition  
I
–5 < V –1  
–25 + (V +1)  
IN  
–60  
–10  
mA  
CL  
IN  
/0.015  
Slew (r) Output Rise Slew Rate  
Slew (f) Output Lall Slew Rate  
Note:  
0.4V to 2.4V load  
2.4V to 0.4V load  
1
1
5
5
1.8  
2.8  
2.8  
4.3  
V/ns  
V/ns  
1. PCI Local Bus Specification Section 4.2.1.2.  
12  
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
500  
PCI I Maximum  
OL  
450  
400  
350  
300  
250  
200  
150  
I
(mA)  
OL  
ACT 3 PCI I  
OL  
100  
50  
0
PCI I Minimum  
OL  
0
0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 4.40  
(V)  
V
OUT  
Figure 10 Typical Output Drive Characteristics (Based upon simulation data)  
0
0.40 0.80 1.20 1.60 2.00 2.40 2.80 3.20 3.60 4.00 4.40  
0
–20  
PCI I  
Minimum  
OH  
–40  
–60  
ACT 3 PCI I  
OH  
–80  
I
(mA)  
OH  
–100  
–120  
–140  
–160  
–180  
PCI I  
Maximum  
OH  
V
(V)  
OUT  
Figure 11 Typical Output Drive Characteristics (Based upon simulation data)  
13  
System Timing Specification  
PCI Models  
Tables 4 and 5 list the critical PCI timing parameters and the  
corresponding timing parameter for the ACT 3 PCI-compliant  
devices.  
Actel provides synthesizable VHDL and Verilog-HDL models  
for a PCI target interface, a PCI master interface, and a  
PCI-to-PCI bridge interface. Consult your local Actel sales  
representative for more details.  
Table 4 Clock Specification for 33 MHz PCI1  
PCI  
ACT 3  
Symbol  
Parameter  
Minimum  
Maximum  
Minimum  
Maximum  
Units  
T
T
T
CLK Cycle Time  
CLK High Time  
CLK Low Time  
30  
11  
11  
4.0  
1.9  
1.9  
ns  
ns  
ns  
CYC  
HIGH  
LOW  
Note:  
1. PCI Local Bus Specification Section 4.2.3.1.  
Table 5 Timing Parameters for 33 MHz PCI1  
PCI  
ACT 3  
Symbol  
Parameter  
Minimum  
Maximum  
Minimum  
Maximum  
Units  
T
T
CLK to Signal Valid—Bused Signals  
CLK to Signal Valid—Point-to-Point  
Float to active  
2
11  
12  
28  
2.0  
2.0  
2.0  
9.0  
9.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
VAL  
2
VAL(PTP)  
T
2
ON  
2
T
Active to Float  
8.3  
OFF  
T
Input Set-Up Time to CLK—Bused Signals  
Input Set-Up Time to CLK—Point-to-Point  
Input Hold to CLK  
7
1.5  
1.5  
0
SU  
T
T
10, 12  
0
SU(PTP)  
H
Notes:  
1. For information only. These values represent registered I/O timing used in the PCI macro implementation for an A1460BP-2 device. Please  
see the PCI macro specification for more information on timing and speed bin requirements.  
2.  
T
is system dependent. ACT 3 PCI devices have 7.4 ns turn-off time, reflection is typically an additional 10 ns.  
OFF  
14  
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
Package Thermal Characteristics  
Maximum junction temperature is 150°C.  
The device junction to case thermal characteristic is θjc, and  
the junction to ambient air characteristic is θja. The thermal  
characteristics for θja are shown with two different air flow  
rates.  
A sample calculation of the absolute maximum power  
dissipation allowed for CPGA 175-pin package at  
commercial temperature and still air is as follows:  
a
Max. Junction Temp. (°C) – Max. Ambient Temp. (°C)  
Absolute Maximum Power Allowed = ------------------------------------------------------------------------------------------------------------------------------------ = --------------------------------- = 3 . 2 W  
θja (°C/W) 25°C/W  
150°C – 70°C  
θ
θ
ja  
ja  
1
Package Type  
Pin Count  
θ
Still Air  
300 ft/min  
Units  
jc  
Plastic Quad Flatpack  
160  
208  
10  
10  
33  
33  
26  
26  
°C/W  
°C/W  
Thin Quad Flatpack  
Power Quad Flatpack  
Plastic Ball Grid Array  
176  
208  
11  
32  
17  
25  
13  
°C/W  
°C/W  
°C/W  
°C/W  
0.4  
225  
313  
10  
10  
25  
23  
19  
17  
Note:  
1. Maximum power dissipation in still air for 160-pin PQFP package is 2.4 watts, 208-pin PQFP package is 2.4 watts, 100-pin PQFP package is  
1.6 watts, 100-pin VQFP package is 1.9 watts, 176-pin TQFP package is 2.5 watts, 84-pin PLCC package is 2.2 watts, 208-pin RQFP package is  
4.7 watts, 225-pin BGA package is 3.2 watts, 313-pin BGA package is 3.5 watts.  
Power Dissipation  
The static power dissipated by TTL loads depends on the  
number of outputs driving HIGH or LOW and the DC load  
current. Again, this value is typically small. For instance, a  
32-bit bus sinking 4 mA at 0.33V will generate 42 mW with all  
outputs driving LOW, and 140 mW with all outputs driving  
HIGH. The actual dissipation will average somewhere  
between as I/Os switch states with time.  
P = [ICC standby+ Iactive] * VCC + IOL * VOL * N + IOH  
*
(VCC – V ) * M  
(1)  
OH  
Where:  
ICC standby is the current flowing when no inputs or  
outputs are changing.  
I
active is the current flowing due to CMOS switching.  
OL, IOH are TTL sink/source currents.  
Active Power Component  
I
Power dissipation in CMOS devices is usually dominated by  
the active (dynamic) power dissipation. This frequency-  
dependent component is a function of the logic and the  
external I/O. Active power dissipation results from charging  
internal chip capacitances of the interconnect,  
unprogrammed antifuses, module inputs, and module  
outputs, plus external capacitance due to PC board traces  
and load device inputs. An additional component of the active  
power dissipation is the totem pole current in CMOS  
transistor pairs. The net effect can be associated with an  
equivalent capacitance that can be combined with frequency  
and voltage to represent active power dissipation.  
V , VOH are TTL level output voltages.  
OL  
N equals the number of outputs driving TTL loads to  
V .  
OL  
M equals the number of outputs driving TTL loads to  
V .  
OH  
An accurate determination of N and M is problematical  
because their values depend on the design and on the system  
I/O. The power can be divided into two components: static  
and active.  
Static Power Component  
Equivalent Capacitance  
Actel FPGAs have small static power components that result  
in lower power dissipation than PALs or PLDs. By integrating  
multiple PALs/PLDs into one FPGA, an even greater  
reduction in board-level power dissipation can be achieved.  
The power dissipated by a CMOS circuit can be expressed by  
Equation 2.  
Power (µW) = CEQ * V 2 * F  
(2)  
CC  
The power due to standby current is typically a small  
component of the overall power. Standby power is calculated  
below for commercial, worst-case conditions.  
Where:  
CEQ is the equivalent capacitance expressed in pF.  
CC is the power supply in volts.  
F is the switching frequency in MHz.  
V
ICC  
V
Power  
CC  
2mA  
5.25 V  
10.5 mW  
15  
Equivalent capacitance is calculated by measuring ICC active  
at a specified frequency and voltage for each circuit  
component of interest. Measurements have been made over a  
Where:  
m
n
= Number of logic modules switching at fm  
= Number of input buffers switching at fn  
= Number of output buffers switching at fp  
= Number of clock loads on the first routed  
array clock  
range of frequencies at a fixed value of V . Equivalent  
CC  
p
capacitance is frequency-independent, allowing the results to  
be used over a wide range of operating conditions. Equivalent  
capacitance values are shown below.  
q1  
q2  
r1  
r2  
s1  
s2  
= Number of clock loads on the second routed  
array clock  
C
Values for Actel FPGAs  
EQ  
Modules (CEQM  
Input Buffers (CEQI  
Output Buffers (CEQO  
Routed Array Clock Buffer Loads (CEQCR  
Dedicated Clock Buffer Loads (CEQCD  
I/O Clock Buffer Loads (CEQCI  
)
6.7  
7.2  
= Fixed capacitance due to first routed array  
clock  
)
)
10.4  
1.6  
= Fixed capacitance due to second routed array  
clock  
)
)
0.7  
= Fixed number of clock loads on the dedicated  
array clock  
)
0.9  
= Fixed number of clock loads on the dedicated  
I/O clock  
To calculate the active power dissipated from the complete  
design, the switching frequency of each part of the logic must  
be known. Equation 3 shows a piece-wise linear summation  
over all components.  
CEQM = Equivalent capacitance of logic modules in pF  
CEQI = Equivalent capacitance of input buffers in pF  
CEQO = Equivalent capacitance of output buffers in  
pF  
Power =V 2 * [(m * CEQM* fm)modules + (n * CEQI* fn)inputs  
+
CC  
(p * (CEQO+ CL) * fp)outputs  
+ 0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1 * fq1)routed_Clk1  
+ 0.5 * (q2 * CEQCR * fq2)routed_Clk2  
CEQCR = Equivalent capacitance of routed array clock  
in pF  
CEQCD = Equivalent capacitance of dedicated array  
clock in pF  
+ (r2 * fq2)routed_Clk2 + 0.5 * (s1 * CEQCD * fs1)dedicated_Clk  
+ (s2 * CEQCI * fs2)IO_Clk  
]
(3)  
CEQCI = Equivalent capacitance of dedicated I/O clock  
in pF  
CL  
fm  
fn  
fp  
fq1  
fq2  
= Output lead capacitance in pF  
= Average logic module switching rate in MHz  
= Average input buffer switching rate in MHz  
= Average output buffer switching rate in MHz  
= Average first routed array clock rate in MHz  
= Average second routed array clock rate in  
MHz  
fs1  
fs2  
= Average dedicated array clock rate in MHz  
= Average dedicated I/O clock rate in MHz  
16  
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
Fixed Capacitance Values for Actel FPGAs  
(pF)  
r1  
routed_Clk1  
165  
r2  
Device Type  
A1460BP  
routed_Clk2  
165  
195  
A14100BP  
195  
Fixed Clock Loads (s /s  
1
)
2
s1  
s2  
Clock Loads on  
Clock Loads on  
Device Type  
Dedicated Array  
Clock  
Dedicated I/O  
Clock  
A1460BP  
432  
697  
168  
228  
A14100BP  
Determining Average Switching Frequency  
To determine the switching frequency for a design, you must  
have a detailed understanding of the data input values to the  
circuit. The following guidelines are meant to represent  
worst-case scenarios that can be generally used to predict the  
upper limits of power dissipation.  
Logic Modules (m)  
Inputs Switching (n)  
Outputs Switching (p)  
= 80% of Modules  
= # Inputs/4  
= # Output/4  
First Routed Array Clock Loads = 40% of Sequential  
(q1) Modules  
Second Routed Array Clock Loads = 40% of Sequential  
(q2)  
Modules  
Load Capacitance (CL)  
= 35 pF  
Average Logic Module Switching = F/10  
Rate (fm)  
Average Input Switching Rate (fn) = F/5  
Average Output Switching Rate (fp) = F/10  
Average First Routed Array Clock = F/2  
Rate (fq1)  
Average Second Routed Array = F/2  
Clock Rate (fq2)  
Average Dedicated Array Clock = F  
Rate (fs1)  
Average Dedicated I/O Clock Rate = F  
(fs2)  
17  
ACT 3 Timing Model*  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
I/O Module  
Combinatorial  
Logic Module  
I/O Module  
t
= 2.8 ns  
INY  
t
= 1.2 ns  
IRD2  
t
= 5.0 ns  
DHS  
t
= 0.9 ns  
= 1.7 ns  
= 2.8 ns  
RD1  
D
Q
t
= 2.0 ns  
PD  
t
RD4  
RD8  
t
I/O Module  
t
= 5.0 ns  
DHS  
Sequential  
Logic Module  
t
= 0.0 ns  
= 1.8 ns  
= 4.7 ns  
INH  
t
t
INSU  
ICKY  
Combin-  
atorial  
D
D
Q
Q
t
= 0.9 ns  
t
= 4.0 ns  
RD1  
ENZHS  
Logic  
included  
in t  
SUD  
t
= 0.7 ns  
= 0.7 ns  
OUTH  
t
OUTSU  
t
= 2.0 ns  
t
= 0.5 ns  
= 0.0 ns  
CO  
SUD  
ARRAY  
CLOCK  
t
HD  
t
= 3.0 ns  
HCKH  
F
= 250 MHz  
HMAX  
t
= 7.5 ns  
(pad-pad)  
CKHS  
I/O CLOCK  
F
= 250 MHz  
IOMAX  
*Values shown for A1425A-3.  
18  
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
Output Buffer Delays  
E
D
To AC test loads (shown below)  
PAD  
TRIBUFF  
V
V
V
CC  
CC  
CC  
D
GND  
1.5V  
50%  
E
GND  
10%  
50%  
E
GND  
90%  
50%  
50%  
CC  
50%  
50%  
V
V
V
OH  
OH  
1.5V  
VOL  
PAD  
VOL  
PAD  
PAD  
GND  
1.5V  
1.5V  
t
t
t
t
t
t
ENHSZ  
DHS  
DHS  
ENZHS  
ENHSZ  
ENZHS  
AC Test Loads  
Load 2  
(Used to measure rising/falling edges)  
Load 1  
(Used to measure propagation delay)  
VCC  
GND  
To the output under test  
35 pF  
R to V for t /t  
CC  
PLZ PZL  
R to GND for t  
/t  
PHZ PZH  
R = 1 kW  
35 pF  
To the output under test  
Input Buffer Delays  
Module Delays  
S
Y
A
B
Y
PAD  
INBUF  
V
CC  
GND  
S, A or B  
50% 50%  
3V  
V
CC  
PAD  
0V  
1.5V  
1.5V  
50%  
Y
50%  
V
CC  
GND  
t
t
50%  
PD  
PD  
Y
GND  
50%  
V
Y
CC  
GND  
50%  
50%  
t
t
INY  
INY  
t
t
PD  
PD  
19  
Sequential Module Timing Characteristics  
Flip-Flops  
D
Q
CLK  
CLR  
(Positive Edge Triggered)  
t
HD  
D
t
t
t
A
WCLKA  
SUD  
CLK  
t
WCLKA  
t
CO  
Q
t
CLR  
CLR  
t
WASYN  
I/O Module: Sequential Input Timing Characteristics  
D
E
Y
PRE  
CLR  
IOCLK  
(Positive Edge Triggered)  
t
INH  
D
t
t
IOP  
t
IOPWH  
INSU  
IOCLK  
t
t
t
IDEH  
IDESU  
IOPWL  
E
Y
t
ICKY  
t
ICLRY  
PRE, CLR  
t
IOASPW  
20  
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
I/O Module: Sequential Output Timing Characteristics  
Q
D
E
PRE  
CLR  
IOCLK  
Y
(Positive Edge Triggered)  
t
OUTH  
D
t
t
t
IOP  
IOPWH  
OUTSU  
IOCLK  
t
t
ODESU  
IOPWL  
E
Y
t
OCKY  
t
t
,
CKHS  
CKLS  
Q
t
OCLRY  
PRE, CLR  
t
IOASPW  
21  
Predictable Performance:  
Timing Characteristics  
Tightest Delay Distributions  
Timing characteristics for ACT 3 devices fall into three  
categories: family-dependent, device-dependent, and  
design-dependent. The input and output buffer  
characteristics are common to all ACT 3 family members.  
Internal routing delays are device-dependent. Design  
dependency means actual delays are not determined until  
after placement and routing of the users design is complete.  
Delay values may then be determined by using the ALS timer  
utility or performing simulation with post-layout delays.  
Propagation delay between logic modules depends on the  
resistive and capacitive loading of the routing tracks, the  
interconnect elements, and the module inputs being driven.  
Propagation delay increases as the length of routing tracks,  
the number of interconnect elements, or the number of  
inputs increases.  
From a design perspective, the propagation delay can be  
statistically correlated or modeled by the fanout (number of  
loads) driven by a module. Higher fanout usually requires  
some paths to have longer lengths of routing track.  
Critical Nets and Typical Nets  
Propagation delays are expressed only for typical nets, which  
are used for initial design performance evaluation. Critical  
net delays can then be applied to the most time-critical paths.  
Critical nets are determined by net property assignment prior  
to placement and routing. Up to 6% of the nets in a design may  
be designated as critical, while 90% of the nets in a design are  
typical.  
The ACT 3 family delivers the tightest fanout delay  
distribution of any FPGA. This tight distribution is achieved in  
two ways: by decreasing the delay of the interconnect  
elements and by decreasing the number of interconnect  
elements per path.  
Actels patented PLICE antifuse offers  
resistive/capacitive interconnect. The ACT  
antifuses offer nominal levels of 200resistance and 6  
a
very low  
family’s  
3
Long Tracks  
Some nets in the design use long tracks. Long tracks are  
special routing resources that span multiple rows, columns, or  
modules. Long tracks employ three and sometimes four  
antifuse connections. This increases capacitance and  
resistance, resulting in longer net delays for macros  
connected to long tracks. Typically up to 6% of the nets in a  
fully utilized device require long tracks. Long tracks  
contribute approximately 4 ns to 14 ns delay, and is  
represented statistically in higher fanout (FO=8) routing  
delays (noted in the Specifications section).  
femtofarad (fF) capacitance per antifuse.  
The ACT 3 fanout distribution is also tighter than alternative  
devices due to the low number of antifuses required per  
interconnect path. The ACT  
3 family’s proprietary  
architecture limits the number of antifuses per path to only  
four, with 90% of interconnects using only two antifuses.  
The ACT 3 family’s tight fanout delay distribution offers an  
FPGA design environment in which fanout can be traded for  
the increased performance of reduced logic level designs.  
This also simplifies performance estimates when designing  
with ACT 3 devices.  
Timing Derating  
ACT 3 devices are manufactured in a CMOS process;  
therefore, device performance varies according to  
temperature, voltage, and process variations. Minimum  
timing parameters reflect maximum operating voltage,  
minimum operating temperature, and best-case processing.  
Maximum timing parameters reflect minimum operating  
voltage, maximum operating temperature, and worst-case  
processing.  
Table 6 Logic Module and Routing Delay by Fanout (ns)  
(Worst-Case Commercial Conditions)  
Speed  
FO=1  
FO=2  
FO=3  
FO=4  
FO=8  
–3  
2.9  
3.2  
3.4  
3.7  
4.8  
22  
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
Timing Derating Factor (Temperature and Voltage)  
Industrial  
Military  
Min.  
Max.  
Min.  
Max.  
(Commercial Minimum/Maximum Specification) x  
0.66  
1.07  
0.63  
1.17  
Timing Derating Factor for Designs at Typical Temperature (T = 25°C)  
J
and Voltage (5.0V)  
(Commercial Maximum Specification) x  
0.85  
Temperature and Voltage Derating Factors  
(Normalized to Worst-Case Commercial, T = 4.75V, 70°C)  
J
–55  
0.72  
0.70  
0.68  
0.66  
0.63  
–40  
0.76  
0.73  
0.71  
0.69  
0.66  
0
25  
70  
85  
125  
1.17  
1.12  
1.09  
1.06  
1.01  
4.50  
4.75  
5.00  
5.25  
5.50  
0.85  
0.82  
0.79  
0.77  
0.74  
0.90  
0.87  
0.84  
0.82  
0.79  
1.04  
1.00  
0.97  
0.94  
0.90  
1.07  
1.03  
1.00  
0.97  
0.93  
Junction Temperature and Voltage Derating Curves  
(Normalized to Worst-Case Commercial, T = 4.75V, 70°C)  
J
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
4.50  
4.75  
5.00  
5.25  
5.50  
Voltage (V)  
Note: This derating factor applies to all routing and propagation delays.  
23  
A1460BP Timing Characteristics  
1
(Worst-Case Commercial Conditions, V  
= 4.75V,  
T
= 70°C)  
J
CC  
2
Logic Module Propagation Delays  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Units  
t
t
t
Internal Array Module  
Sequential Clock to Q  
2.0  
2.0  
2.0  
2.3  
2.3  
2.3  
2.6  
2.6  
2.6  
3.0  
3.0  
3.0  
ns  
ns  
ns  
PD  
CO  
CLR  
Asynchronous Clear to Q  
3
Predicted Routing Delays  
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
0.9  
1.2  
1.4  
1.7  
2.8  
1.0  
1.4  
1.6  
1.9  
3.2  
1.1  
1.6  
1.8  
2.2  
3.6  
1.3  
1.8  
2.1  
2.5  
4.2  
ns  
ns  
ns  
ns  
ns  
RD1  
RD2  
RD3  
RD4  
RD8  
Logic Module Sequential Timing  
t
t
t
t
t
t
t
f
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Latch Data Input Set-Up  
Latch Data Input Hold  
0.5  
0.0  
0.5  
0.0  
2.4  
2.4  
5.0  
0.6  
0.0  
0.6  
0.0  
3.2  
3.2  
6.8  
0.7  
0.0  
0.7  
0.0  
3.8  
3.8  
8.0  
0.8  
0.0  
0.8  
0.0  
4.8  
4.8  
10.0  
ns  
ns  
SUD  
HD  
ns  
SUD  
HD  
ns  
Asynchronous Pulse Width  
Flip-Flop Clock Pulse Width  
Flip-Flop Clock Input Period  
Flip-Flop Clock Frequency  
ns  
WASYN  
WCLKA  
A
ns  
ns  
200  
150  
125  
100  
MHz  
MAX  
Notes:  
1.  
2. For dual-module macros, use t + t + t  
V
= 3.0V for 3.3V specifications.  
CC  
or t + t + t  
or t + t + t  
, whichever is appropriate.  
SUD  
PD RD1  
PDn  
CO RD1  
PDn  
PD1  
RD1  
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based  
on actual routing delay measurements performed on the device prior to shipment.  
24  
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
A1460BP Timing Characteristics (continued)  
(Worst-Case Commercial Conditions)  
I/O Module Input Propagation Delays  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Units  
t
t
t
t
Input Data Pad to Y  
2.8  
4.7  
4.7  
3.2  
5.3  
5.3  
3.6  
6.0  
6.0  
4.2  
7.0  
7.0  
ns  
ns  
ns  
INY  
Input Reg IOCLK Pad to Y  
Output Reg IOCLK Pad to Y  
ICKY  
OCKY  
ICLRY  
Input Asynchronous  
Clear to Y  
4.7  
4.7  
5.3  
5.3  
6.0  
6.0  
7.0  
7.0  
ns  
ns  
t
Output Asynchronous  
Clear to Y  
OCLRY  
1
Predicted Input Routing Delays  
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
0.9  
1.2  
1.4  
1.7  
2.8  
1.0  
1.4  
1.6  
1.9  
3.2  
1.1  
1.6  
1.8  
2.2  
3.6  
1.3  
1.8  
2.1  
2.5  
4.2  
ns  
ns  
ns  
ns  
ns  
IRD1  
IRD2  
IRD3  
IRD4  
IRD8  
I/O Module Sequential Timing  
t
t
t
t
t
t
t
t
Input F-F Data Hold  
(w.r.t. IOCLK Pad)  
INH  
0.0  
1.3  
0.0  
5.8  
0.7  
0.7  
0.3  
1.3  
0.0  
1.5  
0.0  
6.5  
0.8  
0.8  
0.4  
1.5  
0.0  
1.8  
0.0  
7.5  
0.9  
0.9  
0.4  
1.7  
0.0  
2.0  
0.0  
8.6  
1.0  
1.0  
0.5  
2.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input F-F Data Set-Up  
(w.r.t. IOCLK Pad)  
INSU  
Input Data Enable Hold  
(w.r.t. IOCLK Pad)  
IDEH  
Input Data Enable Set-Up  
(w.r.t. IOCLK Pad)  
IDESU  
OUTH  
OUTSU  
ODEH  
ODESU  
Output F-F Data Hold  
(w.r.t. IOCLK Pad)  
Output F-F Data Set-Up  
(w.r.t. IOCLK Pad)  
Output Data Enable Hold  
(w.r.t. IOCLK Pad)  
Output Data Enable Set-Up  
(w.r.t. IOCLK Pad)  
Note:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based  
on actual routing delay measurements performed on the device prior to shipment.  
25  
A1460BP Timing Characteristics (continued)  
(Worst-Case Commercial Conditions)  
1
I/O Module – TTL Output Timing  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Min. Max. Units  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
t
t
t
Data to Pad, High Slew  
Data to Pad, Low Slew  
5.0  
8.0  
5.6  
9.0  
6.4  
7.5  
ns  
ns  
DHS  
10.2  
12.0  
DLS  
Enable to Pad, Z to H/L,  
High Slew  
ENZHS  
4.0  
7.4  
7.8  
7.4  
9.0  
4.5  
8.3  
8.7  
8.3  
9.0  
5.1  
9.4  
6.0  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
Enable to Pad, Z to H/L,  
Low Slew  
ENZLS  
ENHSZ  
ENLSZ  
CKHS  
CKLS  
11.0  
11.6  
11.0  
11.5  
Enable to Pad, H/L to Z,  
High Slew  
9.9  
Enable to Pad, H/L to Z,  
Low Slew  
9.4  
IOCLK Pad to Pad H/L,  
High Slew  
10.0  
IOCLK Pad to Pad H/L,  
Low Slew  
12.8  
0.02  
0.05  
0.04  
0.05  
12.8  
0.02  
0.05  
0.04  
0.05  
15.3  
0.03  
0.06  
0.04  
0.06  
17.0  
0.03  
0.07  
0.05  
0.07  
ns  
d
d
d
d
Delta Low to High, High Slew  
Delta Low to High, Low Slew  
Delta High to Low, High Slew  
ns/pF  
ns/pF  
ns/pF  
ns/pF  
TLHHS  
TLHLS  
THLHS  
THLLS  
Delta High to Low, Low Slew  
1
I/O Module – CMOS Output Timing  
t
t
t
Data to Pad, High Slew  
Data to Pad, Low Slew  
6.2  
7.0  
7.9  
9.3  
ns  
ns  
DHS  
11.7  
13.1  
14.9  
17.5  
DLS  
Enable to Pad, Z to H/L,  
High Slew  
ENZHS  
5.2  
8.9  
5.9  
10.0  
8.3  
6.6  
11.3  
9.4  
7.8  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
Enable to Pad, Z to H/L,  
Low Slew  
ENZLS  
ENHSZ  
ENLSZ  
CKHS  
CKLS  
13.3  
11.0  
11.0  
13.8  
Enable to Pad, H/L to Z,  
High Slew  
7.4  
Enable to Pad, H/L to Z,  
Low Slew  
7.4  
8.3  
9.4  
IOCLK Pad to Pad H/L,  
High Slew  
10.4  
10.4  
12.1  
IOCLK Pad to Pad H/L,  
Low Slew  
14.5  
0.04  
0.07  
0.03  
0.04  
14.5  
0.04  
0.08  
0.03  
0.04  
17.4  
0.05  
0.09  
0.03  
0.04  
19.3  
0.06  
0.11  
0.04  
0.05  
ns  
d
d
d
d
Delta Low to High, High Slew  
Delta Low to High, Low Slew  
Delta High to Low, High Slew  
Delta High to Low, Low Slew  
ns/pF  
ns/pF  
ns/pF  
ns/pF  
TLHHS  
TLHLS  
THLHS  
THLLS  
Note:  
1. Delays based on 35pF loading.  
26  
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
A1460BP Timing Characteristics (continued)  
(Worst-Case Commercial Conditions)  
Dedicated (Hard-Wired) I/O Clock Network  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Units  
t
Input Low to High  
IOCKH  
(Pad to I/O Module Input)  
2.3  
2.6  
3.0  
3.5  
ns  
ns  
ns  
t
t
t
Minimum Pulse Width High  
Minimum Pulse Width Low  
2.4  
2.4  
3.2  
3.2  
3.8  
3.8  
4.8  
4.8  
IOPWH  
IOPWL  
IOSAPW  
Minimum Asynchronous Pulse  
Width  
2.4  
5.0  
3.2  
6.8  
3.8  
8.0  
4.8  
ns  
ns  
t
t
f
Maximum Skew  
0.6  
0.6  
0.6  
0.6  
IOCKSW  
IOP  
Minimum Period  
Maximum Frequency  
10.0  
ns  
200  
150  
125  
100  
MHz  
IOMAX  
Dedicated (Hard-Wired) Array Clock Network  
t
Input Low to High  
HCKH  
(Pad to S-Module Input)  
3.7  
3.7  
4.1  
4.1  
4.7  
4.7  
5.5  
5.5  
ns  
t
Input High to Low  
(Pad to S-Module Input)  
HCKL  
ns  
ns  
t
t
t
t
f
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
2.4  
2.4  
3.2  
3.2  
3.8  
3.8  
4.8  
4.8  
HPWH  
HPWL  
HCKSW  
HP  
ns  
0.6  
0.6  
0.6  
0.6  
ns  
Minimum Period  
5.0  
6.8  
8.0  
10.0  
ns  
Maximum Frequency  
200  
150  
125  
100  
MHz  
HMAX  
Routed Array Clock Networks  
t
t
t
t
t
t
f
Input Low to High (FO=256)  
Input High to Low (FO=256)  
Min. Pulse Width High (FO=256)  
Min. Pulse Width Low (FO=256)  
Maximum Skew (FO=128)  
6.0  
6.0  
6.8  
6.8  
7.7  
7.7  
9.0  
9.0  
ns  
ns  
RCKH  
RCKL  
RPWH  
RPWL  
RCKSW  
RP  
4.1  
4.1  
4.5  
4.5  
5.4  
5.4  
6.1  
6.1  
ns  
ns  
1.2  
1.4  
1.6  
90  
1.8  
80  
ns  
Minimum Period (FO=256)  
Maximum Frequency (FO=256)  
8.3  
9.3  
11.1  
12.5  
ns  
120  
105  
MHz  
RMAX  
Clock-to-Clock Skews  
t
t
I/O Clock to H-Clock Skew  
0.0  
2.6  
0.0  
2.7  
0.0  
2.9  
0.0  
3.0  
ns  
IOHCKSW  
IORCKSW  
I/O Clock to R-Clock Skew  
(FO = 64)  
(FO = 216)  
0.0  
0.0  
1.7  
5.0  
0.0  
0.0  
1.7  
5.0  
0.0  
0.0  
1.7  
5.0  
0.0  
0.0  
1.7  
5.0  
ns  
ns  
t
H-Clock to R-Clock Skew  
(FO = 64)  
HRCKSW  
0.0  
0.0  
1.3  
3.0  
0.0  
0.0  
1.0  
3.0  
0.0  
0.0  
1.0  
3.0  
0.0  
0.0  
1.0  
3.0  
ns  
ns  
(FO = 216)  
Note:  
1. Delays based on 35pF loading.  
27  
A14100BP Timing Characteristics  
1
(Worst-Case Commercial Conditions, V  
= 4.75V,  
T
= 70°C)  
J
CC  
2
Logic Module Propagation Delays  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Units  
t
t
t
Internal Array Module  
Sequential Clock to Q  
2.0  
2.0  
2.0  
2.3  
2.3  
2.3  
2.6  
2.6  
2.6  
3.0  
3.0  
3.0  
ns  
ns  
ns  
PD  
CO  
CLR  
Asynchronous Clear to Q  
3
Predicted Routing Delays  
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
0.9  
1.2  
1.4  
1.7  
2.8  
1.0  
1.4  
1.6  
1.9  
3.2  
1.1  
1.6  
1.8  
2.2  
3.6  
1.3  
1.8  
2.1  
2.5  
4.2  
ns  
ns  
ns  
ns  
ns  
RD1  
RD2  
RD3  
RD4  
RD8  
Logic Module Sequential Timing  
t
t
t
t
t
t
t
f
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Latch Data Input Set-Up  
Latch Data Input Hold  
0.5  
0.0  
0.5  
0.0  
2.4  
2.4  
5.0  
0.6  
0.0  
0.6  
0.0  
3.2  
3.2  
6.8  
0.8  
0.5  
0.8  
0.5  
3.8  
3.8  
8.0  
0.8  
0.5  
0.8  
0.5  
4.8  
4.8  
10.0  
ns  
ns  
SUD  
HD  
ns  
SUD  
HD  
ns  
Asynchronous Pulse Width  
Flip-Flop Clock Pulse Width  
Flip-Flop Clock Input Period  
Flip-Flop Clock Frequency  
ns  
WASYN  
WCLKA  
A
ns  
ns  
200  
150  
125  
100  
MHz  
MAX  
Notes:  
1.  
2. For dual-module macros, use t + t + t  
V
= 3.0V for 3.3V specifications.  
CC  
, t + t + t  
or t + t + t  
, whichever is appropriate.  
SUD  
PD RD1  
PDn CO RD1  
PDn  
PD1  
RD1  
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based  
on actual routing delay measurements performed on the device prior to shipment.  
28  
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
A14100BP Timing Characteristics (continued)  
(Worst-Case Commercial Conditions)  
I/O Module Input Propagation Delays  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Units  
t
t
t
t
Input Data Pad to Y  
2.8  
4.7  
4.7  
3.2  
5.3  
5.3  
3.6  
6.0  
6.0  
4.2  
7.0  
7.0  
ns  
ns  
ns  
INY  
Input Reg IOCLK Pad to Y  
Output Reg IOCLK Pad to Y  
ICKY  
OCKY  
ICLRY  
Input Asynchronous  
Clear to Y  
4.7  
4.7  
5.3  
5.3  
6.0  
6.0  
7.0  
7.0  
ns  
ns  
t
Output Asynchronous  
Clear to Y  
OCLRY  
1
Predicted Input Routing Delays  
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
0.9  
1.2  
1.4  
1.7  
2.8  
1.0  
1.4  
1.6  
1.9  
3.2  
1.1  
1.6  
1.8  
2.2  
3.6  
1.3  
1.8  
2.1  
2.5  
4.2  
ns  
ns  
ns  
ns  
ns  
IRD1  
IRD2  
IRD3  
IRD4  
IRD8  
I/O Module Sequential Timing  
t
t
t
t
t
t
t
t
Input F-F Data Hold  
(w.r.t. IOCLK Pad)  
INH  
0.0  
1.2  
0.0  
5.8  
0.7  
0.7  
0.3  
1.3  
0.0  
1.4  
0.0  
6.5  
0.8  
0.8  
0.4  
1.5  
0.0  
1.5  
0.0  
7.5  
1.0  
1.0  
0.5  
2.0  
0.0  
1.8  
0.0  
8.6  
1.0  
1.0  
0.5  
2.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Input F-F Data Set-Up  
(w.r.t. IOCLK Pad)  
INSU  
Input Data Enable Hold  
(w.r.t. IOCLK Pad)  
IDEH  
Input Data Enable Set-Up  
(w.r.t. IOCLK Pad)  
IDESU  
OUTH  
OUTSU  
ODEH  
ODESU  
Output F-F Data Hold  
(w.r.t. IOCLK Pad)  
Output F-F Data Set-Up  
(w.r.t. IOCLK Pad)  
Output Data Enable Hold  
(w.r.t. IOCLK Pad)  
Output Data Enable Set-Up  
(w.r.t. IOCLK Pad)  
Note:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based  
on actual routing delay measurements performed on the device prior to shipment.  
29  
A14100BP Timing Characteristics (continued)  
(Worst-Case Commercial Conditions)  
1
I/O Module – TTL Output Timing  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Min. Max. Units  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
t
t
t
Data to Pad, High Slew  
Data to Pad, Low Slew  
5.0  
8.0  
5.6  
9.0  
6.4  
7.5  
ns  
ns  
DHS  
10.2  
12.0  
DLS  
Enable to Pad, Z to H/L,  
High Slew  
ENZHS  
4.0  
7.4  
8.0  
7.4  
9.5  
4.5  
8.3  
9.0  
8.3  
9.5  
5.1  
9.4  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
Enable to Pad, Z to H/L,  
Low Slew  
ENZLS  
ENHSZ  
ENLSZ  
CKHS  
CKLS  
11.0  
12.0  
11.0  
12.0  
17.0  
Enable to Pad, H/L to Z,  
High Slew  
10.2  
9.4  
Enable to Pad, H/L to Z,  
Low Slew  
IOCLK Pad to Pad H/L,  
High Slew  
10.5  
IOCLK Pad to Pad H/L,  
Low Slew  
12.8  
0.02  
0.05  
0.04  
0.05  
12.8  
0.02  
0.05  
0.04  
0.05  
15.3  
0.03  
0.06  
0.04  
0.06  
d
d
d
d
Delta Low to High, High Slew  
Delta Low to High, Low Slew  
Delta High to Low, High Slew  
0.03 ns/pF  
0.07 ns/pF  
0.05 ns/pF  
0.07 ns/pF  
TLHHS  
TLHLS  
THLHS  
THLLS  
Delta High to Low, Low Slew  
1
I/O Module – CMOS Output Timing  
t
t
t
Data to Pad, High Slew  
Data to Pad, Low Slew  
6.2  
7.0  
7.9  
9.3  
ns  
ns  
DHS  
11.7  
13.1  
14.9  
17.5  
DLS  
Enable to Pad, Z to H/L,  
High Slew  
ENZHS  
5.2  
8.9  
5.9  
10.0  
9.0  
6.6  
11.3  
10.0  
9.4  
7.8  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
Enable to Pad, Z to H/L,  
Low Slew  
ENZLS  
ENHSZ  
ENLSZ  
CKHS  
CKLS  
13.3  
12.0  
11.0  
13.8  
19.3  
Enable to Pad, H/L to Z,  
High Slew  
8.0  
Enable to Pad, H/L to Z,  
Low Slew  
7.4  
8.3  
IOCLK Pad to Pad H/L,  
High Slew  
10.4  
10.4  
12.4  
IOCLK Pad to Pad H/L,  
Low Slew  
14.5  
0.04  
0.07  
0.03  
0.04  
14.5  
0.04  
0.08  
0.03  
0.04  
17.4  
0.05  
0.09  
0.03  
0.04  
d
d
d
d
Delta Low to High, High Slew  
Delta Low to High, Low Slew  
Delta High to Low, High Slew  
Delta High to Low, Low Slew  
0.06 ns/pF  
0.11 ns/pF  
0.04 ns/pF  
0.05 ns/pF  
TLHHS  
TLHLS  
THLHS  
THLLS  
Note:  
1. Delays based on 35pF loading.  
30  
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
A14100BP Timing Characteristics (continued)  
(Worst-Case Commercial Conditions)  
Dedicated (Hard-Wired) I/O Clock Network  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Units  
t
Input Low to High  
IOCKH  
(Pad to I/O Module Input)  
2.3  
2.6  
3.0  
3.5  
ns  
ns  
ns  
t
t
t
Minimum Pulse Width High  
Minimum Pulse Width Low  
2.4  
2.4  
3.3  
3.3  
3.8  
3.8  
4.8  
4.8  
IOPWH  
IOPWL  
IOSAPW  
Minimum Asynchronous Pulse  
Width  
2.4  
5.0  
3.3  
6.8  
3.8  
8.0  
4.8  
ns  
ns  
t
t
f
Maximum Skew  
0.6  
0.6  
0.7  
0.8  
IOCKSW  
Minimum Period  
Maximum Frequency  
10.0  
ns  
IOP  
200  
150  
125  
100  
MHz  
IOMAX  
Dedicated (Hard-Wired) Array Clock Network  
t
Input Low to High  
HCKH  
(Pad to S-Module Input)  
3.7  
3.7  
4.1  
4.1  
4.7  
4.7  
5.5  
5.5  
ns  
t
Input High to Low  
(Pad to S-Module Input)  
HCKL  
ns  
ns  
t
t
t
t
f
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
2.4  
2.4  
3.3  
3.3  
3.8  
3.8  
4.8  
4.8  
HPWH  
HPWL  
HCKSW  
HP  
ns  
0.6  
0.6  
0.7  
0.8  
ns  
Minimum Period  
5.0  
6.8  
8.0  
10.0  
ns  
Maximum Frequency  
200  
150  
125  
100  
MHz  
HMAX  
Routed Array Clock Networks  
t
t
t
Input Low to High (FO=256)  
Input High to Low (FO=256)  
6.0  
6.0  
6.8  
6.8  
7.7  
7.7  
9.0  
9.0  
ns  
ns  
RCKH  
RCKL  
RPWH  
Min. Pulse Width High (FO=256)  
Min. Pulse Width Low (FO=256)  
4.1  
4.1  
4.5  
4.5  
5.4  
5.4  
6.1  
6.1  
ns  
t
RPWL  
ns  
ns  
t
t
f
Maximum Skew (FO=128)  
Minimum Period (FO=256)  
Maximum Frequency (FO=256)  
1.2  
1.4  
1.6  
90  
1.8  
80  
RCKSW  
8.3  
9.3  
11.1  
12.5  
ns  
RP  
120  
105  
MHz  
RMAX  
Clock-to-Clock Skews  
t
t
I/O Clock to H-Clock Skew  
0.0  
2.6  
0.0  
2.7  
0.0  
2.9  
0.0  
3.0  
ns  
IOHCKSW  
I/O Clock to R-Clock Skew  
(FO = 64)  
(FO = 350)  
IORCKSW  
0.0  
0.0  
1.7  
5.0  
0.0  
0.0  
17  
5.0  
0.0  
0.0  
1.7  
5.0  
0.0  
0.0  
1.7  
5.0  
ns  
ns  
t
H-Clock to R-Clock Skew  
(FO = 64)  
HRCKSW  
0.0  
0.0  
1.3  
3.0  
0.0  
0.0  
1.0  
3.0  
0.0  
0.0  
1.0  
3.0  
0.0  
0.0  
1.0  
3.0  
ns  
ns  
(FO = 350)  
Note:  
1. Delays based on 35pF loading.  
31  
Package Pin Assignments  
160-Pin PQFP (Top View)  
1
2
3
4
5
6
7
8
9
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
160-Pin  
PQFP  
82  
81  
32  
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
160-Pin PQFP  
Pin  
Number  
A1460BP  
Function  
Pin  
Number  
A1460BP  
Function  
1
GND  
90  
V
V
CC  
2
SDI, I/O  
I/O  
91  
CC  
5
92  
I/O  
9
MODE  
93  
I/O  
10  
14  
15  
18  
19  
20  
24  
27  
28  
29  
40  
41  
43  
45  
46  
47  
49  
51  
53  
58  
59  
60  
62  
63  
74  
75  
76  
77  
78  
80  
81  
V
98  
GND  
CC  
I/O  
99  
V
CC  
GND  
100  
103  
107  
109  
110  
111  
112  
113  
119  
120  
121  
124  
127  
136  
137  
138  
139  
140  
141  
142  
143  
145  
147  
149  
151  
153  
154  
160  
I/O  
V
GND  
I/O  
CC  
GND  
I/O  
I/O  
I/O  
V
CC  
I/O  
GND  
V
V
V
CC  
CC  
CC  
I/O  
GND  
I/O  
I/O  
IOCLK, I/O  
GND  
I/O  
I/O  
I/O  
V
I/O  
CC  
I/O  
CLKA, I/O  
CLKB, I/O  
I/O  
I/O  
V
CC  
I/O  
GND  
PRB, I/O  
GND  
V
CC  
GND  
PRA, I/O  
I/O  
V
CC  
HCLK, I/O  
GND  
I/O  
I/O  
I/O  
V
I/O  
CC  
I/O  
I/O  
I/O  
I/O  
I/O  
V
CC  
IOPCL, I/O  
GND  
DCLK, I/O  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. NC: Denotes “No Connection”  
3. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise, it can be terminated directly to GND.  
33  
Package Pin Assignments (continued)  
176-Pin TQFP (Top View)  
1
2
3
4
5
6
7
8
9
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
176-Pin  
TQFP  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
34  
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
176-Pin TQFP  
Pin  
Number  
A1460BP  
Function  
Pin  
Number  
A1460BP  
Function  
1
GND  
98  
V
V
CC  
2
SDI, I/O  
MODE  
99  
CC  
10  
11  
20  
21  
22  
23  
32  
33  
44  
49  
51  
63  
64  
65  
66  
67  
69  
82  
83  
88  
89  
108  
109  
110  
119  
121  
122  
123  
124  
132  
133  
138  
152  
153  
154  
155  
156  
157  
158  
170  
176  
GND  
V
V
CC  
CC  
I/O  
GND  
I/O  
GND  
V
I/O  
CC  
GND  
V
CC  
V
V
GND  
CC  
CC  
V
CC  
GND  
I/O  
IOCLK, I/O  
GND  
I/O  
I/O  
I/O  
CLKA, I/O  
CLKB, I/O  
PRB, I/O  
GND  
V
CC  
V
V
GND  
CC  
CC  
V
CC  
HCLK, I/O  
I/O  
PRA, I/O  
I/O  
I/O  
I/O  
IOPCL, I/O  
GND  
DCLK, I/O  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. NC: Denotes “No Connection”  
3. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise, it can be terminated directly to GND.  
35  
Package Pin Assignments (continued)  
208-Pin PQFP, RQFP (Top View)  
1
2
3
4
5
6
7
8
9
156  
155  
154  
153  
152  
151  
150  
149  
148  
147  
146  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
208-Pin  
PQFP, RQFP  
36  
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
208-Pin PQFP, RQFP  
A1460BP  
Function  
A14100BP  
Function  
A1460BP  
Function  
A14100BP  
Function  
Pin Number  
Pin Number  
1
2
GND  
GND  
115  
116  
129  
130  
131  
132  
145  
146  
147  
148  
156  
157  
158  
164  
180  
181  
182  
183  
184  
185  
186  
195  
201  
205  
208  
V
V
CC  
CC  
SDI, I/O  
MODE  
SDI, I/O  
MODE  
NC  
I/O  
11  
12  
25  
26  
27  
28  
40  
41  
52  
53  
60  
65  
76  
77  
78  
79  
80  
82  
98  
102  
104  
105  
114  
GND  
GND  
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
GND  
GND  
GND  
GND  
V
V
V
V
CC  
CC  
CC  
CC  
V
V
CC  
CC  
GND  
GND  
GND  
NC  
GND  
I/O  
V
V
V
V
CC  
CC  
CC  
CC  
V
V
CC  
CC  
GND  
NC  
GND  
I/O  
IOCLK, I/O  
GND  
IOCLK, I/O  
GND  
V
V
NC  
I/O  
CC  
CC  
NC  
I/O  
V
V
CC  
CC  
PRB, I/O  
GND  
PRB, I/O  
GND  
CLKA, I/O  
CLKB, I/O  
CLKA, I/O  
CLKB, I/O  
V
V
V
V
CC  
CC  
CC  
CC  
GND  
GND  
GND  
GND  
V
V
V
V
CC  
CC  
CC  
CC  
HCLK, I/O  
HCLK, I/O  
GND  
GND  
V
V
PRA, I/O  
NC  
PRA, I/O  
I/O  
CC  
CC  
NC  
I/O  
IOPCL, I/O  
GND  
IOPCL, I/O  
GND  
V
V
CC  
CC  
NC  
I/O  
V
V
DCLK, I/O  
DCLK, I/O  
CC  
CC  
Notes:  
1. All unlisted pin numbers are user I/Os.  
2. NC: Denotes “No Connection”  
3. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise, it can be terminated directly to GND.  
37  
Package Pin Assignments (continued)  
225-Pin BGA (Top View)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
K
L
K
L
M
N
P
R
M
N
P
R
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
A1460BP  
Function  
Location  
CLKA or I/O  
CLKB or I/O  
DCLK or I/O  
GND  
C8  
B8  
B2  
A1, A15, D15, F8, G7, G8, G9, H6, H7, H8, H9, H10, J7, J8, J9, K8, P2, R15  
HCLK or I/O  
IOCLK or I/O  
IOPCL or I/O  
MODE  
P9  
B14  
P14  
D1  
NC  
A11, B5, B7, D8, D12, F6, F11, H1, H12, H14, K11, L1, L13, N8, P5, R1, R8, R11, R14  
PRA OR I/O  
PRB or I/O  
SDI or I/O  
A7  
L7  
D4  
V
A8, B12, D5, D14, E3, E8, E13, H2, H3, H11, H15, K4, L2, L12, M8, M15, P4, P8, R13  
CC  
Notes:  
1. Unused I/O pins are designated as outputs by ALS and are driven LOW.  
2. All unassigned pins are available for use as I/Os.  
3. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise, it can be terminated directly to GND.  
38  
Accelerator Series FPGAs: ACT 3 PCI-Compliant Family  
Package Pin Assignments (continued)  
313-Pin BGA (Top View)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
A
B
C
D
E
F
A
B
C
D
E
F
G
G
H
J
H
J
K
L
K
L
M
N
P
R
M
N
P
R
T
T
U
U
V
V
W
W
Y
Y
AA  
AA  
AB  
AC  
AB  
AC  
AD  
AE  
AD  
AE  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
A14100BP  
Function  
Location  
CLKA or I/O  
CLKB or I/O  
DCLK or I/O  
GND  
J13  
G13  
B2  
A1, A25, AD2, AE25, J21, L13, M12, M14, N11, N13, N15, P12, P14, R13  
HCLK or I/O  
IOCLK or I/O  
IOPCL or I/O  
MODE  
T14  
B24  
AD24  
G3  
NC  
A3, A13, A23, AA5, AA9, AA23, AB2, AB4, AB20, AC13, AC25, AD22, AE1, AE21, B14, C5, C25,  
D4, D24, E3, E21, F6, F10, F16, G1, G25, H18, H24, J1, J7, J25, K12, L15, L17, M6, N1, N5, N7,  
N21, N23, P20, R11, T6, T8, U9, U13, U21, V16, W7, Y20, Y24  
PRA OR I/O  
PRB or I/O  
SDI or I/O  
H12  
AD12  
C1  
V
AB18, AD6, AE13, C13, C19, E13, G9, H22, K8, K20, M16, N3, N9, N25, U5, W13, V2, V22, V24  
CC  
Notes:  
1. Unused I/O pins are designated as outputs by ALS and are driven LOW.  
2. All unassigned pins are available for use as I/Os.  
3. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise, it can be terminated directly to GND.  
39  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
http://www.actel.com  
Actel Corporation  
Actel Europe Ltd.  
955 East Arques Avenue  
Sunnyvale, California 94086  
USA  
Daneshill House, Lutyens Close  
Basingstoke, Hampshire RG24 8AG  
United Kingdom  
Tel: 408.739.1010  
Fax: 408.739.1540  
Tel: +44.(0)1256.305600  
Fax: +44.(0)1256.355420  
5172121-1  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY