A32100XLV-FPQB [ACTEL]

Integrator Series FPGAs: 1200XL and 3200DX Families; 集成系列FPGA : 1200XL和3200DX家庭
A32100XLV-FPQB
型号: A32100XLV-FPQB
厂家: Actel Corporation    Actel Corporation
描述:

Integrator Series FPGAs: 1200XL and 3200DX Families
集成系列FPGA : 1200XL和3200DX家庭

文件: 总84页 (文件大小:3116K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Discontinued – v3.0  
Integrator Series FPGAs:  
1200XL and 3200DX Families  
Features  
General Description  
Actel’s Integrator Series FPGAs are the first programmable  
logic devices optimized for high-speed system logic  
integration. Based on Actel’s proprietary antifuse  
technology and 0.6-micron double metal CMOS process,  
Integrator Series devices offer a fine-grained, register-rich  
architecture with embedded dual-port SRAM and  
wide-decode circuitry.  
High Capacity  
• 2,500 to 30,000 Logic Gates  
• Up to 3Kbits Configurable Dual-Port SRAM  
• Fast Wide-Decode Circuitry  
• Up to 250 User-Programmable I/O Pins  
High Performance  
• 225 MHz Performance  
• 5 ns Dual-Port SRAM Access  
• 100 MHz FIFOs  
Integrator Series’ 3200DX and 1200XL families were  
designed to integrate system logic which is typically  
implemented in multiple CPLDs, PALs, and FPGAs. These  
devices provide the features and performance required for  
today’s complex, high-speed digital logic systems. The  
3200DX family offers fast dual-port SRAM for implementing  
FIFOs, LIFOs, and temporary data storage. The large  
number of storage elements can efficiently address  
applications requiring wide datapath manipulation and  
transformation functions such as telecommunications,  
networking, and DSP.  
• 7.5 ns 35-Bit Address Decode  
Ease-of-Integration  
• Synthesis-Friendly Architecture Supports ASIC Design  
Methodologies.  
• 95–100% Device Utilization using Automatic  
Place-and-Route Tools.  
• Deterministic, User-Controllable Timing Via Timing  
Driven Software Tools with Up To 100% Pin Fixing.  
• IEEE Standard 1149.1 (JTAG) Boundary Scan Testing.  
Integrator Series Product Profile Family  
1200XL  
3200DX  
Device  
A1225XL  
A1240XL  
A1280XL  
A3265DX  
A32100DX  
A32140DX  
A32200DX  
A32300DX  
Capacity  
Logic Gates  
SRAM Bits  
1
2,500  
N/A  
4,000  
N/A  
8,000  
N/A  
6,500  
N/A  
10,000  
2,048  
14,000  
N/A  
20,000  
2,560  
30,000  
3,072  
Logic Modules  
Sequential  
Combinatorial  
Decode  
231  
220  
N/A  
348  
336  
N/A  
624  
608  
N/A  
510  
475  
20  
700  
662  
20  
954  
912  
24  
1,230  
1,184  
24  
1,888  
1,833  
28  
SRAM Modules  
(64x4 or 32x8)  
N/A  
231  
2
N/A  
348  
2
N/A  
624  
2
N/A  
510  
2
8
N/A  
954  
2
10  
1,230  
6
12  
1,888  
6
Dedicated Flip-Flops  
Clocks  
700  
6
User I/O (Maximum)  
JTAG  
83  
104  
No  
140  
No  
126  
No  
152  
Yes  
176  
Yes  
202  
Yes  
250  
Yes  
No  
PL84  
PQ160  
PQ208  
TQ176  
CQ84  
PQ208  
RQ208  
RQ240  
CQ208  
CQ256  
RQ208  
RQ240  
CQ256  
Packages  
PL84  
PL84  
PL84  
PL84 PQ100  
PQ144  
TQ176  
PL84  
PQ160 PQ208  
TQ176  
PQ100  
PQ160  
TQ176  
PQ160  
PQ208  
TQ176  
CQ256  
PQ100  
VQ100  
PG100  
PG132  
PG176 CQ172  
Note: Logic gate capacity does not include SRAM bits as logic.  
February 2001  
1
© 2001 Actel Corporation  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Ordering Information  
A1225  
XL  
V
PQ  
100  
C
Application (Temperature Range)  
C = Commercial (0 to +70°C)  
I
= Industrial (–40 to +85°C)  
M = Military (–55 to +125°C)  
B = MIL-STD-883  
Package Lead Count  
Package Type  
CQ = Ceramic Quad Flat Pack  
PG = Ceramic Pin Grid Array  
PL = Plastic Leaded Chip Carrier  
PQ = Plastic Quad Flat Pack  
RQ = Plastic Power Quad Flat Pack  
TQ = Thin (1.4 mm) Quad Flat Pack  
VQ = Very Thin (1.0 mm) Quad Flat Pack  
Speed Grade  
Blank = Standard Speed  
1 = Approximately 15% Faster than Standard  
2 = Approximately 25% Faster than Standard  
3 = Approximately 35% Faster than Standard  
F = Approximately 30% Slower than Standard  
Operating Voltage  
V = 3.3 Volt  
Blank = 5.0 Volt  
Die Revision  
XL = 1200XL Family  
DX = 3200DX Family  
Part Number  
A1225  
=
=
=
=
=
=
=
=
2500 Gates  
4000 Gates  
6500 Gates  
8000 Gates  
10000 Gates  
14000 Gates  
20000 Gates  
30000 Gates  
A1240  
A3265  
A1280  
A32100  
A32140  
A32200  
A32300  
Note: This family has been discontinued.  
2
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Product Plan  
Speed Grade*  
Application  
–F  
Std  
–1  
–2  
–3  
C
I
M
B
A1225XL Device  
84-Pin Plastic Leaded Chip Carrier (PLCC)  
100-Pin Plastic Quad Flat Pack (PQFP)  
100-Pin Very Thin Plastic Quad Flat Pack (VQFP)  
100-Pin Ceramic Pin Grid Array (CPGA)  
A1225XLV Device  
84-Pin Plastic Leaded Chip Carrier (PLCC)  
100-Pin Very Thin Plastic Quad Flat Pack (VQFP)  
A1240XL Device  
84-Pin Plastic Leaded Chip Carrier (PLCC)  
100-Pin Plastic Quad Flat Pack (PQFP)  
132-Pin Ceramic Pin Grid Array (CPGA)  
144-Pin Plastic Quad Flat Pack (PQFP)  
176-Pin Thin Plastic Quad Flat Pack (TQFP)  
A1240XLV Device  
84-Pin Plastic Leaded Chip Carrier (PLCC)  
176-Pin Thin Plastic Quad Flat Pack (TQFP)  
A3265DX Device  
84-Pin Plastic Leaded Chip Carrier (PLCC)  
100-Pin Plastic Quad Flat Pack (PQFP)  
160-Pin Plastic Quad Flat Pack (PQFP)  
176-Pin Thin Plastic Quad Flat Pack (TQFP)  
A3265DXV Device  
84-Pin Plastic Leaded Chip Carrier (PLCC)  
176-Pin Thin Plastic Quad Flat Pack (TQFP)  
A1280XL Device  
84-Pin Plastic Leaded Chip Carrier (PLCC)  
160-Pin Plastic Quad Flat Pack (PQFP)  
172-Pin Ceramic Quad Flat Pack (CQFP)  
176-Pin Thin Plastic Quad Flat Pack (TQFP)  
176-Pin Ceramic Pin Grid Array (CPGA)  
208-Pin Plastic Quad Flat Pack (PQFP)  
A1280XLV Device  
84-Pin Plastic Leaded Chip Carrier (PLCC)  
176-Pin Thin Plastic Quad Flat Pack (TQFP)  
A32100DX Device  
84-Pin Ceramic Quad Flat Pack (CQFP)  
84-Pin Plastic Leaded Chip Carrier (PLCC)  
160-Pin Plastic Quad Flat Pack (PQFP)  
208-Pin Plastic Quad Flat Pack (PQFP)  
Contact your Actel sales representative for product availability.  
Applications:  
C
I
=
=
=
Commercial  
Industrial  
Military  
Availability:  
P
=
=
Available  
Planned  
*Speed Grade:  
–1 = Approx. 15% faster than Standard  
–2 = Approx. 25% faster than Standard  
–3 = Approx. 35% faster than Standard  
–F = Approx. 40% slower than Standard  
M
— = Not Planned  
Only Std, –1, –2 Speed Grade  
Only Std, –1 Speed Grade  
Discontinued – v3.0  
3
Integrator Series FPGAs: 1200XL and 3200DX Families  
Product Plan (Continued)  
Speed Grade*  
Application  
–F  
Std  
–1  
–2  
–3  
C
I
M
B
176-Pin Thin Plastic Quad Flat Pack (TQFP)  
A32100DXV Device  
84-Pin Plastic Leaded Chip Carrier (PLCC)  
176-Pin Thin Plastic Quad Flat Pack (TQFP)  
A32140DX Device  
84-Pin Plastic Leaded Chip Carrier (PLCC)  
160-Pin Plastic Quad Flat Pack (PQFP)  
176-Pin Thin Plastic Quad Flat Pack (TQFP)  
208-Pin Plastic Quad Flat Pack (PQFP)  
256-Pin Ceramic Quad Flat Pack (CQFP)  
A32140DXV Device  
84-Pin Plastic Leaded Chip Carrier (PLCC)  
176-Pin Thin Plastic Quad Flat Pack (TQFP)  
A32200DX Device  
208-Pin Plastic Quad Flat Pack (PQFP)  
208-Pin Plastic Power Quad Flat Pack (RQFP)  
240-Pin Plastic Power Quad Flat Pack (RQFP)  
208-Pin Ceramic Quad Flat Pack (CQFP)  
256-Pin Ceramic Quad Flat Pack (CQFP)  
A32200DXV Device  
208-Pin Plastic Quad Flat Pack (PQFP)  
240-Pin Plastic Power Quad Flat Pack (RQFP)  
A32300DX Device  
208-Pin Plastic Power Quad Flat Pack (RQFP)  
240-Pin Plastic Power Quad Flat Pack (RQFP)  
256-Pin Ceramic Quad Flat Pack (CQFP)  
A32300DXV Device  
208-Pin Plastic Power Quad Flat Pack (RQFP)  
240-Pin Plastic Power Quad Flat Pack (RQFP)  
Contact your Actel sales representative for product availability.  
Applications:  
C
I
=
=
=
Commercial  
Industrial  
Military  
Availability:  
P
=
=
Available  
Planned  
*Speed Grade:  
–1 = Approx. 15% faster than Standard  
–2 = Approx. 25% faster than Standard  
–3 = Approx. 35% faster than Standard  
–F = Approx. 40% slower than Standard  
M
— = Not Planned  
Only Std, –1, –2 Speed Grade  
Only Std, –1 Speed Grade  
4
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Development Tool Support  
18-channel logic analyzer. Silicon Explorer II allows  
designers to complete the design verification process at  
their desks and reduces verification time from several hours  
per cycle to only a few seconds.  
The devices are fully supported by Actel’s line of FPGA  
development tools, including the Actel DeskTOP series and  
Designer Advantage tools. The Actel DeskTOP series is an  
integrated design environment for PCs that includes design  
entry, simulation, synthesis, and place and route tools.  
Designer Advantage, Actel’s suite of FPGA development  
point tools for PCs and Workstations, includes the ACTgen  
Macro Builder, timing-driven place and route and analysis  
tools, and device programming software.  
Integrator Series Architectural  
Overview  
The 1200XL and 3200DX architecture is composed of  
fine-grained building blocks which produce fast, efficient  
logic designs. All devices within the Integrator Series are  
composed of logic modules, routing resources, clock  
networks, and I/O modules which are the building blocks to  
design fast logic designs. In addition, a subset of devices  
contain embedded dual-port SRAM and wide-decode  
modules. The dual-port SRAM modules are optimized for  
high-speed datapath functions such as FIFOs, LIFOs, and  
scratchpad memory. The “Integrator Series Product Profile  
Family” on page 1 lists the specific logic resources  
contained within each device.  
In addition, the devices contain ActionProbe circuitry that  
provides built-in access to every node in a design, enabling  
100 percent real-time observation and analysis of a device's  
internal logic nodes without design iteration. The probe  
circuitry is accessed by Silicon Explorer II, an easy-to-use  
integrated verification and logic analysis tool that can  
sample data at 100 MHz (asynchronous) or 66 MHz  
(synchronous). Silicon Explorer II attaches to a PC’s  
standard COM port, turning the PC into a fully functional  
Plastic Device Resources  
User I/Os  
PQFP 144-Pin PQFP 160-Pin PQFP 208-Pin  
PQFP  
RQFP  
Device  
A1225XL  
PLCC 84-Pin VQFP 100-Pin  
TQFP 176-Pin  
100-Pin  
240-Pin  
72  
72  
72  
72  
72  
72  
83  
83  
83  
83  
104  
103  
126  
140  
142  
150  
A1240XL  
A3265DX  
A1280XL  
125  
125  
125  
125  
140  
152  
176  
176*  
176  
A32100DX  
A32140DX  
A32200DX  
A32300DX  
202  
202  
Package Definitions (Consult your local Actel Sales Representative for product availability.)  
PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, BGA = Ball Grid Array, VQFP = Very Thin Quad Flat  
Pack, RQFP = Plastic Power Quad Flat Pack  
* Also available in RQFP 208-pin.  
Hermetic Device Resources  
User I/Os  
CPGA  
176-Pin  
CQFP  
84-Pin  
CQFP  
172-Pin  
CQFP  
208-Pin  
CQFP  
256-Pin  
Device  
A1280XL  
140  
60  
140  
A32100DX  
A32140DX  
A32200DX  
A32300DX  
176  
202  
212  
176  
Package Definitions (Consult your local Actel Sales Representative for product availability.)  
CPGA = Ceramic Pin Grid Array, CQFP = Ceramic Quad Flat Pack  
Discontinued – v3.0  
5
Integrator Series FPGAs: 1200XL and 3200DX Families  
Logic Modules  
either a D-type flip-flop or a transparent latch. To increase  
3200DX and 1200XL devices contain three types of logic  
modules: combinatorial (C-modules), sequential  
flexibility, the S-module register can be bypassed so that it  
implements purely combinatorial logic.  
(S-modules), and decode (D-modules). 1200XL devices  
contain only the C-module and S-module, while the 3200DX  
devices contain D-modules and dual-port SRAM modules in  
addition to the S-module and C-module.  
A0  
B0  
S0  
The C-module is shown in Figure 1 and implements the  
following function:  
D00  
Y=!S1*!S0*D00+!S1*S0*D01+S1*!S0*D10+S1*S0*D11  
D01  
Y
where:  
D10  
D11  
S0=A0*B0  
S1=A1+B1  
S1  
The S-module shown in Figure 2 is designed to implement  
high-speed sequential functions within a single logic  
module. The S-module implements the same combinatorial  
logic function as the C-module while adding a sequential  
element. The sequential element can be configured as  
A1  
B1  
Figure 1 C-Module Implementation  
D00  
D01  
D00  
D01  
OUT  
OUT  
Y
D
Q
Y
D
Q
D10  
D10  
S0  
D11  
S1  
D11  
S1  
S0  
GATE  
CLR  
Up to 7-Input Function Plus D-Type Flip-Flop with Clear  
Up to 7-Input Function Plus Latch  
D00  
D01  
D0  
Y
OUT  
OUT  
Y
D
Q
D10  
S0  
D1  
D11  
S1  
GATE  
S
CLR  
Up to 8-Input Function (Same as C-Module)  
Up to 4-Input Function Plus Latch with Clear  
Figure 2 S-Module Implementation  
6
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
3200DX devices contain a third type of logic module,  
D-modules, which are arranged around the periphery of the  
device. D-modules contain wide-decode circuitry which  
provides a fast, wide-input AND function similar to that  
found in product term architectures (Figure 3). The  
D-module allows 3200DX devices to perform wide-decode  
functions at speeds comparable CPLDs and PAL devices.  
The output of the D-module has a programmable inverter  
for active HIGH or LOW assertion. The D-module output is  
hard-wired to an output pin or can be fed back into the  
array to be incorporated into other logic.  
modules can be cascaded together to form memory spaces  
of user-definable width and depth. A block diagram of the  
3200DX dual-port SRAM block is shown in Figure 4.  
7 Inputs  
Hard-Wire to I/O  
Programmable  
Inverter  
Dual-Port SRAM Modules  
Several 3200DX devices contain dual-port SRAM modules  
that have been optimized for synchronous or asynchronous  
applications. The SRAM modules are arranged in 256-bit  
blocks which can be configured as 32x8 or 64x4 (refer to  
“Integrator Series Product Profile Family” on page 1 for the  
number of SRAM blocks within a particular device). SRAM  
Feedback to Array  
Figure 3 D-Module Implementation  
WD[7:0]  
Latches  
[7:0]  
[5:0]  
RDAD[5:0]  
SRAM Module  
32 x 8 or 64 x 4  
Latches  
Read  
Port  
Logic  
Write  
Port  
Logic  
(256 Bits)  
WRAD[5:0]  
[5:0]  
Read  
Logic  
Latches  
REN  
RCLK  
MODE  
BLKEN  
WEN  
RD[7:0]  
Write  
Logic  
Routing Tracks  
WCLK  
Figure 4 3200DX Dual-Port SRAM Block  
The 3200DX SRAM modules are true dual-port structures  
containing independent READ and WRITE ports. Each  
SRAM module contains six bits of read and write addressing  
(RDAD[5:0] and WRAD[5:0], respectively) for 64x4 bit  
blocks. When configured in byte mode, the highest order  
address bits (RDAD5 and WRAD5) are not used. The read  
and write ports of the SRAM block contain independent  
clocks (RCLK and WCLK) with programmable polarities  
offering active HIGH or LOW implementation. The SRAM  
block contains eight data inputs (WD[7:0]) and eight  
outputs (RD[7:0]) which are connected to segmented  
vertical routing tracks.  
The 3200DX dual-port SRAM blocks provide an optimal  
solution for high-speed buffered applications requiring fast  
FIFO and LIFO queues. Actel’s ACTgen Macro Builder  
provides the capability to quickly design memory functions,  
Discontinued – v3.0  
7
Integrator Series FPGAs: 1200XL and 3200DX Families  
such as FIFOs, LIFOs, and RAM arrays. Additionally, unused  
SRAM blocks can be used to implement registers for other  
logic within the design.  
be joined together at the ends using antifuses to increase  
their lengths up to the full length of the track. All  
interconnects can be accomplished with a maximum of four  
antifuses.  
I/O Modules  
Horizontal Routing  
The I/O modules provide the interface between the device  
pins and the logic array. Figure 5 is a block diagram of the  
I/O module. A variety of user functions, determined by a  
library macro selection, can be implemented in the module  
(refer to the Macro Library Guide for more information). I/O  
modules contain a tri-state buffer, input and output latches  
which can be configured for input, output, or bi-directional  
pins (Figure 5).  
Horizontal channels are located between the rows of  
modules and are composed of several routing tracks. The  
horizontal routing tracks within the channel are divided  
into one or more segments. The minimum horizontal  
segment length is the width of a module pair, and the  
maximum horizontal segment length is the full length of the  
channel. Any segment that spans more than one-third the  
row length is considered a long horizontal segment. A  
typical channel is shown in Figure 6. Non-dedicated  
horizontal routing tracks are used to route signal nets;  
dedicated routing tracks are used for the global clock  
networks and for power and ground tie-off tracks.  
EN  
Q
D
Vertical Routing  
PAD  
From Array  
Another set of routing tracks run vertically through the  
module. Vertical tracks are of three types: input, output, and  
long, and are divided into one or more segments. Each  
segment in an input track is dedicated to the input of a  
particular module; each segment in an output track is  
dedicated to the output of a particular module. Long  
segments are uncommitted and can be assigned during  
routing. Each output segment spans four channels (two  
above and two below), except near the top and bottom of the  
array where edge effects occur. Long Vertical Tracks contain  
either one or two segments. An example of vertical routing  
tracks and segments is shown in Figure 6.  
G/CLK*  
Q
D
To Array  
G/CLK*  
* Can be Configured as a Latch or D Flip-Flop  
(Using C-Module)  
Figure 5 I/O Module  
Segmented  
Logic  
Horizontal  
Modules  
The Integrator Series devices contain flexible I/O structures  
where each output pin has a dedicated output enable  
control. The I/O module can be used to latch input and/or  
output data, providing a fast set-up time. In addition, the  
Actel Designer Series software tools can build a D-type  
flip-flop using a C-module to register input and/or output  
signals.  
Routing  
Tracks  
Antifuses  
Actel’s Designer Series development tools provide a design  
library of I/O macrofunctions which can implement all I/O  
configurations supported by the Integrator Series FPGAs.  
Vertical Routing Tracks  
Routing Structure  
Figure 6 Routing Structure  
The Integrator Series architecture uses vertical and  
horizontal routing tracks to interconnect the various logic  
and I/O modules. These routing tracks are metal  
interconnects that may either be of continuous length or  
broken into pieces called segments. Varying segment  
lengths allows interconnection of over 90% of design tracks  
to occur with only two antifuse connections. Segments can  
Antifuse Structure  
An antifuse is a “normally open” structure as opposed to the  
normally closed fuse structure used in PROMs or PALs. The  
use of antifuses to implement a programmable logic device  
results in highly-testable structures as well as efficient  
8
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
programming algorithms. The structure is highly testable  
because there are no pre-existing connections; therefore,  
temporary connections can be made using pass transistors.  
These temporary connections can isolate individual  
CLKB  
CLKA  
CLKINB  
CLKINA  
antifuses to be programmed and individual circuit  
structures to be tested, which can be done before and after  
programming. For example, all metal tracks can be tested  
for continuity and shorts between adjacent tracks, and the  
functionality of all logic modules can be verified.  
From  
Pads  
S0  
S1  
Internal  
Signal  
CLKMOD  
CLKO(17)  
CLKO(16)  
CLKO(15)  
Clock  
Drivers  
Clock Networks  
Two low-skew, high-fanout clock distribution networks are  
provided in each 3200DX device. These networks are  
referred to as CLK0 and CLK1. Each network has a clock  
module (CLKMOD) that selects the source of the clock  
signal and may be driven as follows:  
CLKO(2)  
CLKO(1)  
1. Externally from the CLKA pad  
2. Externally from the CLKB pad  
3. Internally from the CLKINA input  
4. Internally from the CLKINB input  
Clock Tracks  
The clock modules are located in the top row of I/O  
modules. Clock drivers and a dedicated horizontal clock  
track are located in each horizontal routing channel.  
Figure 7 Clock Networks  
IEEE Standard 1149.1 Boundary Scan Testing (BST)  
The user controls the clock module by selecting one of two  
clock macros from the macro library. The macro CLKBUF is  
used to connect one of the two external clock pins to a clock  
network, and the macro CLKINT is used to connect an  
internally-generated clock signal to a clock network. Since  
both clock networks are identical, the user does not care  
whether CLK0 or CLK1 is being used. The clock input pads  
may also be used as normal I/Os, bypassing the clock  
networks (see Figure 7).  
IEEE Standard 1149.1 defines a four-pin Test Access Port  
(TAP) interface for testing integrated circuits in a system.  
The 3200DX family provides five BST pins: Test Data In  
(TDI), Test Data Out (TDO), Test Clock (TCK), and Test  
Mode Select Test Reset (TRST) (3200DX24A only). Devices  
are configured in a test “chain” where BST data can be  
transmitted serially between devices via TDO-to-TDI  
interconnections. The TMS and TCK signals are shared  
among all devices in the test chain so that all components  
operate in the same state.  
The 3200DX devices which contain SRAM modules (all  
except A3265DX and A32140DX) have four additional  
register control resources, called quadrant clock networks  
(Figure 8 on page 10). Each quadrant clock provides a local,  
high-fanout resource to the contiguous logic modules within  
its quadrant of the device. Quadrant clock signals can  
originate from specific I/O pins or from the internal array  
and can be used as a secondary register clock, register  
clear, or output enable.  
The 3200DX family implements a subset of the IEEE  
Standard 1149.1 BST instruction in addition to a private  
instruction, which allows the use of Actel’s ActionProbe  
facility with BST. Refer to the IEEE Standard 1149.1  
specification for detailed information regarding BST.  
Boundary Scan Circuitry  
The 3200DX boundary scan circuitry consists of a Test  
Access Port (TAP) controller, test instruction register, a  
JPROBE register, a bypass register, and a boundary scan  
register. Figure 9 on page 10 shows a block diagram of the  
3200DX boundary scan circuitry.  
Test Circuitry  
All devices contain Actel’s ActionProbe test circuitry which  
test and debug a design once it is programmed into a device.  
Once a device has been programmed, the ActionProbe test  
circuitry allows the designer to probe any internal node  
during device operation to aid in debugging a design. In  
addition, 3200DX devices contain IEEE Standard 1149.1  
boundary scan test circuitry.  
When a device is operating in BST mode, four I/O pins are  
used for the TDI, TDO, TMS, and TCK signals. An active  
reset (nTRST) pin is not supported; however, the 3200DX  
device contain power-on circuitry that resets the boundary  
scan circuitry upon power-up. Table 1 on page 11  
summarizes the functions of the IEEE 1149.1 BST signals.  
Discontinued – v3.0  
9
Integrator Series FPGAs: 1200XL and 3200DX Families  
QCLKA  
QCLKC  
Quad  
Clock  
Module  
Quad  
Clock  
Module  
QCLK1  
QCLK3  
QCLKB  
QCLKD  
*QCLK1IN  
*QCLK3IN  
S0 S1  
S1 S0  
Quad  
Clock  
Quad  
Clock  
QCLK2  
QCLK4  
Module  
Module  
*QCLK2IN  
*QCLK4IN  
S0 S1  
S1 S0  
*QCLK1IN, QCLK2IN, QCLK3IN, and QCLK4IN are internally-generated signals.  
Figure 8 Quadrant Clock Network  
JPROBE Register  
Boundary Scan Register  
Output  
MUX  
TDO  
Bypass  
Register  
Control Logic  
JTAG  
TMS  
Instruction  
Decode  
TAP Controller  
TCK  
JTAG  
Instruction  
Register  
TDI  
Figure 9 3200DX IEEE 1149.1 Boundary Scan Circuitry  
10  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Table 1 IEEE 1149.1 BST Signals  
Table 2 BST Instructions  
Signal  
Name  
Function  
Test Mode  
Code  
Description  
Serial data input for BST instructions and  
data. Data is shifted in on the rising edge  
of TCK.  
Allows the external circuitry and  
board-level interconnections to be tested  
by forcing a test pattern at the output pins  
and capturing test results at the input  
pins.  
TDI  
Test Data In  
EXTEST  
000  
Serial data output for BST instructions  
and test data.  
TDO  
TMS  
TCK  
Test Data Out  
Test Mode Select  
Test Clock  
Allows a snapshot of the signals at the  
device pins to be captured and examined  
during device operation.  
SAMPLE/  
PRELOAD  
Serial data input for BST mode. Data is  
shifted in on the rising edge of TCK.  
001  
011  
100  
Clock signal to shift the BST data into  
the device.  
A private instruction allowing the user to  
connect Actel’s Micro Probe registers to  
the test chain.  
JPROBE  
JTAG  
Allows the user to build  
application-specific instructions such as  
RAM READ and RAM WRITE.  
USER  
INSTRUCTION  
All 3200DX devices are IEEE 1149.1 (JTAG) compliant.  
3200DX devices offer superior diagnostic and testing  
capabilities by providing JTAG and probing capabilites.  
These functions are controlled through the special JTAG  
pins in conjunction with the program fuse.  
Refer to the IEEE Standard 1149.1  
specification.  
HIGH Z  
CLAMP  
101  
110  
Refer to the IEEE Standard 1149.1  
specification.  
Enables the bypass register between the  
TDI and TDO pins. The test data passes  
through the selected device to adjacent  
devices in the test chain.  
JTAG fuse programmed:  
BYPASS  
111  
• TCK must be terminated—logical high or low doesn’t  
matter (to avoid floating input)  
JTAG BST Instructions  
• TDI, TMS may float or at logical high (internal pull-up is  
present)  
JTAG BST testing within the 3200DX devices is controlled  
by a Test Access Port (TAP) state machine. The TAP  
controller drives the three-bit instruction register, a bypass  
register, and the boundary scan data registers within the  
device. The TAP controller uses the TMS signal to control  
the JTAG testing of the device. The JTAG test mode is  
determined by the bitstream entered on the TMS pin. The  
table in the next column describes the JTAG instructions  
supported by the 3200DX.  
• TDO may float or connect to TDI of another device (it’s an  
output)  
JTAG fuse not programmed:  
• TCK, TDI, TDO, TMS are user I/O. If not used, they will be  
configured as tristated output.  
BST Instructions  
Boundary scan testing within the 3200DX devices is  
controlled by a Test Access Port (TAP) state machine. The  
TAP controller drives the three-bit instruction register, a  
bypass register, and the boundary scan data registers within  
the device. The TAP controller uses the TMS signal to  
control the testing of the device. The BST mode is  
determined by the bitstream entered on the TMS pin.  
Table 2 describes the test instructions supported by the  
3200DX devices.  
Design Tool Support ActionProbe  
If a device has been successfully programmed and the  
security fuse has not been programmed, any internal logic  
or I/O module output can be observed in real time using the  
ActionProbe circuitry, the PRA and/or PRB pins, and Actel’s  
Silicon Explorer diagnostic and debug tool kit.  
Reset  
The TMS pin is equipped with an internal pull-up resistor.  
This allows the TAP controller to remain in or return to the  
Test-Logic-Reset state when there is no input or when a  
logical 1 is on the TMS pin. To reset the controller, TMS  
must be HIGH for at least five TCK cycles.  
When a device is operating in BST mode, four I/O pins are  
used for the TDI, TDO, TMS, and TCLK signals. An active  
reset (nTRST) pin is not supported; however, the 3200DX  
contains power-on circuitry which automatically resets the  
BST circuitry upon power-up. The following table  
summarizes the functions of the BST signals.  
Discontinued – v3.0  
11  
Integrator Series FPGAs: 1200XL and 3200DX Families  
5.0V Operating Conditions  
Recommended Operating Conditions  
Parameter  
Commercial  
Industrial  
Military  
Units  
1
Absolute Maximum Ratings  
Temperature  
Range  
1
0 to +70  
±5  
–40 to +85  
±10  
–55 to +125  
±10  
°C  
Free Air Temperature Range  
Power Supply  
Tolerance  
Symbol  
Parameter  
Limits  
Units  
%V  
CC  
V
DC Supply Voltage  
Input Voltage  
–0.5 to +7.0  
V
V
CC  
Note:  
2
1. Ambient temperature (TA) is used for commercial and  
industrial; case temperature (TC) is used for military.  
V
V
–0.5 to V +0.5  
CC  
I
Output Voltage  
–0.5 to V +0.5  
CC  
V
O
T
Storage Temperature  
–65 to +150  
°C  
STG  
Notes:  
1. Stresses beyond those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
Exposure to absolute maximum rated conditions for extended  
periods may affect device reliability. Device should not be  
operated outside the Recommended Operating Conditions.  
2. Device inputs are normally high impedance and draw  
extremely low current. However, when input voltage is greater  
than VCC + 0.5V or less than GND – 0.5V, the internal protection  
diode will be forward biased and can draw excessive current.  
Electrical Specifications  
Commercial  
Commercial –F  
Industrial  
Max.  
Military  
Max.  
Units  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Min.  
1
V
V
(I = –10 mA)  
2.4  
2.4  
V
V
OH  
OH  
(I = –6 mA)  
3.84  
3.84  
OH  
(I = –4 mA)  
3.7  
3.7  
V
OH  
1
(I = 10 mA)  
0.5  
0.33  
0.8  
0.5  
0.33  
0.8  
V
OL  
OL  
(I = 6 mA)  
0.40  
0.8  
0.40  
0.8  
V
OL  
V
V
–0.3  
2.0  
–0.3  
2.0  
–0.3  
2.0  
–0.3  
2.0  
V
IL  
V
+ 0.3  
V
+ 0.3  
V
+ 0.3  
V + 0.3  
CC  
V
IH  
CC  
CC  
CC  
Input Transition Time t , t  
R
500  
10  
500  
10  
500  
10  
500  
10  
ns  
pF  
mA  
F
2
C
I/O Capacitance  
IO  
3
Standby Current, I  
(typical = 1 mA)  
2.0  
20  
10  
20  
CC  
I
Dynamic V Supply Current  
CC  
See the “Power Dissipation” section on page 14.  
Can be converted from IBIS model on the web.  
CC(D)  
4
IV Curve  
Notes:  
1. Only one output tested at a time. VCC = min.  
2. Includes worst-case 176 CPGA package capacitance. VOUT = 0 V, f = 1 MHz.  
3. All outputs unloaded. All inputs = VCC or GND, typical ICC = 1 mA. ICC limit includes IPP and ISV during normal operation.  
4. The IBIS model can be found at www.actel.com/support/support/support_ibis.html.  
12  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
3.3V Operating Conditions  
Recommended Operating Conditions  
Parameter  
Commercial  
Units  
1
Absolute Maximum Ratings  
1
Temperature Range  
0 to +70  
±5  
°C  
Free Air Temperature Range  
Power Supply Tolerance  
%V  
Note:  
Symbol  
Parameter  
Limits  
Units  
1. Ambient temperature (TA) is used for commercial.  
V
V
V
DC Supply Voltage  
Input Voltage  
–0.5 to +7.0  
V
V
CC  
2
I
–0.5 to V +0.5  
CC  
Output Voltage  
–0.5 to V +0.5  
CC  
V
O
T
Storage Temperature  
–65 to +150  
°C  
STG  
Notes:  
1. Stresses beyond those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
Exposure to absolute maximum rated conditions for extended  
periods may affect device reliability. Device should not be  
operated outside the Recommended Operating Conditions.  
2. Device inputs are normally high impedance and draw  
extremely low current. However, when input voltage is greater  
than VCC + 0.5V or less than GND – 0.5V, the internal protection  
diodes will forward bias and can draw excessive current.  
Electrical Specifications  
Commercial  
Parameter  
Units  
Min.  
Max.  
(I = –4 mA)  
2.15  
2.4  
V
V
OH  
1
V
OH  
(I = –3.2 mA)  
OH  
1
V
V
V
(I = 6 mA)  
0.4  
0.8  
V
OL  
OL  
–0.3  
2.0  
V
IL  
V
+ 0.3  
V
IH  
CC  
2
Input Transition Time t , t  
R
500  
10  
ns  
pF  
mA  
F
2, 3  
C
I/O Capacitance  
IO  
4
Standby Current, I  
(typical = 0.3 mA)  
0.75  
CC  
I
Dynamic V Supply Current  
CC  
See the “Power Dissipation” section on page 14.  
Can be converted from IBIS model on the web.  
CC(D)  
4
IV Curve  
Notes:  
1. Only one output tested at a time. VCC = min.  
2. Includes worst-case 84-pin PLCC package capacitance. VOUT = 0 V, f = 1 MHz.  
3. Typical standby current = 0.3 mA. All outputs unloaded. All inputs = VCC or GND.  
4. The IBIS model can be found at www.actel.com/support/support/support_ibis.html.  
Discontinued – v3.0  
13  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Package Thermal Characteristics  
Maximum junction temperature is 150°C.  
The device junction to case thermal characteristic is θjc,  
and the junction to ambient air characteristic is θja. The  
thermal characteristics for θja are shown with two different  
air flow rates.  
A sample calculation of the absolute maximum power  
dissipation allowed for a PQFP 160-pin package with still air  
at commercial temperature is as follows:  
Max. junction temp. (°C) – Max. commercial temp.  
150°C – 70°C  
---------------------------------------------------------------------------------------------------------------------------- = --------------------------------- = 2 . 4 W  
θja (°C/W)  
34°C/W  
θ
Maximum Power Dissipation  
ja  
Pin Count  
Package Type  
Still Air  
300 ft/min  
Still Air  
300 ft/min  
Plastic Quad Flat Pack  
Plastic Quad Flat Pack  
Plastic Quad Flat Pack  
Plastic Quad Flat Pack  
Plastic Leaded Chip Carrier  
Thin Quad Flat Pack  
100  
144  
160  
208  
84  
42°C/W  
36°C/W  
34°C/W  
25°C/W  
37°C/W  
32°C/W  
16.8°C/W  
16.1°C/W  
43°C/W  
33°C/W  
29°C/W  
27°C/W  
16.2°C/W  
28°C/W  
25°C/W  
11.4°C/W  
10.6°C/W  
35°C/W  
1.9 W  
2.2 W  
2.4 W  
3.2 W  
2.2 W  
2.5 W  
4.8 W  
5.0 W  
1.9 W  
2.4 W  
2.8 W  
3.0 W  
4.9 W  
2.9 W  
3.2 W  
7.0 W  
7.5 W  
2.3 W  
176  
208  
240  
100  
Power Quad Flat Pack  
Power Quad Flat Pack  
Very Thin Quad Flat Pack  
Power Dissipation  
The power dissipation due to standby current is typically a  
small component of the overall power. Standby power is  
calculated below for commercial worst case conditions.  
General Power Equation  
P = [ICCstandby + ICCactive] * VCC + IOL* VOL* N  
+ IOH * (VCC – VOH) * M  
ICC  
VCC  
Power  
2 mA  
5.25 V  
10.5 mW  
where:  
The static power dissipation by TTL loads depends on the  
number of outputs driving HIGH or LOW and the DC load  
current. Again, this number is typically small. For instance,  
a 32-bit bus sinking 4 mA at 0.33V will generate 42 mW with  
all outputs driving LOW and 140 mW with all outputs driving  
HIGH. The actual dissipation will average somewhere in  
between as I/Os switch states with time.  
ICCstandby is the current flowing when no inputs or  
outputs are changing.  
ICCactive is the current flowing due to CMOS switching.  
IOL, IOH are TTL sink/source currents.  
VOL, VOH are TTL level output voltages.  
N equals the number of outputs driving TTL loads to VOL  
.
Active Power Component  
M equals the number of outputs driving TTL loads to VOH  
.
Power dissipation in CMOS devices is usually dominated by  
the active (dynamic) power dissipation. This component is  
frequency-dependent, a function of the logic and the  
external I/O. Active power dissipation results from charging  
internal chip capacitances of the interconnect,  
unprogrammed antifuses, module inputs, and module  
outputs, plus external capacitance due to PC board traces  
and load device inputs. An additional component of the  
active power dissipation is the totem pole current in the  
CMOS transistor pairs. The net effect can be associated with  
an equivalent capacitance that can be combined with  
frequency and voltage to represent active power dissipation.  
An accurate determination of N and M is problematic  
because their values depend on the family type, design  
details, and on the system I/O. The power can be divided  
into two components: static and active.  
Static Power Component  
Actel FPGAs have small static power components that  
result in lower power dissipation than PALs or PLDs. By  
integrating multiple PALs/PLDs into one FPGA, an even  
greater reduction in board-level power dissipation can  
be achieved.  
14  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Equivalent Capacitance  
fp  
= Average output buffer switching rate in MHz  
= Average first routed array clock rate in MHz  
= Average second routed array clock rate in MHz  
The power dissipated by a CMOS circuit can be expressed by  
fq1  
Equation 1  
fq2  
Power (µW) = CEQ * VCC2 * F  
(1)  
Fixed Capacitance Values for Actel FPGAs  
(pF)  
where:  
CEQ is the equivalent capacitance expressed in picofarads  
(pF).  
Table 5.  
VCC is power supply in volts (V).  
r1  
routed_Clk1  
106  
r2  
routed_Clk2  
106  
Device Type  
A1225XL  
A1240XL  
A3265DX  
A1280XL  
A32100DX  
A32140DX  
A32200DX  
A32300DX  
F is the switching frequency in megahertz (MHz).  
Equivalent capacitance is calculated by measuring ICCactive  
at a specified frequency and voltage for each circuit  
component of interest. Measurements have been made over  
a range of frequencies at a fixed value of VCC. Equivalent  
capacitance is frequency-independent, so the results may  
be used over a wide range of operating conditions.  
Equivalent capacitance values are shown below.  
134  
158  
168  
178  
190  
230  
285  
134  
158  
168  
178  
190  
230  
285  
C
Values for Actel FPGAs  
EQ  
Modules (CEQM  
Input Buffers (CEQI  
Output Buffers (CEQO  
Routed Array Clock Buffer Loads (CEQCR  
)
5.2  
11.6  
23.8  
3.5  
Determining Average Switching Frequency  
To determine the switching frequency for a design, the user  
must have a detailed understanding of the data input values  
to the circuit. The following guidelines represent worst-case  
scenarios; they can be generally used to predict the upper  
limits of power dissipation.  
)
)
)
To calculate the active power dissipated from the complete  
design, the switching frequency of each part of the logic  
must be known. Equation 2 shows a piece-wise linear  
summation over all components.  
Logic Modules (m)  
=
80% of  
Combinatorial  
Modules  
Power = VCC2 * [(m x CEQM * fm)Modules  
(n * CEQI * fn)Inputs + (p * (CEQO + CL) * fp)outputs  
0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1 * fq1)routed_Clk1  
+
+
Inputs Switching (n)  
Outputs Switching (p)  
=
=
=
# of Inputs/4  
# Outputs/4  
+
0.5 * (q2 * CEQCR * fq2)routed_Clk2 + (r2 * fq2)routed_Clk2 (2)  
First Routed Array Clock Loads  
(q1)  
40% of Sequential  
Modules  
where:  
m
n
p
= Number of logic modules switching at frequency fm  
= Number of input buffers switching at frequency fn  
= Number of output buffers switching at frequency fp  
Second Routed Array Clock  
Loads (q2)  
=
40% of Sequential  
Modules  
Load Capacitance (CL)  
=
=
35 pF  
F/10  
q1  
= Number of clock loads on the first routed array  
clock  
Average Logic Module Switching  
Rate (fm)  
q2  
= Number of clock loads on the second routed array  
clock  
Average Input Switching Rate  
(fn)  
=
=
=
=
F/5  
F/10  
F
r1  
r2  
= lFixed capacitance due to first routed array clock  
= Fixed capacitance due to second routed array  
clock  
Average Output Switching Rate  
(fp)  
Average First Routed Array  
Clock Rate (fq1)  
CEQM = Equivalent capacitance of logic modules in pF  
CEQI = Equivalent capacitance of input buffers in pF  
CEQO = Equivalent capacitance of output buffers in pF  
CEQCR = Equivalent capacitance of routed array clock in pF  
Average Second Routed Array  
Clock Rate (fq2)  
F/2  
CL  
fm  
fn  
= Output load capacitance in p  
= Average logic module switching rate in MHz  
= Average input buffer switching rate in MHz  
Discontinued – v3.0  
15  
Integrator Series FPGAs: 1200XL and 3200DX Families  
1200XL Timing Model*  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
I/O Module  
Combinatorial  
Logic Module  
I/O Module  
t
INYL = 1.3 ns  
tIRD2 = 3.2 ns†  
t
DLH = 3.8 ns  
tRD1 = 0.8 ns  
tRD2 = 1.3 ns  
tRD4 = 2.0 ns  
D
Q
t
PD = 2.6 ns  
t
RD8 = 3.2 ns  
I/O Module  
tDLH = 3.8 ns  
G
Sequential  
Logic Module  
tINH = 0.0 ns  
tINSU = 0.3 ns  
tINGL = 2.6 ns  
Combin-  
atorial  
D
D
G
Q
Q
Logic  
included  
in tSUD  
tRD1 = 0.8 ns  
tENHZ = 5.4 ns  
tOUTH = 0.0 ns  
tOUTSU = 0.3 ns  
t
CO = 2.6 ns  
tSUD = 0.4 ns  
HD = 0.0 ns  
Array  
Clocks  
t
GLH = 4.2 ns  
t
tCKH = 5.7 ns  
FO = 256  
FMAX = 225 MHz  
tLCO = 10.7 ns (64 loads, pad-pad)  
Notes:  
1. *Values shown for A1225XL-2 at worst-case commercial conditions.†  
2. Input Module Predicted Routing Delay  
16  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
3200DX Timing Model (Logic Functions using Array Clocks)*  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
I/O Module  
I/O Module  
INPY = 1.2 ns  
t
tIRD1 = 2.7 ns  
Combinatorial  
Module  
t
DLH = 3.2 ns  
tRD1 = 0.3 ns  
tRD2 = 0.7 ns  
tRD4 = 1.2 ns  
D
Q
tPD = 2.1 ns  
G
Decode  
Module  
tINH = 0.0 ns  
tINSU = 0.4 ns  
tINGO = 2.8 ns  
t
RDD = 0.4 ns  
I/O Module  
tPDD = 2.1 ns  
tDLH = 3.2 ns  
Sequential  
Logic Module  
t
RD1 = 0.3 ns  
Combin-  
D
D
G
Q
Q
atorial  
Logic  
included  
in tSUD  
tENHZ = 7.1 ns  
tLH = 0.0 ns  
tLSU = 0.4 ns  
tCO = 2.0 ns  
tSUD = 0.3 ns  
HD = 0.0 ns  
t
GHL= 6.5 ns  
t
Array  
Clocks  
tCKH = 5.3 ns  
FMAX = 173 MHz  
*Values shown for A3265DX-2 at worst-case commercial conditions.  
Discontinued – v3.0  
17  
Integrator Series FPGAs: 1200XL and 3200DX Families  
3200DX Timing Model (Logic Functions using Quadrant Clocks)*  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
I/O Module  
I/O Module  
INPY = 1.4 ns  
t
tIRD1 = 1.9 ns  
Combinatorial  
Module  
t
DLH = 3.7 ns  
tRD1 = 1.1 ns  
tRD2 = 1.7 ns  
tRD4 = 2.6 ns  
D
Q
tPD = 2.0 ns  
G
Decode  
Module  
tINH = 0.0 ns  
tINSU = 0.45 ns  
tINGO = 3.3 ns  
t
RDD = 0.3 ns  
I/O Module  
tPDD = 2.5 ns  
tDLH = 3.7 ns  
Sequential  
Logic Module  
t
RD1 = 1.1 ns  
Combin-  
D
D
G
Q
Q
atorial  
Logic  
included  
in tSUD  
tENHZ = 8.3 ns  
tLH = 0.0 ns  
tLSU = 0.26 ns  
tCO = 2.3 ns  
tSUD = 0.3 ns  
HD = 0.0 ns  
t
GHL= 8.9 ns  
t
Quadrant  
Clocks  
t
CKH = 5.3 ns**  
FMAX = 165 MHz  
* Preliminary values shown for A32200DX-3 at worst-case commercial conditions.  
** Load-dependent.  
18  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
3200DX Timing Model (SRAM Functions)*  
Input Delays  
I/O Module  
t
INPY = 1.4 ns  
tIRD1 = 1.9 ns  
D
Q
G
Predicted  
Routing  
Delays  
I/O Module  
DLH = 3.7 ns  
tINSU = 0.45 ns  
tINH = 0.05 ns  
tINGO = 3.3 ns  
t
RD [7:0]  
RDAD [5:0]  
REN  
WD [7:0]  
tRD1 = 1.1 ns  
WRAD [5:0]  
BLKEN  
D
G
Q
WEN  
WCLK  
RCLK  
tADSU = 1.5 ns  
tADH = 0.0 ns  
tRENSUA = 0.6 ns  
t
ADSU = 1.5 ns  
tADH = 0.0 ns  
tGHL= 8.9 ns  
LSU = 0.26 ns  
tLH = 0.0 ns  
t
ARRAY  
CLOCKS  
tWENSU = 2.6 ns  
tBENS = 2.6 ns  
tRCO = 3.2 ns  
F
MAX = 165 MHz  
*Values shown for A32200DX-3 at worst-case commercial conditions.  
Discontinued – v3.0  
19  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Parameter Measurement  
Output Buffer Delays  
E
D
PAD To AC test loads (shown below)  
TRIBUFF  
In  
50%  
VOH  
E
50%  
E
50%  
50%  
VCC  
50%  
VOH  
50%  
1.5V  
1.5V  
VOL  
90%  
PAD  
VOL  
PAD  
PAD  
GND  
1.5V  
10%  
1.5V  
tDLH  
tDHL  
tENZL  
tENLZ  
tENZH  
tENHZ  
AC Test Loads  
Load 1  
Load 2  
(Used to measure propagation delay)  
(Used to measure rising/falling edges)  
VCC  
GND  
To the output under test  
35 pF  
R to VCC for tPLZ/tPZL  
R to GND for tPHZ/tPZH  
R = 1 k¾  
To the output under test  
35 pF  
Input Buffer Delays  
Module Delays  
S
A
B
Y
Y
PAD  
INBUF  
S, A or B  
Y
50% 50%  
3V  
50%  
50%  
PAD  
0V  
50%  
1.5V  
VCC  
1.5V  
tPLH  
tPHL  
Y
Y
GND  
50%  
50%  
tPHL  
50%  
tPLH  
tINYH  
tINYL  
20  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Sequential Module Timing Characteristics  
Flip-Flops and Latches  
D
E
CLK  
Y
PRE  
CLR  
(Positive Edge Triggered)  
tHD  
D1  
tA  
tWCLKA  
tSUD  
G, CLK  
tSUENA  
tWCLKI  
tHENA  
E
tCO  
Q
tRS  
PRE, CLR  
tWASYN  
Note:  
D represents all data functions involving A, B, and S for multiplexed flip-flops.  
Discontinued – v3.0  
21  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Sequential Timing Characteristics (continued)  
Input Buffer Latches  
PAD  
DATA  
IBDL  
G
CLK  
PAD  
CLKBUF  
DATA  
G
tINH  
tINSU  
tHEXT  
CLK  
tSUEXT  
Output Buffer Latches  
D
G
PAD  
OBDLHS  
D
G
tOUTSU  
tOUTH  
22  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Decode Module Timing  
A
B
C
D
E
Y
H
F
G
VCC  
A–G, H  
50%  
VCC  
Y
tPHL  
tPLH  
SRAM Timing Characteristics  
Read Port  
Write Port  
WRAD [5:0]  
BLKEN  
WEN  
RDAD [5:0]  
LEW  
RAM Array  
32x8 or 64x4  
(256 Bits)  
REN  
WCLK  
RCLK  
WD [7:0]  
RD [7:0]  
Discontinued – v3.0  
23  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Dual-Port SRAM Timing Waveforms  
3200DX SRAM Write Operation  
tRCKHL  
tRCKHL  
WCLK  
tADSU  
tADH  
WD[7:0]  
WRAD[5:0]  
Valid  
tWENSU  
tWENH  
WEN  
tBENSU  
Valid  
tBENH  
BLKEN  
Note: Identical timing for falling-edge clock.  
3200DX SRAM Synchronous Read Operation  
tCKHL  
tRCKHL  
RCLK  
tRENSU  
tRENH  
REN  
tADSU  
Valid  
tADH  
RDAD[5:0]  
tRCO  
tDOH  
Old Data  
New Data  
RD[7:0]  
Note: Identical timing for falling-edge clock.  
24  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
3200DX SRAM Asynchronous Read Operation—Type 1  
(Read Address Controlled)  
tRDADV  
RDAD[5:0]  
RD[7:0]  
ADDR1  
tDOH  
Data 1  
ADDR2  
tRPD  
Data 2  
3200DX SRAM Asynchronous Read Operation—Type 2  
(Write Address Controlled)  
WEN  
tWENSU  
tWENH  
WD[7:0]  
WRAD[5:0]  
BLKEN  
Valid  
tADH  
tADSU  
WCLK  
tRPD  
tDOH  
Old Data  
New Data  
RD[7:0]  
Discontinued – v3.0  
25  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Predictable Performance:  
Tight Delay Distributions  
are not determined until after placement and routing of the  
user’s design is complete. Delay values may then be  
determined by using the Designer Series utility or  
Propagation delay between logic modules depends on the  
resistive and capacitive loading of the routing tracks, the  
interconnect elements, and the module inputs being driven.  
Propagation delay increases as the length of routing tracks,  
the number of interconnect elements, or the number of  
inputs increase.  
performing simulation with post-layout delays.  
Critical Nets and Typical Nets  
Propagation delays in this data sheet apply to typical nets,  
which are used for initial design performance evaluation.  
The abundant routing resources in the Integrator Series  
architecture allows for deterministic timing. Using  
DirectTime, a timing-driven place and route tool in Actel’s  
Designer Series development software, the designer may  
specify timing-critical nets and system clock frequency.  
Using these timing specifications, the place and route  
software optimize the design layout to meet the user’s  
specifications.  
From a design perspective, the propagation delay can be  
statistically correlated or modeled by the fanout (number of  
loads) driven by a module. Higher fanout usually requires  
some paths to have longer routing tracks.  
The Integrator Series delivers a very tight fanout delay  
distribution. This tight distribution is achieved in two ways:  
by decreasing the delay of the interconnect elements and by  
decreasing the number of interconnect elements per path.  
Long Tracks  
Some nets in the design use long tracks, which are special  
routing resources that span multiple rows, columns, or  
modules. Long tracks employ three and sometimes four  
antifuse connections. This increases capacitance and  
resistance, resulting in longer net delays for macros  
connected to long tracks. Typically, up to 6% of nets in a fully  
utilized device require long tracks. Long tracks contribute  
approximately 3 ns to 6 ns delay, which is represented  
statistically in higher fanout (FO=8) routing delays in the  
data sheet specifications section.  
Actel’s patented PLICE antifuse offers  
a very low  
resistive/capacitive interconnect. The antifuses, fabricated  
in 0.6 micron lithography, offer nominal levels of 100 ohms  
resistance and 7.0 femtofarad (fF) capacitance per antifuse.  
The Integrator Series fanout distribution is also tight due to  
the low number of antifuses required for each interconnect  
path. The proprietary architecture limits the number of  
antifuses per path to a maximum of four, with 90% of  
interconnects using two antifuses.  
Timing Characteristics  
Timing Derating  
A timing derating factor of 0.45 is used to reflect best-case  
processing. Note that this factor is relative to the “standard  
speed” timing parameters, and must be multiplied by the  
appropriate voltage and temperature derating factors for a  
given application.  
Timing characteristics for devices fall into three categories:  
family-dependent, device-dependent, and design-dependent.  
The input and output buffer characteristics are common to  
all Integrator Series members. Internal routing delays are  
device-dependent. Design dependency means actual delays  
Timing Derating Factor (Temperature and Voltage)  
Industrial  
Military  
Min.  
Max.  
Min.  
Max.  
(Commercial Specification) x  
0.69  
1.11  
0.67  
1.23  
Timing Derating Factor for Designs at Typical Temperature (T = 25°C)  
J
and Voltage (5.0V)  
(Maximum Specification, Worst-Case Condition) x  
0.85  
Note: This derating factor applies to all routing and propagation  
delays.  
26  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Temperature and Voltage Derating Factors  
(Normalized to Worst-Case Commercial, T = 4.75V, 70°C)  
J
–55  
–40  
0
25  
70  
85  
125  
4.50  
4.75  
5.00  
5.25  
5.50  
0.75  
0.71  
0.69  
0.68  
0.67  
0.79  
0.75  
0.72  
0.69  
0.69  
0.86  
0.82  
0.80  
0.77  
0.76  
0.92  
0.87  
0.85  
0.82  
0.81  
1.06  
1.00  
0.97  
0.95  
0.93  
1.11  
1.05  
1.02  
0.98  
0.97  
1.23  
1.16  
1.13  
1.09  
1.08  
Junction Temperature and Voltage Derating Curves  
(Normalized to Worst-Case Commercial, TJ = 4.75V, 70°C)  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
125˚C  
85˚C  
70˚C  
25˚C  
0˚C  
–40˚C  
–55˚C  
4.50  
4.75  
5.00  
Voltage (V)  
5.25  
5.50  
Note: This derating factor applies to all routing and propagation delays.  
Discontinued – v3.0  
27  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A1225XL Timing Characteristics  
(Worst-Case Commercial Conditions, V  
= 4.75 V, T = 70°C)  
CC  
‘–3’ Speed  
Min. Max.  
J
‘–2’ Speed  
Min. Max.  
‘–1’ Speed  
Min. Max.  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max. Units  
1
Logic ModulePropagation Delays  
t
t
t
t
Single Module  
2.6  
2.6  
2.6  
2.6  
3.0  
3.0  
3.0  
3.0  
3.5  
3.5  
3.5  
3.5  
5.0  
5.0  
5.0  
5.0  
4.2  
4.2  
4.2  
4.2  
ns  
ns  
ns  
ns  
PD1  
CO  
GO  
RS  
Sequential Clk-to-Q  
Latch G-to-Q  
Flip-Flop (Latch) Reset-to-Q  
2
Predicted Routing Delays  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
0.8  
1.3  
1.7  
2.0  
3.2  
0.9  
1.4  
1.8  
2.3  
3.5  
1.1  
1.7  
2.2  
2.7  
4.2  
1.57  
2.43  
3.15  
3.86  
6.00  
1.3  
2.0  
2.6  
3.2  
5.0  
ns  
ns  
ns  
ns  
ns  
3,4  
Sequential Timing Characteristics  
tSUD  
Flip-Flop (Latch) Data Input Set-Up  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
Flip-Flop (Latch) Clock Active Pulse Width  
Flip-Flop (Latch) Asynchronous Pulse Width  
Flip-Flop Clock Input Period  
0.4  
0.0  
0.8  
0.0  
3.2  
3.2  
6.5  
0.0  
0.3  
0.0  
0.3  
0.4  
0.0  
0.9  
0.0  
3.6  
3.6  
7.4  
0.0  
0.4  
0.0  
0.4  
0.5  
0.0  
1.0  
0.0  
4.3  
4.3  
8.7  
0.0  
0.4  
0.0  
0.4  
0.7  
0.0  
1.4  
0.0  
6.1  
6.1  
12.4  
0.0  
0.6  
0.0  
0.6  
0.6  
0.0  
1.2  
0.0  
5.2  
5.2  
10.4  
0.0  
0.5  
0.0  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tHD  
tSUENA  
tHENA  
tWCLKA  
tWASYN  
tA  
tINH  
Input Buffer Latch Hold  
tINSU  
tOUTH  
tOUTSU  
fMAX  
Input Buffer Latch Set-Up  
Output Buffer Latch Hold  
Output Buffer Latch Set-Up  
Flip-Flop (Latch) Clock  
Frequency  
225  
200  
170  
120  
115  
MHz  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from  
the DirectTime Analyzer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/hold timing  
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts  
(adds) to the internal set-up (hold) time.  
5. VCC = 3.0V for 3.3V specifications.  
28  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A1225XL Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
‘–2’ Speed  
Min. Max.  
3.3V ‘Std’  
Speed  
‘–1’ Speed  
Min. Max.  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
Input Module Propagation Delays  
t
t
t
t
Pad-to-Y High  
Pad-to-Y Low  
G-to-Y High  
G-to-Y Low  
1.1  
1.3  
2.0  
2.6  
1.2  
1.4  
2.3  
3.0  
1.4  
1.7  
2.7  
3.5  
2.0  
2.4  
3.9  
5.0  
1.7  
2.0  
3.2  
4.2  
ns  
ns  
ns  
ns  
INYH  
INYL  
INGH  
INGL  
1
Input Module Predicted Routing Delays  
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.9  
3.2  
3.8  
4.1  
5.2  
3.3  
3.6  
4.2  
4.6  
5.9  
3.9  
4.3  
5.0  
5.4  
6.9  
5.6  
6.1  
7.2  
7.7  
9.9  
4.7  
5.2  
6.0  
6.5  
8.3  
ns  
ns  
ns  
ns  
ns  
IRD1  
IRD2  
IRD3  
IRD4  
IRD8  
Global Clock Network  
FO = 32  
FO = 256  
5.1  
5.7  
5.8  
6.5  
6.8  
7.6  
9.7  
10.9  
8.2  
9.1  
t
t
t
t
t
t
t
t
f
Input Low to High  
Input High to Low  
CKH  
ns  
ns  
FO = 32  
FO = 256  
5.0  
5.7  
5.7  
6.5  
6.7  
7.6  
9.6  
10.9  
8.0  
9.1  
CKL  
FO = 32  
FO = 256  
2.6  
2.7  
3.0  
3.1  
3.5  
3.6  
5.0  
5.1  
4.2  
4.3  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
PWH  
PWL  
CKSW  
SUEXT  
HEXT  
P
ns  
FO = 32  
FO = 256  
2.6  
2.7  
3.0  
3.1  
3.5  
3.6  
5.0  
5.1  
4.2  
4.3  
ns  
FO = 32  
FO = 256  
0.8  
0.8  
0.9  
0.9  
1.0  
1.0  
1.4  
1.4  
1.2  
1.2  
ns  
FO = 32  
FO = 256  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
Input Latch External Set-Up  
Input Latch External Hold  
Minimum Period  
ns  
FO = 32  
FO = 256  
2.6  
3.2  
2.9  
3.7  
3.4  
4.3  
4.9  
6.1  
4.1  
5.2  
ns  
FO = 32  
FO = 256  
5.4  
5.6  
6.1  
6.3  
7.2  
7.4  
10.3  
10.6  
8.6  
8.9  
ns  
FO = 32  
FO = 256  
225  
200  
200  
180  
170  
155  
120.  
105  
115  
105  
Maximum Frequency  
MAX  
MHz  
Note:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
Discontinued – v3.0  
29  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A1225XL Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
CC  
‘–2’ Speed  
Min. Max.  
J
3.3V ‘Std”  
Speed  
‘–1’ Speed  
Min. Max.  
‘Std’ Speed  
‘–F’ Speed  
Min. Max.  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
1
TTL Output Module Timing  
t
t
t
t
t
t
t
t
t
Data-to-Pad High  
Data-to-Pad Low  
Enable-Pad Z to High  
Enable-Pad Z to Low  
Enable-Pad High to Z  
Enable-Pad Low to Z  
G-to-Pad High  
3.8  
4.1  
3.8  
4.1  
5.4  
5.4  
4.2  
4.7  
4.3  
4.6  
4.3  
4.7  
6.1  
6.1  
4.8  
5.4  
5.0  
5.4  
5.0  
5.5  
7.2  
7.2  
5.6  
6.3  
7.1  
7.7  
6.0  
6.5  
6.0  
6.5  
8.6  
8.6  
6.7  
7.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DLH  
DHL  
7.1  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
7.9  
10.3  
10.3  
8.0  
G-to-Pad Low  
9.0  
GHL  
I/O Latch Clock-Out (Pad-to-Pad),  
64 Clock Loading  
LCO  
9.0  
10.0  
12.0  
17.2  
14.4  
ns  
t
Array Clock-Out (Pad-to-Pad),  
64 Clock Loading  
ACO  
12.8  
0.04  
0.05  
14.4  
0.04  
0.06  
17.0  
0.05  
0.07  
24.3  
0.06  
0.08  
20.4  
0.06  
0.08  
ns  
d
d
Capacitive Loading, Low to High  
ns/pF  
ns/pF  
TLH  
THL  
Capacitive Loading, High to Low  
1
CMOS Output Module Timing  
t
t
t
t
t
t
t
t
t
Data-to-Pad High  
Data-to-Pad Low  
Enable-Pad Z to High  
Enable-Pad Z to Low  
Enable-Pad High to Z  
Enable-Pad Low to Z  
G-to-Pad High  
4.8  
3.4  
3.8  
4.1  
5.4  
5.4  
4.2  
4.7  
5.4  
3.8  
4.3  
4.7  
6.1  
6.1  
4.8  
5.4  
6.4  
4.5  
5.0  
5.5  
7.2  
7.2  
5.6  
6.3  
9.1  
6.4  
7.7  
5.4  
6.0  
6.6  
8.6  
8.6  
6.7  
7.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DLH  
DHL  
7.1  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
7.9  
10.3  
10.3  
8.0  
G-to-Pad Low  
9.0  
GHL  
I/O Latch Clock-Out (Pad-to-Pad),  
64 Clock Loading  
LCO  
10.7  
11.8  
14.2  
20.3  
17.0  
ns  
t
Array Clock-Out (Pad-to-Pad),  
64 Clock Loading  
ACO  
15.0  
0.05  
0.05  
17.0  
0.06  
0.05  
20.0  
0.07  
0.06  
28.6  
0.08  
0.07  
24.0  
0.08  
0.07  
ns  
d
d
Capacitive Loading, Low to High  
Capacitive Loading, High to Low  
ns/pF  
ns/pF  
TLH  
THL  
Note:  
1. Delays based on 35 pF loading.  
30  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A1240XL Timing Characteristics  
(Worst-Case Commercial Conditions, V  
= 4.75 V, T = 70°C)  
J
CC  
‘–3’ Speed  
Min. Max.  
‘–2’ Speed  
Min. Max.  
‘–1’ Speed  
Min. Max.  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
1
Logic ModulePropagation Delays  
t
t
t
t
Single Module  
2.6  
2.6  
2.6  
2.6  
3.0  
3.0  
3.0  
3.0  
3.5  
3.5  
3.5  
3.5  
5.0  
5.0  
5.0  
5.0  
4.2  
4.2  
4.2  
4.2  
ns  
ns  
ns  
ns  
PD1  
CO  
GO  
RS  
Sequential Clk-to-Q  
Latch G-to-Q  
Flip-Flop (Latch) Reset-to-Q  
2
Predicted Routing Delays  
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.1  
1.3  
1.7  
2.3  
3.4  
1.2  
1.4  
1.9  
2.6  
3.8  
1.4  
1.7  
2.2  
3.0  
4.5  
2.0  
2.4  
3.1  
4.3  
6.4  
1.7  
2.0  
2.6  
3.6  
5.4  
ns  
ns  
ns  
ns  
ns  
RD1  
RD2  
RD3  
RD4  
RD8  
3, 4  
Sequential Timing Characteristics  
t
t
t
t
t
t
t
t
t
t
t
f
Flip-Flop (Latch) Data Input Set-Up  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
Flip-Flop (Latch) Clock Active Pulse Width  
Flip-Flop (Latch) Asynchronous Pulse Width  
Flip-Flop Clock Input Period  
0.4  
0.0  
0.8  
0.0  
3.4  
3.4  
6.8  
0.0  
0.3  
0.0  
0.3  
0.4  
0.0  
0.9  
0.0  
3.8  
3.8  
7.7  
0.0  
0.4  
0.0  
0.4  
0.5  
0.0  
1.0  
0.0  
4.5  
4.5  
9.1  
0.0  
0.4  
0.0  
0.4  
0.7  
0.0  
1.4  
0.0  
6.4  
6.4  
13.0  
0.0  
0.6  
0.0  
0.6  
0.6  
0.0  
1.2  
0.0  
5.4  
5.4  
10.9  
0.0  
0.5  
0.0  
0.5  
ns  
ns  
SUD  
HD  
ns  
SUENA  
HENA  
WCLKA  
WASYN  
A
ns  
ns  
ns  
ns  
Input Buffer Latch Hold  
ns  
INH  
Input Buffer Latch Set-Up  
ns  
INSU  
OUTH  
OUTSU  
MAX  
Output Buffer Latch Hold  
ns  
Output Buffer Latch Set-Up  
ns  
Flip-Flop (Latch) Clock Frequency  
215  
190  
160  
110  
105  
MHz  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from  
the DirectTime Analyzer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/hold timing  
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts  
(adds) to the internal set-up (hold) time.  
5. VCC = 3.0V for 3.3V specifications.  
Discontinued – v3.0  
31  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A1240XL Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
‘–2’ Speed  
Min. Max.  
3.3V ‘Std’  
Speed  
‘–1’ Speed  
Min. Max.  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
Input Module Propagation Delays  
t
t
t
t
Pad-to-Y High  
Pad-to-Y Low  
G-to-Y High  
G-to-Y Low  
1.1  
1.3  
2.0  
2.6  
1.2  
1.4  
2.3  
3.0  
1.4  
1.7  
2.7  
3.5  
2.0  
2.4  
3.9  
5.0  
1.7  
2.0  
3.2  
4.2  
ns  
ns  
ns  
ns  
INYH  
INYL  
INGH  
INGL  
1
Input Module Predicted Routing Delays  
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.9  
3.4  
3.8  
4.1  
5.6  
3.3  
3.8  
4.3  
4.7  
6.3  
3.9  
4.5  
5.1  
5.5  
7.4  
5.6  
6.4  
4.7  
5.4  
6.1  
6.6  
8.9  
ns  
ns  
ns  
ns  
ns  
IRD1  
IRD2  
IRD3  
IRD4  
IRD8  
7.3  
7.9  
10.6  
Global Clock Network  
FO = 32  
FO = 256  
5.1  
5.7  
5.8  
6.5  
6.8  
7.6  
9.7  
10.9  
8.2  
9.1  
ns  
ns  
t
t
t
t
t
t
t
t
f
Input Low to High  
Input High to Low  
CKH  
FO = 32  
FO = 256  
5.0  
5.7  
5.7  
6.5  
6.7  
7.6  
9.6  
10.9  
8.0  
9.1  
ns  
ns  
CKL  
FO = 32  
FO = 256  
2.7  
2.9  
3.1  
3.3  
3.6  
3.9  
5.1  
5.6  
4.3  
4.7  
ns  
ns  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
PWH  
PWL  
CKSW  
SUEXT  
HEXT  
P
FO = 32  
FO = 256  
2.7  
2.9  
3.1  
3.3  
3.6  
3.9  
5.1  
5.6  
4.3  
4.7  
ns  
ns  
FO = 32  
FO = 256  
0.8  
0.8  
0.9  
0.9  
1.0  
1.0  
1.4  
1.4  
1.2  
1.2  
ns  
ns  
FO = 32  
FO = 256  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
Input Latch External Set-Up  
Input Latch External Hold  
Minimum Period  
FO = 32  
FO = 256  
2.6  
3.2  
2.9  
3.7  
3.4  
4.3  
4.9  
6.1  
4.1  
5.2  
ns  
ns  
FO = 32  
FO = 256  
5.6  
6.0  
6.3  
6.8  
7.4  
8.0  
10.6  
11.4  
8.9  
9.6  
ns  
ns  
FO = 32  
FO = 256  
215  
195  
190  
170  
160  
144  
110  
100  
105  
95  
MHz  
MHz  
Maximum Frequency  
MAX  
Note:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
32  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A1240XL Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
‘–2’ Speed  
Min. Max.  
3.3V ‘Std’  
Speed  
‘–1’ Speed  
Min. Max.  
‘Std’ Speed  
‘–F’ Speed  
Min. Max.  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
1
TTL Output Module Timing  
t
t
t
t
t
t
t
t
t
Data-to-Pad High  
Data-to-Pad Low  
Enable-Pad Z to High  
Enable-Pad Z to Low  
Enable-Pad High to Z  
Enable-Pad Low to Z  
G-to-Pad High  
3.8  
4.1  
3.8  
4.1  
5.4  
5.4  
4.2  
4.7  
4.3  
4.6  
4.3  
4.7  
6.1  
6.1  
4.8  
5.4  
5.0  
5.4  
5.0  
5.5  
7.2  
7.2  
5.6  
6.3  
7.1  
7.7  
6.0  
6.5  
6.0  
6.6  
8.6  
8.6  
6.7  
7.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DLH  
DHL  
7.1  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
7.9  
10.3  
10.3  
8.0  
G-to-Pad Low  
9.0  
GHL  
I/O Latch Clock-Out (Pad-to-Pad),  
64 Clock Loading  
LCO  
9.2  
10.5  
12.3  
17.6  
14.8  
ns  
t
Array Clock-Out (Pad-to-Pad),  
64 Clock Loading  
ACO  
12.9  
0.04  
0.05  
14.6  
0.04  
0.06  
17.2  
0.05  
0.07  
24.6  
0.06  
0.08  
20.6  
0.06  
0.08  
ns  
d
d
Capacity Loading, Low to High  
ns/pF  
ns/pF  
TLH  
THL  
Capacity Loading, High to Low  
1
CMOS Output Module Timing  
t
t
t
t
t
t
t
t
t
Data-to-Pad High  
Data-to-Pad Low  
Enable-Pad Z to High  
Enable-Pad Z to Low  
Enable-Pad High to Z  
Enable-Pad Low to Z  
G-to-Pad High  
4.8  
3.4  
3.8  
4.1  
5.4  
5.4  
4.2  
4.7  
5.4  
3.8  
4.3  
4.7  
6.1  
6.1  
4.8  
5.4  
6.4  
4.5  
5.0  
5.5  
7.2  
7.2  
5.6  
6.3  
9.1  
6.4  
7.7  
5.4  
6.0  
6.6  
8.6  
8.6  
6.7  
7.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DLH  
DHL  
7.1  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
7.9  
10.3  
10.3  
8.0  
G-to-Pad Low  
9.0  
GHL  
I/O Latch Clock-Out (Pad-to-Pad),  
64 Clock Loading  
LCO  
10.9  
12.4  
14.5  
20.7  
17.4  
ns  
t
Array Clock-Out (Pad-to-Pad),  
64 Clock Loading  
ACO  
15.2  
0.05  
0.05  
17.2  
0.06  
0.05  
20.3  
0.07  
0.06  
29.0  
0.08  
0.07  
24.4  
0.08  
0.07  
ns  
d
d
Capacity Loading, Low to High  
Capacity Loading, High to Low  
ns/pF  
ns/pF  
TLH  
THL  
Note:  
1. Delays based on 35 pF loading.  
Discontinued – v3.0  
33  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A3265DX Timing Characteristics  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
‘–3’ Speed  
Min. Max.  
‘–2’ Speed  
Min. Max.  
‘–1’ Speed  
Min. Max.  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
1
Logic ModulePropagation Delays  
Combinatorial Functions  
t
Internal Array Module Delay  
2.1  
2.5  
2.4  
2.8  
2.9  
3.4  
3.7  
4.4  
3.2  
3.7  
ns  
ns  
PD  
t
Internal Decode Module Delay  
2
PDD  
Predicted Routing Delays  
tRD1  
tRD2  
tRD3  
tRD4  
tRD5  
tRDD  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
0.3  
0.7  
0.4  
0.8  
1.2  
1.6  
3.2  
0.5  
0.5  
0.9  
0.6  
1.2  
1.8  
2.4  
4.9  
0.8  
0.5  
1.0  
1.6  
2.1  
4.1  
0.7  
ns  
ns  
ns  
ns  
ns  
ns  
1.0  
1.4  
1.4  
1.9  
2.7  
3.7  
Decode-to-Output Routing Delay  
3, 4  
0.46  
0.62  
Sequential Timing Characteristics  
tCO  
Flip-Flop Clock-to-Output  
2.3  
2.1  
2.7  
2.4  
3.1  
2.9  
4.1  
3.7  
3.5  
3.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tGO  
Latch Gate-to-Output  
tSUD  
Flip-Flop (Latch) Set-Up Time  
Flip-Flop (Latch) Hold Time  
0.35  
0.0  
0.4  
0.0  
0.47  
0.0  
0.6  
0.0  
0.5  
0.0  
tHD  
tRO  
Flip-Flop (Latch) Reset to Output  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
Flip-Flop (Latch) Clock Active Pulse Width  
Flip-Flop (Latch) Asynchronous Pulse Width  
2.3  
2.7  
3.1  
4.1  
3.5  
tSUENA  
tHENA  
tWCLKA  
tWASYN  
0.75  
0.0  
0.9  
0.0  
4.2  
5.5  
1.0  
0.0  
4.9  
6.5  
1.3  
0.0  
6.4  
8.4  
1.1  
0.0  
5.5  
7.1  
3.7  
4.9  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from  
the DirectTime Analyzer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/hold timing  
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts  
(adds) to the internal set-up (hold) time.  
5. VCC = 3.0V for 3.3V specifications.  
34  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A3265DX Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
‘–2’ Speed  
Min. Max.  
3.3V ‘Std’  
Speed  
‘–1’ Speed  
Min. Max.  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
Input Module Propagation Delays  
t
t
t
t
t
Input Data Pad-to-Y  
Input Latch Gate-to-Output  
Input Latch Hold  
1.4  
3.3  
1.6  
3.7  
1.9  
4.4  
2.4  
5.7  
2.1  
4.8  
ns  
ns  
ns  
ns  
ns  
INPY  
INGO  
INH  
0.0  
0.5  
5.1  
0.0  
0.6  
5.9  
0.0  
0.7  
6.9  
0.0  
0.9  
9.0  
0.0  
0.8  
7.7  
Input Latch Set-Up  
INSU  
ILA  
Latch Active Pulse Width  
1
Input Module Predicted Routing Delays  
t
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
Decode-to-Output Routing Delay  
3.2  
3.6  
3.7  
4.2  
4.5  
5.2  
7.5  
0.4  
4.3  
4.9  
5.3  
6.1  
8.8  
0.5  
5.6  
6.4  
6.9  
7.9  
11.4  
0.7  
4.8  
5.4  
5.9  
6.7  
9.7  
0.6  
ns  
ns  
ns  
ns  
ns  
ns  
IRD1  
IRD2  
IRD3  
IRD4  
IRD5  
IRDD  
3.9  
4.5  
6.6  
0.37  
Global Clock Network  
t
t
t
t
t
t
t
f
Input Low to High  
Input High to Low  
Minimum Pulse Width  
Maximum Skew  
FO=32  
FO=256  
6.3  
7.4  
7.1  
8.4  
8.4  
9.9  
10.9  
12.8  
9.2  
10.9  
ns  
ns  
CKH  
FO=32  
FO=256  
5.9  
6.4  
6.6  
7.3  
7.8  
8.6  
10.1  
11.2  
8.6  
9.5  
ns  
ns  
CKL  
FO=32  
FO=256  
3.2  
3.4  
3.7  
3.9  
4.3  
4.6  
5.6  
6.0  
4.8  
5.1  
ns  
ns  
PW  
FO=32  
FO=256  
0.75  
0.75  
0.9  
0.9  
1.0  
1.0  
1.3  
1.3  
1.1  
1.1  
ns  
ns  
CKSW  
SUEXT  
HEXT  
P
FO=32  
FO=256  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
Input Latch External Set-Up  
FO=32  
FO=256  
2.5  
2.5  
2.9  
2.9  
3.4  
3.4  
4.4  
4.4  
3.8  
3.8  
ns  
ns  
Input Latch External Hold  
Minimum Period (1/fmax)  
FO=32  
FO=256  
5.0  
6.0  
7.2  
8.3  
8.3  
9.5  
11.9  
13.6  
9.2  
10.6  
ns  
ns  
FO=32  
FO=256  
173  
151  
138  
121  
120  
105  
84  
74  
108  
95  
MHz  
MHz  
MAX  
Maximum Datapath Frequency  
Note:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
Discontinued – v3.0  
35  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A3265DX Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
3.3V ‘Std’  
Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
1
TTL Output Module Timing  
t
t
t
t
t
t
t
t
t
t
t
t
Data-to-Pad High  
3.8  
4.6  
4.8  
5.2  
8.3  
8.3  
8.3  
7.7  
4.3  
5.2  
5.4  
5.9  
9.5  
9.5  
9.4  
8.7  
5.0  
6.1  
6.5  
7.9  
5.5  
6.7  
ns  
ns  
DLH  
DHL  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
GHL  
LSU  
Data-to-Pad Low  
Enable-Pad Z to High  
6.4  
8.3  
7.1  
ns  
Enable-Pad Z to Low  
6.9  
9.0  
7.6  
ns  
Enable-Pad High to Z  
11.1  
11.1  
11.1  
10.2  
14.5  
14.5  
14.4  
13.3  
12.3  
12.3  
12.3  
11.3  
ns  
Enable-Pad Low to Z  
ns  
G-to-Pad High  
ns  
G-to-Pad Low  
ns  
I/O Latch Output Set-Up  
I/O Latch Output Hold  
0.5  
0.0  
0.6  
0.0  
0.7  
0.0  
0.9  
0.0  
0.8  
0.0  
ns  
ns  
LH  
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O  
Array Latch Clock-Out (Pad-to-Pad)32 I/O  
Capacitive Loading, Low to High  
Capacitive Loading, High to Low  
9.8  
13.9  
0.037  
0.05  
0.3  
11.1  
15.7  
0.04  
0.03  
0.4  
13.1  
18.5  
0.05  
0.07  
0.5  
17.0  
24.1  
0.071  
0.1  
14.5  
20.5  
0.06  
0.08  
0.6  
ns  
LCO  
ACO  
ns  
d
d
ns/pF  
ns/pF  
ns/pF  
TLH  
TLL  
t
Hard-Wired Wide-Decode Output  
1
0.7  
WDO  
CMOS Output Module Timing  
t
t
t
t
t
t
t
t
t
t
t
t
Data-to-Pad High  
4.6  
3.8  
4.8  
5.2  
8.3  
8.3  
8.3  
9.0  
5.2  
4.3  
5.5  
5.9  
9.5  
9.5  
9.4  
10.2  
6.1  
5.0  
7.9  
6.5  
6.7  
5.5  
ns  
ns  
DLH  
DHL  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
GHL  
LSU  
Data-to-Pad Low  
Enable-Pad Z to High  
6.4  
8.4  
7.1  
ns  
Enable-Pad Z to Low  
6.9  
9.0  
7.6  
ns  
Enable-Pad High to Z  
11.1  
11.1  
11.1  
12.0  
14.5  
14.5  
14.4  
15.6  
12.3  
12.3  
12.3  
13.3  
ns  
Enable-Pad Low to Z  
ns  
G-to-Pad High  
ns  
G-to-Pad Low  
ns  
I/O Latch Set-Up  
0.5  
0.0  
0.6  
0.0  
0.7  
0.0  
0.9  
0.0  
0.8  
0.0  
ns  
I/O Latch Hold  
ns  
LH  
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O  
Array Latch Clock-Out (Pad-to-Pad) 32 I/O  
Capacitive Loading, Low to High  
Capacitive Loading, High to Low  
Hard-Wired Wide-Decode Output  
11.7  
16.4  
0.05  
0.04  
0.3  
13.3  
18.5  
0.06  
0.05  
0.4  
15.6  
21.8  
0.07  
0.06  
0.5  
20.3  
28.3  
0.1  
17.3  
24.1  
0.1  
ns  
LCO  
ACO  
ns  
d
d
ns/pF  
ns/pF  
ns/pF  
TLH  
TLL  
0.1  
0.1  
t
0.7  
0.6  
WDO  
Note:  
1. Delays based on 35pF loading.  
36  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A1280XL Timing Characteristics  
(Worst-Case Commercial Conditions, V  
= 4.75 V, T = 70°C)  
J
CC  
‘–3’ Speed  
Min. Max.  
‘–2’ Speed  
Min. Max.  
‘–1’ Speed  
Min. Max.  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
1
Logic ModulePropagation Delays  
t
t
t
t
Single Module  
2.6  
2.6  
2.6  
2.6  
3.0  
3.0  
3.0  
3.0  
3.5  
3.5  
3.5  
3.5  
5.0  
5.0  
5.0  
5.0  
4.2  
4.2  
4.2  
4.2  
ns  
ns  
ns  
ns  
PD1  
CO  
GO  
RS  
Sequential Clk-to-Q  
Latch G-to-Q  
Flip-Flop (Latch) Reset-to-Q  
2
Predicted Routing Delays  
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.3  
1.8  
2.2  
2.6  
5.0  
1.4  
2.0  
2.5  
3.0  
5.7  
1.7  
2.4  
2.9  
3.5  
6.7  
2.4  
3.4  
4.1  
5.0  
9.6  
2.0  
2.9  
3.5  
4.2  
8.0  
ns  
ns  
ns  
ns  
ns  
RD1  
RD2  
RD3  
RD4  
RD8  
3,4  
Sequential Timing Characteristics  
t
t
t
t
t
t
t
t
t
t
t
f
Flip-Flop (Latch) Data Input Set-Up  
Flip-Flop (Latch) Data Input Hold  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
Flip-Flop (Latch) Clock Active Pulse Width  
Flip-Flop (Latch) Asynchronous Pulse Width  
Flip-Flop Clock Input Period  
0.4  
0.0  
0.8  
0.0  
3.7  
3.7  
8.0  
0.0  
0.3  
0.0  
0.3  
0.4  
0.0  
0.9  
0.0  
4.3  
4.3  
8.7  
0.0  
0.4  
0.0  
0.4  
0.5  
0.0  
1.0  
0.0  
4.9  
4.9  
10.0  
0.0  
0.4  
0.0  
0.4  
0.7  
0.0  
1.4  
0.0  
7.0  
7.0  
14.0  
0.0  
0.6  
0.0  
0.6  
0.6  
0.0  
1.2  
0.0  
5.9  
5.9  
12.0  
0.0  
0.5  
0.0  
0.5  
ns  
ns  
SUD  
HD  
ns  
SUENA  
HENA  
WCLKA  
WASYN  
A
ns  
ns  
ns  
ns  
Input Buffer Latch Hold  
ns  
INH  
Input Buffer Latch Set-Up  
ns  
INSU  
OUTH  
OUTSU  
MAX  
Output Buffer Latch Hold  
ns  
Output Buffer Latch Set-Up  
ns  
Flip-Flop (Latch) Clock Frequency  
200  
167  
130  
90  
110  
MHz  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from  
the DirectTime Analyzer utility.  
4. Set-up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/hold timing  
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts  
(adds) to the internal set-up (hold) time.  
5. VCC = 3.0V for 3.3V specifications.  
Discontinued – v3.0  
37  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A1280XL Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
3.3V ‘Std’  
Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
Input Module Propagation Delays  
t
t
t
t
Pad-to-Y High  
Pad-to-Y Low  
G-to-Y High  
G-to-Y Low  
1.1  
1.3  
2.0  
2.6  
1.2  
1.4  
2.3  
3.0  
1.4  
1.7  
2.7  
3.5  
2.0  
2.4  
3.9  
5.0  
1.7  
2.0  
3.2  
4.2  
ns  
ns  
ns  
ns  
INYH  
INYL  
INGH  
INGL  
1
Input Module Predicted Routing Delays  
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
3.2  
3.7  
4.0  
4.6  
6.6  
3.7  
4.2  
4.5  
5.2  
7.5  
4.3  
4.9  
5.3  
6.1  
8.8  
6.1  
7.0  
5.2  
5.9  
ns  
ns  
ns  
ns  
ns  
IRD1  
IRD2  
IRD3  
IRD4  
IRD8  
7.6  
6.4  
8.7  
7.3  
12.6  
10.6  
Global Clock Network  
FO = 32  
FO = 384  
5.1  
5.7  
5.8  
6.5  
6.8  
7.6  
9.7  
10.9  
8.2  
9.1  
ns  
ns  
t
t
t
t
t
t
t
t
f
Input Low to High  
Input High to Low  
CKH  
FO = 32  
FO = 384  
5.0  
5.7  
5.7  
6.5  
6.7  
7.6  
9.6  
10.9  
8.0  
9.1  
ns  
ns  
CKL  
FO = 32  
FO = 384  
3.2  
3.5  
3.5  
3.9  
4.3  
4.6  
6.1  
6.6  
5.2  
5.5  
ns  
ns  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
PWH  
PWL  
CKSW  
SUEXT  
HEXT  
P
FO = 32  
FO = 384  
3.2  
3.5  
3.5  
3.9  
4.3  
4.6  
6.1  
6.6  
5.2  
5.5  
ns  
ns  
FO = 32  
FO = 384  
0.8  
0.8  
0.9  
0.9  
1.0  
1.0  
1.4  
1.4  
1.2  
1.2  
ns  
ns  
FO = 32  
FO = 384  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
Input Latch External Set-Up  
Input Latch External Hold  
Minimum Period  
FO = 32  
FO = 384  
2.6  
3.2  
2.9  
3.7  
3.4  
4.3  
4.9  
6.1  
4.1  
5.2  
ns  
ns  
FO = 32  
FO = 384  
6.5  
7.2  
7.4  
8.0  
8.7  
9.6  
12.4  
13.7  
10.4  
11.5  
ns  
ns  
FO = 32  
FO = 384  
200  
180  
167  
150  
143  
130  
100  
90  
120  
110  
MHz  
MHz  
Maximum Frequency  
MAX  
Note:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
38  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A1280XL Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
CC  
‘–2’ Speed  
Min. Max.  
J
3.3V ‘Std’  
Speed  
‘–1’ Speed  
Min. Max.  
‘Std’ Speed  
‘–F’ Speed  
Min. Max.  
Parameter  
Description  
1
Min.  
Max.  
Min.  
Max.  
Units  
TTL Output Module Timing  
t
t
t
t
t
t
t
t
t
Data-to-Pad High  
Data-to-Pad Low  
Enable-Pad Z to High  
Enable-Pad Z to Low  
Enable-Pad High to Z  
Enable-Pad Low to Z  
G-to-Pad High  
3.8  
4.1  
3.8  
4.1  
5.4  
5.4  
4.2  
4.7  
4.3  
4.6  
4.3  
4.7  
6.1  
6.1  
4.8  
5.4  
5.0  
5.4  
5.0  
5.5  
7.2  
7.2  
5.6  
6.3  
7.1  
7.7  
6.0  
6.5  
6.0  
6.6  
8.6  
8.6  
6.7  
7.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DLH  
DHL  
7.1  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
7.7  
10.3  
10.3  
8.0  
G-to-Pad Low  
9.0  
GHL  
I/O Latch Clock-Out (Pad-to-Pad),  
64 Clock Loading  
LCO  
9.8  
11.0  
13.1  
18.7  
15.7  
ns  
t
Array Clock-Out (Pad-to-Pad),  
64 Clock Loading  
ACO  
13.9  
0.04  
0.05  
15.7  
0.04  
0.06  
18.5  
0.05  
0.07  
26.4  
0.06  
0.08  
22.2  
0.06  
0.08  
ns  
d
d
Capacitive Loading, Low to High  
ns/pF  
ns/pF  
TLH  
THL  
Capacitive Loading, High to Low  
1
CMOS Output Module Timing  
t
t
t
t
t
t
t
t
t
Data-to-Pad High  
Data-to-Pad Low  
Enable-Pad Z to High  
Enable-Pad Z to Low  
Enable-Pad High to Z  
Enable-Pad Low to Z  
G-to-Pad High  
4.8  
3.4  
3.8  
4.1  
5.4  
5.4  
4.2  
4.7  
5.4  
3.8  
4.3  
4.7  
6.1  
6.1  
4.8  
5.4  
6.4  
4.5  
5.0  
5.5  
7.2  
7.2  
5.6  
6.3  
9.1  
6.4  
7.7  
5.4  
6.0  
6.6  
8.6  
8.6  
6.7  
7.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DLH  
DHL  
7.1  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
7.9  
10.3  
10.3  
8.0  
G-to-Pad Low  
9.0  
GHL  
I/O Latch Clock-Out (Pad-to-Pad),  
64 Clock Loading  
LCO  
11.6  
13.0  
15.5  
22.2  
18.6  
ns  
t
Array Clock-Out (Pad-to-Pad),  
64 Clock Loading  
ACO  
16.4  
0.05  
0.05  
18.5  
0.06  
0.05  
21.8  
0.07  
0.06  
31.2  
0.08  
0.07  
26.2  
0.08  
0.07  
ns  
d
d
Capacitive Loading, Low to High  
Capacitive Loading, High to Low  
ns/pF  
ns/pF  
TLH  
THL  
Note:  
1. Delays based on 35 pF loading.  
Discontinued – v3.0  
39  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A32100DX Timing Characteristics  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
3.3V ‘Std’  
Speed  
‘–3 Speed  
‘–2 Speed  
‘–1’ Speed  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic ModulePropagation Delays  
Combinatorial Functions  
t
t
Internal Array Module Delay  
Internal Decode Module Delay  
2.2  
2.4  
2.6  
2.7  
3.0  
3.1  
3.5  
3.7  
5.2  
5.7  
4.1  
4.3  
ns  
ns  
PD  
PDD  
Predicted Module Routing Delays  
tRD1  
tRD2  
tRD3  
tRD4  
tRD5  
tRDD  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
Decode-to-Output Routing Delay  
1.0  
1.4  
1.8  
2.4  
4.2  
0.3  
1.1  
1.7  
1.3  
1.9  
2.5  
3.1  
5.6  
0.4  
1.5  
2.2  
2.9  
3.7  
6.6  
0.5  
3.3  
4.3  
1.7  
2.5  
3.4  
4.3  
7.7  
0.6  
ns  
ns  
ns  
ns  
ns  
ns  
2.1  
5.2  
2.7  
6.5  
5.0  
10.0  
0.4  
0.37  
Sequential Timing Characteristics  
tCO  
Flip-Flop Clock-to-Output  
2.2  
2.2  
2.6  
2.6  
3.0  
3.0  
3.5  
3.5  
5.0  
5.0  
4.1  
4.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tGO  
Latch Gate-to-Output  
tSU  
Flip-Flop (Latch) Set-Up Time  
Flip-Flop (Latch) Hold Time  
Flip-Flop (Latch) Reset to Output  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
Flip-Flop (Latch) Clock Active Pulse Width  
0.3  
0.0  
0.37  
0.0  
0.4  
0.0  
0.5  
0.0  
0.7  
0.0  
0.6  
0.0  
tH  
tRO  
2.2  
2.6  
3.0  
3.5  
5.0  
4.1  
tSUENA  
tHENA  
tWCLKA  
tWASYN  
0.6  
0.0  
3.1  
0.75  
0.0  
0.9  
0.0  
4.2  
1.0  
0.0  
4.9  
1.4  
0.0  
7.0  
0.85  
0.0  
3.7  
5.7  
Flip-Flop (Latch) Asynchronous Pulse  
Width  
4.1  
4.8  
5.4  
6.4  
7.0  
7.5  
ns  
40  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A32100DX Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
3.3V ‘Std’  
Speed  
‘–3 Speed  
‘–2 Speed  
‘–1’ Speed  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Timing  
Synchronous SRAM Operations  
tRC  
Read Cycle Time  
6.4  
6.4  
3.2  
7.5  
7.5  
3.8  
8.5  
8.5  
4.3  
10.0  
10.0  
5.0  
14.3  
14.3  
7.1  
11.7  
11.7  
5.9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWC  
Write Cycle Time  
tRCKHL  
tRCO  
tADSU  
tADH  
Clock High/Low Time  
Data Valid After Clock High/Low  
Address/Data Set-Up Time  
Address/Data Hold Time  
Read Enable Set-Up  
Read Enable Hold  
3.2  
3.8  
4.3  
5.0  
7.1  
5.9  
1.5  
0.0  
0.6  
3.2  
2.6  
0.0  
2.6  
0.0  
1.8  
0.0  
0.7  
3.8  
3.0  
0.0  
3.1  
0.0  
2.0  
0.0  
0.8  
4.3  
3.4  
0.0  
3.5  
0.0  
2.4  
0.0  
0.9  
5.0  
4.0  
0.0  
4.1  
0.0  
3.4  
0.0  
1.3  
7.1  
5.7  
0.0  
5.8  
0.0  
2.8  
0.0  
1.0  
5.9  
4.7  
0.0  
4.8  
0.0  
tRENSU  
tRENH  
tWENSU  
tWENH  
tBENS  
tBENH  
Write Enable Set-Up  
Write Enable Hold  
Block Enable Set-Up  
Block Enable Hold  
Asynchronous SRAM Operations  
tRPD  
Asynchronous Access Time  
Read Address Valid  
7.7  
9.0  
10.2  
12.0  
17.2  
14.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRDADV  
tADSU  
tADH  
8.3  
1.5  
0.0  
0.57  
3.2  
2.6  
0.0  
9.8  
1.8  
0.0  
0.7  
3.8  
3.0  
0.0  
11.1  
2.0  
0.0  
0.8  
4.3  
3.4  
0.0  
13.0  
2.4  
0.0  
0.9  
5.0  
4.0  
0.0  
18.6  
3.4  
0.0  
1.3  
7.1  
5.7  
0.0  
15.2  
2.8  
0.0  
1.0  
5.9  
4.7  
0.0  
Address/Data Set-Up Time  
Address/Data Hold Time  
Read Enable Set-Up to Address Valid  
Read Enable Hold  
tRENSUA  
tRENHA  
tWENSU  
tWENH  
tDOH  
Write Enable Set-Up  
Write Enable Hold  
Data Out Hold Time  
1.1  
1.35  
1.5  
1.8  
2.6  
2.1  
Discontinued – v3.0  
41  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A32100DX Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
3.3V ‘Std’  
Speed  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min.  
Max.  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Module Propagation Delays  
t
t
Input Data Pad-to-Y  
1.4  
2.9  
1.65  
3.4  
1.9  
3.8  
2.2  
4.5  
3.1  
6.4  
2.5  
5.3  
ns  
INPY  
1
INGO  
Input Latch Gate-to-Output  
ns  
ns  
ns  
1
t
t
t
Input Latch Hold  
0.0  
0.0  
0.5  
0.0  
0.6  
0.0  
0.7  
0.0  
1.0  
0.0  
INH  
INSU  
ILA  
1
Input Latch Set-Up  
0.45  
0.82  
1
Latch Active Pulse Width  
4.4  
4.8  
5.9  
6.9  
9.8  
8.1  
ns  
Input Module Predicted Routing Delays  
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.6  
2.0  
2.6  
2.6  
4.1  
1.75  
2.4  
3.0  
3.0  
4.8  
2.1  
2.7  
3.4  
3.4  
5.4  
2.5  
3.2  
4.0  
4.0  
6.4  
3.6  
4.6  
5.7  
5.7  
9.1  
2.9  
3.8  
4.7  
4.7  
7.5  
ns  
ns  
ns  
ns  
ns  
IRD1  
IRD2  
IRD3  
IRD4  
IRD8  
Global Clock Network  
t
t
t
t
t
t
t
t
f
Input Low to High  
FO=32  
FO=635  
4.7  
5.7  
5.6  
6.75  
6.3  
7.7  
7.4  
9.0  
10.5  
12.8  
8.7  
10.5  
ns  
ns  
CKH  
Input High to Low  
FO=32  
FO=635  
4.8  
6.4  
5.6  
7.5  
6.4  
8.5  
7.5  
10.0  
10.7  
14.2  
8.8  
11.7  
ns  
ns  
CKL  
Minimum Pulse Width  
High  
FO=32  
FO=635  
2.5  
2.7  
2.9  
3.2  
3.3  
3.7  
3.9  
4.3  
5.6  
6.1  
4.5  
5.0  
ns  
ns  
PWH  
PWL  
CKSW  
SUEXT  
HEXT  
P
Minimum Pulse Width  
Low  
FO=32  
FO=635  
2.5  
2.7  
2.9  
3.2  
3.3  
3.7  
3.9  
4.3  
5.5  
6.1  
4.5  
5.0  
ns  
ns  
Maximum Skew  
FO=32  
FO=635  
0.6  
0.6  
0.75  
0.75  
0.9  
0.9  
1.0  
1.0  
1.4  
1.4  
1.8  
1.8  
ns  
ns  
Input Latch External  
Set-Up  
FO=32  
FO=635  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
Input Latch External  
Hold  
FO=32  
FO=635  
2.2  
2.7  
2.5  
3.2  
2.9  
3.7  
3.4  
4.3  
4.9  
6.1  
4.0  
6.1  
ns  
ns  
Minimum Period  
(1/fmax)  
FO=32  
FO=635  
5.0  
5.5  
6.0  
6.4  
7.4  
8.2  
7.9  
8.6  
12.4  
13.7  
9.3  
10.1  
ns  
ns  
Maximum Datapath  
Frequency  
FO=32  
FO=635  
183  
167  
159  
145  
146  
133  
127  
116  
89  
81  
108  
99  
MHz  
MHz  
HMAX  
Note:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
42  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A32100DX Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
3.3V ‘Std’  
Speed  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min. Max. Min.  
Max.  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
1
TTL Output Module Timing  
t
t
t
t
t
t
t
t
t
t
t
Data-to-Pad High  
3.7  
4.5  
4.8  
5.1  
8.3  
8.3  
8.3  
9.0  
4.3  
5.3  
5.6  
6.0  
9.8  
9.8  
9.8  
10.5  
4.9  
6.0  
5.8  
7.1  
8.2  
6.8  
8.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DLH  
DHL  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
GHL  
LSU  
Data-to-Pad Low  
10.1  
10.7  
11.4  
18.5  
18.5  
18.5  
20.1  
Enable-Pad Z to High  
Enable-Pad Z to Low  
Enable-Pad High to Z  
Enable-Pad Low to Z  
G-to-Pad High  
6.4  
7.5  
8.8  
6.8  
8.0  
9.4  
11.1  
11.1  
11.1  
12.0  
13.0  
13.0  
13.0  
14.1  
15.2  
15.2  
15.2  
16.4  
G-to-Pad Low  
I/O Latch Output Set-Up  
I/O Latch Output Hold  
0.26  
0.0  
0.3  
0.0  
0.34  
0.0  
0.4  
0.0  
0.6  
0.0  
0.6  
0.0  
LH  
LCO  
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O  
Array Latch Clock-Out (Pad-to-Pad) 32 I/O  
8.4  
9.8  
11.1  
13.1  
18.7  
15.3  
21.7  
ns  
t
ACO  
11.8  
0.03  
0.04  
0.04  
13.8  
0.037  
0.05  
15.7  
0.04  
0.06  
0.05  
18.5  
0.05  
0.07  
0.06  
26.5  
0.07  
0.10  
0.09  
ns  
d
d
Capacitive Loading, Low to High  
Capacitive Loading, High to Low  
0.06 ns/pF  
0.08 ns/pF  
TLH  
THL  
t
Hard-Wired Wide-Decode Output  
1
0.045  
0.07  
ns  
WDO  
CMOS Output Module Timing  
t
t
t
t
t
t
t
t
t
t
t
Data-to-Pad High  
Data-to-Pad Low  
Enable-Pad Z to High  
Enable-Pad Z to Low  
Enable-Pad High to Z  
Enable-Pad Low to Z  
G-to-Pad High  
4.5  
3.7  
4.8  
5.1  
8.3  
8.3  
8.3  
9.0  
5.3  
4.3  
5.6  
6.0  
9.8  
9.8  
9.8  
10.5  
6.0  
4.9  
7.1  
5.8  
10.1  
8.2  
8.3  
6.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DLH  
DHL  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
GHL  
LSU  
6.4  
7.5  
10.7  
11.4  
18.5  
18.5  
18.5  
20.0  
8.8  
6.8  
8.0  
9.4  
11.1  
11.1  
11.1  
12.0  
13.0  
13.0  
13.0  
14.1  
15.2  
15.2  
15.2  
16.4  
G-to-Pad Low  
I/O Latch Set-Up  
I/O Latch Hold  
0.26  
0.0  
0.3  
0.0  
0.3  
0.0  
0.4  
0.0  
0.6  
0.0  
0.6  
0.0  
LH  
LCO  
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O  
Array Latch Clock-Out (Pad-to-Pad) 32 I/O  
9.9  
11.0  
13.2  
15.5  
22.3  
18.2  
25.6  
ns  
t
ACO  
13.9  
0.04  
0.04  
0.04  
16.4  
0.052  
0.045  
0.045  
18.5  
0.05  
0.05  
0.05  
21.8  
0.07  
0.06  
0.06  
30.0  
0.10  
0.09  
0.09  
ns  
d
d
Capacitive Loading, Low to High  
Capacitive Loading, High to Low  
Hard-Wired Wide-Decode Output  
0.08 ns/pF  
0.07 ns/pF  
TLH  
THL  
t
0.07  
ns  
WDO  
Note:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
Discontinued – v3.0  
43  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A32140DX Timing Characteristics  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
‘–2 Speed  
Min. Max.  
3.3V ‘Std’  
Speed  
‘–1’ Speed  
Min. Max.  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
1
Logic Module Propagation Delays  
Combinatorial Functions  
t
t
Internal Array Module Delay  
1.8  
1.9  
2.3  
2.5  
2.8  
3.0  
3.6  
3.8  
3.2  
3.5  
ns  
ns  
PD  
Internal Decode Module Delay  
2
PDD  
Predicted Routing Delays  
tRD1  
tRD2  
tRD3  
tRD4  
tRD5  
tRDD  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
1.0  
1.4  
1.8  
2.2  
3.8  
0.5  
1.3  
1.9  
2.4  
2.9  
5.0  
0.7  
1.6  
2.2  
2.0  
2.8  
3.7  
4.5  
7.7  
1.0  
1.8  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
2.8  
3.3  
3.4  
4.0  
5.9  
7.0  
Decode-to-Output Routing Delay  
3, 4  
0.78  
0.91  
Sequential Timing Characteristics  
tCO  
Flip-Flop Clock-to-Output  
2.1  
1.8  
2.8  
2.3  
3.3  
2.8  
4.3  
3.6  
3.9  
3.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tGO  
Latch Gate-to-Output  
tSU  
Flip-Flop (Latch) Set-Up Time  
Flip-Flop (Latch) Hold Time  
Flip-Flop (Latch) Reset to Output  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
Flip-Flop (Latch) Clock Active Pulse Width  
0.3  
0.0  
0.4  
0.0  
0.47  
0.0  
0.6  
0.0  
0.55  
0.0  
tH  
tRO  
2.1  
2.8  
3.3  
4.3  
3.9  
tSUENA  
tHENA  
tWCLKA  
tWASYN  
0.6  
0.0  
2.6  
0.9  
0.0  
3.5  
1.0  
0.0  
4.1  
1.3  
0.0  
5.4  
1.17  
0.0  
4.82  
Flip-Flop (Latch) Asynchronous Pulse Width  
4.1  
5.5  
6.5  
8.4  
7.6  
ns  
Notes:  
1. For dual-module macros, use tPD1 + tRD1 + tPDn, tCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from  
the DirectTime Analyzer utility.  
4. Set-Up and hold timing parameters for the input buffer latch are defined with respect to the PAD and the D input. External set-up/hold  
timing parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input  
subtracts (adds) to the internal set-up (hold) time.  
44  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A32140DX Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
‘–2’ Speed  
Min. Max.  
3.3V ‘Std’  
Speed  
‘–1’ Speed  
Min. Max.  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
Input Module Propagation Delays  
t
t
t
t
t
Input Data Pad-to-Y  
Input Latch Gate-to-Output  
Input Latch Hold  
1.2  
2.3  
1.6  
3.1  
1.9  
3.7  
2.4  
4.7  
2.2  
4.3  
ns  
ns  
ns  
ns  
ns  
INPY  
INGO  
INH  
0.0  
0.3  
3.1  
0.0  
0.4  
4.2  
0.0  
0.47  
4.9  
0.0  
0.6  
6.4  
0.0  
0.55  
5.7  
Input Latch Set-Up  
INSU  
ILA  
Latch Active Pulse Width  
1
Input Module Predicted Routing Delays  
t
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
2.7  
3.1  
3.4  
3.9  
5.6  
0.3  
3.7  
4.2  
4.5  
5.2  
7.5  
0.4  
4.3  
4.9  
5.3  
6.1  
8.8  
0.5  
5.6  
6.4  
6.9  
7.9  
11.4  
0.7  
5.0  
5.7  
ns  
ns  
ns  
ns  
ns  
ns  
IRD1  
IRD2  
IRD3  
IRD4  
IRD5  
IRDD  
6.2  
7.1  
10.3  
0.6  
Decode-to-Output Routing Delay  
Global Clock Network  
t
t
t
t
t
t
t
f
Input Low to High  
Input High to Low  
Minimum Pulse Width  
Maximum Skew  
FO=32  
FO=486  
6.2  
6.8  
8.3  
9.1  
9.7  
10.7  
12.7  
13.9  
11.4  
12.5  
ns  
ns  
CKH  
FO=32  
FO=486  
6.12  
6.7  
8.2  
8.9  
9.6  
10.5  
12.5  
13.6  
11.3  
12.3  
ns  
ns  
CKL  
FO=32  
FO=486  
2.7  
2.9  
3.7  
3.9  
4.3  
4.6  
5.6  
6.0  
5.0  
5.41  
ns  
ns  
PW  
FO=32  
FO=486  
0.6  
0.6  
0.9  
0.9  
1.0  
1.0  
1.3  
1.3  
1.17  
1.17  
ns  
ns  
CKSW  
SUEXT  
HEXT  
P
FO=32  
FO=486  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
Input Latch External Set-Up  
Input Latch External Hold  
FO=32  
FO=486  
2.2  
2.2  
2.9  
2.9  
3.4  
3.4  
4.4  
4.4  
4.0  
4.0  
ns  
ns  
Minimum Period (1/fmax)  
FO=32  
FO=486  
5.7  
6.6  
7.6  
8.3  
8.3  
9.5  
11.9  
13.6  
9.0  
11.1  
ns  
ns  
FO=32  
FO=486  
173  
151  
138  
121  
120  
105  
84  
74  
102  
90  
MHz  
MHz  
MAX  
Maximum Datapath Frequency  
Note:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
Discontinued – v3.0  
45  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A32140DX Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
3.3V ‘Std’  
Speed  
‘–2 Speed  
‘–1’ Speed  
Min. Max.  
‘Std’ Speed  
‘–F’ Speed  
Min. Max.  
Parameter Description  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
1
TTL Output Module Timing  
t
t
t
t
t
t
t
t
t
t
t
t
Data-to-Pad High  
3.3  
3.5  
4.1  
4.4  
7.1  
7.1  
6.5  
6.5  
4.4  
4.6  
5.5  
5.9  
9.5  
9.5  
8.7  
8.7  
5.1  
5.4  
6.7  
7.1  
6.0  
6.3  
ns  
ns  
DLH  
DHL  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
GHL  
LSU  
Data-to-Pad Low  
Enable-Pad Z to High  
6.4  
8.4  
7.5  
ns  
Enable-Pad Z to Low  
6.9  
9.0  
8.1  
ns  
Enable-Pad High to Z  
11.1  
11.1  
10.2  
10.2  
14.5  
14.5  
13.3  
13.3  
13.0  
13.0  
12.0  
12.0  
ns  
Enable-Pad Low to Z  
ns  
G-to-Pad High  
ns  
G-to-Pad Low  
ns  
I/O Latch Output Set-Up  
I/O Latch Output Hold  
0.4  
0.0  
0.6  
0.0  
0.7  
0.0  
0.9  
0.0  
0.82  
0.0  
ns  
ns  
LH  
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O  
Array Latch Clock-Out (Pad-to-Pad) 32 I/O  
Capacitive Loading, Low to High  
Capacitive Loading, High to Low  
8.4  
11.1  
15.7  
0.04  
0.03  
0.04  
13.1  
18.5  
0.05  
0.07  
0.05  
17.0  
24.1  
0.07  
0.1  
15.4  
21.7  
0.06  
0.08  
0.06  
ns  
LCO  
ACO  
11.8  
0.03  
0.02  
0.03  
ns  
d
d
ns/pF  
ns/pF  
ns/pF  
TLH  
THL  
t
Hard-Wired Wide-Decode Output  
1
0.07  
WDO  
CMOS Output Module Timing  
t
t
t
t
t
t
t
t
t
t
t
t
Data-to-Pad High  
3.5  
3.3  
4.1  
4.4  
7.1  
7.1  
6.5  
6.5  
4.6  
4.4  
5.5  
5.9  
9.5  
9.5  
8.7  
8.7  
5.4  
5.1  
7.1  
6.7  
6.0  
6.3  
ns  
ns  
DLH  
DHL  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
GHL  
LSU  
Data-to-Pad Low  
Enable-Pad Z to High  
6.4  
8.4  
7.5  
ns  
Enable-Pad Z to Low  
6.9  
9.0  
8.1  
ns  
Enable-Pad High to Z  
11.1  
11.1  
10.2  
10.2  
14.5  
14.5  
13.3  
13.3  
13.0  
13.0  
12.0  
12.0  
ns  
Enable-Pad Low to Z  
ns  
G-to-Pad High  
ns  
G-to-Pad Low  
ns  
I/O Latch Set-Up  
0.4  
0.0  
0.6  
0.0  
0.7  
0.0  
0.9  
0.0  
0.82  
0.0  
ns  
I/O Latch Hold  
ns  
LH  
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O  
Array Latch Clock-Out (Pad-to-Pad) 32 I/O  
Capacitive Loading, Low to High  
Capacitive Loading, High to Low  
Hard-Wired Wide-Decode Output  
9.9  
13.9  
0.04  
0.04  
0.3  
13.3  
18.5  
0.06  
0.05  
0.4  
15.6  
21.8  
0.07  
0.06  
0.5  
20.3  
28.3  
0.1  
18.3  
25.6  
0.08  
0.07  
0.6  
ns  
LCO  
ACO  
ns  
d
d
ns/pF  
ns/pF  
ns/pF  
TLH  
THL  
0.1  
t
0.7  
WDO  
Note:  
1. Delays based on 35 pF loading.  
46  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A32200DX Timing Characteristics  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
3.3V ‘Std’  
Speed  
‘–3 Speed  
‘–2 Speed  
‘–1’ Speed  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Propagation Delays  
Combinatorial Functions  
t
t
Internal Array Module Delay  
Internal Decode Module Delay  
2.0  
2.5  
2.4  
2.9  
2.7  
3.3  
3.2  
3.9  
4.5  
5.6  
3.7  
4.5  
ns  
ns  
PD  
PDD  
Predicted Module Routing Delays  
tRD1  
tRD2  
tRD3  
tRD4  
tRD5  
tRDD  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
Decode-to-Output Routing Delay  
1.1  
1.7  
2.1  
2.6  
4.5  
0.6  
1.35  
2.0  
1.5  
2.2  
2.8  
3.4  
6.0  
0.8  
1.8  
2.6  
3.3  
4.0  
7.0  
0.9  
2.6  
3.7  
4.7  
5.7  
10.0  
1.3  
2.1  
3.0  
3.8  
4.7  
8.2  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
2.4  
3.0  
5.3  
0.67  
Sequential Timing Characteristics  
tCO  
Flip-Flop Clock-to-Output  
2.3  
2.0  
2.7  
2.4  
3.1  
2.7  
3.6  
3.2  
5.1  
4.5  
4.2  
3.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tGO  
Latch Gate-to-Output  
tSU  
Flip-Flop (Latch) Set-Up Time  
Flip-Flop (Latch) Hold Time  
Flip-Flop (Latch) Reset to Output  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
0.3  
0.0  
0.35  
0.0  
0.4  
0.0  
0.47  
0.0  
0.7  
0.0  
0.55  
0.0  
tH  
tRO  
2.3  
2.7  
3.1  
3.6  
5.1  
4.2  
tSUENA  
tHENA  
tWCLKA  
0.6  
0.0  
0.75  
0.0  
0.9  
0.0  
1.0  
0.0  
1.4  
0.0  
1.17  
0.0  
Flip-Flop (Latch) Clock Active  
Pulse Width  
3.1  
4.1  
3.7  
4.9  
4.2  
5.5  
4.9  
6.5  
7.0  
9.2  
5.7  
7.6  
ns  
ns  
tWASYN  
Flip-Flop (Latch) Asynchronous Pulse  
Width  
Discontinued – v3.0  
47  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A32200DX Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
3.3V ‘Std’  
Speed  
‘–3 Speed  
‘–2 Speed  
‘–1’ Speed  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Timing  
Synchronous SRAM Operations  
tRC  
Read Cycle Time  
6.4  
6.4  
3.2  
7.5  
7.5  
3.9  
8.5  
8.5  
4.3  
10.0  
10.0  
5.0  
14.3  
14.3  
7.1  
11.7  
11.7  
5.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWC  
Write Cycle Time  
tRCKHL  
tRCO  
tADSU  
tADH  
Clock High/Low Time  
Data Valid After Clock High/Low  
Address/Data Set-Up Time  
Address/Data Hold Time  
Read Enable Set-Up  
Read Enable Hold  
3.2  
3.8  
4.3  
5.0  
7.1  
5.8  
1.5  
0.0  
0.6  
3.2  
2.6  
0.0  
2.6  
0.0  
1.8  
0.0  
0.7  
3.8  
3.0  
0.0  
3.1  
0.0  
2.0  
0.0  
0.8  
4.3  
3.4  
0.0  
3.5  
0.0  
2.4  
0.0  
0.9  
5.0  
4.0  
0.0  
4.1  
0.0  
3.4  
0.0  
1.4  
7.0  
5.4  
0.0  
5.6  
0.0  
2.8  
0.0  
1.0  
5.8  
4.7  
0.0  
4.8  
0.0  
tRENSU  
tRENH  
tWENSU  
tWENH  
tBENS  
tBENH  
Write Enable Set-Up  
Write Enable Hold  
Block Enable Set-Up  
Block Enable Hold  
Asynchronous SRAM Operations  
tRPD  
Asynchronous Access Time  
Read Address Valid  
7.7  
9.0  
10.2  
12.0  
17.2  
14.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRDADV  
tADSU  
tADH  
8.3  
1.5  
0.0  
0.57  
3.2  
2.6  
0.0  
9.75  
1.8  
0.0  
0.7  
3.8  
3.0  
0.0  
11.1  
2.0  
0.0  
0.8  
4.3  
3.4  
0.0  
13.0  
2.4  
0.0  
0.9  
5.0  
4.0  
0.0  
18.6  
3.4  
0.0  
1.4  
7.1  
5.4  
0.0  
15.2  
2.8  
0.0  
1.0  
5.8  
4.7  
0.0  
Address/Data Set-Up Time  
Address/Data Hold Time  
Read Enable Set-Up to Address Valid  
Read Enable Hold  
tRENSU  
tRENHA  
tWENSU  
tWENH  
tDOH  
Write Enable Set-Up  
Write Enable Hold  
Data Out Hold Time  
1.1  
1.3  
1.5  
1.8  
2.6  
2.1  
48  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A32200DX Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
3.3V ‘Std’  
Speed  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Module Propagation Delays  
t
t
Input Data Pad-to-Y  
1.4  
3.3  
1.65  
3.2  
1.9  
4.3  
2.2  
5.1  
2.9  
7.3  
2.5  
6.0  
ns  
INPY  
1
INGO  
Input Latch Gate-to-Output  
ns  
ns  
ns  
ns  
1
t
t
t
Input Latch Hold  
0.0  
0.45  
4.4  
0.0  
0.52  
5.2  
0.0  
0.6  
5.9  
0.0  
0.7  
6.9  
0.0  
1.0  
9.8  
0.0  
0.8  
8.1  
INH  
INSU  
ILA  
1
Input Latch Set-Up  
1
Latch Active Pulse Width  
Input Module Predicted Routing Delays  
t
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
Decode-to-Output Delay  
1.9  
2.5  
3.3  
3.9  
5.0  
0.3  
2.2  
2.9  
3.9  
4.5  
6.0  
0.37  
2.6  
3.3  
4.4  
5.2  
6.7  
0.4  
3.0  
3.9  
5.2  
6.1  
7.9  
0.5  
4.2  
5.5  
7.6  
8.7  
11.2  
0.7  
3.5  
4.5  
6.1  
7.1  
9.3  
0.6  
ns  
ns  
ns  
ns  
ns  
ns  
IRD1  
IRD2  
IRD3  
IRD4  
IRD5  
IRDD  
Global Clock Network  
t
t
t
t
t
t
t
t
f
Input Low to High  
FO=32  
FO=635  
5.3  
6.1  
6.2  
7.2  
7.1  
8.2  
8.3  
9.6  
11.8  
13.7  
9.7  
11.3  
ns  
ns  
CKH  
Input High to Low  
FO=32  
FO=635  
5.2  
6.8  
6.2  
8.0  
7.0  
9.0  
8.2  
10.6  
11.7  
15.1  
9.6  
12.8  
ns  
ns  
CKL  
FO=32  
FO=635  
2.7  
2.9  
3.2  
3.45  
3.7  
3.9  
4.3  
4.6  
6.1  
6.6  
5.0  
5.4  
ns  
ns  
PWH  
PWL  
CKSW  
SUEXT  
HEXT  
P
Minimum Pulse Width High  
FO=32  
FO=635  
2.7  
2.9  
3.2  
3.45  
3.7  
3.9  
4.3  
4.6  
6.1  
6.6  
5.0  
5.4  
ns  
ns  
Minimum Pulse Width Low  
Maximum Skew  
FO=32  
FO=635  
0.6  
0.6  
0.75  
0.75  
0.9  
0.9  
1.0  
1.0  
1.4  
1.4  
1.1  
1.1  
ns  
ns  
FO=32  
FO=635  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
Input Latch External Set-Up  
Input Latch External  
Hold  
FO=32  
FO=635  
2.2  
2.7  
2.6  
3.2  
2.9  
3.7  
3.4  
4.3  
4.9  
6.1  
4.0  
5.0  
ns  
ns  
Minimum Period  
(1/fmax)  
FO=32  
FO=635  
5.5  
6.1  
6.5  
7.2  
7.4  
8.2  
8.7  
9.6  
12.4  
13.7  
10.2  
11.2  
ns  
ns  
Maximum Datapath  
Frequency  
FO=32  
FO=635  
165  
151  
153.  
140  
132  
121  
115  
105  
80  
73  
98  
90  
MHz  
MHz  
HMAX  
Note:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
Discontinued – v3.0  
49  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A32200DX Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
3.3V ‘Std’  
Speed  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min. Max. Min.  
Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
1
TTL Output Module Timing  
t
t
t
t
t
t
t
t
t
t
t
t
Data-to-Pad High  
3.7  
4.5  
4.8  
5.2  
8.3  
8.3  
8.3  
8.9  
4.3  
5.3  
5.6  
6.0  
9.7  
9.7  
9.7  
10.5  
4.9  
6.0  
5.8  
7.1  
8.3  
6.8  
8.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DLH  
DHL  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
GHL  
LSU  
Data-to-Pad Low  
10.1  
10.7  
11.5  
18.5  
18.5  
18.5  
20.0  
Enable-Pad Z to High  
6.4  
7.5  
8.8  
Enable-Pad Z to Low  
6.9  
8.1  
9.5  
Enable-Pad High to Z  
11.1  
11.1  
11.1  
11.9  
13.0  
13.0  
13.0  
14.0  
15.2  
15.2  
15.2  
16.5  
Enable-Pad Low to Z  
G-to-Pad High  
G-to-Pad Low  
I/O Latch Output Set-Up  
I/O Latch Output Hold  
0.26  
0.0  
0.3  
0.0  
0.3  
0.0  
0.4  
0.0  
0.6  
0.0  
0.5  
0.0  
LH  
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O  
Array Latch Clock-Out (Pad-to-Pad) 32 I/O  
Capacitive Loading, Low to High  
Capacitive Loading, High to Low  
8.4  
9.8  
11.1  
15.7  
0.04  
0.06  
0.05  
13.1  
18.5  
0.05  
0.07  
0.06  
18.7  
26.5  
0.07  
0.10  
0.09  
15.4  
21.7  
LCO  
ACO  
11.8  
0.03  
0.04  
0.04  
13.9  
d
d
0.035  
0.05  
0.06 ns/pF  
0.08 ns/pF  
TLH  
THL  
t
Hard-Wired Wide-Decode Output  
1
0.045  
0.07  
ns  
WDO  
CMOS Output Module Timing  
t
t
t
t
t
t
t
t
t
t
t
Data-to-Pad High  
Data-to-Pad Low  
Enable-Pad Z to High  
Enable-Pad Z to Low  
Enable-Pad High to Z  
Enable-Pad Low to Z  
G-to-Pad High  
4.5  
3.7  
4.8  
5.2  
8.3  
8.3  
8.3  
8.9  
5.3  
4.3  
5.6  
6.0  
9.7  
9.7  
9.7  
10.5  
6.0  
4.9  
5.8  
7.1  
8.3  
6.8  
8.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DLH  
DHL  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
GHL  
LSU  
10.1  
10.7  
11.5  
18.5  
18.5  
18.5  
20.0  
6.4  
7.5  
8.8  
6.9  
8.1  
9.5  
11.1  
11.1  
11.1  
11.9  
13.0  
13.0  
13.0  
14.0  
15.2  
15.2  
15.2  
16.5  
G-to-Pad Low  
I/O Latch Set-Up  
I/O Latch Hold  
0.26  
0.0  
0.3  
0.0  
0.3  
0.0  
0.4  
0.0  
0.6  
0.0  
0.5  
0.0  
LH  
I/O Latch Clock-Out (Pad-to-Pad)  
32 I/O  
LCO  
9.9  
11.6  
13.2  
15.5  
22.3  
18.2  
25.6  
ns  
ns  
t
ACO  
Array Latch Clock-Out (Pad-to-Pad) 32 I/O  
13.9  
0.04  
0.04  
0.04  
16.3  
0.05  
18.5  
0.06  
0.05  
0.05  
21.8  
0.07  
0.06  
0.06  
31.2  
0.10  
0.09  
0.09  
d
d
Capacitive Loading, Low to High  
Capacitive Loading, High to Low  
Hard-Wired Wide-Decode Output  
0.08 ns/pF  
0.07 ns/pF  
TLH  
THL  
0.045  
0.045  
t
0.07  
ns  
WDO  
Note:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
50  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A32300DX Timing Characteristics  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
3.3V ‘Std’  
Speed  
‘–3 Speed  
‘–2 Speed  
‘–1’ Speed  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Propagation Delays  
Combinatorial Functions  
t
t
Internal Array Module Delay  
Internal Decode Module Delay  
2.2  
2.5  
2.6  
2.9  
2.9  
3.3  
3.4  
3.9  
4.8  
5.6  
4.0  
4.5  
ns  
ns  
PD  
PDD  
Predicted Module Routing Delays  
tRD1  
tRD2  
tRD3  
tRD4  
tRD5  
tRDD  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
Decode-to-Output Routing Delay  
1.1  
1.7  
2.4  
2.9  
5.2  
0.6  
1.4  
2.0  
2.8  
3.6  
6.2  
0.7  
1.5  
2.3  
3.1  
3.9  
7.0  
0.8  
1.8  
2.7  
3.7  
4.6  
8.2  
0.9  
2.5  
3.8  
5.2  
6.5  
10.0  
1.3  
2.1  
3.2  
4.3  
5.4  
9.6  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
Sequential Timing Characteristics  
tCO  
Flip-Flop Clock-to-Output  
2.3  
2.2  
2.7  
2.6  
3.1  
2.9  
3.6  
3.4  
5.0  
4.5  
4.2  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tGO  
Latch Gate-to-Output  
tSU  
Flip-Flop (Latch) Set-Up Time  
Flip-Flop (Latch) Hold Time  
Flip-Flop (Latch) Reset to Output  
Flip-Flop (Latch) Enable Set-Up  
Flip-Flop (Latch) Enable Hold  
Flip-Flop (Latch) Clock Active Pulse Width  
0.32  
0.0  
0.4  
0.0  
0.42  
0.0  
0.5  
0.0  
0.7  
0.0  
0.6  
0.0  
tH  
tRO  
2.2  
2.6  
3.0  
3.5  
5.0  
4.1  
tSUENA  
tHENA  
tWCLKA  
tWASYN  
0.6  
0.0  
3.1  
0.75  
0.0  
0.9  
0.0  
4.2  
1.0  
0.0  
4.9  
1.4  
0.0  
7.0  
1.1  
0.0  
5.7  
3.7  
Flip-Flop (Latch) Asynchronous Pulse  
Width  
3.5  
4.1  
4.7  
5.5  
7.9  
6.4  
ns  
Discontinued – v3.0  
51  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A32300DX Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
3.3V ‘Std’  
Speed  
‘–3 Speed  
‘–2 Speed  
‘–1’ Speed  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Logic Module Timing  
Synchronous SRAM Operations  
tRC  
Read Cycle Time  
6.4  
6.4  
3.2  
7.5  
7.5  
8.5  
8.5  
4.3  
10.0  
10.0  
5.0  
14.3  
14.3  
7.1  
11.6  
11.6  
5.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWC  
Write Cycle Time  
tRCKHL  
tRCO  
tADSU  
tADH  
Clock High/Low Time  
Data Valid After Clock High/Low  
Address/Data Set-Up Time  
Address/Data Hold Time  
Read Enable Set-Up  
Read Enable Hold  
3.75  
3.2  
3.75  
4.3  
5.0  
7.1  
5.8  
1.5  
0.0  
0.6  
3.2  
2.6  
0.0  
2.6  
0.0  
1.8  
0.0  
2.0  
0.0  
0.8  
4.3  
3.4  
0.0  
3.5  
0.0  
2.4  
0.0  
0.9  
5.0  
4.0  
0.0  
4.1  
0.0  
3.4  
0.0  
1.3  
7.1  
5.7  
0.0  
5.9  
0.0  
2.82  
0.0  
tRENSU  
tRENH  
tWENSU  
tWENH  
tBENS  
tBENH  
0.68  
3.75  
3.0  
1.05  
5.8  
Write Enable Set-Up  
Write Enable Hold  
4.7  
0.0  
0.0  
Block Enable Set-Up  
Block Enable Hold  
2.3  
4.8  
0.0  
0.0  
Asynchronous SRAM Operations  
tRPD  
Asynchronous Access Time  
Read Address Valid  
7.7  
9.0  
10.2  
12.0  
17.2  
14.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRDADV  
tADSU  
tADH  
8.3  
1.5  
0.0  
0.57  
3.2  
2.6  
0.0  
9.6  
1.8  
11.1  
2.0  
0.0  
0.8  
4.3  
3.4  
0.0  
13.0  
2.4  
0.0  
0.9  
5.0  
4.0  
0.0  
18.6  
3.4  
0.0  
1.3  
7.1  
5.7  
0.0  
15.2  
2.8  
Address/Data Set-Up Time  
Address/Data Hold Time  
Read Enable Set-Up to Address Valid  
Read Enable Hold  
0.0  
0.0  
tRENSUA  
tRENHA  
tWENSU  
tWENH  
tDOH  
0.68  
3.75  
3.0  
1.05  
5.8  
Write Enable Set-Up  
4.7  
Write Enable Hold  
0.0  
0.0  
Data Out Hold Time  
1.1  
1.35  
1.5  
1.8  
2.6  
2.1  
52  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A32300DX Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
3.3V ‘Std’  
Speed  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Module Propagation Delays  
t
t
Input Data Pad-to-Y  
Input Latch  
1.4  
2.9  
1.7  
3.4  
1.9  
3.8  
2.2  
4.5  
3.1  
6.4  
2.5  
5.2  
ns  
INPY  
INGO  
1
Gate-to-Output  
ns  
ns  
ns  
ns  
1
t
t
t
Input Latch Hold  
0.0  
0.45  
4.4  
0.0  
0.5  
5.2  
0.0  
0.6  
5.9  
0.0  
0.7  
6.9  
0.0  
1.0  
9.8  
0.0  
0.82  
8.1  
INH  
INSU  
ILA  
1
Input Latch Set-Up  
1
Latch Active Pulse Width  
Input Module Predicted Routing Delays  
t
t
t
t
t
t
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
Decode-to-Output Routing Delay  
1.9  
2.5  
3.3  
3.9  
5.0  
0.6  
2.3  
2.9  
2.6  
3.3  
4.4  
5.2  
6.7  
0.8  
3.0  
3.9  
5.2  
6.1  
7.9  
0.9  
4.2  
5.5  
7.4  
8.7  
11.2  
1.3  
3.5  
4.6  
ns  
ns  
ns  
ns  
ns  
ns  
IRD1  
IRD2  
IRD3  
IRD4  
IRD5  
RDD  
3.9  
6.1  
4.6  
7.2  
6.0  
9.2  
0.67  
1.05  
Global Clock Network  
t
Input Low to High  
FO=32  
FO=635  
6.4  
7.3  
7.6  
8.6  
8.6  
9.7  
10.1  
11.4  
14.4  
16.2  
11.8  
13.4  
ns  
ns  
CKH  
FO=32  
FO=635  
6.6  
7.1  
7.7  
8.4  
8.8  
9.5  
10.3  
11.2  
14.7  
16.0  
12.1  
13.1  
ns  
ns  
t
t
Input High to Low  
CKL  
FO=32  
FO=635  
3.0  
3.3  
3.5  
3.8  
4.0  
4.3  
4.7  
5.1  
6.7  
7.2  
5.5  
6.0  
ns  
ns  
PWH  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
t
FO=32  
FO=635  
3.0  
3.3  
3.8  
3.8  
4.0  
4.3  
4.7  
5.1  
6.7  
7.2  
5.5  
6.0  
ns  
ns  
PWL  
FO=32  
FO=635  
0.6  
0.6  
0.75  
0.75  
0.9  
0.9  
1.0  
1.0  
1.4  
1.4  
1.17  
1.17  
ns  
ns  
t
t
CKSW  
Input Latch External  
Set-Up  
FO=32  
FO=635  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
0.0  
ns  
ns  
SUEXT  
t
t
f
FO=32  
FO=635  
2.2  
2.7  
2.6  
3.2  
2.9  
3.7  
3.4  
4.3  
4.9  
6.1  
4.0  
5.0  
ns  
ns  
HEXT  
P
Input Latch External Hold  
Minimum Period (1/fmax)  
FO=32  
FO=635  
5.5  
6.1  
6.9  
7.7  
7.4  
8.2  
9.3  
10.2  
13.2  
14.5  
10.9  
12.0  
ns  
ns  
Maximum Datapath  
Frequency  
FO=32  
FO=635  
154  
141  
142  
130  
123  
113  
107  
98  
75  
69  
91  
83  
MHz  
MHz  
HMAX  
Note:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
Discontinued – v3.0  
53  
Integrator Series FPGAs: 1200XL and 3200DX Families  
A32300DX Timing Characteristics (continued)  
(Worst-Case Commercial Conditions V  
= 4.75 V, T = 70°C)  
J
CC  
3.3V ‘Std’  
Speed  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
‘–F’ Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
1
TTL Output Module Timing  
t
t
t
t
t
t
t
t
t
t
t
t
Data-to-Pad High  
3.7  
4.4  
4.8  
5.1  
8.3  
8.3  
4.3  
5.4  
4.3  
5.2  
4.9  
5.9  
5.8  
6.9  
7.7  
8.1  
8.2  
9.8  
ns  
ns  
DLH  
DHL  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
GHL  
LSU  
Data-to-Pad Low  
Enable-Pad Z to High  
5.6  
6.4  
7.5  
8.8  
10.7  
11.4  
18.5  
18.5  
9.6  
ns  
Enable-Pad Z to Low  
6.0  
6.8  
8.0  
9.4  
ns  
Enable-Pad High to Z  
9.75  
9.75  
5.0  
11.1  
11.1  
5.7  
13.0  
13.0  
6.7  
15.2  
15.2  
7.9  
ns  
Enable-Pad Low to Z  
ns  
G-to-Pad High  
ns  
G-to-Pad Low  
6.3  
7.1  
8.4  
7.9  
12.0  
ns  
I/O Latch Output Set-Up  
I/O Latch Output Hold  
0.26  
0.0  
0.3  
0.0  
0.34  
0.0  
0.4  
0.0  
0.47  
0.0  
0.6  
0.0  
ns  
ns  
LH  
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O  
Array Latch Clock-Out (Pad-to-Pad) 32 I/O  
Capacitive Loading, Low to High  
Capacitive Loading, High to Low  
8.4  
9.7  
13.9  
0.3  
11.1  
15.7  
0.34  
0.4  
13.1  
18.5  
0.4  
15.4  
21.8  
0.47  
0.58  
0.058  
18.7  
26.5  
0.6  
ns  
LCO  
ACO  
11.8  
0.26  
0.32  
0.03  
ns  
d
d
ns/pF  
ns/pF  
ns  
TLH  
THL  
0.37  
0.037  
0.5  
0.7  
t
Hard-Wired Wide-Decode Output  
1
0.04  
0.05  
0.07  
WDO  
CMOS Output Module Timing  
t
t
t
t
t
t
t
t
t
t
t
t
Data-to-Pad High  
4.4  
3.7  
4.8  
5.1  
8.3  
8.3  
4.3  
5.4  
5.2  
4.3  
5.9  
4.9  
6.9  
5.8  
8.1  
7.7  
8.2  
9.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DLH  
DHL  
ENZH  
ENZL  
ENHZ  
ENLZ  
GLH  
GHL  
LSU  
Data-to-Pad Low  
Enable-Pad Z to High  
5.6  
6.4  
7.5  
8.8  
10.7  
11.4  
18.5  
18.5  
9.6  
Enable-Pad Z to Low  
6.0  
6.8  
8.0  
9.4  
Enable-Pad High to Z  
9.75  
9.75  
5.0  
11.1  
11.1  
5.7  
13.0  
13.0  
6.7  
15.2  
15.2  
7.9  
Enable-Pad Low to Z  
G-to-Pad High  
G-to-Pad Low  
6.3  
7.1  
8.4  
9.9  
12.0  
I/O Latch Set-Up  
0.26  
0.0  
0.3  
0.0  
0.34  
0.0  
0.4  
0.0  
0.47  
0.0  
0.6  
0.0  
I/O Latch Hold  
LH  
I/O Latch Clock-Out (Pad-to-Pad) 32 I/O  
Array Latch Clock-Out (Pad-to-Pad) 32 I/O  
Capacitive Loading, Low to High  
Capacitive Loading, High to Low  
Hard-Wired Wide-Decode Output  
9.9  
11.6  
16.4  
0.37  
0.3  
13.2  
18.5  
0.4  
15.5  
21.8  
0.5  
17.6  
25.6  
0.6  
22.3  
31.2  
LCO  
ACO  
13.9  
0.32  
0.26  
0.03  
d
d
0.10 ns/pF  
0.09 ns/pF  
TLH  
THL  
0.3  
0.4  
0.5  
t
0.037  
0.04  
0.05  
0.06  
0.09  
ns  
WDO  
Note:  
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
54  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Pin Descriptions  
CLKA, CLKB Clock A and Clock B (Input)  
TTL clock inputs for clock distribution networks. The clock  
input is buffered prior to clocking the logic modules. This  
pin can also be used as an I/O.  
PRB, I/O  
Probe B (Output)  
The Probe B pin is used to output data from any  
user-defined design node within the device. This  
independent diagnostic pin is used in conjunction with the  
Probe A pin to allow real-time diagnostic output of any  
signal path within the device. The Probe B pin can be used  
as a user-defined I/O when debugging has been completed.  
The pin’s probe capabilities can be permanently disabled to  
protect programmed design confidentiality. PRB is active  
when the MODE pin is HIGH. This pin functions as an I/O  
when the MODE pin is LOW.  
DCLK  
Diagnostic Clock (Input)  
TTL clock input for diagnostic probe and device  
programming. DCLK is active when the MODE pin is HIGH.  
This pin functions as an I/O when the MODE pin is LOW.  
GND  
Ground (Input)  
Input LOW supply voltage.  
I/O  
Input/Output (Input, Output)  
QCLKA,B,C,D Quadrant Clock (Input/Output)  
These four pins are the quadrant clock inputs. When not  
used as a register control signal, these pins can function as  
general purpose I/O.  
I/O pin functions as an input, output, three-state or  
bidirectional buffer. Input and output levels are compatible  
with standard TTL and CMOS specifications. Unused I/O  
pins are automatically driven LOW by the Designer Series  
software for XL devices and are automatically tristated for  
DX devices.  
SDO  
Serial Data (Output)  
Serial data output for diagnostic probe and device  
programming. SDO is active when the MODE pin is HIGH.  
This pin functions as an I/O when MODE pin is LOW.  
MODE  
Mode (Input)  
The MODE pin controls the use of multi-function pins  
(DCLK, PRA, PRB, SDI, TDO). When the MODE pin is HIGH,  
the special functions are active. To provide ActionProbe  
capability, the MODE pin should be terminated to GND  
through a 10K resistor so the MODE pin can be pulled HIGH  
when required.  
SDI  
Serial Data Input (Input)  
Serial data input for diagnostic probe and device  
programming. SDI is active when the MODE pin is HIGH.  
This pin functions as an I/O when the MODE pin is LOW.  
TCK  
Test Clock  
Clock signal to shift the JTAG data into the device. This pin  
functions as an I/O when the JTAG fuse is not programmed.  
NC  
No Connection  
This pin is not connected to circuitry within the device.  
These pins can be driven to any voltage or can be left  
floating with no effect on the operation of the device.  
TDI  
Test Data In  
Serial data input for JTAG instructions and data. Data is  
shifted in on the rising edge of TCLK. This pin functions as  
an I/O when the JTAG fuse is not programmed.  
PRA, I/O  
Probe A (Output)  
The Probe A pin is used to output data from any  
user-defined design node within the device. This  
independent diagnostic pin is used in conjunction with the  
Probe B pin to allow real-time diagnostic output of any  
signal path within the device. The Probe A pin can be used  
as a user-defined I/O when debugging has been completed.  
The pin's probe capabilities can be permanently disabled to  
protect programmed design confidentiality. PRA is active  
when the MODE pin is HIGH. This pin functions as an I/O  
when the MODE pin is LOW.  
TDO  
Test Data Out  
Serial data output for JTAG instructions and test data. This  
pin functions as an I/O when the JTAG fuse is not  
programmed.  
TMS  
Test Mode Select  
Serial data input for JTAG test mode. Data is shifted in on  
the rising edge of TCLK. This pin functions as an I/O when  
the JTAG fuse is not programmed.  
V
Supply Voltage (Input)  
CC  
Input HIGH supply voltage.  
Note: TCK, TDI, TDO, TMS are only available on devices  
containing JTAG circuitry.  
Discontinued – v3.0  
55  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Package Pin Assignments  
84-Pin PLCC Package (Top View)  
1
84  
84-Pin  
PLCC  
56  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
84-Pin PLCC Package  
A1240XL  
Function  
A3265DX  
Function  
Pin  
Number  
A1225XL  
Function  
A1280XL  
Function  
A32100DX  
Function  
A32140DX  
Function  
2
CLKB, I/O  
PRB, I/O  
I/O  
CLKB, I/O  
PRB, I/O  
I/O  
CLKB, I/O  
PRB, I/O  
I/O (WD)  
GND  
CLKB, I/O  
PRB, I/O  
I/O  
CLKB, I/O  
PRB, I/O  
CLKB, I/O  
PRB, I/O  
I/O (WD)  
GND  
4
5
I/O (WD)  
6
GND  
GND  
GND  
GND  
7
I/O  
I/O  
I/O  
I/O  
QCLKC, I/O  
I/O (WD)  
I/O  
8
I/O  
I/O  
I/O (WD)  
I/O (WD)  
DCLK, I/O  
MODE (GND)  
I/O  
I/O (WD)  
I/O (WD)  
DCLK, I/O  
MODE (GND)  
9
I/O  
I/O  
I/O  
I/O (WD)  
10  
12  
22  
23  
28  
34  
35  
36  
37  
38  
39  
43  
44  
45  
46  
47  
49  
50  
51  
52  
62  
63  
64  
65  
70  
76  
78  
79  
80  
81  
83  
84  
DCLK, I/O  
MODE (GND)  
DCLK, I/O  
MODE (GND)  
DCLK, I/O  
MODE (GND)  
DCLK, I/O  
MODE (GND)  
V
V
V
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
TMS, I/O  
TDI, I/O  
GND  
TMS, I/O  
TDI, I/O  
I/O (WD)  
I/O  
I/O  
I/O  
I/O (WD)  
QCLKA, I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O (WD)  
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O  
I/O  
I/O  
I/O (WD)  
QCLKB, I/O  
I/O (WD)  
I/O (WD)  
GND  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O (WD)  
GND  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O (WD)  
I/O (WD)  
SDO, TDO, I/O  
TCK, I/O  
GND  
I/O (WD)  
I/O (WD)  
SDO, TDO, I/O  
TCK, I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
GND  
V
V
V
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
GND  
SDI, I/O  
I/O  
GND  
SDI, I/O  
I/O  
GND  
GND  
SDI, I/O  
I/O  
GND  
SDI, I/O  
GND  
SDI, I/O  
I/O (WD)  
I/O (WD)  
I/O (WD)  
PRA, I/O  
CLKA, I/O  
SDI, I/O  
I/O (WD)  
I/O (WD)  
I/O (WD)  
PRA, I/O  
CLKA, I/O  
I/O (WD)  
I/O (WD)  
QCLKD, I/O  
PRA, I/O  
CLKA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRA, I/O  
CLKA, I/O  
PRA, I/O  
CLKA, I/O  
PRA, I/O  
CLKA, I/O  
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
Notes:  
1. I/O (WD): Denotes I/O pin with an associated wide-decode module  
2. Wide-decode I/O (WD) can also be general purpose user I/O.  
3. NC: Denotes ‘No Connection’.  
4. All unlisted pin numbers are user I/O’s.  
5. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.  
Discontinued – v3.0  
57  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Package Pin Assignments (continued)  
100-Pin PQFP Package, 100-Pin VQFP Package (Top View)  
100-Pin  
PQFP  
100  
1
100  
1
100-Pin  
VQFP  
58  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
100-Pin PQFP Package, 100-Pin VQFP Package  
A1225XL-  
PQ100  
Function  
A1225XL-  
VQ100  
Function  
A1240XL-  
PQ100  
Function  
A3265DX  
PQ100  
Function  
Pin Number  
2
DCLK, I/O  
MODE (GND)  
DCLK, I/O  
DCLK, I/O  
3
I/O  
I/O  
I/O  
I/O  
I/O  
4
MODE (GND)  
MODE (GND)  
MODE (GND)  
7
I/O  
GND  
I/O  
GND  
I/O  
I/O  
GND  
I/O  
I/O  
GND  
I/O  
9
14  
15  
16  
17  
20  
22  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
44  
45  
46  
47  
48  
49  
50  
52  
55  
57  
62  
63  
64  
65  
66  
67  
70  
72  
77  
81  
82  
83  
V
V
CC  
CC  
I/O  
I/O  
I/O  
V
V
I/O  
I/O  
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
GND  
I/O  
I/O  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
I/O  
CC  
I/O  
I/O  
I/O  
I/O  
V
V
V
CC  
CC  
CC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O (WD)  
GND  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
GND  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
SDO, I/O  
I/O  
I/O  
I/O  
SDO, I/O  
I/O  
SDO, I/O  
I/O  
SDO, I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
GND  
I/O  
I/O  
V
V
V
I/O  
I/O  
CC  
CC  
CC  
GND  
GND  
GND  
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
GND  
I/O  
I/O  
GND  
SDI, I/O  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
Discontinued – v3.0  
59  
Integrator Series FPGAs: 1200XL and 3200DX Families  
100-Pin PQFP Package, 100-Pin VQFP Package  
A1225XL-  
PQ100  
Function  
A1225XL-  
VQ100  
Function  
A1240XL-  
PQ100  
Function  
A3265DX  
PQ100  
Function  
Pin Number  
84  
85  
86  
87  
88  
89  
90  
92  
94  
95  
96  
99  
100  
GND  
I/O  
I/O  
PRA, I/O  
I/O  
GND  
I/O  
GND  
I/O (WD)  
I/O (WD)  
PRA, I/O  
I/O  
I/O  
I/O  
PRA, I/O  
I/O  
CLKA, I/O  
PRA, I/O  
I/O  
V
CC  
CLKA, I/O  
I/O  
CLKB, I/O  
PRB, I/O  
GND  
CLKA, I/O  
CLKA, I/O  
V
V
V
CC  
CC  
CC  
CLKB, I/O  
PRB, I/O  
I/O  
CLKB, I/O  
PRB, I/O  
I/O  
CLKB, I/O  
PRB, I/O  
I/O (WD)  
GND  
I/O  
GND  
I/O  
I/O  
GND  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
DCLK, I/O  
I/O  
Notes:  
1. NC: Denotes ‘No Connection’.  
2. All unlisted pin numbers are user I/O’s.  
3. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.  
4. I/O (WD): Denotes I/O pin with an associated Wide-Decode Module  
60  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Package Pin Assignments (continued)  
144-Pin PQFP Package (Top View)  
144  
1
144-Pin  
PQFP  
Discontinued – v3.0  
61  
Integrator Series FPGAs: 1200XL and 3200DX Families  
144-Pin PQFP Package  
144-Pin PQFP Package  
Pin Number  
A1240XL Function  
Pin Number  
A1240XL Function  
2
9
MODE (GND)  
GND  
125  
126  
127  
128  
130  
132  
136  
137  
138  
144  
CLKA, I/O  
V
V
V
CC  
CC  
CC  
10  
11  
GND  
GND  
18  
19  
20  
21  
28  
29  
30  
44  
45  
46  
54  
55  
64  
65  
79  
80  
81  
88  
89  
90  
91  
92  
100  
101  
102  
110  
116  
117  
118  
123  
V
V
V
V
CLKB, I/O  
PRB, I/O  
GND  
CC  
CC  
CC  
CC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DCLK, I/O  
V
V
CC  
CC  
GND  
GND  
GND  
GND  
GND  
GND  
V
V
V
V
CC  
CC  
CC  
CC  
GND  
GND  
GND  
SDI, I/O  
GND  
GND  
GND  
PRA, I/O  
Notes:  
1. NC: Denotes ‘No Connection’.  
2. All unlisted pin numbers are user I/O’s.  
3. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.  
62  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Package Pin Assignments (continued)  
160-Pin PQFP Package (Top View)  
160  
1
160-Pin  
PQFP  
Notes:  
1.  
I/O (WD): Denotes I/O pin with an associated wide-decode module  
2. Wide-Decode I/O (WD) can also be general-purpose user I/O.  
3. NC Denotes ‘No Connection’.  
4. All unlisted pin numbers are user I/O’s.  
5. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.  
Discontinued – v3.0  
63  
Integrator Series FPGAs: 1200XL and 3200DX Families  
160-Pin PQFP Package  
Pin  
Number  
A3265DX  
Function  
A1280XL  
Function  
A32100DX  
Function  
A32140DX  
Function  
2
DCLK, I/O  
I/O  
DCLK, I/O  
I/O  
DCLK  
DCLK, I/O  
I/O (WD)  
I/O (WD)  
4
I/O (WD)  
I/O (WD)  
5
I/O (WD)  
I/O  
6
V
V
V
V
CC  
CC  
CC  
CC  
7
I/O (WD)  
GND  
I/O  
GND  
I/O  
I/O  
11  
12  
13  
14  
16  
18  
20  
21  
23  
24  
25  
26  
28  
29  
30  
31  
33  
34  
35  
36  
37  
38  
40  
44  
49  
54  
57  
58  
59  
60  
61  
62  
64  
69  
80  
82  
83  
84  
86  
87  
88  
89  
90  
GND  
GND  
I/O  
I/O  
QCLKC, I/O  
I/O (WD)  
I/O (WD)  
PRB, I/O  
CLKB, I/O  
I/O  
I/O (WD)  
I/O (WD)  
PRB, I/O  
CLKB, I/O  
I/O  
I/O (WD)  
I/O (WD)  
PRB, I/O  
CLKB, I/O  
I/O  
PRB, I/O  
CLKB, I/O  
V
V
V
V
CC  
CC  
CC  
CC  
CLKA, I/O  
PRA, I/O  
I/O  
CLKA, I/O  
PRA, I/O  
I/O  
CLKA, I/O  
PRA, I/O  
I/O (WD)  
I/O (WD)  
I/O  
CLKA, I/O  
PRA, I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
QCLKD  
I/O (WD)  
GND  
I/O  
I/O (WD)  
GND  
I/O  
I/O (WD)  
GND  
GND  
I/O  
I/O (WD)  
I/O  
I/O (WD)  
NC  
I/O (WD)  
I/O  
I/O  
I/O (WD)  
I/O  
NC  
I/O  
V
V
V
V
CC  
CC  
CC  
CC  
I/O (WD)  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
SDI, I/O  
GND  
I/O (WD)  
I/O (WD)  
SDI, I/O  
GND  
SDI, I/O  
GND  
SDI, I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
V
V
V
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
GND  
GND  
GND  
GND  
V
V
V
V
CC  
CC  
CC  
CC  
GND  
I/O  
GND  
I/O  
GND  
TCK, I/O  
GND  
GND  
TCK, I/O  
GND  
GND  
GND  
GND  
I/O  
GND  
GND  
GND  
I/O  
GND  
GND  
GND  
GND  
SDO, I/O  
I/O (WD)  
I/O (WD)  
SDO, TDO, I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
V
V
V
V
CC  
CC  
CC  
CC  
I/O (WD)  
I/O (WD)  
GND  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
GND  
I/O (WD)  
GND  
GND  
I/O  
I/O  
I/O (WD)  
I/O  
64  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
160-Pin PQFP Package (Continued)  
Pin  
Number  
A3265DX  
Function  
A1280XL  
Function  
A32100DX  
Function  
A32140DX  
Function  
91  
92  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKB, I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
93  
I/O  
I/O  
95  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
96  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O  
97  
98  
V
V
V
V
CC  
CC  
CC  
CC  
99  
GND  
I/O (WD)  
I/O (WD)  
GND  
GND  
I/O  
GND  
I/O (WD)  
I/O (WD)  
GND  
GND  
I/O (WD)  
I/O (WD)  
GND  
106  
107  
109  
110  
111  
112  
114  
115  
116  
118  
119  
120  
125  
130  
135  
138  
139  
140  
145  
150  
155  
159  
160  
I/O  
GND  
I/O  
I/O  
QCLKA, I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
V
V
V
V
CC  
CC  
CC  
CC  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
TDI, I/O  
TMS, I/O  
GND  
I/O (WD)  
I/O (WD)  
TDI, I/O  
TMS, I/O  
GND  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
V
V
V
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
V
V
V
V
CC  
CC  
CC  
CC  
GND  
MODE (GND)  
GND  
GND  
MODE (GND)  
GND  
GND  
MODE (GND)  
GND  
GND  
MODE (GND)  
GND  
Discontinued – v3.0  
65  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Package Pin Assignments (continued)  
208-Pin PQFP Package, 208-Pin RQFP Package (Top View)  
208  
1
208-Pin PQFP  
208-Pin RQFP  
Notes:  
1.  
I/O (WD): Denotes I/O pin with an associated wide-decode module.  
2. Wide-Decode I/O (WD) can also be general purpose user I/O.  
3. NC: Denotes ‘No Connection’.  
4. All unlisted pin numbers are user I/O’s.  
5. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.  
6. RQFP has an exposed circular metal heat sink on the top surface.  
66  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
208-Pin PQFP Package, 208-Pin RQFP Package  
A1280XL  
Function  
A32100DX  
Function  
A32200DX-  
PQ208 Function  
A32200DX-  
RQ208 Function  
A32300DX  
Function  
Pin Number  
A32140DX Function  
1
GND  
GND  
GND  
GND  
I/O  
I/O  
2
NC  
V
V
V
CC  
DCLK, I/O  
I/O  
DCLK, I/O  
I/O  
CC  
CC  
3
MODE (GND)  
MODE (GND)  
MODE (GND)  
MODE (GND)  
5
I/O  
I/O  
I/O  
NC  
NC  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
NC  
NC  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O (WD)  
6
7
V
V
CC  
CC  
9
I/O  
I/O  
I/O  
I/O  
10  
11  
13  
15  
16  
17  
19  
20  
22  
24  
26  
27  
28  
29  
30  
32  
33  
38  
40  
41  
42  
43  
45  
47  
48  
50  
51  
52  
53  
54  
55  
57  
58  
59  
60  
61  
62  
65  
66  
67  
68  
70  
71  
74  
77  
78  
I/O  
I/O  
QCLKC, I/O  
I/O (WD)  
I/O (WD)  
I/O  
QCLKC, I/O  
I/O (WD)  
I/O (WD)  
I/O  
V
V
V
V
CC  
CC  
CC  
CC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
PRB, I/O  
CLKB, I/O  
GND  
I/O (WD)  
I/O (WD)  
PRB, I/O  
CLKB, I/O  
GND  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
GND  
V
V
CC  
CC  
V
V
V
V
V
V
V
V
I/O  
CLKA, I/O  
PRA, I/O  
I/O (WD)  
I/O (WD)  
QCLKD, I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
CLKA, I/O  
PRA, I/O  
I/O (WD)  
I/O (WD)  
QCLKD, I/O  
I/O (WD)  
I/O (WD)  
I/O  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
I/O  
I/O  
I/O  
I/O  
V
V
V
V
CC  
CC  
CC  
CC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
V
CC  
CC  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
SDI, I/O  
I/O  
I/O (WD)  
I/O (WD)  
SDI, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
GND  
GND  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
GND  
GND  
TMS, I/O  
TDI, I/O  
I/O  
GND  
GND  
TMS, I/O  
TDI, I/O  
I/O (WD)  
I/O (WD)  
I/O  
GND  
GND  
TMS, I/O  
TDI, I/O  
I/O (WD)  
I/O (WD)  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
V
V
V
V
CC  
CC  
CC  
CC  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKA, I/O  
I/O  
I/O  
QCLKA, I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
GND  
Discontinued – v3.0  
67  
Integrator Series FPGAs: 1200XL and 3200DX Families  
208-Pin PQFP Package, 208-Pin RQFP Package (Continued)  
A1280XL  
Function  
A32100DX  
Function  
A32200DX-  
PQ208 Function  
A32200DX-  
RQ208 Function  
A32300DX  
Function  
Pin Number  
A32140DX Function  
79  
80  
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
NC  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
NC  
NC  
NC  
GND  
TCK, I/O  
GND  
I/O  
GND  
TCK, I/O  
GND  
I/O  
CC  
CC  
81  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
83  
85  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
86  
I/O  
I/O  
89  
I/O  
I/O  
90  
I/O  
I/O  
I/O  
I/O  
I/O  
91  
QCLKB, I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
QCLKB, I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
93  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
94  
I/O  
I/O  
95  
I/O  
I/O  
96  
NC  
I/O  
I/O  
I/O  
I/O  
97  
NC  
I/O  
I/O  
I/O  
I/O  
98  
V
V
V
V
CC  
I/O  
I/O  
CC  
CC  
CC  
100  
101  
103  
104  
105  
106  
107  
108  
110  
112  
113  
114  
115  
117  
121  
122  
126  
127  
128  
129  
130  
131  
132  
133  
136  
137  
138  
141  
142  
144  
146  
147  
148  
149  
150  
151  
152  
154  
I/O  
I/O (WD)  
I/O (WD)  
SDO, I/O  
I/O  
I/O (WD)  
I/O (WD)  
SDO, TDO, I/O  
I/O  
I/O (WD)  
I/O (WD)  
SDO, TDO, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
V
CC  
CC  
I/O  
GND  
I/O  
GND  
I/O  
GND  
NC  
I/O  
GND  
GND  
GND  
V
V
V
CC  
SDO, TDO, I/O  
I/O (WD)  
I/O (WD)  
SDO, TDO, I/O  
I/O (WD)  
I/O (WD)  
CC  
CC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
V
CC  
CC  
NC  
NC  
NC  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
QCLKB, I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
QCLKB, I/O  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
TCK, I/O  
GND  
TCK, I/O  
GND  
TCK, I/O  
GND  
I/O  
GND  
V
V
CC  
CC  
V
V
V
V
CC  
GND  
I/O  
GND  
I/O  
CC  
CC  
CC  
GND  
GND  
GND  
GND  
V
V
V
V
V
V
V
V
V
V
V
V
I/O  
I/O  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O (WD)  
QCLKA, I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O (WD)  
QCLKA, I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
NC  
GND  
I/O  
NC  
NC  
NC  
NC  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
V
V
CC  
CC  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
TDI, I/O  
I/O (WD)  
I/O (WD)  
TDI, I/O  
I/O  
I/O  
I/O  
I/O  
68  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
208-Pin PQFP Package, 208-Pin RQFP Package (Continued)  
A1280XL  
Function  
A32100DX  
Function  
A32200DX-  
PQ208 Function  
A32200DX-  
RQ208 Function  
A32300DX  
Function  
Pin Number  
A32140DX Function  
155  
156  
157  
159  
161  
162  
164  
165  
166  
168  
169  
171  
176  
177  
178  
180  
181  
182  
183  
184  
186  
187  
188  
190  
191  
193  
194  
195  
196  
197  
201  
202  
203  
204  
206  
207  
208  
I/O  
I/O  
I/O  
I/O  
I/O  
TMS, I/O  
GND  
TMS, I/O  
GND  
I/O  
I/O  
I/O  
GND  
SDI, I/O  
I/O  
GND  
GND  
GND  
V
V
CC  
CC  
SDI, I/O  
I/O (WD)  
I/O (WD)  
SDI, I/O  
I/O (WD)  
I/O (WD)  
SDI, I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
V
V
V
CC  
CC  
CC  
CC  
NC  
NC  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
QCLKD, I/O  
I/O (WD)  
I/O (WD)  
PRA, I/O  
CLKA, I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
QCLKD, I/O  
I/O (WD)  
I/O (WD)  
PRA, I/O  
CLKA, I/O  
I/O  
I/O  
NC  
I/O  
I/O (WD)  
I/O (WD)  
PRA, I/O  
CLKA, I/O  
I/O  
I/O  
PRA, I/O  
CLKA, I/O  
NC  
V
V
CC  
CC  
I/O  
I/O  
V
V
CC  
CC  
CC  
CC  
NC  
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
V
I/O  
I/O  
I/O  
CC  
GND  
CLKB, I/O  
I/O  
GND  
CLKB  
I/O  
GND  
CLKB, I/O  
I/O  
GND  
CLKB, I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
PRB, I/O  
I/O  
PRB, I/O  
I/O (WD)  
I/O (WD)  
I/O  
PRB, I/O  
I/O (WD)  
I/O (WD)  
I/O  
PRB, I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
NC  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
QCLKC, I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
QCLKC, I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
V
V
V
V
CC  
I/O  
I/O  
I/O  
CC  
CC  
CC  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
I/O  
MODE  
MODE (GND)  
DCLK, I/O  
I/O  
DCLK, I/O  
I/O  
DCLK, I/O  
I/O  
DCLK, I/O  
I/O  
V
V
CC  
CC  
GND  
GND  
Discontinued – v3.0  
69  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Package Pin Assignments (continued)  
240-Pin RQFP Package (Top View)  
Exposed  
Heatsink  
240  
1
240-Pin  
RQFP  
Notes:  
1. I/O (WD): Denotes I/O pin with an associated wide-decode module.  
2. Wide-Decode I/O (WD) can also be general purpose user I/O.  
3. NC: Denotes ‘No Connection.’  
4. All unlisted pin numbers are user I/O’s.  
5. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.  
6. RQFP has an exposed circular metal heat sink on the top surface.  
70  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
240-Pin RQFP Package  
A32300DX  
Function  
A32300DX  
Function  
A32200DX Function  
Pin Number  
Pin Number  
A32200DX Function  
2
DCLK, I/O  
I/O (WD)  
I/O (WD)  
DCLK, I/O  
I/O (WD)  
I/O (WD)  
120  
121  
123  
125  
126  
128  
132  
133  
135  
142  
143  
147  
148  
150  
151  
152  
159  
160  
163  
164  
166  
172  
174  
175  
178  
179  
180  
181  
182  
192  
206  
209  
210  
219  
227  
237  
238  
239  
240  
GND  
GND  
GND  
6
GND  
SDO, TDO, I/O  
I/O (WD)  
7
SDO, TDO, I/O  
I/O (WD)  
I/O (WD)  
8
V
V
CC  
CC  
15  
17  
18  
21  
22  
24  
26  
28  
29  
30  
32  
33  
34  
37  
38  
45  
47  
48  
52  
54  
55  
57  
59  
60  
61  
71  
85  
88  
89  
90  
91  
92  
94  
108  
118  
119  
QCLKC, I/O  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O (WD)  
PRB, I/O  
CLKB, I/O  
GND  
QCLKC, I/O  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O (WD)  
PRB, I/O  
CLKB, I/O  
GND  
I/O (WD)  
V
V
CC  
CC  
I/O (WD)  
I/O (WD)  
QCLKB, I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
QCLKB, I/O  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O (WD)  
V
V
V
V
I/O  
CC  
CC  
CC  
CC  
V
V
V
V
CC  
CC  
CC  
CC  
CLKA, I/O  
I/O  
CLKA, I/O  
I/O (WD)  
PRA, I/O  
I/O (WD)  
I/O (WD)  
QCLKD, I/O  
I/O (WD)  
I/O (WD)  
GND  
GND  
PRA, I/O  
I/O (WD)  
I/O (WD)  
QCLKD, I/O  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O (WD)  
QCLKA, I/O  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O (WD)  
QCLKA, I/O  
V
V
CC  
CC  
V
V
I/O (WD)  
I/O (WD)  
TDI, I/O  
TMS, I/O  
GND  
I/O (WD)  
I/O (WD)  
TDI, I/O  
TMS, I/O  
GND  
CC  
CC  
I/O (WD)  
I/O (WD)  
SDI, I/O  
I/O (WD)  
I/O (WD)  
SDI, I/O  
V
V
CC  
CC  
GND  
GND  
GND  
GND  
V
V
CC  
CC  
GND  
GND  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
GND  
TCK, I/O  
GND  
GND  
TCK, I/O  
GND  
GND  
GND  
MODE (GND)  
MODE (GND)  
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
GND  
GND  
GND  
GND  
Discontinued – v3.0  
71  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Package Pin Assignments (continued)  
176-Pin TQFP Package (Top View)  
176  
1
176-Pin  
TQFP  
Notes:  
1. I/O (WD): Denotes I/O pin with an associated wide-decode module.  
2. Wide-Decode I/O (WD) can also be general-purpose user I/O.  
3. NC: Denotes ‘No Connection.’  
4. All unlisted pin numbers are user I/O’s.  
5. MODE should be terminated to GND through a 10K resistor to enable ActionProbe usage; otherwise it can be terminated directly to GND.  
72  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
176-pin TQFP Package  
A1240XL  
Function  
A3265DX  
Function  
A1280XL  
Function  
A32100DX  
Function  
A32140DX  
Function  
Pin Number  
1
GND  
MODE  
NC  
GND  
MODE  
NC  
GND  
MODE  
NC  
GND  
MODE  
NC  
GND  
MODE  
I/O  
2
8
10  
11  
13  
18  
19  
20  
22  
23  
24  
25  
26  
27  
28  
29  
33  
37  
38  
45  
46  
47  
48  
49  
50  
51  
52  
54  
55  
56  
57  
59  
60  
61  
64  
66  
67  
68  
69  
70  
72  
73  
74  
75  
76  
77  
78  
79  
80  
NC  
NC  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
NC  
V
V
V
V
CC  
CC  
CC  
CC  
GND  
NC  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
GND  
NC  
GND  
GND  
GND  
GND  
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
CC  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
NC  
NC  
I/O  
I/O  
I/O  
NC  
NC  
NC  
GND  
I/O  
NC  
NC  
NC  
GND  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
NC  
GND  
I/O  
NC  
I/O  
GND  
GND  
TMS, I/O  
TDI, I/O  
I/O  
TMS, I/O  
TDI, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
NC  
NC  
NC  
I/O  
V
V
V
V
CC  
CC  
CC  
CC  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
NC  
I/O  
QCLKA, I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
NC  
NC  
NC  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
GND  
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
NC  
I/O  
NC  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
NC  
I/O  
I/O  
I/O (WD)  
I/O  
I/O  
I/O  
QCLKB, I/O  
I/O  
I/O  
NC  
I/O (WD)  
I/O (WD)  
I/O  
NC  
I/O (WD)  
I/O (WD)  
NC  
I/O  
I/O (WD)  
I/O  
Discontinued – v3.0  
73  
Integrator Series FPGAs: 1200XL and 3200DX Families  
176-pin TQFP Package (Continued)  
A1240XL  
Pin Number  
A3265DX  
Function  
A1280XL  
Function  
A32100DX  
Function  
A32140DX  
Function  
Function  
81  
I/O  
NC  
I/O (WD)  
I/O  
I/O  
I/O  
82  
V
V
V
V
CC  
CC  
CC  
CC  
84  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
85  
I/O  
86  
NC  
NC  
I/O  
87  
I/O  
I/O  
I/O  
SDO, TDO, I/O  
GND  
SDO, TDO, I/O  
GND  
89  
GND  
NC  
GND  
NC  
GND  
I/O  
96  
I/O  
I/O  
97  
NC  
I/O  
I/O  
I/O  
I/O  
101  
103  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
121  
124  
125  
126  
133  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
149  
150  
151  
152  
154  
155  
156  
158  
160  
NC  
NC  
NC  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
GND  
NC  
GND  
I/O  
GND  
I/O  
GND  
GND  
I/O  
I/O  
NC  
I/O  
I/O  
TCK, I/O  
GND  
TCK, I/O  
GND  
GND  
GND  
GND  
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
GND  
GND  
GND  
GND  
GND  
V
V
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
V
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
V
V
V
V
CC  
CC  
CC  
CC  
I/O  
NC  
I/O  
I/O  
I/O  
NC  
NC  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
I/O  
I/O  
I/O  
NC  
NC  
NC  
NC  
I/O  
GND  
SDI, I/O  
NC  
GND  
SDI, I/O  
NC  
GND  
SDI, I/O  
I/O  
GND  
SDI, I/O  
I/O  
GND  
SDI, I/O  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O  
NC  
V
V
V
V
CC  
CC  
CC  
CC  
I/O  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
NC  
I/O (WD)  
NC  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
NC  
NC  
NC  
I/O  
I/O (WD)  
I/O  
I/O  
QCLKD, I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
PRA, I/O  
CLKA, I/O  
I/O (WD)  
I/O (WD)  
PRA, I/O  
CLKA, I/O  
NC  
I/O  
PRA, I/O  
CLKA, I/O  
PRA, I/O  
CLKA, I/O  
PRA, I/O  
CLKA, I/O  
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
GND  
GND  
GND  
GND  
GND  
CLKB, I/O  
PRB, I/O  
CLKB, I/O  
PRB, I/O  
CLKB, I/O  
PRB, I/O  
CLKB, I/O  
PRB, I/O  
CLKB, I/O  
PRB, I/O  
74  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
176-pin TQFP Package (Continued)  
A1240XL  
Function  
A3265DX  
Function  
A1280XL  
Function  
A32100DX  
Function  
A32140DX  
Function  
Pin Number  
161  
162  
163  
164  
165  
166  
168  
169  
170  
171  
172  
173  
175  
NC  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
I/O  
QCLKC, I/O  
NC  
I/O  
NC  
NC  
I/O (WD)  
I/O (WD)  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O (WD)  
I/O  
I/O  
NC  
V
V
V
V
CC  
CC  
CC  
CC  
I/O  
I/O (WD)  
I/O  
I/O  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O (WD)  
I/O (WD)  
I/O  
I/O  
NC  
NC  
I/O  
DCLK, I/O  
DCLK, I/O  
DCLK, I/O  
DCLK, I/O  
DCLK, I/O  
Discontinued – v3.0  
75  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Package Pin Assignments (continued)  
100-Pin CPGA (Top View)  
1
2
3
4
5
6
7
8
9
10 11  
A
B
C
D
E
F
G
H
J
A
B
C
D
E
F
G
H
J
100-Pin  
CPGA  
K
L
K
L
1
2
3
4
5
6
7
8
9
10 11  
Orientation Pin  
Signal  
Pad Number  
Location  
PRA or I/O  
PRB or I/O  
MODE  
85  
92  
2
A7  
A4  
C2  
C8  
C3  
C6  
D6  
SDI or I/O  
DCLK or I/O  
CLKA or I/O  
CLKB or I/O  
GND  
77  
100  
87  
90  
7, 20, 32, 44, 55, 70, 82, 94  
15, 38, 64, 88  
E3, G3, J5, J7, G9, F11, D10, C7, C5  
F3, G1, K6, F9, F10, E11, B6  
V
CC  
Notes:  
1. Unused I/O pins are designated as outputs by ALS and are driven LOW.  
2. All unassigned pins are available for use as I/Os.  
3. MODE = GND, except during device programming or debugging.  
76  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Package Pin Assignments (continued)  
132-Pin CPGA (Top View)  
1
2
3
4
5
6
7
8
9
10 11 12 13  
A
B
C
D
E
F
A
B
C
D
E
F
132-Pin  
CPGA  
G
H
J
G
H
J
K
L
K
L
M
N
M
N
1
2
3
4
5
6
7
8
9
10 11 12 13  
Orientation Pin  
Signal  
Pad Number  
Location  
PRA or I/O  
PRB or I/O  
MODE  
113  
121  
2
B8  
C6  
A1  
SDI or I/O  
DCLK or I/O  
CLKA or I/O  
CLKB or I/O  
GND  
101  
132  
115  
119  
B12  
C3  
B7  
B6  
9, 10, 26, 27, 41, 58, 59, 73, 74, 92, 93, 107, 108, 125, 126  
18, 19, 49, 50, 83, 84, 116, 117  
E3, F4, J2, J3, L5, L9, M9, K12, J11, H13, E12, E11, C9, B9, B5, C5  
G3, G2, G4, L7, K7, G10, G11, G12, G13, D7, C7  
V
CC  
Notes:  
1. Unused I/O pins are designated as outputs by ALS and are driven LOW.  
2. All unassigned pins are available for use as I/Os.  
3. MODE = GND, except during device programming or debugging.  
Discontinued – v3.0  
77  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Package Pin Assignments (continued)  
176-Pin CPGA (Top View)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
A
B
C
D
E
F
A
B
C
D
E
F
G
H
J
G
H
J
176-Pin  
CPGA  
K
L
K
L
M
N
P
R
M
N
P
R
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Signal  
Pad Number  
Location  
PRA or I/O  
PRB or I/O  
MODE  
152  
160  
2
C9  
D7  
C3  
B14  
B3  
SDI or I/O  
DCLK or I/O  
CLKA or I/O  
CLKB or I/O  
GND  
135  
175  
154  
158  
A9  
B8  
1, 8, 18, 23, 33, 38, 45, 57, 67, 77, 89  
101, 106, 111, 121, 126, 133, 145, 156, 165  
D4, E4, G4, H4, K4, L4, M4, M6, M8, M10, M12  
K12, J12, J13, H12, F12, E12, D12, D10, C8, D6  
V
CC  
13, 24, 28, 52, 68, 82, 112, 116, 140, 155, 170  
F4, H2, H3, J4, M5, N8, M11, J14, H13, H14, G12, D11, D8, D5  
Notes:  
1. Unused I/O pins are designated as outputs by ALS and are driven LOW.  
2. All unassigned pins are available for use as I/Os.  
3. MODE = GND, except during device programming or debugging.  
78  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Package Pin Assignments (continued)  
84-Pin CQFP  
84  
Pin #1  
Index  
1
84-Pin  
CQFP  
Notes:  
1. Unused I/O pins are designated as outputs by ALS and are driven LOW.  
2. All unassigned pins are available for use as I/Os.  
3. MODE = GND, except during device programming or debugging.  
Discontinued – v3.0  
79  
Integrator Series FPGAs: 1200XL and 3200DX Families  
84-pin CQFP Package  
84-pin CQFP Package  
Pin Number  
A32100DX Function  
Pin Number  
A32100DX Function  
1
GND  
74  
76  
77  
78  
79  
80  
81  
82  
83  
84  
V
CC  
2
MODE (GND)  
CLKB, I/O  
PRB, I/O  
I/O (WD)  
I/O (WD)  
QCLKC, I/O  
GND  
7
V
CC  
10  
11  
12  
17  
22  
23  
24  
25  
26  
28  
30  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
50  
51  
52  
53  
55  
56  
59  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
GND  
V
CC  
V
(V  
)
CC  
SV  
GND  
GND  
I/O (WD)  
I/O (WD)  
DCLK, I/O  
TMS, I/O  
TDI, I/O  
I/O (WD)  
I/O (WD)  
QCLKA, I/O  
I/O (WD)  
GND  
V
CC  
I/O (WD)  
I/O (WD)  
QCLKB, I/O  
I/O (WD)  
GND  
I/O (WD)  
I/O (WD)  
I/O (WD)  
SDO, I/O  
GND  
GND  
TCK, I/O  
VKS (GND)  
V
V
(V  
(V  
)
PP  
SV  
CC  
CC  
)
V
CC  
GND  
GND  
SDI  
I/O (WD)  
I/O (WD)  
I/O (WD)  
I/O (WD)  
QCLKD, I/O  
I/O (WD)  
I/O (WD)  
PRA, I/O  
CLKA, I/O  
80  
Discontinued – v3.0  
Integrator Series FPGAs: 1200XL and 3200DX Families  
Package Pin Assignments (continued)  
172-Pin CQFP  
172  
Pin #1  
Index  
1
172-Pin  
CQFP  
Signal  
Pad Number  
CLKA or I/O  
CLKB or I/O  
DCLK or I/O  
150  
154  
171  
GND  
7, 17, 22, 32, 37, 55, 65, 75, 98, 103, 106, 118, 123, 141, 152, 161  
MODE  
1
PRA or I/O  
PRB or I/O  
SDI or I/O  
148  
156  
131  
V
12, 23, 24, 27, 50, 66, 80, 107, 109, 110, 113, 136, 151, 166  
CC  
Notes:  
1. Unused I/O pins are designated as outputs by ALS and are driven LOW.  
2. All unassigned pins are available for use as I/Os.  
3. MODE = GND, except during device programming or debugging.  
Discontinued – v3.0  
81  
Integrator Series FPGAs: 1200XL and 3200DX Families  
List of Changes  
The following table lists critical changes that were made in the current version of the document.  
Previous version  
Changes in current version (v3.0)  
Page  
Because the changes in this data sheet are extensive and technical in nature—due to the elimination of 32400DX  
product—this should be viewed as a new document. Please read it as you would a data sheet that is published for  
the first time. Note that the “Package and Mechanical Drawings” section has been eliminated from the data sheet  
and can now be found on the Actel web site.  
ALL  
Unspecified  
Note that the “Package Characteristics and Mechanical Drawings” section has been eliminated from the data sheet.  
The mechanical drawings are now contained in a separate document, “Package Characteristics and Mechanical  
Drawings,” available on the Actel web site.  
Data Sheet Categories  
In order to provide the latest information to designers, some data sheets are published before data has been fully  
characterized. These data sheets are marked as “Advanced” or Preliminary” data sheets. The definition of these categories  
are as follows:  
Advanced  
The data sheet contains initial estimated information based on simulation, other products, devices, or speed grades. This  
information can be used as estimates, but not for production.  
Preliminary  
The data sheet contains information based on simulation and/or initial characterization. The information is believed to be  
correct, but changes are possible.  
Unmarked (production)  
The data sheet contains information that is considered to be final.  
82  
Discontinued – v3.0  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
http://www.actel.com  
Actel Europe Ltd.  
Actel Corporation  
955 East Arques Avenue  
Sunnyvale, California 94086  
USA  
Actel Asia-Pacific  
Daneshill House, Lutyens Close  
Basingstoke, Hampshire RG24 8AG  
United Kingdom  
EXOS Ebisu Bldg. 4F  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Tel: +44 (0)1256 305600  
Fax: +44 (0)1256 355420  
Tel: (408) 739-1010  
Fax: (408) 739-1540  
Tel: +81 03-3445-7671  
Fax: +81 03-3445-7668  
5172135-1/2.01  
Integrator Series FPGAs: 1200XL and 3200DX Families  
84  
Discontinued – v3.0  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY