A3P1000-1FGG144T [ACTEL]

Automotive ProASIC3 Flash Family FPGAs; 汽车的Flash的ProASIC3系列FPGA
A3P1000-1FGG144T
型号: A3P1000-1FGG144T
厂家: Actel Corporation    Actel Corporation
描述:

Automotive ProASIC3 Flash Family FPGAs
汽车的Flash的ProASIC3系列FPGA

可编程逻辑 栅 时钟
文件: 总136页 (文件大小:4329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v1.0  
®
Automotive ProASIC3 Flash Family FPGAs  
Low Power  
Features and Benefits  
• 1.5 V Core Voltage  
• Support for 1.5-V-Only Systems  
High-Temperature AEC-Q100–Qualified Devices  
HighLo-wPe-ImrfpoerdmanacenFcleashRoSwuittcihnegs Hierarchy  
• Segmented, Hierarchical Routing and Clock Structure  
• High-Performance, Low-Skew Global Network  
• Grade 2 105°C T (115°C T )  
A
A
J
J
• Grade 1 125°C T (135°C T )  
• PPAP Documentation  
Firm-Error Immune  
AdvAarnchciteedctuI/reOSupports Ultra-High Utilization  
• Only Automotive FPGAs to Offer Firm-Error Immunity  
HighCaCnaBepaUcseitdywithout Configuration Upset Risk  
• 700 Mbps DDR, LVDS-Capable I/Os  
• 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation  
• Bank-Selectable I/O Voltages—up to 4 Banks per Chip  
• 60 k to 1 M System Gates  
• Up to 144 kbits of SRAM  
• Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V /  
2.5 V / 1.8 V / 1.5 V, 3.3 V PCI / 3.3 V PCI-X, and LVCMOS  
2.5 V / 5.0 V Input  
• Up to 300 User I/Os  
Reprogrammable Flash Technology  
• 130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS  
Automotive Process  
• Live-at-Power-Up (LAPU) Level 0 Support  
• Single-Chip Solution  
• Retains Programmed Design when Powered Off  
• Differential I/O Standards: LVPECL, LVDS, B-LVDS, and  
M-LVDS (A3P250 and A3P1000)  
• I/O Registers on Input, Output, and Enable Paths  
• Hot-Swappable and Cold-Sparing I/Os  
• Programmable Output Slew Rate and Drive Strength  
• Weak Pull-Up/-Down  
On-Chip User Nonvolatile Memory  
• IEEE 1149.1 (JTAG) Boundary Scan Test  
High1 kPbeitroffoFrlmashaRnOcMewith Synchronous Interface  
®
• Pin-Compatible Packages across the Automotive ProASIC 3  
Family  
• 350 MHz System Performance  
Clock Conditioning Circuit (CCC) and PLL  
• 3.3 V, 66 MHz 64-Bit PCI  
• Six CCC Blocks, One with an Integrated PLL  
In-System Programming (ISP) and Security  
• Secure ISP Using On-Chip 128-Bit Advanced Encryption  
Standard (AES) Decryption via JTAG (IEEE 1532–compliant)  
• Configurable  
Phase  
Shift, Multiply/Divide,  
Delay  
Capabilities, and External Feedback  
• Wide Input Frequency Range (1.5 MHz up to 350 MHz)  
®
• FlashLock to Secure FPGA Contents (anti-tampering)  
SRAMs  
• Variable-Aspect-Ratio 4,608-Bit RAM Blocks (×1, ×2, ×4, ×9,  
and ×18 organizations available)  
Automotive ProASIC3 Product Family  
ProASIC3 Devices  
System Gates  
A3P060  
60 k  
1,536  
18  
A3P125  
125 k  
3,072  
36  
A3P250  
250 k  
6,144  
36  
A3P1000  
1 M  
24,576  
144  
32  
VersaTiles (D-flip-flops)  
RAM kbits (1,024 bits)  
4,608-Bit Blocks  
4
8
8
FlashROM Bits  
1 k  
Yes  
1
1 k  
1 k  
1 k  
Secure (AES) ISP  
Integrated PLL in CCCs  
VersaNet Globals*  
I/O Banks  
Yes  
1
Yes  
1
Yes  
1
18  
18  
18  
18  
2
2
4
4
Maximum User I/Os  
96  
133  
157  
300  
Package Pins  
VQFP  
VQ100  
FG144  
VQ100  
FG144  
VQ100  
FG144, FG256  
FBGA  
FG144, FG256, FG484  
Note: *Six chip-wide (main) globals and three additional global networks in each quadrant are available.  
January 2008  
I
© 2008 Actel Corporation  
I/Os Per Package  
ProASIC3 Devices  
A3P060  
A3P125  
A3P250  
A3P1000  
I/O Type  
Package  
VQ100  
FG144  
FG256  
FG484  
Notes:  
71  
96  
71  
97  
68  
97  
157  
13  
24  
38  
97  
25  
44  
74  
177  
300  
1. When considering migrating your design to a lower- or higher-density device, refer to the ProASIC3 Flash Family FPGAs  
handbook to ensure complying with design and board migration requirements.  
2. Each used differential I/O pair reduces the number of available single-ended I/Os by two.  
3. FG256 and FG484 are footprint-compatible packages.  
Automotive ProASIC3 Ordering Information  
_
A3P1000  
1
FG  
144  
T
G
Application (Temperature Range)  
T = Grade 2 and Grade 1 AECQ100  
Grade 2 = 105°C TA and 115°C TJ  
Grade 1 = 125°C TA and 135°C TJ  
Package Lead Count  
Lead-Free Packaging  
Blank = Standard Packaging  
G= RoHS-Compliant (Green) Packaging  
Package Type  
=
=
VQ  
FG  
Very Thin Quad Flat Pack (0.5 mm pitch)  
Fine Pitch Ball Grid Array (1.0 mm pitch)  
Speed Grade  
Blank = Standard  
1 = 15% Faster than Standard  
Part Number  
Automotive ProASIC3 Devices  
A3P060 = 60,000 System Gates  
A3P125 = 125,000 System Gates  
A3P250 = 250,000 System Gates  
A3P1000 = 1,000,000 System Gates  
Note: Minimum order quantities apply. Contact your local Actel sales office for details.  
II  
v1.0  
Automotive ProASIC3 Flash Family FPGAs  
Temperature Grade Offerings  
Package  
VQ100  
FG144  
FG256  
FG484  
Notes:  
A3P060  
C, I, T  
C, I, T  
A3P125  
C, I, T  
C, I, T  
A3P250  
C, I, T  
C, I, T  
C, I, T  
A3P1000  
C, I, T  
C, I, T  
C, I, T  
1. C = Commercial temperature range: 0°C to 70°C  
2. I = Industrial temperature range: –40°C to 85°C  
3. T = Automotive temperature range: Grade 2 and Grade 1 AEC-Q100  
Grade 2 = 105°C TA and 115°C TJ  
Grade 1 = 125°C TA and 135°C TJ  
4. Specifications for Commercial and Industrial grade devices can be found in the ProASIC3 Flash Family FPGAs handbook.  
Speed Grade and Temperature Grade Matrix  
Temperature Grade  
Std.  
–1  
T (Grade 1 and Grade 2), Commercial, Industrial  
Notes:  
1. T = Automotive temperature range: Grade 2 and Grade 1 AEC-Q100  
Grade 2 = 105°C TA and 115°C TJ  
Grade 1 = 125°C TA and 135°C TJ  
2. Specifications for Commercial and Industrial grade devices can be found in the ProASIC3 Flash Family FPGAs handbook.  
Contact your local Actel representative for device availability:  
http://www.actel.com/contact/default.aspx.  
v1.0  
III  
1 – Automotive ProASIC3 Device Family Overview  
General Description  
Automotive ProASIC3 nonvolatile flash technology gives automotive system designers the  
advantage of a secure, low-power, single-chip solution that is live at power-up (LAPU). Automotive  
ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These  
features enable designers to create high-density systems using existing ASIC or FPGA design flows  
and tools.  
Automotive ProASIC3 devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM  
storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL).  
Automotive ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of  
SRAM and up to 300 user I/Os.  
Automotive ProASIC3 devices are the only firm-error-immune automotive grade FPGAs. Firm-error  
immunity makes them ideally suited for demanding applications in powertrain, safety, and  
telematics-based subsystems, where firm-error failure is not an option.  
Firm errors in SRAM-based FPGAs can result in high defect levels in field-deployed systems. These  
unavoidable defects must be considered separately from standard defects and failure mechanisms  
when looking at overall system quality and reliability.  
Flash Advantages  
Reduced Cost of Ownership  
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike  
SRAM-based FPGAs, flash-based Automotive ProASIC3 devices allow all functionality to be live at  
power-up; no external boot PROM is required. On-board security mechanisms prevent access to all  
the programming information and enable secure remote updates of the FPGA logic. Flash-based  
FPGAs are LAPU Class 0 devices, offering the lowest available power in a single-chip device and  
providing firm-error immunity. The Automotive ProASIC3 family device architecture mitigates the  
need for ASIC migration at high user volumes. This makes the Automotive ProASIC3 family a cost-  
effective ASIC replacement solution, especially for automotive applications.  
Security  
The nonvolatile, flash-based Automotive ProASIC3 devices do not require a boot PROM, so there is  
no vulnerable external bitstream that can be easily copied. Automotive ProASIC3 devices  
incorporate FlashLock, which provides a unique combination of reprogrammability and design  
security without external overhead, advantages that only an FPGA with nonvolatile flash  
programming can offer.  
Automotive ProASIC3 devices utilize a 128-bit flash-based lock and a separate AES key to secure  
programmed intellectual property and configuration data. In addition, all FlashROM data in  
Automotive ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-  
128 (FIPS192) bit block cipher encryption standard. The AES was adopted by the National Institute  
of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. Automotive  
ProASIC3 devices have a built-in AES decryption engine and a flash-based AES key that make them  
the most comprehensive programmable logic device security solution available today. Automotive  
ProASIC3 devices with AES-based security allow for secure, remote field updates over public  
networks such as the Internet, and ensure that valuable IP remains out of the hands of system  
overbuilders, system cloners, and IP thieves. The contents of a programmed Automotive ProASIC3  
device cannot be read back, although secure design verification is possible. Additionally, security  
features of Automotive ProASIC3 devices provide anti-tampering protection.  
Security, built into the FPGA fabric, is an inherent component of the Automotive ProASIC3 family.  
The flash cells are located beneath seven metal layers, and many device design and layout  
v1.0  
1-1  
Automotive ProASIC3 Device Family Overview  
techniques have been used to make invasive attacks extremely difficult. The Automotive ProASIC3  
family, with FlashLock and AES security, is unique in being highly resistant to both invasive and  
noninvasive attacks. Your valuable IP is protected and secure. An Automotive ProASIC3 device  
provides the most impenetrable security for programmable logic designs.  
Single Chip  
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed,  
the configuration data is an inherent part of the FPGA structure, and no external configuration  
data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based  
Automotive ProASIC3 FPGAs do not require system configuration components such as EEPROMs or  
microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB  
area, and increases security and system reliability.  
Live at Power-Up  
The Actel flash-based Automotive ProASIC3 devices support Level 0 of the LAPU classification  
standard. This feature helps in system component initialization, execution of critical tasks before  
the processor wakes up, setup and configuration of memory blocks, clock generation, and bus  
activity management. The LAPU feature of flash-based Automotive ProASIC3 devices greatly  
simplifies total system design and reduces total system cost, often eliminating the need for CPLDs  
and external clock generation PLLs. In addition, glitches and brownouts in system power will not  
corrupt the Automotive ProASIC3 device's flash configuration, and unlike SRAM-based FPGAs, the  
device will not have to be reloaded when system power is restored. This enables the reduction or  
complete removal of the configuration PROM, expensive voltage monitor, brownout detection,  
and clock generator devices from the PCB design. Flash-based Automotive ProASIC3 devices  
simplify total system design and reduce cost and design risk while increasing system reliability and  
improving system initialization time.  
Firm-Error Immunity  
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere,  
strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the  
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way.  
These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be  
a complete system failure. Firm errors do not exist in the configuration memory of Automotive  
ProASIC3 flash-based FPGAs. Once it is programmed, the flash cell configuration element of  
Automotive ProASIC3 FPGAs cannot be altered by high-energy neutrons and is therefore immune  
to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can  
easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA  
fabric.  
Low Power  
Flash-based Automotive ProASIC3 devices exhibit very low power characteristics, similar to those of  
an ASIC, making them an ideal choice for power-sensitive applications. Automotive ProASIC3  
devices have only a very limited power-on current surge and no high-current transition period,  
both of which occur on many FPGAs.  
Automotive ProASIC3 devices also have low dynamic power consumption to further maximize  
power savings.  
1-2  
v1.0  
Automotive ProASIC3 Flash FPGAs  
Advanced Flash Technology  
The Automotive ProASIC3 family offers many benefits, including nonvolatility and  
reprogrammability, through an advanced flash-based, 130-nm LVCMOS process with seven layers of  
metal. Standard CMOS design techniques are used to implement logic and control functions. The  
combination of fine granularity, enhanced flexible routing resources, and abundant flash switches  
allows for very high logic utilization without compromising device routability or performance.  
Logic functions within the device are interconnected through a four-level routing hierarchy.  
Advanced Architecture  
The proprietary Automotive ProASIC3 architecture provides granularity comparable to standard-  
cell ASICs. The Automotive ProASIC3 device consists of five distinct and programmable architectural  
features (Figure 1-1 on page 1-4 and Figure 1-2 on page 1-4):  
FPGA VersaTiles  
Dedicated FlashROM  
Dedicated SRAM memory  
Extensive CCCs and PLLs  
Advanced I/O structure  
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input  
logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate  
flash switch interconnections. The versatility of the Automotive ProASIC3 core tile as either a three-  
input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the  
FPGA fabric. The VersaTile capability is unique to the Actel ProASIC family of third-generation-  
architecture flash FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy.  
Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable  
interconnect programming. Maximum core utilization is possible for virtually any design.  
In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V)  
programming of Automotive ProASIC3 devices via an IEEE 1532 JTAG interface.  
v1.0  
1-3  
Automotive ProASIC3 Device Family Overview  
Bank 0  
CCC  
RAM Block  
4,608-Bit SRAM  
or FIFO Block  
I/Os  
VersaTile  
ISP AES  
Decryption  
User Nonvolatile  
FlashROM  
Charge Pumps  
Bank 1  
Figure 1-1 • Automotive ProASIC3 Device Architecture Overview with Two I/O Banks (A3P060 and A3P125)  
Bank 0  
CCC  
RAM Block  
4,608-Bit SRAM  
or FIFO Block  
I/Os  
VersaTile  
RAM Block  
4,608-Bit SRAM  
or FIFO Block  
ISP AES  
Decryption  
User Nonvolatile  
FlashROM  
Charge Pumps  
(A3P600 and A3P1000)  
Bank 2  
Figure 1-2 • Automotive ProASIC3 Device Architecture Overview with Four I/O Banks (A3P600 and A3P1000)  
1-4  
v1.0  
Automotive ProASIC3 Flash FPGAs  
VersaTiles  
The Automotive ProASIC3 core consists of VersaTiles, which have been enhanced beyond the  
ProASICPLUS® core tiles. The Automotive ProASIC3 VersaTile supports the following:  
All 3-input logic functions—LUT-3 equivalent  
Latch with clear or set  
D-flip-flop with clear or set  
Enable D-flip-flop with clear or set  
Refer to Figure 1-3 for VersaTile configurations.  
Enable D-Flip-Flop with Clear or Set  
D-Flip-Flop with Clear or Set  
LUT-3 Equivalent  
X1  
Data  
Y
Data  
CLK  
CLR  
Y
X2  
X3  
LUT-3  
Y
D-FF  
CLK  
D-FF  
Enable  
CLR  
Figure 1-3 • VersaTile Configurations  
User Nonvolatile FlashROM  
Actel Automotive ProASIC3 devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM.  
The FlashROM can be used in diverse system applications:  
Unique protocol addressing (wireless or fixed)  
System calibration settings  
Device serialization and/or inventory control  
Subscription-based business models (for example, infotainment systems)  
Secure key storage for secure communications algorithms  
Asset management/tracking  
Date stamping  
Version management  
The FlashROM is written using the standard Automotive ProASIC3 IEEE 1532 JTAG programming  
interface.  
The FlashROM can be programmed via the JTAG programming interface, and its contents can be  
read back either through the JTAG programming interface or via direct FPGA core addressing. Note  
that the FlashROM can only be programmed from the JTAG interface and cannot be programmed  
from the internal logic array.  
The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-  
byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8  
banks and which of the 16 bytes within that bank are being read. The three most significant bits  
(MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of  
the FlashROM address define the byte.  
The Actel Automotive ProASIC3 development software solutions, Libero® Integrated Design  
Environment (IDE) and Designer, have extensive support for the FlashROM. One such feature is  
auto-generation of sequential programming files for applications requiring a unique serial number  
in each part. Another feature allows the inclusion of static data for system version control. Data for  
the FlashROM can be generated quickly and easily using Actel Libero IDE and Designer software  
tools. Comprehensive programming file support is also included to allow for easy programming of  
large numbers of parts with differing FlashROM contents.  
v1.0  
1-5  
Automotive ProASIC3 Device Family Overview  
SRAM  
Automotive ProASIC3 devices have embedded SRAM blocks along their north and south sides. Each  
variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18,  
512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that  
can be configured with different bit widths on each port. For example, data can be sent through a  
4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the  
device JTAG port (ROM emulation mode) using the UJTAG macro.  
PLL and CCC  
Automotive ProASIC3 devices provide designers with very flexible clock conditioning circuit (CCC)  
capabilities. Each member of the Automotive ProASIC3 family contains six CCCs. One CCC (center  
west side) has a PLL.  
The six CCC blocks are located at the four corners and the centers of the east and west sides. One  
CCC (center west side) has a PLL.  
All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay  
operations as well as clock spine access.  
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs  
located near the CCC that have dedicated connections to the CCC block.  
The CCC block has these key features:  
Wide input frequency range (fIN_CCC) = 1.5 MHz to 350 MHz  
Output frequency range (fOUT_CCC) = 0.75 MHz to 350 MHz  
Clock delay adjustment via programmable and fixed delays from –7.56 ns to +11.12 ns  
2 programmable delay types for clock skew minimization  
Clock frequency synthesis (for PLL only)  
Additional CCC specifications:  
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output  
divider configuration (for PLL only).  
Output duty cycle = 50% 1.5% or better (for PLL only)  
Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single  
global network used (for PLL only)  
Maximum acquisition time is 300 µs (for PLL only)  
Low power consumption of 5 mW  
Exceptional tolerance to input period jitter— allowable input jitter is up to 1.5 ns (for PLL  
only)  
Four precise phases; maximum misalignment between adjacent phases of 40 ps × 350 MHz /  
fOUT_CCC (for PLL only)  
Global Clocking  
Automotive ProASIC3 devices have extensive support for multiple clocking domains. In addition to  
the CCC and PLL support described above, there is a comprehensive global clock distribution  
network.  
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three  
quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the  
core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for  
rapid distribution of high-fanout nets.  
I/Os with Advanced I/O Standards  
The Automotive ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of  
voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). Automotive ProASIC3 FPGAs support many different I/O  
standards—single-ended and differential.  
The I/Os are organized into banks, with two or four banks per device. The configuration of these  
banks determines the I/O standards supported.  
1-6  
v1.0  
Automotive ProASIC3 Flash FPGAs  
Each I/O module contains several input, output, and enable registers. These registers allow the  
implementation of the following:  
Single-Data-Rate applications  
Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point  
communications  
Automotive ProASIC3 banks for the A3P250 and A3P1000 devices support LVPECL, LVDS, B-LVDS,  
and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads.  
Part Number and Revision Date  
Part Number 51700099-001-0  
Revised January 2008  
v1.0  
1-7  
Automotive ProASIC3 Device Family Overview  
Datasheet Categories  
Categories  
In order to provide the latest information to designers, some datasheets are published before data  
has been fully characterized. Datasheets are designated as "Product Brief," "Advance,"  
"Preliminary," and "Production." The definition of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advance or production) and contains  
general product information. This document gives an overview of specific device and family  
information.  
Advance  
This version contains initial estimated information based on simulation, other products, devices, or  
speed grades. This information can be used as estimates, but not for production. This label only  
applies to the DC and Switching Characteristics chapter of the datasheet and will only be used  
when the data has not been fully characterized.  
Preliminary  
The datasheet contains information based on simulation and/or initial characterization. The  
information is believed to be correct, but changes are possible.  
Unmarked (production)  
This version contains information that is considered to be final.  
Export Administration Regulations (EAR)  
The products described in this document are subject to the Export Administration Regulations  
(EAR). They could require an approved export license prior to export from the United States. An  
export includes release of product or disclosure of technology to a foreign national inside or  
outside the United States.  
Actel Safety Critical, Life Support, and High-Reliability  
Applications Policy  
The Actel products described in this advance status document may not have completed Actel’s  
qualification process. Actel may amend or enhance products during the product introduction and  
qualification process, resulting in changes in device functionality or performance. It is the  
responsibility of each customer to ensure the fitness of any Actel product (but especially a new  
product) for a particular purpose, including appropriateness for safety-critical, life-support, and  
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability  
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is  
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also  
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your  
local Actel sales office for additional reliability information.  
1-8  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
2 – Automotive ProASIC3 DC and Switching  
Characteristics  
General Specifications  
Operating Conditions  
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Absolute Maximums are stress ratings only; functional operation of the device at these or any other  
conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-  
2 on page 2-2 is not implied.  
Table 2-1 • Absolute Maximum Ratings  
Symbol  
VCC  
Parameter  
DC core supply voltage  
JTAG DC voltage  
Limits  
Units  
–0.3 to 1.65  
V
V
V
V
V
V
V
VJTAG  
–0.3 to 3.75  
VPUMP Programming voltage  
–0.3 to 3.75  
VCCPLL Analog power supply (PLL)  
–0.3 to 1.65  
VCCI  
VMV  
VI  
DC I/O output buffer supply voltage  
–0.3 to 3.75  
–0.3 to 3.75  
DC I/O input buffer supply voltage  
I/O input voltage  
–0.3 V to 3.6 V (when I/O hot insertion mode is enabled)  
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is lower  
(when I/O hot-insertion mode is disabled)  
2
TSTG  
Storage temperature  
Junction temperature  
–65 to +150  
+150  
°C  
°C  
2
TJ  
Notes:  
1. The device should be operated within the limits specified by the datasheet. During transitions, the input  
signal may undershoot or overshoot according to the limits shown in Table 2-3 on page 2-3.  
2. For flash programming and retention maximum limits, refer to Figure 2-1 on page 2-2. For recommended  
operating limits, refer to Table 2-2 on page 2-2.  
v1.0  
2-1  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-2 • Recommended Operating Conditions  
Symbol  
TJ  
Parameter  
Junction temperature  
Automotive Grade 1 Automotive Grade 2 Units  
–40 to +135  
1.425 to 1.575  
1.4 to 3.6  
–40 to +115  
1.425 to 1.575  
1.4 to 3.6  
°C  
V
V
V
V
V
V
V
V
V
V
V
VCC  
1.5 V DC core supply voltage  
JTAG DC voltage  
VJTAG  
VPUMP  
Programming voltage Programming Mode  
Operation3  
3.0 to 3.6  
3.0 to 3.6  
0 to 3.6  
0 to 3.6  
VCCPLL  
Analog power supply (PLL)  
1.4 to 1.6  
1.4 to 1.6  
VCCI and VMV 1.5 V DC supply voltage  
1.425 to 1.575  
1.7 to 1.9  
1.425 to 1.575  
1.7 to 1.9  
1.8 V DC supply voltage  
2.5 V DC supply voltage  
3.3 V DC supply voltage  
LVDS/B-LVDS/M-LVDS differential I/O  
LVPECL differential I/O  
2.3 to 2.7  
2.3 to 2.7  
3.0 to 3.6  
3.0 to 3.6  
2.375 to 2.625  
3.0 to 3.6  
2.375 to 2.625  
3.0 to 3.6  
Notes:  
1. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each  
I/O standard are given in Table 2-14 on page 2-16. VMV and VCCI should be at the same voltage within a  
given I/O bank.  
2. All parameters representing voltages are measured with respect to GND unless otherwise specified.  
3. VPUMP can be left floating during operation (not programming mode).  
110  
100  
HTR  
Lifetime  
Tj (°C)  
(yrs)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
85  
102.7  
43.8  
20.0  
15.6  
100  
105  
110  
115  
120  
125  
130  
12.3  
9.7  
7.7  
6.2  
5.0  
135  
140  
145  
150  
4.0  
3.3  
2.7  
2.2  
70 85 100 105 110 115 120 125 130 135 140 145 150  
Temperature (ºC)  
Note: HTR time is the period during which you would not expect a verify failure due to flash cell leakage.  
Figure 2-1 • High-Temperature Data Retention (HTR)  
2-2  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-3 • Overshoot and Undershoot Limits (as measured on quiet I/Os)  
Average VCCI–GND Overshoot or Undershoot Maximum Overshoot/ Maximum Overshoot/  
VCCI and VMV  
Duration as a Percentage of Clock Cycle  
Undershoot (115°C)  
Undershoot (135°C)  
2.7 V or less  
10%  
5%  
0.81 V  
0.72 V  
0.90 V  
0.82 V  
3 V  
10%  
5%  
0.80 V  
0.72 V  
0.90 V  
0.81 V  
3.3 V  
10%  
5%  
0.79 V  
0.69 V  
0.88 V  
0.79 V  
3.6 V  
10%  
5%  
N/A  
N/A  
N/A  
N/A  
Notes:  
1. The duration is allowed at one out of six clock cycles (estimated SSO density over cycles). If the  
overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be  
reduced by 0.15 V.  
2. This table refers only to overshoot/undershoot limits for simultaneously switching I/Os and does not  
provide PCI overshoot/undershoot limits.  
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset  
(Commercial and Industrial)  
Sophisticated power-up management circuitry is designed into every ProASIC®3 device. These  
circuits ensure easy transition from the powered-off state to the powered-up state of the device.  
The many different supplies can power up in any sequence with minimized current spikes or surges.  
In addition, the I/O will be in a known state through the power-up sequence. The basic principle is  
shown in Figure 2-2 on page 2-4.  
There are five regions to consider during power-up.  
ProASIC3 I/Os are activated only if ALL of the following three conditions are met:  
1. VCC and VCCI are above the minimum specified trip points (Figure 2-2 on page 2-4).  
2. VCCI > VCC – 0.75 V (typical)  
3. Chip is in the operating mode.  
VCCI Trip Point:  
Ramping up: 0.6 V < trip_point_up < 1.2 V  
Ramping down: 0.5 V < trip_point_down < 1.1 V  
VCC Trip Point:  
Ramping up: 0.6 V < trip_point_up < 1.1 V  
Ramping down: 0.5 V < trip_point_down < 1 V  
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This  
specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note  
the following:  
During programming, I/Os become tristated and weakly pulled up to VCCI.  
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O  
behavior.  
Internal Power-Up Activation Sequence  
1. Core  
2. Input buffers  
3. Output buffers, after 200 ns delay from input buffer activation  
v1.0  
2-3  
Automotive ProASIC3 DC and Switching Characteristics  
V
= V + VT  
CCI  
CC  
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)  
V
CC  
V
= 1.575 V  
CC  
Region 5: I/O buffers are ON  
and power supplies are within  
specification.  
Region 4: I/O  
buffers are ON.  
I/Os are functional  
(except differential inputs)  
Region 1: I/O Buffers are OFF  
I/Os meet the entire datasheet  
and timer specifications for  
speed, VIH/VIL , VOH/VOL , etc.  
but slower because VCCI is  
below specification. For the  
same reason, input buffers do not  
meet VIH/VIL levels, and output  
buffers do not meet VOH/VOL levels.  
V
= 1.425 V  
CC  
Region 2: I/O buffers are ON.  
Region 3: I/O buffers are ON.  
I/Os are functional; I/O DC  
specifications are met,  
but I/Os are slower because  
the VCC is below specification.  
I/Os are functional (except differential inputs)  
but slower because VCCI/VCC are below  
specification. For the same reason, input  
buffers do not meet VIH/VIL levels, and  
output buffers do not meet VOH/VOL levels.  
Activation trip point:  
= 0.85 V 0.25 V  
V
a
Deactivation trip point:  
= 0.75 V 0.25 V  
Region 1: I/O buffers are OFF  
V
d
V
Activation trip point:  
= 0.9 V 0.3 V  
CCI  
Min V datasheet specification  
CCI  
V
voltage at a selected I/O  
a
Deactivation trip point:  
= 0.8 V 0.3 V  
standard; i.e., 1.425 V or 1.7 V  
or 2.3 V or 3.0 V  
V
d
Figure 2-2 • I/O State as a Function of VCCI and VCC Voltage Levels  
Thermal Characteristics  
Introduction  
The temperature variable in the Actel Designer software refers to the junction temperature, not  
the ambient temperature. This is an important distinction because dynamic and static power  
consumption cause the chip junction to be higher than the ambient temperature.  
EQ 2-1 can be used to calculate junction temperature.  
TJ = Junction Temperature = ΔT + TA  
EQ 2-1  
where:  
TA = Ambient Temperature  
ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θja * P  
θja = Junction-to-ambient of the package. θja numbers are located in Table 2-4 on  
page 2-5.  
P = Power dissipation  
2-4  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Package Thermal Characteristics  
The device junction-to-case thermal resistivity is θjc and the junction-to-ambient air thermal  
resistivity is θja. The thermal characteristics for θja are shown for two air flow rates. The absolute  
maximum junction temperature is 110°C. EQ 2-2 shows a sample calculation of the absolute  
maximum power dissipation allowed for a 484-pin FBGA package at commercial temperature and  
in still air.  
Max. junction temp. (°C) Max. ambient temp. (°C)  
110°C 70°C  
20.5°C/W  
Maximum Power Allowed = --------------------------------------------------------------------------------------------------------------------------------------- = ------------------------------------ = 1. 95 1 W  
θja(°C/W)  
EQ 2-2  
Table 2-4 • Package Thermal Resistivities  
θja  
Pin  
Still  
200  
500  
Package Type  
Device  
Count θjc  
Air ft./min. ft./min. Units  
Very Thin Quad Flat Pack (VQFP)  
Fine Pitch Ball Grid Array (FBGA)  
All devices  
See note*  
See note*  
See note*  
A3P1000  
A3P1000  
A3P1000  
100  
144  
256  
484  
144  
256  
484  
10.0 35.3  
29.4  
22.9  
22.8  
17.0  
26.2  
24.4  
19.0  
27.1  
21.5  
21.5  
15.9  
24.2  
22.7  
16.7  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
3.8 26.9  
3.8 26.6  
3.2 20.5  
6.3 31.6  
6.6 28.1  
8.0 23.3  
* This information applies to all ProASIC3 devices except the A3P1000. Detailed device/package  
thermal information will be available in future revisions of the datasheet.  
Temperature and Voltage Derating Factors  
Table 2-5 • Temperature and Voltage Derating Factors for Timing Delays  
(normalized to TJ = 115°C, VCC = 1.425 V)  
Array Voltage VCC (V)  
–40°C  
0.83  
0.79  
0.76  
0°C  
0.88  
0.83  
0.80  
25°C  
0.90  
0.85  
0.82  
70°C  
0.95  
0.90  
0.87  
85°C  
0.97  
0.92  
0.88  
115°C  
1.00  
0.95  
0.91  
125°C  
1.01  
0.96  
0.93  
135°C  
1.02  
0.97  
0.94  
1.425  
1.5  
1.575  
v1.0  
2-5  
Automotive ProASIC3 DC and Switching Characteristics  
Calculating Power Dissipation  
Quiescent Supply Current  
Table 2-6 • Quiescent Supply Current Characteristics  
A3P060  
2 mA  
A3P125  
2 mA  
A3P250  
3 mA  
A3P1000  
8 mA  
Typical (25°C)  
Maximum (Automotive Grade 1) – 135°C  
Maximum (Automotive Grade 2) – 115°C  
53 mA  
26 mA  
53 mA  
26 mA  
106 mA  
53 mA  
265 mA  
131 mA  
Note: IDD Includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static  
contribution, which is shown in Table 2-7 and Table 2-10 on page 2-8.  
Power per I/O Pin  
Table 2-7 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings1  
Applicable to Advanced I/O Banks  
Static Power  
P
Dynamic Power  
PAC9 (µW/MHz)2  
VMV (V)  
DC2 (mW)1  
Single-Ended  
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
3.3 V PCI  
3.3  
2.5  
1.8  
1.5  
3.3  
3.3  
16.69  
5.12  
2.13  
1.45  
18.11  
18.11  
3.3 V PCI-X  
Differential  
LVDS  
2.5  
3.3  
2.26  
5.72  
1.20  
1.87  
LVPECL  
Notes:  
1. PDC2 is the static power (where applicable) measured on VMV.  
2. PAC9 is the total dynamic power measured on VCC and VMV.  
2-6  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-8 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings1  
Applicable to Standard Plus I/O Banks  
Static Power  
P
Dynamic Power  
P
AC9 (µW/MHz)2  
VMV (V)  
DC2 (mW)1  
Single-Ended  
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
3.3 V PCI  
3.3  
2.5  
1.8  
1.5  
3.3  
3.3  
16.72  
5.14  
2.13  
1.48  
18.13  
18.13  
3.3 V PCI-X  
Notes:  
1. PDC2 is the static power (where applicable) measured on VMV.  
2. PAC9 is the total dynamic power measured on VCC and VMV.  
Table 2-9 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1  
Applicable to Advanced I/O Banks  
Static Power  
PDC3 (mW)2  
Dynamic Power  
PAC10 (µW/MHz)3  
C
LOAD (pF)  
VCCI (V)  
Single-Ended  
3.3 V LVTTL /  
35  
3.3  
468.67  
3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
35  
35  
35  
2.5  
1.8  
1.5  
267.48  
149.46  
103.12  
1.5 V LVCMOS  
(JESD8-11)  
3.3 V PCI  
3.3 V PCI-X  
Differential  
LVDS  
10  
10  
3.3  
3.3  
201.02  
201.02  
2.5  
3.3  
7.74  
88.92  
LVPECL  
19.54  
166.52  
Notes:  
1. Dynamic power consumption is given for standard load and software default drive strength  
and output slew.  
2. PDC3 is the static power (where applicable) measured on VMV.  
3. PAC10 is the total dynamic power measured on VCCI and VMV.  
v1.0  
2-7  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-10 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1  
Applicable to Standard Plus I/O Banks  
Static Power  
PDC3 (mW)2  
Dynamic Power  
P
CLOAD (pF)  
VCCI (V)  
AC10 (µW/MHz)3  
Single-Ended  
3.3 V LVTTL /  
35  
3.3  
452.67  
3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
35  
35  
35  
2.5  
1.8  
1.5  
258.32  
133.59  
92.84  
1.5 V LVCMOS  
(JESD8-11)  
3.3 V PCI  
3.3 V PCI-X  
Notes:  
10  
10  
3.3  
3.3  
184.92  
184.92  
1. Dynamic power consumption is given for standard load and software default drive strength  
and output slew.  
2. PDC3 is the static power (where applicable) measured on VMV.  
3. PAC10 is the total dynamic power measured on VCCI and VMV.  
2-8  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Power Consumption of Various Internal Resources  
Table 2-11 • Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices  
Device Specific Dynamic Power  
(µW/MHz)  
Parameter  
PAC1  
Definition  
Clock contribution of a Global Rib  
Clock contribution of a Global Spine  
Clock contribution of a VersaTile row  
A3P1000 A3P250 A3P125 A3P060  
14.50  
2.48  
11.00  
1.58  
11.00  
0.81  
9.30  
0.81  
PAC2  
PAC3  
0.81  
PAC4  
Clock contribution of a VersaTile used as a sequential  
module  
0.12  
PAC5  
PAC6  
First contribution of a VersaTile used as a sequential module  
0.07  
0.29  
Second contribution of a VersaTile used as a sequential  
module  
PAC7  
PAC8  
PAC9  
PAC10  
Contribution of a VersaTile used as a combinatorial module  
Average contribution of a routing net  
0.29  
0.70  
Contribution of an I/O input pin (standard-dependent)  
Contribution of an I/O output pin (standard-dependent)  
See Table 2-7 on page 2-6.  
See Table 2-7 and Table 2-10 on  
page 2-8.  
PAC11  
PAC12  
Average contribution of a RAM block during a read  
operation  
25.00  
Average contribution of a RAM block during a write  
operation  
30.00  
PAC13  
PAC14  
Static PLL contribution  
2.55 mW  
2.60  
Dynamic contribution for PLL  
* For a different output load, drive strength, or slew rate, Actel recommends using the Actel power spreadsheet  
calculator or SmartPower tool in Actel Libero® Integrated Design Environment (IDE).  
Power Calculation Methodology  
This section describes a simplified method to estimate power consumption of an application. For  
more accurate and detailed power estimations, use the SmartPower tool in Actel Libero IDE  
software.  
The power calculation methodology described below uses the following variables:  
The number of PLLs as well as the number and the frequency of each output clock  
generated  
The number of combinatorial and sequential cells used in the design  
The internal clock frequencies  
The number and the standard of I/O pins used in the design  
The number of RAM blocks used in the design  
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-12 on  
page 2-11.  
Enable rates of output buffers—guidelines are provided for typical applications in Table 2-  
13 on page 2-12.  
Read rate and write rate to the memory—guidelines are provided for typical applications in  
Table 2-13 on page 2-12. The calculation should be repeated for each clock domain defined  
in the design.  
v1.0  
2-9  
Automotive ProASIC3 DC and Switching Characteristics  
Methodology  
Total Power Consumption—P  
TOTAL  
PTOTAL = PSTAT + PDYN  
PSTAT is the total static power consumption.  
DYN is the total dynamic power consumption.  
Total Static Power Consumption—P  
P
STAT  
PSTAT = PDC1 + NINPUTS * PDC2 + NOUTPUTS * PDC3  
NINPUTS is the number of I/O input buffers used in the design.  
NOUTPUTS is the number of I/O output buffers used in the design.  
Total Dynamic Power Consumption—P  
DYN  
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL  
Global Clock Contribution—P  
CLOCK  
PCLOCK = (PAC1 + NSPINE*PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK  
NSPINE is the number of global spines used in the user design—guidelines are provided in Table 2-12  
on page 2-11.  
NROW is the number of VersaTile rows used in the design—guidelines are provided in Table 2-12 on  
page 2-11.  
FCLK is the global clock signal frequency.  
N
S-CELL is the number of VersaTiles used as sequential modules in the design.  
PAC1, PAC2, PAC3, and PAC4 are device-dependent.  
Sequential Cells Contribution—P  
S-CELL  
PS-CELL = NS-CELL * (PAC5 + α1 / 2 * PAC6) * FCLK  
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a multi-tile  
sequential cell is used, it should be accounted for as 1.  
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-12 on page 2-11.  
F
CLK is the global clock signal frequency.  
Combinatorial Cells Contribution—P  
C-CELL  
PC-CELL = NC-CELL* α1 / 2 * PAC7 * FCLK  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-12 on page 2-11.  
F
CLK is the global clock signal frequency.  
Routing Net Contribution—P  
NET  
PNET = (NS-CELL + NC-CELL) * α1 / 2 * PAC8 * FCLK  
NS-CELL is the number VersaTiles used as sequential modules in the design.  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
α1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-12 on page 2-11.  
F
CLK is the global clock signal frequency.  
I/O Input Buffer Contribution—P  
INPUTS  
PINPUTS = NINPUTS * α2 / 2 * PAC9 * FCLK  
NINPUTS is the number of I/O input buffers used in the design.  
α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-12 on page 2-11.  
FCLK is the global clock signal frequency.  
2-10  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
I/O Output Buffer Contribution—P  
OUTPUTS  
POUTPUTS = NOUTPUTS * α2 / 2 * β1 * PAC10 * FCLK  
NOUTPUTS is the number of I/O output buffers used in the design.  
α2 is the I/O buffer toggle rate—guidelines are provided in Table 2-12.  
β1 is the I/O buffer enable rate—guidelines are provided in Table 2-13 on page 2-12.  
FCLK is the global clock signal frequency.  
RAM Contribution—P  
MEMORY  
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * β2 + PAC12 * NBLOCK * FWRITE-CLOCK * β3  
NBLOCKS is the number of RAM blocks used in the design.  
F
READ-CLOCK is the memory read clock frequency.  
β2 is the RAM enable rate for read operations.  
WRITE-CLOCK is the memory write clock frequency.  
F
β3 is the RAM enable rate for write operations—guidelines are provided in Table 2-13 on  
page 2-12.  
PLL Contribution—P  
PLL  
PPLL = PAC13 + PAC14 * FCLKOUT  
FCLKIN is the input clock frequency.  
F
CLKOUT is the output clock frequency.1  
Guidelines  
Toggle Rate Definition  
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage.  
If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency.  
Below are some examples:  
The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at  
half of the clock frequency.  
The average toggle rate of an 8-bit counter is 25%:  
Bit 0 (LSB) = 100%  
Bit 1  
Bit 2  
= 50%  
= 25%  
Bit 7 (MSB) = 0.78125%  
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8  
Enable Rate Definition  
Output enable rate is the average percentage of time during which tristate outputs are enabled.  
When nontristate output buffers are used, the enable rate should be 100%.  
Table 2-12 • Toggle Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
Toggle rate of VersaTile outputs  
I/O buffer toggle rate  
Guideline  
10%  
α1  
α2  
10%  
1. The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated  
by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include  
each output clock in the formula by adding its corresponding contribution (PAC14 * FCLKOUT product) to the total PLL  
contribution.  
v1.0  
2-11  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-13 • Enable Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
I/O output buffer enable rate  
Guideline  
100%  
β1  
β2  
β3  
RAM enable rate for read operations  
RAM enable rate for write operations  
12.5%  
12.5%  
User I/O Characteristics  
Timing Model  
I/O Module  
(non-registered)  
Combinational Cell  
Y
Combinational Cell  
Y
LVPECL (applicable to  
Advanced I/O banks only)  
t
= 0.67 ns  
t
= 0.58 ns  
PD  
PD  
t
= 1.66 ns  
DP  
I/O Module  
(non-registered)  
Combinational Cell  
Y
Output Drive Strength = 12 mA  
High Slew Rate  
LVTTL  
t
= 3.25 ns (Advanced I/O banks)  
DP  
t
= 1.04 ns  
PD  
I/O Module  
(non-registered)  
Combinational Cell  
Y
I/O Module  
(registered)  
Output drive Strength = 8 mA  
LVTTL  
t
= 1.29 ns  
High Slew Rate  
= 4.52 ns (Advanced I/O banks)  
PY  
t
DP  
LVPECL  
(applicable  
to Advanced  
I/O banks only)  
t
= 0.60 ns  
PD  
I/O Module  
(non-registered)  
D
Q
Combinational Cell  
Y
Output Drive Strength = 4 mA  
High Slew Rate  
LVCMOS 1.5 V  
t
t
= 0.29 ns  
ICLKQ  
ISUD  
t
= 4.89 ns (Advanced I/O banks)  
t
= 0.56 ns  
DP  
= 0.31 ns  
PD  
Input LVTTL  
Clock  
I/O Module  
(registered)  
Register Cell  
Register Cell  
Combinational Cell  
Y
t
= 0.94 ns (Advanced I/O banks)  
PY  
LVTTL 3.3 V Output Drive  
Strength = 12 mA  
High Slew Rate  
= 3.25 ns  
D
Q
D
Q
D
t
Q
I/O Module  
t
= 0.56 ns  
PD  
t
(non-registered)  
DP  
(Advanced I/O banks)  
t
t
= 0.66 ns  
= 0.51 ns  
CLKQ  
SUD  
= 0.70 ns  
= 0.37 ns  
t
t
= 0.66 ns  
= 0.51 ns  
OCLKQ  
CLKQ  
SUD  
LVDS,  
BLVDS,  
M-LVDS  
t
OSUD  
Input LVTTL  
Clock  
Input LVTTL  
Clock  
(Applicable for  
Advanced I/O  
Banks only)  
t
= 1.47 ns  
PY  
t
= 0.94 ns  
t
= 0.94 ns  
PY  
PY  
(Advanced I/O banks)  
(Advanced I/O banks)  
Figure 2-3 • Timing Model  
Operating Conditions: –1 Speed, Automotive Grade 2 Temp. Range (TJ = 115°C), Worst Case  
VCC = 1.425 V  
2-12  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
tPY  
tDIN  
D
Q
PAD  
DIN  
Y
CLK  
To Array  
I/O Interface  
t
t
PY = MAX(tPY(R), tPY(F))  
DIN = MAX(tDIN(R), tDIN(F))  
VIH  
Vtrip  
Vtrip  
VCC  
VIL  
PAD  
Y
50%  
50%  
GND  
tPY  
(R)  
tPY  
(F)  
VCC  
50%  
50%  
DIN  
tDOUT  
(R)  
GND  
tDOUT  
(F)  
Figure 2-4 • Input Buffer Timing Model and Delays (example)  
v1.0  
2-13  
Automotive ProASIC3 DC and Switching Characteristics  
tDOUT  
D Q  
tDP  
PAD  
DOUT  
CLK  
Std  
Load  
D
From Array  
tDP = MAX(tDP(R), tDP(F))  
tDOUT = MAX(tDOUT(R), tDOUT(F))  
I/O Interface  
tDOUT  
tDOUT  
(F)  
VCC  
(R)  
50%  
50%  
VCC  
D
0 V  
50%  
50%  
0 V  
DOUT  
PAD  
VOH  
Vtrip  
Vtrip  
VOL  
tDP  
(R)  
tDP  
(F)  
Figure 2-5 • Output Buffer Model and Delays (example)  
2-14  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
t
EOUT  
D
Q
CLK  
t , t , t , t , t , t  
E
ZL ZH HZ LZ ZLS ZHS  
EOUT  
D
Q
PAD  
DOUT  
t
CLK  
D
= MAX(t  
(r), t  
(f))  
V
I/O Interface  
EOUT  
EOUT  
EOUT  
V
CC  
D
E
CC  
50%  
t
50%  
t
EOUT (F)  
EOUT (R)  
V
CC  
50%  
50%  
50%  
ZH  
50%  
t
LZ  
EOUT  
PAD  
t
t
t
ZL  
V
HZ  
CCI  
90% V  
CCI  
V
V
trip  
trip  
V
10% V  
OL  
CCI  
V
CC  
D
E
V
CC  
50%  
50%  
t
t
EOUT (F)  
EOUT (R)  
V
CC  
50%  
50%  
EOUT  
PAD  
50%  
t
ZHS  
t
V
ZLS  
OH  
V
V
trip  
trip  
V
OL  
Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example)  
v1.0  
2-15  
Automotive ProASIC3 DC and Switching Characteristics  
Overview of I/O Performance  
Summary of I/O DC Input and Output Levels – Default I/O Software  
Settings  
Table 2-14 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and  
Industrial Conditions—Software Default Settings  
Applicable to Advanced I/O Banks  
VIL  
Max, V  
VIH  
Min, V  
VOL  
Max, V  
0.4  
VOH  
Min, V  
2.4  
IOL IOH  
mA mA  
12 12  
Drive  
Slew  
I/O Standard  
Strength Rate Min, V  
Max, V  
3.3 V LVTTL /  
12 mA High –0.3  
0.8  
2
3.6  
3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
12 mA High –0.3  
0.7  
1.7  
3.6  
3.6  
3.6  
0.7  
1.7  
12 12  
12 mA High –0.3 0.35 * VCCI 0.65 * VCCI  
12 mA High –0.3 0.30 * VCCI 0.7 * VCCI  
0.45  
VCCI – 0.45 12 12  
0.25 * VCCI 0.75 * VCCI 12 12  
Per PCI specifications  
3.3 V PCI-X  
Per PCI-X specifications  
Note: Currents are measured at 125°C junction temperature.  
Table 2-15 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and  
Industrial Conditions—Software Default Settings  
Applicable to Standard Plus I/O Banks  
VIL  
Max, V  
VIH  
Min, V  
VOL  
Max, V  
0.4  
VOH  
Min, V  
2.4  
IOL IOH  
mA mA  
12 12  
Drive  
Slew  
I/O Standard Strength Rate Min, V  
Max, V  
3.3 V LVTTL /  
3.3 V LVCMOS  
12 mA  
High  
–0.3  
–0.3  
0.8  
2
3.6  
2.5 V LVCMOS 12 mA  
High  
High  
High  
0.7  
1.7  
3.6  
3.6  
3.6  
0.7  
1.7  
12 12  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
8 mA  
4 mA  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.30 * VCCI 0.7 * VCCI  
0.45  
VCCI – 0.45  
8
4
8
4
0.25 * VCCI 0.75 * VCCI  
Per PCI specifications  
3.3 V PCI-X  
Per PCI-X specifications  
Note: Currents are measured at 125°C junction temperature.  
Table 2-16 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and  
Industrial Conditions—Software Default Settings  
Applicable to Standard I/O Banks  
VIL  
Max, V  
VIH  
Min, V  
VOL  
Max, V  
0.4  
VOH  
Min, V  
2.4  
IOL IOH  
mA mA  
Drive  
Slew  
I/O Standard  
Strength Rate Min, V  
Max, V  
3.3 V LVTTL /  
3.3 V LVCMOS  
8 mA  
High –0.3  
High –0.3  
0.8  
2
3.6  
8
8
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
8 mA  
4 mA  
2 mA  
0.7  
1.7  
3.6  
3.6  
3.6  
0.7  
1.7  
8
4
2
8
4
2
High –0.3 0.35 * VCCI 0.65 * VCCI  
High –0.3 0.30 * VCCI 0.7 * VCCI  
0.45  
VCCI – 0.45  
0.25 * VCCI 0.75 * VCCI  
Note: Currents are measured at 125°C junction temperature.  
2-16  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-17 • Summary of Maximum and Minimum DC Input Levels Applicable to Automotive  
Grade 1 and Grade 2  
Automotive Grade 11  
Automotive Grade 22  
IIL  
µA  
10  
10  
10  
10  
10  
10  
IIH  
µA  
10  
10  
10  
10  
10  
10  
IIL  
µA  
15  
15  
15  
15  
15  
15  
IIH  
µA  
15  
15  
15  
15  
15  
15  
DC I/O Standards  
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
3.3 V PCI-X  
Notes:  
1. Automotive range Grade 1 (–40°C < TJ < 135°C)  
2. Automotive range Grade 2 (–40°C < TJ < 115°C)  
Summary of I/O Timing Characteristics – Default I/O Software Settings  
Table 2-18 • Summary of AC Measuring Points  
Standard  
Measuring Trip Point (Vtrip  
)
3.3 V LVTTL / 3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
1.4 V  
1.2 V  
0.90 V  
0.75 V  
0.285 * VCCI (RR)  
0.615 * VCCI (FF)  
0.285 * VCCI (RR)  
0.615 * VCCI (FF)  
3.3 V PCI-X  
Table 2-19 • I/O AC Parameter Definitions  
Parameter  
Parameter Definition  
Data-to-Pad delay through the Output Buffer  
Pad-to-Data delay through the Input Buffer  
tDP  
tPY  
tDOUT  
tEOUT  
tDIN  
tHZ  
Data–to–Output Buffer delay through the I/O interface  
Enable–to–Output Buffer Tristate Control delay through the I/O interface  
Input Buffer–to–Data delay through the I/O interface  
Enable-to-Pad delay through the Output Buffer—HIGH to Z  
Enable-to-Pad delay through the Output Buffer—Z to HIGH  
Enable-to-Pad delay through the Output Buffer—LOW to Z  
Enable-to-Pad delay through the Output Buffer—Z to LOW  
tZH  
tLZ  
tZL  
tZHS  
tZLS  
Enable-to-Pad delay through the Output Buffer with delayed enable—Z to HIGH  
Enable-to-Pad delay through the Output Buffer with delayed enable—Z to LOW  
v1.0  
2-17  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-20 • Summary of I/O Timing Characteristics—Software Default Settings  
–1 Speed Grade, Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V, Worst Case  
VCCI = 3.0 V  
Advanced I/O Banks  
I/O Standard  
3.3 V LVTTL /  
12 mA High 35 pF  
0.53 3.25 0.04 0.94 0.38 3.31 1.51 2.96 1.88 5.37 2.71 ns  
3.3 V LVCMOS  
2.5 V LVCMOS 12 mA High 35 pF  
1.8 V LVCMOS 12 mA High 35 pF  
1.5 V LVCMOS 12 mA High 35 pF  
0.53 3.28 0.04 1.19 0.38 3.34 3.16 1.77 1.80 5.39 5.22 ns  
0.53 3.25 0.04 1.12 0.38 1.89 1.63 3.41 3.75 3.06 2.82 ns  
0.53 3.75 0.04 1.32 0.38 2.18 1.91 3.63 3.87 3.35 3.11 ns  
3.3 V PCI  
Per PCI High 10 pF 25 2 0.53 2.12 0.04 0.78 0.38 1.23 0.91 2.57 2.96 2.41 2.11 ns  
spec  
3.3 V PCI-X  
Per PCI-X High 10 pF 25 2 0.53 2.47 0.04 0.77 0.38 1.23 0.91 2.57 2.96 2.41 2.11 ns  
spec  
LVDS  
24 mA High  
24 mA High  
0.53 1.68 0.04 1.47  
0.53 1.66 0.04 1.29  
ns  
ns  
LVPECL  
Notes:  
1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on  
page 2-47 for connectivity. This resistor is not required during normal operation.  
2-18  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-21 • Summary of I/O Timing Characteristics—Software Default Settings  
–1 Speed Grade, Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V, Worst Case  
CCI = 3.0 V  
V
Standard Plus I/O Banks  
I/O Standard  
3.3 V LVTTL /  
12 mA High 35 pF  
0.55 3.01 0.04 0.95 0.39 1.74 1.43 2.65 3.06 1.74 1.43 ns  
3.3 V LVCMOS  
2.5 V LVCMOS 12 mA High 35 pF  
0.55 3.05 0.04 1.23 0.39 3.11 2.99 1.56 1.69 5.23 5.11 ns  
0.55 3.73 0.04 1.16 0.39 3.65 3.86 1.62 1.68 5.78 5.99 ns  
0.55 4.60 0.04 1.35 0.39 4.61 5.05 2.07 1.85 6.74 7.18 ns  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
8 mA  
4 mA  
High 35 pF  
High 35 pF  
Per PCI High 10 pF 25 2 0.55 2.19 0.04 0.81 0.39 1.27 0.94 2.65 3.06 1.27 0.94 ns  
spec  
3.3 V PCI-X  
Per PCI-X High 10 pF 25 2 0.55 2.19 0.04 0.79 0.39 1.27 0.94 2.65 3.06 1.27 0.94 ns  
spec  
Notes:  
1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on  
page 2-47 for connectivity. This resistor is not required during normal operation.  
v1.0  
2-19  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-22 • Summary of I/O Timing Characteristics—Software Default Settings  
–1 Speed Grade, Automotive-Case Conditions: TJ = 135°C, Worst Case VCC = 1.425 V, Worst Case  
VCCI = 3.0 V  
Advanced I/O Banks  
I/O Standard  
3.3 V LVTTL /  
12 mA High 35 pF  
0.55 3.36 0.04 0.97 0.39 3.42 1.56 3.05 1.94 5.55 2.80 ns  
3.3 V LVCMOS  
2.5 V LVCMOS 12 mA High 35 pF  
1.8 V LVCMOS 12 mA High 35 pF  
1.5 V LVCMOS 12 mA High 35 pF  
0.55 3.39 0.04 1.23 0.39 3.45 3.27 1.83 1.86 5.58 5.39 ns  
0.55 3.36 0.04 1.16 0.39 1.95 1.68 3.52 3.88 3.16 2.92 ns  
0.55 3.88 0.04 1.37 0.39 2.25 1.98 3.75 4.00 3.46 3.21 ns  
3.3 V PCI  
Per PCI High 10 pF 25 2 0.55 2.19 0.04 0.81 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns  
spec  
3.3 V PCI-X  
Per PCI-X High 10 pF 25 2 0.55 2.55 0.04 0.79 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns  
spec  
LVDS  
24 mA High  
24 mA High  
0.55 1.74 0.04 1.52  
0.55 1.71 0.04 1.34  
ns  
ns  
LVPECL  
Notes:  
1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on  
page 2-47 for connectivity. This resistor is not required during normal operation.  
2-20  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-23 • Summary of I/O Timing Characteristics—Software Default Settings  
–1 Speed Grade, Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V, Worst Case  
CCI = 3.0 V  
V
Standard Plus I/O Banks  
I/O Standard  
3.3 V LVTTL /  
12 mA High 35 pF  
0.55 3.36 0.04 0.97 0.39 3.42 1.56 3.05 1.94 5.55 2.80 ns  
3.3 V LVCMOS  
2.5 V LVCMOS 12 mA High 35 pF  
0.55 3.05 0.04 1.23 0.39 3.11 2.99 1.56 1.69 5.23 5.11 ns  
0.55 3.73 0.04 1.16 0.39 3.65 3.86 1.62 1.68 5.78 5.99 ns  
0.55 4.60 0.04 1.35 0.39 4.61 5.05 2.07 1.85 6.74 7.18 ns  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
8 mA  
4 mA  
High 35 pF  
High 35 pF  
Per PCI High 10 pF 25 2 0.55 2.55 0.04 0.82 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns  
spec  
3.3 V PCI-X  
Per PCI-X High 10 pF 25 2 0.55 2.55 0.04 0.79 0.39 1.27 0.94 2.65 3.06 2.49 2.18 ns  
spec  
Notes:  
1. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-11 on  
page 2-47 for connectivity. This resistor is not required during normal operation.  
v1.0  
2-21  
Automotive ProASIC3 DC and Switching Characteristics  
Detailed I/O DC Characteristics  
Table 2-24 • Input Capacitance  
Symbol  
CIN  
Definition  
Input capacitance  
Input capacitance on the clock pin  
Conditions  
Min. Max. Units  
VIN = 0, f = 1.0 MHz  
VIN = 0, f = 1.0 MHz  
8
8
pF  
pF  
CINCLK  
Table 2-25 • I/O Output Buffer Maximum Resistances1  
Applicable to Advanced I/O Banks  
RPULL-DOWN  
RPULL-UP  
Standard  
Drive Strength  
(Ω)2  
100  
100  
50  
(Ω)3  
3.3 V LVTTL / 3.3 V LVCMOS  
2 mA  
4 mA  
300  
300  
150  
150  
75  
6 mA  
8 mA  
50  
12 mA  
16 mA  
24 mA  
2 mA  
25  
17  
50  
11  
33  
2.5 V LVCMOS  
1.8 V LVCMOS  
100  
50  
200  
100  
50  
6 mA  
12 mA  
16 mA  
24 mA  
2 mA  
25  
20  
40  
11  
22  
200  
100  
50  
225  
112  
56  
4 mA  
6 mA  
8 mA  
50  
56  
12 mA  
16 mA  
2 mA  
20  
22  
20  
22  
1.5 V LVCMOS  
200  
100  
67  
224  
112  
75  
4 mA  
6 mA  
8 mA  
33  
37  
12 mA  
Per PCI/PCI-X specification  
33  
37  
3.3 V PCI/PCI-X  
25  
75  
Notes:  
1. These maximum values are provided for informational reasons only. Minimum output buffer  
resistance values depend on VCCI, drive strength selection, temperature, and process. For  
board design considerations and detailed output buffer resistances, use the corresponding  
IBIS models located on the Actel website at http://www.actel.com/download/ibis/default.aspx.  
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec  
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec  
2-22  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-26 • I/O Output Buffer Maximum Resistances1  
Applicable to Standard Plus I/O Banks  
RPULL-DOWN  
RPULL-UP  
Standard  
Drive Strength  
(Ω)2  
(Ω)3  
3.3 V LVTTL / 3.3 V LVCMOS  
2 mA  
100  
100  
50  
300  
300  
150  
150  
75  
4 mA  
6 mA  
8 mA  
50  
12 mA  
25  
16 mA  
25  
75  
2.5 V LVCMOS  
1.8 V LVCMOS  
2 mA  
100  
50  
200  
100  
50  
6 mA  
12 mA  
25  
2 mA  
200  
100  
50  
225  
112  
56  
4 mA  
6 mA  
8 mA  
50  
56  
1.5 V LVCMOS  
2 mA  
4 mA  
200  
100  
0
224  
112  
0
3.3 V PCI/PCI-X  
Per PCI/PCI-X specification  
Notes:  
1. These maximum values are provided for informational reasons only. Minimum output buffer  
resistance values depend on VCCI, drive strength selection, temperature, and process. For  
board design considerations and detailed output buffer resistances, use the corresponding  
IBIS models located on the Actel website at http://www.actel.com/download/ibis/default.aspx.  
2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec  
3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec  
Table 2-27 • I/O Weak Pull-Up/Pull-Down Resistances  
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values  
1
2
R(WEAK PULL-UP)  
R(WEAK PULL-DOWN)  
(Ω)  
(Ω)  
VCCI  
Min.  
10 k  
11 k  
18 k  
19 k  
Max.  
45 k  
55 k  
70 k  
90 k  
Min.  
10 k  
12 k  
17 k  
19 k  
Max.  
45 k  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
Notes:  
74 k  
110 k  
140 k  
1. R(WEAK PULL-UP-MAX) = (VOLspec) / I(WEAK PULL-UP-MIN)  
2. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN)  
v1.0  
2-23  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-28 • I/O Short Currents IOSH/IOSL  
Applicable to Advanced I/O Banks  
Drive Strength  
I
OSL (mA)*  
IOSH (mA)*  
25  
3.3 V LVTTL / 3.3 V LVCMOS  
2 mA  
4 mA  
27  
27  
25  
6 mA  
54  
51  
8 mA  
54  
51  
12 mA  
16 mA  
24 mA  
2 mA  
109  
127  
181  
27  
103  
132  
268  
25  
3.3 V LVCMOS  
4 mA  
27  
25  
6 mA  
54  
51  
8 mA  
54  
51  
12 mA  
16 mA  
24 mA  
2 mA  
109  
127  
181  
18  
103  
132  
268  
16  
2.5 V LVCMOS  
1.8 V LVCMOS  
6 mA  
37  
32  
12 mA  
16 mA  
24 mA  
2 mA  
74  
65  
87  
83  
124  
11  
169  
9
4 mA  
22  
17  
6 mA  
44  
35  
8 mA  
51  
45  
12 mA  
16 mA  
2 mA  
74  
91  
74  
91  
1.5 V LVCMOS  
16  
13  
4 mA  
33  
25  
6 mA  
39  
32  
8 mA  
55  
66  
12 mA  
Per PCI/PCI-X specification  
55  
66  
3.3 V PCI/PCI-X  
109  
103  
* TJ = 100°C  
2-24  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-29 • I/O Short Currents IOSH/IOSL  
Applicable to Standard Plus I/O Banks  
Drive Strength  
IOSL (mA)*  
IOSH (mA)*  
3.3 V LVTTL / 3.3 V LVCMOS  
2 mA  
27  
25  
25  
51  
51  
103  
103  
16  
32  
65  
9
4 mA  
27  
6 mA  
54  
8 mA  
54  
12 mA  
109  
109  
18  
16 mA  
2.5 V LVCMOS  
1.8 V LVCMOS  
2 mA  
6 mA  
37  
12 mA  
74  
2 mA  
11  
4 mA  
22  
17  
35  
35  
13  
25  
103  
6 mA  
44  
8 mA  
44  
1.5 V LVCMOS  
2 mA  
4 mA  
16  
33  
3.3 V PCI/PCI-X  
Per PCI/PCI-X specification  
109  
* TJ = 100°C  
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The  
reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of  
analysis.  
For example, at 110°C, the short current condition would have to be sustained for more than three  
months to cause a reliability concern. The I/O design does not contain any short circuit protection,  
but such protection would only be needed in extremely prolonged stress conditions.  
Table 2-30 • Duration of Short Circuit Event before Failure  
Temperature  
–40°C  
0°C  
Time before Failure  
> 20 years  
> 20 years  
> 20 years  
5 years  
25°C  
70°C  
85°C  
2 years  
100°C  
110°C  
125°C  
135°  
6 months  
3 months  
25 days  
12 days  
v1.0  
2-25  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-31 • I/O Input Rise Time, Fall Time, and Related I/O Reliability  
Input Rise/Fall Time  
(min.)  
Input Rise/Fall Time  
Input Buffer  
(max.)  
10 ns *  
10 ns *  
Reliability  
LVTTL/LVCMOS  
No requirement  
No requirement  
20 years (110°C)  
10 years (100°C)  
LVDS/B-LVDS/M-LVDS/LVPECL  
* The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low,  
the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the  
rise/fall times, the more susceptible the input signal is to the board noise. Actel recommends signal integrity  
evaluation/characterization of the system to ensure there is no excessive noise coupling into input signals.  
Single-Ended I/O Characteristics  
3.3 V LVTTL / 3.3 V LVCMOS  
Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V  
applications. It uses an LVTTL input buffer and push-pull output buffer.  
Table 2-32 • Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks  
3.3 V LVTTL /  
3.3 V LVCMOS  
VIL  
VIH  
VOL  
VOH IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
2
2
2
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2
4
6
8
2
4
6
8
27  
27  
25  
25  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
4 mA  
6 mA  
54  
51  
8 mA  
54  
51  
12 mA  
16 mA  
24 mA  
Notes:  
12 12  
16 16  
24 24  
109  
127  
181  
103  
132  
268  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
3. Software default selection highlighted in gray.  
2-26  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-33 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O Banks  
3.3 V LVTTL /  
3.3 V LVCMOS  
VIL  
VIH  
VOL  
VOH IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Notes:  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
2
2
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2
4
6
8
2
4
6
8
27  
27  
25  
25  
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
54  
51  
54  
51  
12 12  
16 16  
109  
109  
103  
103  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
3. Software default selection highlighted in gray.  
R to VCCI for tLZ/tZL/tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ/tZH/tZHS  
Test Point  
35 pF  
Enable Path  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 2-7 • AC Loading  
Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
C
LOAD (pF)  
0
3.3  
1.4  
35  
* Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.  
v1.0  
2-27  
Automotive ProASIC3 DC and Switching Characteristics  
Timing Characteristics  
Table 2-35 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
4 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
8.56 0.05 1.14  
7.28 0.04 0.97  
5.49 0.05 1.14  
4.67 0.04 0.97  
5.49 0.05 1.14  
4.67 0.04 0.97  
3.95 0.05 1.14  
3.36 0.04 0.97  
3.73 0.05 1.14  
3.17 0.04 0.97  
3.44 0.05 1.14  
2.92 0.04 0.97  
8.72 7.37 1.46 1.42 11.22 9.866  
7.42 6.27 1.46 1.42  
5.59 4.55 1.65 1.74  
4.75 3.87 1.65 1.74  
5.59 4.55 1.65 1.74  
4.75 3.87 1.65 1.74  
4.02 1.56 3.59 1.94  
3.42 1.56 3.05 1.94  
1.84 1.42 3.65 4.11  
1.84 1.42 3.10 3.50  
1.70 1.17 3.72 4.54  
1.70 1.17 3.16 3.86  
9.54  
8.09  
6.88  
8.09  
6.88  
6.52  
5.55  
3.05  
3.05  
2.91  
2.91  
8.393  
7.05  
ns  
6 mA  
STD  
-1  
ns  
5.997  
7.05  
ns  
8 mA  
STD  
-1  
ns  
5.997  
2.795  
2.797  
2.651  
2.653  
2.405  
2.407  
ns  
12 mA  
16 mA  
24 mA  
Notes:  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-36 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
4 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
11.47 0.05 1.14 0.46  
9.75 0.04 0.97 0.39  
8.13 0.05 1.14 0.46  
6.92 0.04 0.97 0.39  
8.13 0.05 1.14 0.46  
6.92 0.04 0.97 0.39  
6.24 0.05 1.14 0.46  
5.31 0.04 0.97 0.39  
5.82 0.05 1.14 0.46  
4.95 0.04 0.97 0.39  
5.42 0.05 1.14 0.46  
4.61 0.04 0.97 0.39  
11.68 9.95 1.46 1.33 14.18 12.449  
9.94 8.46 1.46 1.33 12.06  
8.28 7.03 1.65 1.65 10.79  
7.05 5.98 1.65 1.65 9.17  
8.28 7.03 1.65 1.65 10.79  
7.05 5.98 1.65 1.65 9.17  
6.36 5.45 1.77 1.85 8.86  
5.41 4.63 1.77 1.85 7.53  
5.93 5.10 1.80 1.90 8.43  
5.04 4.34 1.80 1.90 7.17  
5.52 5.08 1.83 2.10 8.02  
4.70 4.32 1.83 2.11 6.82  
10.59  
9.526  
8.103  
9.526  
8.103  
7.946  
6.76  
ns  
6 mA  
STD  
-1  
ns  
ns  
8 mA  
STD  
-1  
ns  
ns  
12 mA  
16 mA  
24 mA  
STD  
-1  
ns  
ns  
STD  
-1  
7.604  
6.468  
7.581  
6.449  
ns  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-28  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-37 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
4 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
8.06 0.05 1.12  
6.85 0.04 .095  
5.03 0.05 1.12  
4.28 0.04 0.95  
5.03 0.05 1.12  
4.28 0.04 0.95  
3.53 0.05 1.12  
3.01 0.04 0.95  
3.53 0.05 1.12  
3.01 0.04 0.95  
8.20 7.03 1.26 1.27 8.20 7.027  
6.98 5.98 1.26 1.27 6.98 5.978  
5.13 4.27 1.42 1.56 5.13 4.267  
ns  
6 mA  
STD  
-1  
ns  
4.36 3.63 1.42 1.56 4.36  
5.13 4.27 1.42 1.56 5.13 4.267  
4.36 3.63 1.42 1.56 4.36 3.63  
3.63  
ns  
8 mA  
STD  
-1  
ns  
ns  
12 mA  
16 mA  
Notes:  
STD  
-1  
1.74 1.43 3.12 3.60 1.74 1.427  
1.74 1.43 2.65 3.06 1.74 1.428  
1.74 1.43 3.12 3.60 1.74 1.427  
1.74 1.43 2.65 3.06 1.74 1.428  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-38 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
10.82 0.05 1.12  
11.02 9.42 1.26 1.20 11.02 9.419  
9.21  
7.49  
6.37  
7.49  
6.37  
5.64  
4.80  
5.64  
4.80  
0.04 0.95  
0.05 1.12  
0.04 0.95  
0.05 1.12  
0.04 0.95  
0.05 1.12  
0.04 0.95  
0.05 1.12  
0.04 0.95  
9.38  
7.63  
6.49  
7.63  
6.49  
5.75  
4.89  
5.75  
4.89  
8.01 1.26 1.20  
6.58 1.43 1.48  
5.60 1.43 1.49  
6.58 1.43 1.48  
5.60 1.43 1.49  
5.04 1.54 1.67  
4.29 1.54 1.67  
5.04 1.54 1.67  
4.29 1.54 1.67  
9.38  
7.63  
6.49  
7.63  
6.49  
5.75  
4.89  
5.75  
4.89  
8.012  
6.58  
ns  
STD  
-1  
ns  
5.598  
6.58  
ns  
STD  
-1  
ns  
5.598  
5.042  
4.289  
5.042  
4.289  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-29  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-39 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
8.28 0.05 1.10  
7.05 0.04 0.94  
5.31 0.05 1.10  
4.52 0.04 0.94  
5.31 0.05 1.10  
4.52 0.04 0.94  
3.82 0.05 1.10  
3.25 0.04 0.94  
3.60 0.05 1.10  
3.07 0.04 0.94  
3.33 0.05 1.10  
2.83 0.04 0.94  
8.44 7.13 1.42 1.37 10.85 9.55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7.18 6.06 1.42 1.37  
5.41 4.40 1.60 1.68  
4.60 3.74 1.60 1.68  
5.41 4.40 1.60 1.68  
4.60 3.74 1.60 1.68  
3.89 1.51 3.47 1.88  
3.31 1.51 2.96 1.88  
1.78 1.37 3.53 3.98  
1.78 1.37 3.00 3.38  
1.64 1.13 3.60 4.39  
1.64 1.13 3.06 3.74  
9.23  
7.83  
6.66  
7.83  
6.66  
6.31  
5.37  
2.95  
2.95  
2.81  
2.82  
8.12  
6.82  
5.80  
6.82  
5.80  
2.70  
2.71  
2.57  
2.57  
2.33  
2.33  
6 mA  
STD  
-1  
8 mA  
STD  
-1  
12 mA  
16 mA  
24 mA  
Notes:  
STD  
-1  
STD  
-1  
STD  
-1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-40 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
4 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
11.09 0.05 1.10  
11.30 9.63 1.41 1.29 13.72 12.04  
9.44  
7.87  
6.69  
7.87  
6.69  
6.04  
5.14  
5.63  
4.79  
5.25  
4.46  
0.04 0.94  
0.05 1.10  
0.04 0.94  
0.05 1.10  
0.04 0.94  
0.05 1.10  
0.04 0.94  
0.05 1.10  
0.04 0.94  
0.05 1.10  
0.04 0.94  
9.61  
8.02  
6.82  
8.02  
6.82  
6.15  
5.23  
5.74  
4.88  
5.34  
4.55  
8.19 1.41 1.29 11.67 10.25  
ns  
6 mA  
STD  
-1  
6.80 1.59 1.59 10.43  
5.78 1.59 1.60 8.88  
6.80 1.59 1.59 10.43  
9.22  
7.84  
9.22  
7.84  
7.69  
6.54  
7.36  
6.26  
7.34  
6.24  
ns  
ns  
8 mA  
STD  
-1  
ns  
5.78 1.59 1.60  
5.27 1.71 1.79  
4.48 1.71 1.79  
4.94 1.74 1.84  
4.20 1.74 1.84  
4.92 1.77 2.04  
4.18 1.77 2.04  
8.88  
8.57  
7.29  
8.16  
6.94  
7.76  
6.60  
ns  
12 mA  
16 mA  
24 mA  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-30  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-41 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade  
STD  
-1  
tDOUT  
0.63  
0.55  
0.63  
0.55  
0.63  
0.55  
0.63  
0.55  
0.63  
0.55  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
7.79 0.05 1.08  
6.85 0.04 0.95  
4.87 0.05 1.08  
4.28 0.04 0.95  
4.87 0.05 1.08  
4.28 0.04 0.95  
3.42 0.05 1.08  
3.01 0.04 0.95  
3.42 0.05 1.08  
3.01 0.04 0.95  
7.94 6.80 1.22 1.23 7.94 6.80  
6.98 5.98 1.26 1.27 6.98 5.98  
4.96 4.13 1.38 1.51 4.96 4.13  
4.36 3.63 1.42 1.56 4.36 3.63  
4.96 4.13 1.38 1.51 4.96 4.13  
4.36 3.63 1.42 1.56 4.36 3.63  
1.69 1.38 3.02 3.48 1.69 1.38  
1.74 1.43 2.65 3.06 1.74 1.43  
1.69 1.38 3.02 3.48 1.69 1.38  
1.74 1.43 2.65 3.06 1.74 1.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6 mA  
STD  
-1  
8 mA  
STD  
-1  
12 mA  
16 mA  
Notes:  
STD  
-1  
STD  
-1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-42 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
STD  
-1  
0.63  
0.55  
0.63  
0.55  
0.63  
0.55  
0.63  
0.55  
0.63  
0.55  
10.47 0.05 1.08  
10.66 9.11 1.22 1.16 10.66 9.11  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
9.21  
7.25  
6.37  
7.25  
6.37  
5.46  
4.80  
5.46  
4.80  
0.04 0.95  
0.05 1.08  
0.04 0.95  
0.05 1.08  
0.04 0.95  
0.05 1.08  
0.04 0.95  
0.05 1.08  
0.04 0.95  
9.38  
7.38  
6.49  
7.38  
6.49  
5.56  
4.89  
5.56  
4.89  
8.01 1.26 1.20  
6.37 1.38 1.44  
5.60 1.43 1.49  
6.37 1.38 1.44  
5.60 1.43 1.49  
4.88 1.49 1.61  
4.29 1.54 1.67  
4.88 1.49 1.61  
4.29 1.54 1.67  
9.38  
7.38  
6.49  
7.38  
6.49  
5.56  
4.89  
5.56  
4.89  
8.01  
6.37  
5.60  
6.37  
5.60  
4.88  
4.29  
4.88  
4.29  
STD  
-1  
STD  
-1  
STD  
-1  
STD  
-1  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-31  
Automotive ProASIC3 DC and Switching Characteristics  
2.5 V LVCMOS  
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 2.5 V applications. It uses a 5 V–tolerant input buffer and push-pull output buffer.  
Table 2-43 • Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks  
2.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
3.6  
3.6  
3.6  
3.6  
3.6  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
2
6
2
6
18  
37  
16  
32  
10 10  
10 10  
10 10  
10 10  
10 10  
6 mA  
12 mA  
16 mA  
24 mA  
Notes:  
12 12  
16 16  
24 24  
74  
65  
87  
83  
124  
169  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
3. Software default selection highlighted in gray.  
Table 2-44 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O Banks  
2.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength Min., V Max., V Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
–0.3  
–0.3  
–0.3  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
3.6  
3.6  
3.6  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
2
6
2
6
18  
37  
74  
16  
32  
65  
10 10  
10 10  
10 10  
6 mA  
12 mA  
Notes:  
12 12  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
3. Software default selection highlighted in gray.  
R to VCCI for tLZ/tZL/tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ/tZH/tZHS  
Test Point  
35 pF  
Enable Path  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 2-8 • AC Loading  
Table 2-45 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
C
LOAD (pF)  
0
2.5  
1.2  
35  
* Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.  
2-32  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Timing Characteristics  
Table 2-46 • 2.5 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
9.69 0.05 1.45  
8.24 0.04 1.23  
5.78 0.05 1.45  
4.91 0.04 1.23  
3.98 0.05 1.45  
3.39 0.04 1.23  
3.75 0.05 1.45  
3.19 0.04 1.23  
3.45 0.05 1.45  
2.94 0.04 1.23  
8.76 9.69 1.48 1.25 11.26 12.187  
7.45 8.24 1.48 1.25  
5.63 5.78 1.68 1.62  
4.79 4.91 1.69 1.63  
4.05 3.84 1.82 1.86  
3.45 3.27 1.83 1.86  
1.85 1.69 3.76 3.97  
1.85 1.69 3.20 3.38  
1.70 1.35 3.84 4.47  
1.71 1.35 3.27 3.80  
9.58  
8.13  
6.92  
6.55  
5.58  
3.06  
3.06  
2.92  
2.92  
10.367  
8.277  
7.04  
ns  
6 mA  
STD  
-1  
ns  
ns  
12 mA  
16 mA  
24 mA  
Notes:  
STD  
-1  
6.338  
5.392  
2.926  
2.929  
2.585  
2.586  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-47 • 2.5 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
12.12 0.05 1.45 0.46 12.54 12.74 1.48 1.19 15.04 15.243  
10.31 0.04 1.23 0.39 10.67 10.84 1.48 1.20 12.80 12.966  
ns  
6 mA  
STD  
-1  
8.24 0.05 1.45 0.46  
7.01 0.04 1.23 0.39  
6.91 0.05 1.45 0.46  
5.88 0.04 1.23 0.39  
6.44 0.05 1.45 0.46  
5.48 0.04 1.23 0.39  
6.16 0.05 1.45 0.46  
5.24 0.04 1.23 0.39  
9.07  
7.71  
7.04  
5.99  
6.56  
5.58  
6.15  
5.23  
8.74 1.68 1.57 11.57 11.237  
ns  
7.43 1.69 1.57 9.84  
6.62 1.82 1.80 9.54  
5.63 1.83 1.80 8.11  
6.18 1.86 1.86 9.06  
5.26 1.86 1.86 7.71  
6.16 1.90 2.10 8.65  
5.24 1.90 2.10 7.36  
9.559  
9.117  
7.756  
8.678  
7.382  
8.657  
7.364  
ns  
12 mA  
16 mA  
24 mA  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-33  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-48 • 2.5 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
9.26 0.05 1.45  
7.87 0.04 1.23  
5.43 0.05 1.45  
4.62 0.04 1.23  
3.59 0.05 1.45  
3.05 0.04 1.23  
8.28 9.26 1.24 1.12 10.78 11.756  
7.05 7.87 1.24 1.13  
5.19 5.43 1.43 1.47  
4.42 4.62 1.43 1.47  
3.65 3.51 1.56 1.69  
3.11 2.99 1.56 1.69  
9.17  
7.69  
6.55  
6.15  
5.23  
10  
ns  
6 mA  
STD  
-1  
7.926  
6.743  
6.012  
5.114  
ns  
ns  
12 mA  
Notes:  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-49 • 2.5 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
6 mA  
12 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
12.12 0.05 1.45 0.46 11.89 12.12 1.25 1.08 14.39 14.622  
10.31 0.04 1.23 0.39 10.12 10.31 1.25 1.08 12.24 12.438  
ns  
STD  
-1  
8.24 0.05 1.45 0.46  
7.01 0.04 1.23 0.39  
6.30 0.05 1.45 0.46  
5.35 0.04 1.23 0.39  
8.39  
7.14  
6.41  
5.45  
8.23 1.43 1.42 10.89  
7.00 1.43 1.42 9.26  
6.16 1.56 1.63 8.91  
5.24 1.56 1.63 7.58  
10.73  
9.128  
8.656  
7.364  
ns  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-34  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-50 • 2.5 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
9.37 0.05 1.40  
7.97 0.04 1.19  
5.59 0.05 1.40  
4.75 0.04 1.19  
3.85 0.05 1.40  
3.28 0.04 1.19  
3.63 0.05 1.40  
3.08 0.04 1.19  
3.34 0.05 1.40  
2.84 0.04 1.19  
8.47 9.37 1.43 1.21 10.89 11.79  
7.21 7.97 1.43 1.21  
5.45 5.59 1.63 1.57  
4.63 4.75 1.63 1.57  
3.92 3.71 1.77 1.80  
3.34 3.16 1.77 1.80  
1.79 1.64 3.64 3.84  
1.79 1.64 3.09 3.27  
1.65 1.31 3.72 4.32  
1.65 1.31 3.16 3.68  
9.27  
7.87  
6.69  
6.34  
5.39  
2.96  
2.96  
2.82  
2.82  
10.03  
8.01  
6.81  
6.13  
5.22  
2.83  
2.83  
2.50  
2.50  
ns  
6 mA  
STD  
-1  
ns  
ns  
12 mA  
16 mA  
24 mA  
Notes:  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-51 • 2.5 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
11.73 0.05 1.40 0.45  
9.98 0.04 1.19 0.38  
7.97 0.05 1.40 0.45  
6.78 0.04 1.19 0.38  
6.68 0.05 1.40 0.45  
5.69 0.04 1.19 0.38  
6.24 0.05 1.40 0.45  
5.30 0.04 1.19 0.38  
5.96 0.05 1.40 0.45  
5.07 0.04 1.19 0.38  
12.14 12.33 1.43 1.16 14.55 14.75  
10.32 10.49 1.43 1.16 12.38 12.55  
ns  
6 mA  
STD  
-1  
8.77  
7.46  
6.81  
5.79  
6.35  
5.40  
5.95  
5.06  
8.45 1.63 1.51 11.19 10.87  
ns  
7.19 1.63 1.52 9.52  
6.40 1.77 1.74 9.23  
5.45 1.77 1.74 7.85  
5.98 1.80 1.80 8.77  
5.08 1.80 1.80 7.46  
5.96 1.84 2.03 8.37  
5.07 1.84 2.03 7.12  
9.25  
8.82  
7.50  
8.40  
7.14  
8.38  
7.12  
ns  
12 mA  
16 mA  
24 mA  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-35  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-52 • 2.5 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
8.95 0.05 1.40  
7.62 0.04 1.19  
5.25 0.05 1.40  
4.47 0.04 1.19  
3.47 0.05 1.40  
2.95 0.04 1.19  
8.01 8.95 1.20 1.09 10.43 11.37  
6.82 7.62 1.20 1.09  
5.03 5.25 1.38 1.42  
4.27 4.47 1.38 1.42  
3.53 3.40 1.51 1.63  
3.01 2.89 1.51 1.63  
8.87  
7.44  
6.33  
5.95  
5.06  
9.68  
7.67  
6.52  
5.82  
4.95  
ns  
6 mA  
STD  
-1  
ns  
ns  
12 mA  
Notes:  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-53 • 2.5 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
6 mA  
12 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
11.73 0.05 1.40 0.45  
9.98 0.04 1.19 0.38  
7.97 0.05 1.40 0.45  
6.78 0.04 1.19 0.38  
6.09 0.05 1.40 0.45  
5.18 0.04 1.19 0.38  
11.51 11.73 1.21 1.04 13.93 14.15  
9.79  
8.12  
6.91  
6.20  
5.28  
9.98 1.21 1.04 11.85 12.03  
7.96 1.38 1.37 10.54 10.38  
ns  
STD  
-1  
ns  
6.77 1.39 1.37 8.96  
5.96 1.51 1.58 8.62  
5.07 1.51 1.58 7.33  
8.83  
8.38  
7.12  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-36  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
1.8 V LVCMOS  
Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.  
Table 2-54 • Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks  
1.8 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength Min., V Max., V  
Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Notes:  
–0.3 0.35 * VCCI 0.65 * VCCI  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
2
4
6
8
2
4
6
8
11  
22  
44  
51  
74  
74  
9
10 10  
10 10  
10 10  
10 10  
10 10  
10 10  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
17  
35  
45  
91  
91  
0.45 VCCI – 0.45 12 12  
0.45 VCCI – 0.45 16 16  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
3. Software default selection highlighted in gray.  
Table 2-55 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O I/O Banks  
1.8 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength Min., V Max., V  
Min., V Max., V Max., V Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
–0.3 0.35 * VCCI 0.65 * VCCI  
3.6  
3.6  
3.6  
3.6  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
2
4
6
8
2
4
6
8
11  
22  
44  
44  
9
10 10  
10 10  
10 10  
10 10  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
17  
35  
35  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
3. Software default selection highlighted in gray.  
R to VCCI for tLZ/tZL/tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ/tZH/tZHS  
Test Point  
35 pF  
Enable Path  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 2-9 • AC Loading  
v1.0  
2-37  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-56 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
C
LOAD (pF)  
0
1.8  
0.9  
35  
* Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.  
Timing Characteristics  
Table 2-57 • 1.8 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Notes:  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
13.26 0.05 1.36 0.46 10.22 13.26 1.53 0.90 12.72 15.764  
11.28 0.04 1.16 0.39  
7.73 0.05 1.36 0.46  
6.58 0.04 1.16 0.39  
4.97 0.05 1.36 0.46  
4.23 0.04 1.16 0.39  
4.39 0.05 1.36 0.46  
3.73 0.04 1.16 0.39  
3.95 0.05 1.36 0.46  
3.36 0.04 1.16 0.39  
3.95 0.05 1.36 0.46  
3.36 0.04 1.16 0.39  
8.69 11.28 1.53 0.90 10.82  
13.41  
10.232  
8.704  
7.472  
6.356  
6.888  
5.859  
2.915  
2.918  
2.915  
2.918  
ns  
STD  
-1  
6.55  
5.58  
4.67  
3.98  
4.39  
3.74  
1.95  
1.95  
1.95  
1.95  
7.73 1.78 1.54 9.05  
6.58 1.78 1.54 7.70  
4.97 1.95 1.83 7.17  
4.23 1.95 1.83 6.10  
4.39 1.99 1.91 6.89  
3.73 1.99 1.91 5.86  
1.68 4.14 4.56 3.16  
1.68 3.52 3.88 3.16  
1.68 4.14 4.56 3.16  
1.68 3.52 3.88 3.16  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-38  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-58 • 1.8 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
17.36 0.05 1.45 0.46 15.78 17.36 1.53 0.87 18.28 19.864  
14.77 0.04 1.23 0.39 13.42 14.77 1.54 0.87 15.55 16.897  
11.71 0.05 1.45 0.46 11.64 11.71 1.78 1.48 14.14 14.214  
ns  
STD  
-1  
ns  
9.96 0.04 1.23 0.39  
9.00 0.05 1.45 0.46  
7.66 0.04 1.23 0.39  
8.39 0.05 1.45 0.46  
7.14 0.04 1.23 0.39  
8.15 0.05 1.45 0.46  
6.94 0.04 1.23 0.39  
8.15 0.05 1.45 0.46  
6.94 0.04 1.23 0.39  
9.90  
9.17  
7.80  
8.54  
7.27  
8.09  
6.88  
8.09  
6.88  
9.96 1.78 1.48 12.03 12.091  
8.77 1.95 1.77 11.67 11.267  
ns  
STD  
-1  
ns  
7.46 1.95 1.77 9.92  
8.16 1.99 1.85 11.04  
6.94 1.99 1.85 9.40  
9.585  
10.66  
9.068  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
8.15 2.05 2.14 10.59 10.654  
6.94 2.05 2.14 9.01 9.063  
8.15 2.05 2.14 10.59 10.654  
6.94 2.05 2.14 9.01 9.063  
ns  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-59 • 1.8 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
13.26 0.05 1.36 0.46 9.75 12.67 1.24 0.82 12.26  
15.17  
11.28 0.04 1.16 0.39 8.30 10.78 1.24 0.83 10.43 12.905  
ns  
STD  
-1  
7.73 0.05 1.36 0.46 6.13 7.25 1.46 1.41 8.63  
6.58 0.04 1.16 0.39 5.21 6.17 1.46 1.41 7.34  
4.97 0.05 1.36 0.46 4.29 4.54 1.62 1.68 6.79  
4.23 0.04 1.16 0.39 3.65 3.86 1.62 1.68 5.78  
4.39 0.05 1.36 0.46 4.29 4.54 1.62 1.68 6.79  
3.73 0.04 1.16 0.39 3.65 3.86 1.62 1.68 5.78  
9.749  
8.293  
7.039  
5.987  
7.039  
5.987  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-39  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-60 • 1.8 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
17.36 0.05 1.45 0.46 15.09 16.55 1.24 0.79 17.59 19.052  
14.77 0.04 1.23 0.39 12.84 14.08 1.24 0.79 14.96 16.207  
11.71 0.05 1.45 0.46 10.88 11.07 1.47 1.35 13.38 13.567  
ns  
STD  
-1  
ns  
9.96 0.04 1.23 0.39  
9.00 0.05 1.45 0.46  
7.66 0.04 1.23 0.39  
8.39 0.05 1.45 0.46  
7.14 0.04 1.23 0.39  
9.26  
8.47  
7.21  
8.47  
7.21  
9.41 1.47 1.35 11.38 11.541  
8.18 1.62 1.62 10.97 10.685  
ns  
STD  
-1  
ns  
6.96 1.62 1.62 9.33  
8.18 1.62 1.62 10.97 10.685  
6.96 1.62 1.62 9.33 9.089  
9.089  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-61 • 1.8 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Notes:  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
12.83 0.05 1.32  
10.92 0.04 1.12  
9.88 12.83 1.48 0.87 12.30 15.25  
8.41 10.92 1.48 0.87 10.46 12.97  
ns  
STD  
-1  
7.48  
6.36  
4.81  
4.09  
4.25  
3.61  
3.82  
3.25  
3.82  
3.25  
0.05 1.32  
0.04 1.12  
0.05 1.32  
0.04 1.12  
0.05 1.32  
0.04 1.12  
0.05 1.32  
0.04 1.12  
0.05 1.32  
0.04 1.12  
6.34  
5.39  
4.52  
3.85  
4.25  
3.61  
1.89  
1.89  
1.89  
1.89  
7.48  
6.36  
4.81  
4.09  
4.25  
3.61  
1.63  
1.63  
1.63  
1.63  
1.72 1.49  
1.72 1.49  
1.89 1.77  
1.89 1.77  
1.92 1.85  
1.93 1.85  
4.00 4.41  
3.41 3.75  
4.00 4.41  
3.41 3.75  
8.76  
7.45  
6.94  
5.90  
6.67  
5.67  
3.06  
3.06  
3.06  
3.06  
9.90  
8.42  
7.23  
6.15  
6.66  
5.67  
2.82  
2.82  
2.82  
2.82  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-40  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-62 • 1.8 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
16.80 0.05 1.40 0.45  
14.29 0.04 1.19 0.38  
11.33 0.05 1.40 0.45  
9.64 0.04 1.19 0.38  
8.71 0.05 1.40 0.45  
7.41 0.04 1.19 0.38  
8.12 0.05 1.40 0.45  
6.90 0.04 1.19 0.38  
7.89 0.05 1.40 0.45  
6.71 0.04 1.19 0.38  
7.89 0.05 1.40 0.45  
6.71 0.04 1.19 0.38  
15.27 16.80 1.48 0.84 17.69 19.22  
12.99 14.29 1.49 0.84 15.05 16.35  
11.26 11.33 1.73 1.43 13.68 13.75  
ns  
STD  
-1  
ns  
9.58  
8.87  
7.54  
8.27  
7.03  
7.83  
6.66  
7.83  
6.66  
9.64 1.73 1.43 11.64 11.70  
8.48 1.89 1.72 11.29 10.90  
ns  
STD  
-1  
ns  
7.22 1.89 1.72 9.60  
7.89 1.93 1.79 10.69 10.31  
6.72 1.93 1.79 9.09 8.77  
7.89 1.98 2.07 10.25 10.31  
6.71 1.98 2.07 8.72 8.77  
7.89 1.98 2.07 10.25 10.31  
6.71 1.98 2.07 8.72 8.77  
9.27  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-63 • 1.8 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
12.83 0.05 1.32  
10.92 0.04 1.12  
9.44 12.26 1.20 0.80 11.86 14.68  
8.03 10.43 1.20 0.80 10.09 12.49  
ns  
STD  
-1  
7.48  
6.36  
4.81  
4.09  
4.25  
3.61  
0.05 1.32  
0.04 1.12  
0.05 1.32  
0.04 1.12  
0.05 1.32  
0.04 1.12  
5.93  
5.04  
4.15  
3.53  
4.15  
3.53  
7.01  
5.97  
4.39  
3.74  
4.39  
3.74  
1.41 1.36  
1.42 1.37  
1.57 1.63  
1.57 1.63  
1.57 1.63  
1.57 1.63  
8.35  
7.10  
6.57  
5.59  
6.57  
5.59  
9.43  
8.02  
6.81  
5.79  
6.81  
5.79  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-41  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-64 • 1.8 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
16.80 0.05 1.40 0.45  
14.29 0.04 1.19 0.38  
11.33 0.05 1.40 0.45  
9.64 0.04 1.19 0.38  
8.71 0.05 1.40 0.45  
7.41 0.04 1.19 0.38  
8.12 0.05 1.40 0.45  
6.90 0.04 1.19 0.38  
14.60 16.01 1.20 0.77 17.02 18.43  
12.42 13.62 1.20 0.77 14.48 15.68  
10.53 10.71 1.42 1.31 12.95 13.13  
ns  
STD  
-1  
ns  
8.96  
8.19  
6.97  
8.19  
6.97  
9.11 1.42 1.31 11.01 11.17  
7.92 1.57 1.57 10.61 10.34  
ns  
STD  
-1  
ns  
6.74 1.57 1.57 9.03  
7.92 1.57 1.57 10.61 10.34  
6.74 1.57 1.57 9.03 8.79  
8.79  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
1.5 V LVCMOS (JESD8-11)  
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.  
Table 2-65 • Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks  
1.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength Min., V Max., V  
Min., V Max., V Max., V  
Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
–0.3 0.30 * VCCI 0.7 * VCCI  
3.6  
3.6  
3.6  
3.6  
3.6  
0.25 * VCCI 0.75 * VCCI  
2
4
6
8
2
4
6
8
16  
33  
39  
55  
55  
13  
25  
32  
66  
66  
10 10  
10 10  
10 10  
10 10  
10 10  
–0.3 0.30 * VCCI 0.7 * VCCI  
–0.3 0.30 * VCCI 0.7 * VCCI  
–0.3 0.30 * VCCI 0.7 * VCCI  
–0.3 0.30 * VCCI 0.7 * VCCI  
0.25 * VCCI 0.75 * VCCI  
0.25 * VCCI 0.75 * VCCI  
0.25 * VCCI 0.75 * VCCI  
0.25 * VCCI 0.75 * VCCI 12 12  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
3. Software default selection highlighted in gray.  
2-42  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-66 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O Banks  
1.5 V  
LVCMOS  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength Min., V Max., V  
Min., V Max., V Max., V  
–0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI  
–0.3 0.30 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI  
Min., V mA mA Max., mA1 Max., mA1 µA2 µA2  
2 mA  
4 mA  
Notes:  
2
4
2
4
0
0
0
0
10 10  
10 10  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
3. Software default selection highlighted in gray.  
R to VCCI for tLZ/tZL/tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ/tZH/tZHS  
Test Point  
35 pF  
Enable Path  
35 pF for tZH/tZHS/tZL/tZLS  
5 pF for tHZ/tLZ  
Figure 2-10 • AC Loading  
Table 2-67 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
C
LOAD (pF)  
0
1.5  
0.75  
35  
* Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.  
v1.0  
2-43  
Automotive ProASIC3 DC and Switching Characteristics  
Timing Characteristics  
Table 2-68 • 1.5 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
0.46  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
9.35 0.05 1.61  
7.95 0.04 1.37  
5.94 0.05 1.61  
5.05 0.04 1.37  
5.22 0.05 1.61  
4.44 0.04 1.37  
4.56 0.05 1.61  
3.88 0.04 1.37  
4.56 0.05 1.61  
3.88 0.04 1.37  
7.63 9.35 1.87 1.50 10.13 11.851  
6.49 7.95 1.87 1.50  
5.42 5.94 2.07 1.84  
4.61 5.05 2.07 1.85  
5.09 5.22 2.11 1.93  
4.33 4.44 2.11 1.93  
2.25 1.98 4.41 4.70  
2.25 1.98 3.75 4.00  
2.25 1.98 4.41 4.70  
2.25 1.98 3.75 4.00  
8.62  
7.92  
6.74  
7.59  
6.45  
3.46  
3.46  
3.46  
3.46  
10.081  
8.442  
7.181  
7.718  
6.566  
3.211  
3.213  
3.211  
3.213  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-69 • 1.5 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
0.64  
0.55  
14.29 0.05 1.45 0.46 14.32 14.29 1.88 1.43 16.82 16.794  
12.16 0.04 1.23 0.39 12.18 12.16 1.88 1.43 14.31 14.286  
11.19 0.05 1.45 0.46 11.40 10.67 2.07 1.77 13.90 13.175  
ns  
STD  
-1  
ns  
9.52 0.04 1.23 0.39  
10.44 0.05 1.45 0.46 10.63 9.94 2.12 1.86 13.13 12.442  
8.88 0.04 1.23 0.39 9.04 8.46 2.12 1.86 11.17 10.584  
9.96 0.05 1.45 0.46 10.15 9.94 2.18 2.19 12.65 12.445  
8.47 0.04 1.23 0.39 8.63 8.46 2.19 2.20 10.76 10.586  
9.96 0.05 1.45 0.46 10.15 9.94 2.18 2.19 12.65 12.445  
8.47 0.04 1.23 0.39 8.63 8.46 2.19 2.20 10.76 10.586  
9.70  
9.08 2.07 1.77 11.82 11.207  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-44  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-70 • 1.5 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.46  
0.39  
0.46  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
Notes:  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
8.76 0.05 1.59  
7.45 0.04 1.35  
5.41 0.05 1.59  
4.60 0.04 1.35  
7.63 9.35 1.87 1.50 10.13 11.851  
6.49 7.95 1.87 1.50  
5.42 5.94 2.07 1.84  
4.61 5.05 2.07 1.85  
8.62  
7.92  
6.74  
10.081  
8.442  
7.181  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-71 • 1.5 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
STD  
-1  
0.64  
0.55  
0.64  
0.55  
13.51 0.05 1.45 0.46 14.32 14.29 1.88 1.43 16.82 16.794  
11.49 0.04 1.23 0.39 12.18 12.16 1.88 1.43 14.31 14.286  
10.38 0.05 1.45 0.46 11.40 10.67 2.07 1.77 13.90 13.175  
ns  
STD  
-1  
ns  
8.83 0.04 1.23 0.39  
9.70  
9.08 2.07 1.77 11.82 11.207  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-72 • 1.5 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
0.45  
0.38  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
9.05 0.05 1.56  
7.70 0.04 1.32  
5.75 0.05 1.56  
4.89 0.04 1.32  
5.05 0.05 1.56  
4.29 0.04 1.32  
4.41 0.05 1.56  
3.75 0.04 1.32  
4.41 0.05 1.56  
3.75 0.04 1.32  
7.38 9.05 1.81 1.45 9.80 11.47  
6.28 7.70 1.81 1.45 8.34  
5.25 5.75 2.00 1.78 7.67  
4.46 4.89 2.00 1.78 6.52  
4.92 5.05 2.04 1.87 7.34  
4.19 4.29 2.04 1.87 6.24  
2.18 1.91 4.27 4.55 3.35  
2.18 1.91 3.63 3.87 3.35  
2.18 1.91 4.27 4.55 3.35  
2.18 1.91 3.63 3.87 3.35  
9.75  
8.17  
6.95  
7.47  
6.35  
3.11  
3.11  
3.11  
3.11  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-45  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-73 • 1.5 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
0.63  
0.53  
13.83 0.05 1.40 0.45  
11.76 0.04 1.19 0.38  
10.83 0.05 1.40 0.45  
9.21 0.04 1.19 0.38  
10.10 0.05 1.40 0.45  
8.59 0.04 1.19 0.38  
9.64 0.05 1.40 0.45  
8.20 0.04 1.19 0.38  
9.64 0.05 1.40 0.45  
8.20 0.04 1.19 0.38  
13.86 13.83 1.82 1.39 16.28 16.25  
11.79 11.76 1.82 1.39 13.85 13.82  
11.03 10.33 2.00 1.71 13.45 12.75  
ns  
STD  
-1  
ns  
9.38  
10.28  
8.75  
9.82  
8.35  
9.82  
8.35  
8.79 2.01 1.72 11.44 10.84  
9.62 2.05 1.80 12.70 12.04  
8.18 2.05 1.80 10.81 10.24  
9.62 2.11 2.12 12.23 12.04  
8.18 2.11 2.12 10.41 10.24  
9.62 2.11 2.12 12.23 12.04  
8.18 2.11 2.12 10.41 10.24  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
STD  
-1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-74 • 1.5 V LVCMOS High Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.38  
0.45  
0.38  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
Notes:  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
8.47 0.05 1.54  
7.21 0.04 1.31  
5.24 0.05 1.54  
4.45 0.04 1.31  
7.38 9.05 1.81 1.45 9.80 11.47  
6.28 7.70 1.81 1.45 8.34  
5.25 5.75 2.00 1.78 7.67  
4.46 4.89 2.00 1.78 6.52  
9.75  
8.17  
6.95  
ns  
STD  
-1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-75 • 1.5 V LVCMOS Low Slew  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
STD  
-1  
0.63  
0.53  
0.63  
0.53  
13.07 0.05 1.40 0.45  
11.12 0.04 1.19 0.38  
10.04 0.05 1.40 0.45  
8.54 0.04 1.19 0.38  
13.86 13.83 1.82 1.39 16.28 16.25  
11.79 11.76 1.82 1.39 13.85 13.82  
11.03 10.33 2.00 1.71 13.45 12.75  
ns  
STD  
-1  
ns  
9.38  
8.79 2.01 1.72 11.44 10.84  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-46  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
3.3 V PCI, 3.3 V PCI-X  
The Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz  
PCI Bus applications.  
Table 2-76 • Minimum and Maximum DC Input and Output Levels  
3.3 V  
PCI/PCI-X  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSL  
IOSH  
IIL  
IIH  
Drive  
Strength  
Min, V Max, V Min, V Max, V Max, V Min, V mA mA Max, mA1 Max, mA1 µA2 µA2  
Per PCI curves 10 10  
Per PCI  
specification  
Notes:  
1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
AC loadings are defined per the PCI/PCI-X specifications for the datapath; Actel loadings for enable  
path characterization are described in Figure 2-11.  
R to VCCI for tDP (F)  
R to GND for tDP (R)  
R to VCCI for tLZ/tZL/tZLS  
R to GND for tHZ/tZH/tZHS  
R = 25  
Test Point  
Datapath  
R = 1 k  
Test Point  
Enable Path  
10 pF for tZH /tZHS/tZL/tZLS  
5 pF for tHZ /tLZ  
Figure 2-11 • AC Loading  
AC loadings are defined per PCI/PCI-X specifications for the datapath; Actel loading for tristate is  
described in Table 2-77.  
Table 2-77 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
0.285 * VCCI for tDP(R)  
0.615 * VCCI for tDP(F)  
CLOAD (pF)  
0
3.3  
10  
* Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.  
Timing Characteristics  
Table 2-78 • 3.3 V PCI/PCI-X  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Speed Grade  
tDOUT  
0.64  
tDP  
tDIN  
tPY  
tEOUT  
0.46  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
Std.  
–1  
2.58 0.05 0.95  
2.19 0.04 0.81  
1.27 0.94 3.12 3.60 2.49 2.18  
1.27 0.94 2.65 3.06 2.49 2.18  
0.55  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-47  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-79 • 3.3 V PCI/PCI-X  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Speed Grade  
tDOUT  
0.64  
tDP  
tDIN  
tPY  
tEOUT  
0.46  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
Std.  
–1  
3.00 0.05 0.93  
2.55 0.04 0.79  
1.27 0.94 3.12 3.60 2.49 2.18  
1.27 0.94 2.65 3.06 2.49 2.18  
0.55  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-80 • 3.3 V PCI/PCI-X  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Speed Grade  
tDOUT  
0.628  
0.53  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.38  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
Std.  
–1  
2.50 0.05 0.92  
2.12 0.04 0.78  
1.23 0.91 3.02 3.48 2.40 2.11  
1.23 0.91 2.57 2.96 2.41 2.11  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-81 • 3.3 V PCI/PCI-X  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Speed Grade  
tDOUT  
0.628  
0.53  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.38  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
Std.  
–1  
2.90 0.05 0.90  
2.47 0.04 0.77  
1.23 0.91 3.02 3.48 2.40 2.11  
1.23 0.91 2.57 2.96 2.41 2.11  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Differential I/O Characteristics  
Physical Implementation  
Configuration of the I/O modules as a differential pair is handled by Actel Designer software when  
the user instantiates a differential I/O macro in the design.  
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output  
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no  
support for bidirectional I/Os or tristates with the LVPECL standards.  
LVDS  
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It  
requires that one data bit be carried through two signal lines, so two pins are needed. It also  
requires external resistor termination.  
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-12  
on page 2-49. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one  
receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end.  
The values for the three driver resistors are different from those used in the LVPECL  
implementation because the output standard specifications are different.  
Along with LVDS I/O, ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (M-LVDS)  
configuration (up to 40 nodes).  
2-48  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Bourns Part Number: CAT16-LV4F12  
FPGA  
FPGA  
OUTBUF_LVDS  
P
P
165 Ω  
165 Ω  
Z = 50 Ω  
0
INBUF_LVDS  
+
140 Ω  
Z = 50 Ω  
100 Ω  
0
N
N
Figure 2-12 • LVDS Circuit Diagram and Board-Level Implementation  
Table 2-82 • Minimum and Maximum DC Input and Output Levels  
DC Parameter  
VCCI  
Description  
Min.  
Typ.  
Max.  
Units  
V
Supply Voltage  
2.375  
0.9  
2.5  
1.075  
1.425  
2.625  
1.25  
1.6  
VOL  
Output LOW Voltage  
V
VOH  
Output HIGH Voltage  
1.25  
0
V
VI  
Input Voltage  
2.925  
450  
V
VODIFF  
VOCM  
VICM  
Differential Output Voltage  
Output Common-Mode Voltage  
Input Common-Mode Voltage  
Input Differential Voltage  
250  
1.125  
0.05  
100  
350  
mV  
V
1.25  
1.25  
350  
1.375  
2.35  
V
VIDIFF  
mV  
Notes:  
1.  
5%  
2. Differential input voltage = 350 mV  
Table 2-83 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
1.075  
1.325  
Cross point  
* Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.  
Timing Characteristics  
Table 2-84 • LVDS  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Speed Grade  
tDOUT  
0.64  
tDP  
tDIN  
0.05  
0.04  
tPY  
Units  
ns  
Std.  
–1  
2.05  
1.74  
1.79  
1.52  
0.55  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-49  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-85 • LVDS  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Speed Grade  
tDOUT  
0.63  
tDP  
tDIN  
0.05  
0.04  
tPY  
Units  
ns  
Std.  
–1  
1.98  
1.68  
1.73  
1.47  
0.53  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
B-LVDS/M-LVDS  
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard  
to high-performance multipoint bus applications. Multidrop and multipoint bus configurations  
may contain any combination of drivers, receivers, and transceivers. Actel LVDS drivers provide the  
higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers  
require series terminations for better signal quality and to control voltage swing. Termination is  
also required at both ends of the bus since the driver can be located anywhere on the bus. These  
configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with  
appropriate terminations. Multipoint designs using Actel LVDS macros can achieve up to 200 MHz  
with a maximum of 20 loads. A sample application is given in Figure 2-13. The input and output  
buffer delays are available in the LVDS section in Table 2-84 on page 2-49.  
Example: For a bus consisting of 20 equidistant loads, the following terminations provide the  
required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver:  
RS = 60 Ω and RT = 70 Ω, given Z0 = 50 Ω (2") and Zstub = 50 Ω (~1.5").  
Receiver  
Transceiver  
Driver  
D
Receiver  
Transceiver  
EN  
EN  
EN  
EN  
EN  
BIBUF_LVDS  
R
T
R
T
+
-
+
-
+
-
+
-
+
-
RS RS  
RS RS  
RS RS  
Zstub  
RS RS  
RS RS  
Zstub  
Z0  
Zstub  
Zstub  
Z0  
Zstub  
Zstub  
Z0  
Zstub  
Z0  
Zstub  
...  
Z0  
Z0  
Z0  
Z0  
RT  
RT  
Z0  
Z0  
Z0  
Z0  
Figure 2-13 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers  
LVPECL  
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It  
requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It  
also requires external resistor termination.  
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-14  
on page 2-51. The building blocks of the LVPECL transmitter-receiver are one transmitter macro,  
one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver  
end. The values for the three driver resistors are different from those used in the LVDS  
implementation because the output standard specifications are different.  
2-50  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Bourns Part Number: CAT16-PC4F12  
FPGA  
FPGA  
P
P
OUTBUF_LVPECL  
100 Ω  
100 Ω  
Z0 = 50 Ω  
187 W  
Z0 = 50 Ω  
INBUF_LVPECL  
+
100 Ω  
N
N
Figure 2-14 • LVPECL Circuit Diagram and Board-Level Implementation  
Table 2-86 • Minimum and Maximum DC Input and Output Levels  
DC Parameter  
VCCI  
Description  
Supply Voltage  
Min. Max. Min. Max. Min. Max. Units  
3.0  
3.3  
3.6  
V
V
VOL  
Output LOW Voltage  
0.96  
1.8  
0
1.27  
2.11  
3.3  
1.06  
1.92  
0
1.43  
2.28  
3.6  
1.30  
2.13  
0
1.57  
2.41  
3.9  
VOH  
Output HIGH Voltage  
V
VIL, VIH  
VODIFF  
VOCM  
Input LOW, Input HIGH Voltages  
Differential Output Voltage  
Output Common-Mode Voltage  
Input Common-Mode Voltage  
Input Differential Voltage  
V
0.625 0.97 0.625 0.97 0.625 0.97  
1.762 1.98 1.762 1.98 1.762 1.98  
V
V
VICM  
1.01  
300  
2.57  
1.01  
300  
2.57  
1.01  
300  
2.57  
V
VIDIFF  
mV  
Table 2-87 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input LOW (V)  
Input HIGH (V)  
Measuring Point* (V)  
1.64  
1.94  
Cross point  
* Measuring point = Vtrip. See Table 2-18 on page 2-17 for a complete table of trip points.  
Timing Characteristics  
Table 2-88 • LVPECL  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Speed Grade  
tDOUT  
0.64  
tDP  
tDIN  
0.05  
0.04  
tPY  
Units  
ns  
Std.  
–1  
2.01  
1.71  
1.57  
1.34  
0.55  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-89 • LVPECL  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Speed Grade  
tDOUT  
0.63  
tDP  
tDIN  
0.05  
0.04  
tPY  
Units  
ns  
Std.  
–1  
1.95  
1.66  
1.52  
1.29  
0.53  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-51  
Automotive ProASIC3 DC and Switching Characteristics  
I/O Register Specifications  
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous  
Preset  
Preset  
L
D
DOUT  
EOUT  
Data_out  
PRE  
DFN1E1P1  
F
PRE  
DFN1E1P1  
Y
E
Core  
Array  
Data  
Enable  
CLK  
D
Q
D
Q
C
G
E
E
B
H
I
A
PRE  
DFN1E1P1  
J
D
Q
K
Data Input I/O Register with:  
Active High Enable  
E
Active High Preset  
Positive-Edge Triggered  
Data Output Register and  
Enable Output Register with:  
Active High Enable  
Active High Preset  
INBUF  
INBUF  
CLKBUF  
Postive-Edge Triggered  
Figure 2-15 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset  
2-52  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-90 • Parameter Definition and Measuring Nodes  
Measuring Nodes  
Parameter Name  
Parameter Definition  
(from, to)*  
H, DOUT  
F, H  
tOCLKQ  
tOSUD  
Clock-to-Q of the Output Data Register  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
F, H  
tOSUE  
Enable Setup Time for the Output Data Register  
Enable Hold Time for the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
G, H  
tOHE  
G, H  
tOPRE2Q  
tOREMPRE  
tORECPRE  
tOECLKQ  
tOESUD  
tOEHD  
L, DOUT  
L, H  
L, H  
H, EOUT  
J, H  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
J, H  
tOESUE  
tOEHE  
K, H  
K, H  
tOEPRE2Q  
tOEREMPRE  
tOERECPRE  
tICLKQ  
I, EOUT  
I, H  
I, H  
A, E  
tISUD  
Data Setup Time for the Input Data Register  
C, A  
tIHD  
Data Hold Time for the Input Data Register  
C, A  
tISUE  
Enable Setup Time for the Input Data Register  
B, A  
tIHE  
Enable Hold Time for the Input Data Register  
B, A  
tIPRE2Q  
tIREMPRE  
tIRECPRE  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
D, E  
D, A  
D, A  
* See Figure 2-15 on page 2-52 for more information.  
v1.0  
2-53  
Automotive ProASIC3 DC and Switching Characteristics  
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous  
Clear  
DOUT  
FF  
Data_out  
Y
Core  
D
Q
D
Q
Data  
Array  
CC  
EE  
DFN1E1C1  
DFN1E1C1  
GG  
EOUT  
E
E
Enable  
CLK  
CLR  
BB  
CLR  
LL  
HH  
AA  
DD  
JJ  
D
Q
CLR  
DFN1E1C1  
KK  
E
Data Input I/O Register with  
Active High Enable  
CLR  
Active High Clear  
Positive-Edge Triggered  
Data Output Register and  
Enable Output Register with  
Active High Enable  
Active High Clear  
Positive-Edge Triggered  
INBUF  
INBUF  
CLKBUF  
Figure 2-16 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear  
2-54  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-91 • Parameter Definitions and Measuring Nodes  
Measuring Nodes  
Parameter Name  
Parameter Definition  
(from, to)*  
HH, DOUT  
FF, HH  
tOCLKQ  
tOSUD  
Clock-to-Q of the Output Data Register  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
FF, HH  
tOSUE  
Enable Setup Time for the Output Data Register  
Enable Hold Time for the Output Data Register  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
GG, HH  
GG, HH  
LL, DOUT  
LL, HH  
tOHE  
tOCLR2Q  
tOREMCLR  
tORECCLR  
tOECLKQ  
tOESUD  
tOEHD  
LL, HH  
HH, EOUT  
JJ, HH  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
JJ, HH  
tOESUE  
tOEHE  
KK, HH  
KK, HH  
II, EOUT  
II, HH  
tOECLR2Q  
tOEREMCLR  
tOERECCLR  
tICLKQ  
II, HH  
AA, EE  
CC, AA  
CC, AA  
BB, AA  
BB, AA  
DD, EE  
DD, AA  
DD, AA  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
tICLR2Q  
tIREMCLR  
tIRECCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
* See Figure 2-16 on page 2-54 for more information.  
v1.0  
2-55  
Automotive ProASIC3 DC and Switching Characteristics  
Input Register  
tICKMPWH tICKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
1
CLK  
tIHD  
tISUD  
50%  
50%  
0
Data  
tIREMPRE  
tIRECPRE  
tIWPRE  
Enable  
Preset  
50%  
tIHE  
tISUE  
50%  
50%  
50%  
tIWCLR  
tIRECCLR  
50%  
tIREMCLR  
50%  
50%  
Clear  
tIPRE2Q  
50%  
50%  
tICLKQ  
50%  
Out_1  
tICLR2Q  
Figure 2-17 • Input Register Timing Diagram  
Timing Characteristics  
Table 2-92 • Input Data Register Propagation Delays  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Parameter  
tICLKQ  
Description  
–1 Std. Units  
Clock-to-Q of the Input Data Register  
0.29 0.34  
0.32 0.38  
0.00 0.00  
0.45 0.53  
0.00 0.00  
0.55 0.65  
0.55 0.65  
0.00 0.00  
0.27 0.32  
0.00 0.00  
0.27 0.32  
0.25 0.30  
0.25 0.30  
0.41 0.48  
0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
Enable Hold Time for the Input Data Register  
tIHE  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width HIGH for the Input Data Register  
Clock Minimum Pulse Width LOW for the Input Data Register  
tIWPRE  
tICKMPWH  
tICKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-56  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-93 • Input Data Register Propagation Delays  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Parameter  
tICLKQ  
Description  
–1 Std. Units  
Clock-to-Q of the Input Data Register  
0.29 0.34  
0.31 0.37  
0.00 0.00  
0.44 0.52  
0.00 0.00  
0.54 0.64  
0.54 0.64  
0.00 0.00  
0.27 0.31  
0.00 0.00  
0.27 0.31  
0.25 0.30  
0.25 0.30  
0.41 0.48  
0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width HIGH for the Input Data Register  
Clock Minimum Pulse Width LOW for the Input Data Register  
tIWPRE  
tICKMPWH  
tICKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Output Register  
t
t
OCKMPWH OCKMPWL  
50%  
t
50%  
50%  
50%  
50%  
50%  
50%  
1
CLK  
t
OSUD OHD  
50%  
50%  
0
Data_out  
t
OREMPRE  
Enable  
Preset  
50%  
t
t
OWPRE  
ORECPRE  
50%  
t
OHE  
50%  
50%  
t
OSUE  
t
t
OREMCLR  
50%  
t
ORECCLR  
OWCLR  
50%  
50%  
Clear  
t
OPRE2Q  
50%  
50%  
50%  
DOUT  
t
OCLR2Q  
t
OCLKQ  
Figure 2-18 • Output Register Timing Diagram  
v1.0  
2-57  
Automotive ProASIC3 DC and Switching Characteristics  
Timing Characteristics  
Table 2-94 • Output Data Register Propagation Delays  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Parameter  
tOCLKQ  
tOSUD  
Description  
–1 Std. Units  
Clock-to-Q of the Output Data Register  
0.72 0.84  
0.38 0.45  
0.00 0.00  
0.53 0.63  
0.00 0.00  
0.98 1.15  
0.98 1.15  
0.00 0.00  
0.27 0.32  
0.00 0.00  
0.27 0.32  
0.25 0.30  
0.25 0.30  
0.41 0.48  
0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOSUE  
Enable Setup Time for the Output Data Register  
tOHE  
Enable Hold Time for the Output Data Register  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
tOWPRE  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register  
Asynchronous Preset Minimum Pulse Width for the Output Data Register  
tOCKMPWH Clock Minimum Pulse Width HIGH for the Output Data Register  
tOCKMPWL Clock Minimum Pulse Width LOW for the Output Data Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-95 • Output Data Register Propagation Delays  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Parameter  
tOCLKQ  
tOSUD  
Description  
Clock-to-Q of the Output Data Register  
–1 Std. Units  
0.70 0.82  
0.37 0.44  
0.00 0.00  
0.52 0.61  
0.00 0.00  
0.96 1.12  
0.96 1.12  
0.00 0.00  
0.27 0.31  
0.00 0.00  
0.27 0.31  
0.25 0.30  
0.25 0.30  
0.41 0.48  
0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOSUE  
Enable Setup Time for the Output Data Register  
tOHE  
Enable Hold Time for the Output Data Register  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
tOWPRE  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register  
Asynchronous Preset Minimum Pulse Width for the Output Data Register  
tOCKMPWH Clock Minimum Pulse Width HIGH for the Output Data Register  
tOCKMPWL Clock Minimum Pulse Width LOW for the Output Data Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-58  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Output Enable Register  
t
t
OECKMPWH OECKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
t
t
OESUD OEHD  
50%  
50%  
0
1
D_Enable  
50%  
t
Enable  
Preset  
t
t
OEWPRE  
OEREMPRE  
t
OERECPRE  
50%  
50%  
50%  
t
OESUE OEHE  
t
t
t
OERECCLR  
OEREMCLR  
OEWCLR  
50%  
50%  
50%  
Clear  
EOUT  
t
t
OECLR2Q  
OEPRE2Q  
50%  
50%  
50%  
t
OECLKQ  
Figure 2-19 • Output Enable Register Timing Diagram  
Timing Characteristics  
Table 2-96 • Output Enable Register Propagation Delays  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Parameter  
tOECLKQ  
tOESUD  
Description  
–1 Std. Units  
Clock-to-Q of the Output Enable Register  
0.54 0.64  
0.38 0.45  
0.00 0.00  
0.53 0.62  
0.00 0.00  
0.81 0.95  
0.81 0.95  
0.00 0.00  
0.27 0.32  
0.00 0.00  
0.27 0.32  
0.25 0.30  
0.25 0.30  
0.41 0.48  
0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup Time for the Output Enable Register  
tOEHD  
Data Hold Time for the Output Enable Register  
tOESUE  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
tOEHE  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR  
tOERECCLR  
tOEREMPRE  
tOERECPRE  
tOEWCLR  
tOEWPRE  
Asynchronous Clear Minimum Pulse Width for the Output Enable Register  
Asynchronous Preset Minimum Pulse Width for the Output Enable Register  
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register  
tOECKMPWL Clock Minimum Pulse Width LOW for the Output Enable Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-59  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-97 • Output Enable Register Propagation Delays  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Parameter  
tOECLKQ  
tOESUD  
Description  
–1 Std. Units  
Clock-to-Q of the Output Enable Register  
0.53 0.62  
0.37 0.44  
0.00 0.00  
0.52 0.61  
0.00 0.00  
0.79 0.93  
0.79 0.93  
0.00 0.00  
0.27 0.31  
0.00 0.00  
0.27 0.31  
0.25 0.30  
0.25 0.30  
0.41 0.48  
0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup Time for the Output Enable Register  
tOEHD  
Data Hold Time for the Output Enable Register  
tOESUE  
Enable Setup Time for the Output Enable Register  
tOEHE  
Enable Hold Time for the Output Enable Register  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR  
tOERECCLR  
tOEREMPRE  
tOERECPRE  
tOEWCLR  
tOEWPRE  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Asynchronous Clear Minimum Pulse Width for the Output Enable Register  
Asynchronous Preset Minimum Pulse Width for the Output Enable Register  
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register  
tOECKMPWL Clock Minimum Pulse Width LOW for the Output Enable Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-60  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
DDR Module Specifications  
Input DDR Module  
Input DDR  
INBUF  
A
D
Out_QF  
(to core)  
Data  
FF1  
B
E
Out_QR  
(to core)  
CLK  
CLKBUF  
FF2  
C
CLR  
INBUF  
DDR_IN  
Figure 2-20 • Input DDR Timing Model  
Table 2-98 • Parameter Definitions  
Parameter Name  
Parameter Definition  
Measuring Nodes (from, to)  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD  
Clock-to-Out Out_QR  
Clock-to-Out Out_QF  
Data Setup Time of DDR Input  
Data Hold Time of DDR Input  
Clear-to-Out Out_QR  
Clear-to-Out Out_QF  
Clear Removal  
B, D  
B, E  
A, B  
A, B  
C, D  
C, E  
C, B  
C, B  
tDDRIHD  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
Clear Recovery  
v1.0  
2-61  
Automotive ProASIC3 DC and Switching Characteristics  
CLK  
t
t
DDRISUD  
DDRIHD  
Data  
CLR  
1
2
3
4
5
6
7
8
9
t
DDRIRECCLR  
t
DDRIREMCLR  
t
DDRICLKQ1  
t
t
DDRICLR2Q1  
Out_QF  
Out_QR  
2
6
4
t
DDRICLKQ2  
DDRICLR2Q2  
7
3
5
Figure 2-21 • Input DDR Timing Diagram  
Timing Characteristics  
Table 2-99 • Input DDR Propagation Delays  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Parameter  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD  
Description  
–1  
Std. Units  
Clock-to-Out Out_QR for Input DDR  
0.33 0.39  
0.47 0.56  
0.34 0.40  
0.00 0.00  
0.56 0.66  
0.69 0.82  
0.00 0.00  
0.27 0.32  
0.25 0.30  
0.41 0.48  
0.37 0.43  
TBD TBD  
ns  
ns  
Clock-to-Out Out_QF for Input DDR  
Data Setup for Input DDR  
ns  
tDDRIHD  
Data Hold for Input DDR  
ns  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
tDDRIWCLR  
tDDRICKMPWH  
tDDRICKMPWL  
FDDRIMAX  
Asynchronous Clear-to-Out Out_QR for Input DDR  
Asynchronous Clear-to-Out Out_QF for Input DDR  
Asynchronous Clear Removal Time for Input DDR  
Asynchronous Clear Recovery Time for Input DDR  
Asynchronous Clear Minimum Pulse Width for Input DDR  
Clock Minimum Pulse Width HIGH for Input DDR  
Clock Minimum Pulse Width LOW for Input DDR  
Maximum Frequency for Input DDR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-62  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-100 • Input DDR Propagation Delays  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Parameter  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD  
Description  
Clock-to-Out Out_QR for Input DDR  
–1  
Std. Units  
0.33 0.38  
0.46 0.54  
0.34 0.40  
0.00 0.00  
0.55 0.65  
0.68 0.80  
0.00 0.00  
0.27 0.31  
0.25 0.30  
0.41 0.48  
0.37 0.43  
TBD TBD  
ns  
ns  
Clock-to-Out Out_QF for Input DDR  
Data Setup for Input DDR  
ns  
tDDRIHD  
Data Hold for Input DDR  
ns  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
tDDRIWCLR  
tDDRICKMPWH  
tDDRICKMPWL  
FDDRIMAX  
Asynchronous Clear-to-Out Out_QR for Input DDR  
Asynchronous Clear-to-Out Out_QF for Input DDR  
Asynchronous Clear Removal Time for Input DDR  
Asynchronous Clear Recovery Time for Input DDR  
Asynchronous Clear Minimum Pulse Width for Input DDR  
Clock Minimum Pulse Width HIGH for Input DDR  
Clock Minimum Pulse Width LOW for Input DDR  
Maximum Frequency for Input DDR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Output DDR Module  
Output DDR  
A
Data_F  
XX  
(from core)  
FF1  
Out  
B
C
0
1
CLK  
X
X
X
E
CLKBUF  
X
OUTBUF  
D
Data_R  
(from core)  
FF2  
B
C
X
X
CLR  
INBUF  
DDR_OUT  
Figure 2-22 • Output DDR Timing Model  
v1.0  
2-63  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-101 • Parameter Definitions  
Parameter Name  
tDDROCLKQ  
Parameter Definition  
Measuring Nodes (from, to)  
Clock-to-Out  
B, E  
C, E  
C, B  
C, B  
A, B  
D, B  
A, B  
D, B  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROSUD1  
Asynchronous Clear-to-Out  
Clear Removal  
Clear Recovery  
Data Setup Data_F  
Data Setup Data_R  
Data Hold Data_F  
Data Hold Data_R  
tDDROSUD2  
tDDROHD1  
tDDROHD2  
CLK  
tDDROHD2  
tDDROSUD2  
4
9
5
Data_F  
1
2
3
tDDROHD1  
tDDROREMCLR  
Data_R 6  
CLR  
7
8
10  
11  
tDDRORECCLR  
tDDROREMCLR  
tDDROCLR2Q  
tDDROCLKQ  
7
Out  
2
8
3
9
4
10  
Figure 2-23 • Output DDR Timing Diagram  
2-64  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Timing Characteristics  
Table 2-102 • Output DDR Propagation Delays  
Commercial-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Description  
Clock-to-Out of DDR for Output DDR  
Parameter  
tDDROCLKQ  
tDDROSUD1  
tDDROSUD2  
tDDROHD1  
–1  
Std. Units  
0.85 1.00  
0.46 0.54  
0.46 0.54  
0.00 0.00  
0.00 0.00  
0.97 1.15  
0.00 0.00  
0.27 0.32  
0.25 0.30  
0.41 0.48  
0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data_F Data Setup for Output DDR  
Data_R Data Setup for Output DDR  
Data_F Data Hold for Output DDR  
tDDROHD2  
Data_R Data Hold for Output DDR  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROWCLR1  
tDDROCKMPWH  
tDDROCKMPWL  
FDDOMAX  
Asynchronous Clear-to-Out for Output DDR  
Asynchronous Clear Removal Time for Output DDR  
Asynchronous Clear Recovery Time for Output DDR  
Asynchronous Clear Minimum Pulse Width for Output DDR  
Clock Minimum Pulse Width HIGH for the Output DDR  
Clock Minimum Pulse Width LOW for the Output DDR  
Maximum Frequency for the Output DDR  
TBD TBD MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-103 • Output DDR Propagation Delays  
Commercial-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Parameter  
tDDROCLKQ  
tDDROSUD1  
tDDROSUD2  
tDDROHD1  
Description  
Clock-to-Out of DDR for Output DDR  
–1  
Std. Units  
0.84 0.98  
0.45 0.53  
0.45 0.53  
0.00 0.00  
0.00 0.00  
0.96 1.12  
0.00 0.00  
0.27 0.31  
0.25 0.30  
0.41 0.48  
0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data_F Data Setup for Output DDR  
Data_R Data Setup for Output DDR  
Data_F Data Hold for Output DDR  
tDDROHD2  
Data_R Data Hold for Output DDR  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROWCLR1  
tDDROCKMPWH  
tDDROCKMPWL  
FDDOMAX  
Asynchronous Clear-to-Out for Output DDR  
Asynchronous Clear Removal Time for Output DDR  
Asynchronous Clear Recovery Time for Output DDR  
Asynchronous Clear Minimum Pulse Width for Output DDR  
Clock Minimum Pulse Width HIGH for the Output DDR  
Clock Minimum Pulse Width LOW for the Output DDR  
Maximum Frequency for the Output DDR  
TBD TBD MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-65  
Automotive ProASIC3 DC and Switching Characteristics  
VersaTile Characteristics  
VersaTile Specifications as a Combinatorial Module  
The ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section,  
timing characteristics are presented for a sample of the library. For more details, refer to the  
Fusion, IGLOO/e, and ProASIC3/E Macro Library Guide.  
A
Y
Y
INV  
A
A
B
NOR2  
OR2  
Y
B
A
B
A
B
Y
AND2  
Y
NAND2  
A
B
C
A
B
Y
XOR3  
XOR2  
Y
A
B
C
A
MAJ3  
0
Y
A
B
C
MUX2  
Y
B
S
NAND3  
1
Figure 2-24 • Sample of Combinatorial Cells  
2-66  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
tPD  
A
B
NAND2 or  
Any Combinatorial  
Logic  
Y
tPD = MAX(tPD(RR), tPD(RF)  
,
tPD(FF), tPD(FR)) where edges are  
applicable for the particular  
combinatorial cell  
VCC  
50%  
50%  
VCC  
A, B, C  
GND  
50%  
50%  
OUT  
OUT  
GND  
VCC  
tPD  
tPD  
(RR)  
(FF)  
tPD  
(FR)  
50%  
50%  
tPD  
GND  
(RF)  
Figure 2-25 • Timing Model and Waveforms  
v1.0  
2-67  
Automotive ProASIC3 DC and Switching Characteristics  
Timing Characteristics  
Table 2-104 • Combinatorial Cell Propagation Delays  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Combinatorial Cell  
INV  
Equation  
Parameter  
tPD  
–1  
Std.  
0.57  
0.67  
0.67  
0.69  
0.69  
1.05  
1.00  
1.25  
0.72  
0.80  
Units  
ns  
Y = !A  
0.49  
0.57  
0.57  
0.59  
0.59  
0.90  
0.85  
1.06  
0.62  
0.68  
AND2  
Y = A · B  
tPD  
ns  
NAND2  
OR2  
Y = !(A · B)  
tPD  
ns  
Y = A + B  
tPD  
ns  
NOR2  
Y = !(A + B)  
Y = A B  
Y = MAJ(A , B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
tPD  
ns  
XOR2  
tPD  
ns  
MAJ3  
tPD  
ns  
XOR3  
tPD  
ns  
MUX2  
AND3  
tPD  
ns  
tPD  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5  
for derating values.  
Table 2-105 • Combinatorial Cell Propagation Delays  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Combinatorial Cell  
INV  
Equation  
Parameter  
tPD  
–1  
Std.  
0.56  
0.66  
0.66  
0.68  
0.68  
1.03  
0.98  
1.23  
0.71  
0.79  
Units  
ns  
Y = !A  
0.48  
0.56  
0.56  
0.58  
0.58  
0.88  
0.83  
1.04  
0.60  
0.67  
AND2  
Y = A · B  
tPD  
ns  
NAND2  
OR2  
Y = !(A · B)  
tPD  
ns  
Y = A + B  
tPD  
ns  
NOR2  
Y = !(A + B)  
Y = A B  
Y = MAJ(A , B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
tPD  
ns  
XOR2  
tPD  
ns  
MAJ3  
tPD  
ns  
XOR3  
tPD  
ns  
MUX2  
AND3  
tPD  
ns  
tPD  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5  
for derating values.  
2-68  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
VersaTile Specifications as a Sequential Module  
The ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches. Each  
has a data input and optional enable, clear, or preset. In this section, timing characteristics are  
presented for a representative sample from the library. For more details, refer to the Fusion,  
IGLOO/e and ProASIC3/E Macro Library Guide.  
Data  
CLK  
Out  
Data  
Out  
D
Q
D
Q
En  
DFN1  
DFN1E1  
CLK  
PRE  
Data  
Out  
Data  
Out  
Q
D
D
Q
En  
DFN1C1  
DFI1E1P1  
CLK  
CLK  
CLR  
Figure 2-26 • Sample of Sequential Cells  
v1.0  
2-69  
Automotive ProASIC3 DC and Switching Characteristics  
tCKMPWHtCKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tHD  
tSUD  
50%  
50%  
Data  
EN  
0
50%  
tRECPRE  
50%  
tWPRE  
tREMPRE  
50%  
tHE  
50%  
tSUE  
PRE  
CLR  
Out  
tREMCLR  
50%  
tRECCLR  
50%  
tWCLR  
50%  
tPRE2Q  
50%  
tCLR2Q  
50%  
50%  
tCLKQ  
Figure 2-27 • Timing Model and Waveforms  
Timing Characteristics  
Table 2-106 • Register Delays  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Parameter  
tCLKQ  
Description  
–1  
Std. Units  
Clock-to-Q of the Core Register  
0.67 0.79  
0.52 0.61  
0.00 0.00  
0.55 0.65  
0.00 0.00  
0.49 0.57  
0.49 0.57  
0.00 0.00  
0.27 0.32  
0.00 0.00  
0.27 0.32  
0.25 0.30  
0.25 0.30  
0.41 0.48  
0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUD  
Data Setup Time for the Core Register  
tHD  
Data Hold Time for the Core Register  
tSUE  
Enable Setup Time for the Core Register  
tHE  
Enable Hold Time for the Core Register  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width HIGH for the Core Register  
Clock Minimum Pulse Width LOW for the Core Register  
tWPRE  
tCKMPWH  
tCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-70  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-107 • Register Delays  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Parameter  
tCLKQ  
Description  
–1  
Std. Units  
Clock-to-Q of the Core Register  
0.66 0.77  
0.51 0.60  
0.00 0.00  
0.54 0.64  
0.00 0.00  
0.48 0.56  
0.48 0.56  
0.00 0.00  
0.27 0.31  
0.00 0.00  
0.27 0.31  
0.25 0.30  
0.25 0.30  
0.41 0.48  
0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUD  
Data Setup Time for the Core Register  
tHD  
Data Hold Time for the Core Register  
tSUE  
Enable Setup Time for the Core Register  
tHE  
Enable Hold Time for the Core Register  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width HIGH for the Core Register  
Clock Minimum Pulse Width LOW for the Core Register  
tWPRE  
tCKMPWH  
tCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-71  
Automotive ProASIC3 DC and Switching Characteristics  
Global Resource Characteristics  
A3P250 Clock Tree Topology  
Clock delays are device-specific. Figure 2-28 is an example of a global tree used for clock routing.  
The global tree presented in Figure 2-28 is driven by a CCC located on the west side of the A3P250  
device. It is used to drive all D-flip-flops in the device.  
Central  
Global Rib  
CCC  
VersaTile  
Rows  
Global Spine  
Figure 2-28 • Example of Global Tree Use in an A3P250 Device for Clock Routing  
2-72  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Global Tree Timing Characteristics  
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not  
include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be  
driven and conditioned internally by the CCC module. For more details on clock conditioning  
capabilities, refer to the "Clock Conditioning Circuits" section on page 2-77. Table 2-114 on  
page 2-76 to Table 2-125 on page 2-95 present minimum and maximum global clock delays within  
each device. Minimum and maximum delays are measured with minimum and maximum loading.  
Timing Characteristics  
Table 2-108 • A3P060 Global Resource  
Commercial-Case Conditions: TJ = 135°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Units  
0.87  
0.86  
1.16  
1.20  
1.02  
1.01  
1.37  
1.42  
ns  
ns  
tRCKH  
Input HIGH Delay for Global Clock  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
ns  
ns  
0.35  
0.41  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-109 • A3P060 Global Resource  
Commercial-Case Conditions: TJ = 115°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Units  
0.85  
0.84  
1.13  
1.18  
1.00  
0.99  
1.33  
1.38  
ns  
ns  
tRCKH  
Input HIGH Delay for Global Clock  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
ns  
ns  
0.34  
0.40  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-73  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-110 • A3P125 Global Resource  
Commercial-Case Conditions: TJ = 135°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Min.1 Max.2 Min.1 Max.2 Units  
Input LOW Delay for Global Clock  
0.93  
0.92  
1.22  
1.26  
1.09  
1.08  
1.43  
1.49  
ns  
ns  
tRCKH  
Input HIGH Delay for Global Clock  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.35  
0.41  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-111 • A3P125 Global Resource  
Commercial-Case Conditions: TJ = 115°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Units  
0.90  
0.90  
1.19  
1.23  
1.06  
1.05  
1.40  
1.45  
ns  
ns  
tRCKH  
Input HIGH Delay for Global Clock  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
ns  
ns  
0.34  
0.40  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-74  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-112 • A3P250 Global Resource  
Commercial-Case Conditions: TJ = 135°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Units  
0.96  
0.94  
1.25  
1.28  
1.13  
1.10  
1.47  
1.51  
ns  
ns  
tRCKH  
Input HIGH Delay for Global Clock  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
ns  
ns  
0.35  
0.41  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-113 • A3P250 Global Resource  
Commercial-Case Conditions: TJ = 115°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Units  
0.94  
0.92  
1.22  
1.25  
1.10  
1.08  
1.44  
1.47  
ns  
ns  
tRCKH  
Input HIGH Delay for Global Clock  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
ns  
ns  
0.34  
0.40  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-75  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-114 • A3P1000 Global Resource  
Automotive-Case Conditions: TJ = 135°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Min.1 Max.2 Min.1 Max.2 Units  
Input LOW Delay for Global Clock  
1.17  
1.15  
1.46  
1.50  
1.37  
1.36  
1.72  
1.76  
ns  
ns  
tRCKH  
Input HIGH Delay for Global Clock  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
ns  
ns  
0.35  
0.41  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
Table 2-115 • A3P1000 Global Resource  
Automotive-Case Conditions: TJ = 115°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Units  
1.14  
1.13  
1.43  
1.46  
1.34  
1.32  
1.68  
1.72  
ns  
ns  
tRCKH  
Input HIGH Delay for Global Clock  
Minimum Pulse Width HIGH for Global Clock  
Minimum Pulse Width LOW for Global Clock  
Maximum Skew for Global Clock  
tRCKMPWH  
tRCKMPWL  
tRCKSW  
ns  
ns  
0.34  
0.40  
ns  
FRMAX  
Maximum Frequency for Global Clock  
MHz  
Notes:  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-76  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Clock Conditioning Circuits  
CCC Electrical Specifications  
Timing Characteristics  
Table 2-116 • Automotive ProASIC3 CCC/PLL Specification  
Parameter  
Minimum Typical Maximum Units  
Clock Conditioning Circuitry Input Frequency fIN_CCC  
Clock Conditioning Circuitry Output Frequency fOUT_CCC  
Delay Increments in Programmable Delay Blocks1, 2  
Number of Programmable Values in Each Programmable Delay Block  
Input Period Jitter  
1.5  
350  
350  
MHz  
MHz  
ps  
0.75  
160  
32  
1.5  
ns  
CCC Output Peak-to-Peak Period Jitter FCCC_OUT  
Max Peak-to-Peak Period Jitter  
1 Global  
Network  
Used  
3 Global  
Networks  
Used  
0.75 MHz to 24 MHz  
24 MHz to 100 MHz  
100 MHz to 250 MHz  
250 MHz to 350 MHz  
Acquisition Time  
0.50%  
1.00%  
1.75%  
2.50%  
0.70%  
1.20%  
2.00%  
5.60%  
(A3P250 and A3P1000 only)  
LockControl = 0  
LockControl = 1  
LockControl = 0  
LockControl = 1  
300  
300  
300  
6.0  
µs  
µs  
(all other dies)  
µs  
ms  
Tracking Jitter4  
(A3P250 and A3P1000 only)  
LockControl = 0  
LockControl = 1  
LockControl = 0  
LockControl = 1  
1.6  
1.6  
ns  
ns  
ns  
ns  
%
ns  
ns  
ns  
(all other dies)  
1.6  
0.8  
Output Duty Cycle  
48.5  
0.6  
51.5  
5.56  
5.56  
Delay Range in Block: Programmable Delay 11, 2  
Delay Range in Block: Programmable Delay 21, 2  
Delay Range in Block: Fixed Delay1, 2  
Notes:  
0.025  
2.2  
1. This delay is a function of voltage and temperature. See Table 2-5 on page 2-5 for deratings.  
2. TJ = 25°C, VCC = 1.5 V  
3. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL  
input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by  
the period jitter parameter.  
v1.0  
2-77  
Automotive ProASIC3 DC and Switching Characteristics  
Output Signal  
Tperiod_max  
Tperiod_min  
Note: Peak-to-peak jitter measurements are defined by Tpeak-to-peak = Tperiod_max – Tperiod_min  
.
Figure 2-29 • Peak-to-Peak Jitter Definition  
2-78  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Embedded SRAM and FIFO Characteristics  
SRAM  
RAM4K9  
RAM512x18  
FIFO4K18  
RADDR8  
RD17  
RD16  
ADDRA11 DOUTA8  
RW2  
RW1  
RW0  
WW2  
WW1  
WW0  
ESTOP  
FSTOP  
RD17  
RD16  
RADDR7  
DOUTA7  
DOUTA0  
ADDRA10  
ADDRA0  
DINA8  
DINA7  
RADDR0  
RD0  
RD0  
FULL  
AFULL  
EMPTY  
RW1  
RW0  
DINA0  
AEVAL11  
AEVAL10  
AEMPTY  
WIDTHA1  
WIDTHA0  
PIPEA  
PIPE  
AEVAL0  
WMODEA  
BLKA  
WENA  
AFVAL11  
AFVAL10  
REN  
RCLK  
CLKA  
AFVAL0  
ADDRB11 DOUTB8  
ADDRB10 DOUTB7  
WADDR8  
WADDR7  
REN  
RBLK  
RCLK  
ADDRB0  
DOUTB0  
WADDR0  
WD17  
WD16  
WD17  
WD16  
DINB8  
DINB7  
WD0  
DINB0  
WD0  
WW1  
WW0  
WIDTHB1  
WIDTHB0  
PIPEB  
WMODEB  
BLKB  
WENB  
CLKB  
WEN  
WBLK  
WCLK  
RPIPE  
WEN  
WCLK  
RESET  
RESET  
RESET  
Figure 2-30 • RAM Models  
v1.0  
2-79  
Automotive ProASIC3 DC and Switching Characteristics  
Timing Waveforms  
tCYC  
tCKH  
tCKL  
CLK  
tAS tAH  
A0  
tBKS  
A1  
A2  
ADD  
BLK_B  
WEN_B  
DO  
tBKH  
tENS  
tENH  
tCKQ1  
Dn  
D0  
D1  
D2  
tDOH1  
Figure 2-31 • RAM Read for Pass-Through Output  
tCYC  
tCKH  
tCKL  
CLK  
tAS tAH  
A0  
A1  
A2  
ADD  
BLK_B  
WEN_B  
DO  
tBKS  
tBKH  
tENH  
tENS  
tCKQ2  
Dn  
D0  
D1  
tDOH2  
Figure 2-32 • RAM Read for Pipelined Output  
2-80  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
tCYC  
tCKH  
tAH  
tCKL  
CLK  
tAS  
A0  
A1  
A2  
ADD  
BLK_B  
WEN_B  
DI  
tBKS  
tBKH  
tENS  
tENH  
tDS  
tDH  
DI1  
DI0  
Dn  
D2  
DO  
Figure 2-33 • RAM Write, Output Retained (WMODE = 0)  
t
CYC  
t
t
CKH  
CKL  
CLK  
ADD  
t
t
AH  
AS  
A
A
A
2
0
1
t
BKS  
t
BKH  
BLK_B  
WEN_B  
DI  
t
ENS  
t
t
DH  
DS  
DI  
DI  
DI  
2
0
1
DO  
D
DI  
DI  
1
n
0
(pass-through)  
DO  
DI  
D
DI  
1
0
n
(pipelined)  
Figure 2-34 • RAM Write, Output as Write Data (WMODE = 1)  
v1.0  
2-81  
Automotive ProASIC3 DC and Switching Characteristics  
CLK1  
tAS tAH  
ADD1  
DI1  
A0  
tDS tDH  
A1  
D2  
A3  
D3  
D1  
tCCKH  
CLK2  
WEN_B1  
WEN_B2  
tAS tAH  
A0  
A0  
D0  
A4  
D4  
ADD2  
DI2  
tCKQ1  
DO2  
(pass-through)  
Dn  
Dn  
D0  
tCKQ2  
DO2  
(pipelined)  
D0  
Figure 2-35 • Write Access after Write to Same Address  
2-82  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
CLK1  
tAS tAH  
A0  
tDS tDH  
A2  
D2  
A3  
D3  
ADD1  
D0  
DI1  
tWRO  
CLK2  
WEN_B1  
WEN_B2  
ADD2  
tAS tAH  
A1  
A0  
tCKQ1  
A4  
DO2  
(pass-through)  
Dn  
D0  
D1  
D0  
tCKQ2  
DO2  
(pipelined)  
Dn  
Figure 2-36 • Read Access after Write to Same Address  
v1.0  
2-83  
Automotive ProASIC3 DC and Switching Characteristics  
CLK1  
tAS  
tAH  
A
A
A
0
ADD1  
0
1
WEN_B1  
tCKQ1  
tCKQ1  
DO1  
(pass-through)  
Dn  
D0  
tCKQ2  
D1  
DO1  
(pipelined)  
Dn  
tCCKH  
D0  
CLK2  
tAS  
tAH  
ADD2  
A
D
A
D
A
D
0
1
3
DI2  
1
2
3
WEN_B2  
Figure 2-37 • Write Access after Read to Same Address  
tCYC  
tCKH  
tCKL  
CLK  
RESET_B  
DO  
tRSTBQ  
Dm  
Dn  
Figure 2-38 • RAM Reset  
2-84  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Timing Characteristics  
Table 2-117 • RAM4K9  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Parameter Description  
–1 Std. Units  
0.30 0.36 ns  
0.00 0.00 ns  
0.17 0.20 ns  
0.12 0.14 ns  
0.28 0.33 ns  
0.02 0.03 ns  
0.22 0.26 ns  
0.00 0.00 ns  
2.17 2.55 ns  
2.86 3.37 ns  
1.09 1.28 ns  
tAS  
Address Setup Time  
tAH  
Address Hold Time  
tENS  
tENH  
tBKS  
tBKH  
tDS  
REN_B, WEN_B Setup Time  
REN_B, WEN_B Hold Time  
BLK_B Setup Time  
BLK_B Hold Time  
Input Data (DI) Setup Time  
tDH  
Input Data (DI) Hold Time  
tCKQ1  
Clock HIGH to New Data Valid on DO (output retained, WMODE = 0)  
Clock HIGH to New Data Valid on DO (flow-through, WMODE = 1)  
Clock HIGH to New Data Valid on DO (pipelined)  
tCKQ2  
tWRO  
Address collision clk-to-clk delay for reliable read access after write on same TBD TBD ns  
address  
tCCKH  
Address collision clk-to-clk delay for reliable write access after write/read on TBD TBD ns  
same address  
tRSTBQ  
RESET_B LOW to Data Out LOW on DO (flow-through)  
RESET_B LOW to Data Out LOW on DO (pipelined)  
RESET_B Removal  
1.12 1.32 ns  
1.12 1.32 ns  
0.35 0.41 ns  
1.82 2.14 ns  
0.26 0.30 ns  
3.93 4.62 ns  
255 217 MHz  
tREMRSTB  
tRECRSTB  
RESET_B Recovery  
tMPWRSTB RESET_B Minimum Pulse Width  
tCYC  
Clock Cycle Time  
FMAX  
Maximum Frequency  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-85  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-118 • RAM512X18  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Parameter  
tAS  
Description  
–1 Std. Units  
0.30 0.35 ns  
0.00 0.00 ns  
0.11 0.13 ns  
0.07 0.08 ns  
0.22 0.26 ns  
0.00 0.00 ns  
2.58 3.03 ns  
1.07 1.26 ns  
Address Setup Time  
tAH  
Address Hold Time  
tENS  
REN_B, WEN_B Setup Time  
REN_B, WEN_B Hold Time  
Input data (DI) Setup Time  
Input data (DI) Hold Time  
tENH  
tDS  
tDH  
tCKQ1  
tCKQ2  
tWRO  
Clock HIGH to New Data Valid on DO (output retained, WMODE = 0)  
Clock HIGH to New Data Valid on DO (pipelined)  
Address collision clk-to-clk delay for reliable read access after write on same TBD TBD ns  
address  
tCCKH  
Address collision clk-to-clk delay for reliable write access after write/read on TBD TBD ns  
same address  
tRSTBQ  
RESET_B LOW to Data Out LOW on DO (flow-through)  
RESET_B LOW to Data Out LOW on DO (pipelined)  
RESET_B Removal  
1.10 1.29 ns  
1.10 1.29 ns  
0.34 0.40 ns  
1.79 2.10 ns  
0.25 0.30 ns  
3.85 4.53 ns  
260 221 MHz  
tREMRSTB  
tRECRSTB  
RESET_B Recovery  
tMPWRSTB RESET_B Minimum Pulse Width  
tCYC  
Clock Cycle Time  
FMAX  
Maximum Frequency  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-86  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-119 • RAM4K9  
Automotive-Case Conditions: TJ = 115°C, Worst Case VCC = 1.425 V  
Parameter Description  
–1 Std. Units  
0.30 0.35 ns  
0.00 0.00 ns  
0.17 0.20 ns  
0.12 0.14 ns  
0.28 0.33 ns  
0.02 0.03 ns  
0.22 0.26 ns  
0.00 0.00 ns  
2.13 2.50 ns  
2.81 3.30 ns  
1.07 1.25 ns  
tAS  
Address Setup Time  
tAH  
Address Hold Time  
tENS  
tENH  
tBKS  
tBKH  
tDS  
REN_B, WEN_B Setup Time  
REN_B, WEN_B Hold Time  
BLK_B Setup Time  
BLK_B Hold Time  
Input data (DI) Setup Time  
tDH  
Input data (DI) Hold Time  
tCKQ1  
Clock HIGH to New Data Valid on DO (output retained, WMODE = 0)  
Clock HIGH to New Data Valid on DO (flow-through, WMODE = 1)  
Clock HIGH to New Data Valid on DO (pipelined)  
tCKQ2  
tWRO  
Address collision clk-to-clk delay for reliable read access after write on same TBD TBD ns  
address  
tCCKH  
Address collision clk-to-clk delay for reliable write access after write/read on TBD TBD ns  
same address  
tRSTBQ  
RESET_B LOW to Data Out LOW on DO (flow-through)  
RESET_B LOW to Data Out LOW on DO (pipelined)  
RESET_B Removal  
1.10 1.29 ns  
1.10 1.29 ns  
0.34 0.40 ns  
1.79 2.10 ns  
0.25 0.30 ns  
3.85 4.53 ns  
260 221 MHz  
tREMRSTB  
tRECRSTB  
RESET_B Recovery  
tMPWRSTB RESET_B Minimum Pulse Width  
tCYC  
Clock Cycle Time  
FMAX  
Maximum Frequency  
Note: For specific junction temperature and voltage-supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
v1.0  
2-87  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-120 • RAM512X18  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Parameter  
tAS  
Description  
–1 Std. Units  
0.30 0.35 ns  
0.00 0.00 ns  
0.11 0.13 ns  
0.07 0.08 ns  
0.22 0.26 ns  
0.00 0.00 ns  
2.58 3.03 ns  
1.07 1.26 ns  
Address Setup Time  
tAH  
Address Hold Time  
tENS  
REN_B, WEN_B Setup Time  
REN_B, WEN_B Hold Time  
Input data (DI) Setup Time  
Input data (DI) Hold Time  
tENH  
tDS  
tDH  
tCKQ1  
tCKQ2  
tWRO  
Clock HIGH to New Data Valid on DO (output retained, WMODE = 0)  
Clock HIGH to New Data Valid on DO (pipelined)  
Address collision clk-to-clk delay for reliable read access after write on same TBD TBD ns  
address  
tCCKH  
Address collision clk-to-clk delay for reliable write access after write/read on TBD TBD ns  
same address  
tRSTBQ  
RESET_B LOW to Data Out LOW on DO (flow-through)  
RESET_B LOW to Data Out LOW on DO (pipelined)  
RESET_B Removal  
1.10 1.29 ns  
1.10 1.29 ns  
0.34 0.40 ns  
1.79 2.10 ns  
0.25 0.30 ns  
3.85 4.53 ns  
260 221 MHz  
tREMRSTB  
tRECRSTB  
RESET_B Recovery  
tMPWRSTB RESET_B Minimum Pulse Width  
tCYC  
Clock Cycle Time  
FMAX  
Maximum Frequency  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5 for derating  
values.  
2-88  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
FIFO  
FIFO4K18  
RW2  
RW1  
RW0  
RD17  
RD16  
WW2  
WW1  
WW0  
RD0  
ESTOP  
FSTOP  
FULL  
AFULL  
EMPTY  
AEVAL11  
AEVAL10  
AEMPTY  
AEVAL0  
AFVAL11  
AFVAL10  
AFVAL0  
REN  
RBLK  
RCLK  
WD17  
WD16  
WD0  
WEN  
WBLK  
WCLK  
RPIPE  
RESET  
Figure 2-39 • FIFO Model  
v1.0  
2-89  
Automotive ProASIC3 DC and Switching Characteristics  
Timing Waveforms  
RCLK/  
WCLK  
t
t
RSTCK  
MPWRSTB  
RESET_B  
t
RSTFG  
EMPTY  
t
RSTAF  
AEMPTY  
t
RSTFG  
FULL  
t
RSTAF  
AFULL  
WA/RA  
(Address Counter)  
MATCH (A )  
0
Figure 2-40 • FIFO Reset  
tCYC  
RCLK  
tRCKEF  
EMPTY  
tCKAF  
AEMPTY  
WA/RA  
NO MATCH  
NO MATCH  
Dist = AEF_TH  
MATCH (EMPTY)  
(Address Counter)  
Figure 2-41 • FIFO EMPTY Flag and AEMPTY Flag Assertion  
2-90  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
tCYC  
WCLK  
FULL  
tWCKFF  
tCKAF  
AFULL  
WA/RA  
NO MATCH  
NO MATCH  
Dist = AFF_TH  
MATCH (FULL)  
(Address Counter)  
Figure 2-42 • FIFO FULL Flag and AFULL Flag Assertion  
WCLK  
MATCH  
(EMPTY)  
WA/RA  
NO MATCH  
NO MATCH  
NO MATCH  
NO MATCH  
Dist = AEF_TH + 1  
(Address Counter)  
1st Rising  
2nd Rising  
Edge  
After 1st  
Write  
Edge  
After 1st  
Write  
RCLK  
EMPTY  
t
RCKEF  
t
CKAF  
AEMPTY  
Figure 2-43 • FIFO EMPTY Flag and AEMPTY Flag Deassertion  
RCLK  
WA/RA  
(Address Counter)  
Dist = AFF_TH – 1  
MATCH (FULL)  
NO MATCH  
NO MATCH  
1st Rising  
NO MATCH  
NO MATCH  
1st Rising  
Edge  
After 1st  
Read  
Edge  
After 2nd  
Read  
WCLK  
FULL  
tWCKF  
tCKAF  
AFULL  
Figure 2-44 • FIFO FULL Flag and AFULL Flag Deassertion  
v1.0  
2-91  
Automotive ProASIC3 DC and Switching Characteristics  
Timing Characteristics  
Table 2-121 • FIFO  
Worst-Case Automotive Conditions: TJ = 135°C, VCC = 1.425 V  
Description  
REN_B, WEN_B Setup Time  
Parameter  
tENS  
–1  
Std. Units  
1.97 1.67  
0.03 0.02  
0.28 0.32  
0.00 0.00  
0.26 0.22  
0.00 0.00  
3.37 2.86  
1.28 1.09  
2.45 2.09  
2.33 1.98  
8.85 7.53  
2.42 2.06  
8.76 7.45  
1.32 1.12  
1.32 1.12  
0.41 0.35  
2.14 1.82  
0.30 0.26  
4.62 3.93  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tENH  
REN_B, WEN_B Hold Time  
tBKS  
BLK_B Setup Time  
tBKH  
BLK_B Hold Time  
tDS  
Input Data (DI) Setup Time  
tDH  
Input Data (DI) Hold Time  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock HIGH to New Data Valid on DO (flow-through)  
Clock HIGH to New Data Valid on DO (pipelined)  
RCLK HIGH to Empty Flag Valid  
WCLK HIGH to Full Flag Valid  
Clock HIGH to Almost Empty/Full Flag Valid  
RESET_B LOW to Empty/Full Flag Valid  
RESET_B LOW to Almost Empty/Full Flag Valid  
RESET_B LOW to Data Out LOW on DO (flow-through)  
RESET_B LOW to Data Out LOW on DO (pipelined)  
RESET_B Removal  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
RESET_B Recovery  
RESET_B Minimum Pulse Width  
Clock Cycle Time  
FMAX  
Maximum Frequency for FIFO  
217 255 MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5  
for derating values.  
2-92  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
Table 2-122 • FIFO  
Worst-Case Automotive Conditions: TJ = 115°C, VCC = 1.425 V  
Parameter  
tENS  
Description  
REN_B, WEN_B Setup Time  
–1  
Std. Units  
1.93 1.64  
0.03 0.02  
0.27 0.32  
0.00 0.00  
0.26 0.22  
0.00 0.00  
3.30 2.81  
1.25 1.07  
2.41 2.05  
2.29 1.95  
8.68 7.38  
2.37 2.02  
8.59 7.30  
1.29 1.10  
1.29 1.10  
0.40 0.34  
2.10 1.79  
0.30 0.25  
4.53 3.85  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tENH  
REN_B, WEN_B Hold Time  
tBKS  
BLK_B Setup Time  
tBKH  
BLK_B Hold Time  
tDS  
Input Data (DI) Setup Time  
tDH  
Input Data (DI) Hold Time  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock HIGH to New Data Valid on DO (flow-through)  
Clock HIGH to New Data Valid on DO (pipelined)  
RCLK HIGH to Empty Flag Valid  
WCLK HIGH to Full Flag Valid  
Clock HIGH to Almost Empty/Full Flag Valid  
RESET_B LOW to Empty/Full Flag Valid  
RESET_B LOW to Almost Empty/Full Flag Valid  
RESET_B LOW to Data Out LOW on DO (flow-through)  
RESET_B LOW to Data Out LOW on DO (pipelined)  
RESET_B Removal  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
RESET_B Recovery  
RESET_B Minimum Pulse Width  
Clock Cycle Time  
FMAX  
Maximum Frequency for FIFO  
221 260 MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5  
for derating values.  
v1.0  
2-93  
Automotive ProASIC3 DC and Switching Characteristics  
Embedded FlashROM Characteristics  
tSU  
tSU  
tSU  
CLK  
tHOLD  
tHOLD  
tHOLD  
Address  
A0  
A1  
tCKQ2  
D0  
tCKQ2  
tCKQ2  
D1  
D0  
Data  
Figure 2-45 • Timing Diagram  
Timing Characteristics  
Table 2-123 • Embedded FlashROM Access Time  
Automotive-Case Conditions: TJ = 135°C, Worst-Case VCC = 1.425 V  
Parameter  
tSU  
Description  
Address Setup Time  
–1  
0.65  
0.00  
19.73  
15  
Std.  
Units  
ns  
0.76  
0.00  
23.20  
15  
tHOLD  
tCK2Q  
FMAX  
Address Hold Time  
Clock to Out  
ns  
ns  
Maximum Clock Frequency  
MHz  
Table 2-124 • Embedded FlashROM Access Time  
Automotive-Case Conditions: TJ = 115°C, Worst-Case VCC = 1.425 V  
Parameter  
tSU  
Description  
–1  
0.64  
0.00  
19.35  
15  
Std.  
0.75  
0.00  
22.74  
15  
Units  
ns  
Address Setup Time  
Address Hold Time  
Clock to Out  
tHOLD  
tCK2Q  
FMAX  
ns  
ns  
Maximum Clock Frequency  
MHz  
2-94  
v1.0  
Automotive ProASIC3 DC and Switching Characteristics  
JTAG 1532 Characteristics  
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays  
to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O  
Characteristics" section on page 2-12 for more details.  
Timing Characteristics  
Table 2-125 • JTAG 1532  
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V  
Parameter  
tDISU  
Description  
Test Data Input Setup Time  
Test Data Input Hold Time  
Test Mode Select Setup Time  
Test Mode Select Hold Time  
Clock to Q (data out)  
–2  
–1  
Std.  
Units  
ns  
tDIHD  
ns  
tTMSSU  
ns  
tTMDHD  
tTCK2Q  
ns  
ns  
tRSTB2Q  
FTCKMAX  
tTRSTREM  
tTRSTREC  
tTRSTMPW  
Reset to Q (data out)  
ns  
TCK Maximum Frequency  
ResetB Removal Time  
20  
20  
20  
MHz  
ns  
ResetB Recovery Time  
ns  
ResetB Minimum Pulse  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-5 on page 2-5  
for derating values.  
Part Number and Revision Date  
Part Number 51700099-002-0  
Revised January 2008  
Actel Safety Critical, Life Support, and High-Reliability  
Applications Policy  
The Actel products described in this advanced status datasheet may not have completed Actel’s  
qualification process. Actel may amend or enhance products during the product introduction and  
qualification process, resulting in changes in device functionality or performance. It is the  
responsibility of each customer to ensure the fitness of any Actel product (but especially a new  
product) for a particular purpose, including appropriateness for safety-critical, life-support, and  
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability  
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is  
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also  
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your  
local Actel sales office for additional reliability information.  
v1.0  
2-95  
Automotive ProASIC®3 Packaging  
3 – Package Pin Assignments  
100-Pin VQFP  
100  
1
100-Pin  
VQFP  
Note: This is the top view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
v1.0  
3-1  
Package Pin Assignments  
100-Pin VQFP  
100-Pin VQFP  
100-Pin VQFP  
Pin Number  
A3P060 Function  
GND  
Pin Number  
A3P060 Function  
IO62RSB1  
IO61RSB1  
VCC  
Pin Number  
A3P060 Function  
IO31RSB0  
1
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
2
GAA2/IO51RSB1  
IO52RSB1  
GBC2/IO29RSB0  
GBB2/IO27RSB0  
IO26RSB0  
3
4
GAB2/IO53RSB1  
IO95RSB1  
GND  
5
VCCIB1  
GBA2/IO25RSB0  
VMV0  
6
GAC2/IO94RSB1  
IO93RSB1  
IO60RSB1  
IO59RSB1  
IO58RSB1  
IO57RSB1  
GDC2/IO56RSB1  
GDB2/IO55RSB1  
GDA2/IO54RSB1  
TCK  
7
GNDQ  
8
IO92RSB1  
GBA1/IO24RSB0  
GBA0/IO23RSB0  
GBB1/IO22RSB0  
GBB0/IO21RSB0  
GBC1/IO20RSB0  
GBC0/IO19RSB0  
IO18RSB0  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
GFB1/IO87RSB1  
GFB0/IO86RSB1  
VCOMPLF  
GFA0/IO85RSB1  
VCCPLF  
TDI  
GFA1/IO84RSB1  
GFA2/IO83RSB1  
VCC  
TMS  
IO17RSB0  
VMV1  
IO15RSB0  
GND  
IO13RSB0  
VCCIB1  
VPUMP  
IO11RSB0  
GEC1/IO77RSB1  
GEB1/IO75RSB1  
GEB0/IO74RSB1  
GEA1/IO73RSB1  
GEA0/IO72RSB1  
VMV1  
NC  
VCCIB0  
TDO  
GND  
TRST  
VCC  
VJTAG  
IO10RSB0  
GDA1/IO49RSB0  
GDC0/IO46RSB0  
GDC1/IO45RSB0  
GCC2/IO43RSB0  
GCB2/IO42RSB0  
GCA0/IO40RSB0  
GCA1/IO39RSB0  
GCC0/IO36RSB0  
GCC1/IO35RSB0  
VCCIB0  
IO09RSB0  
IO08RSB0  
GNDQ  
GAC1/IO07RSB0  
GAC0/IO06RSB0  
GAB1/IO05RSB0  
GAB0/IO04RSB0  
GAA1/IO03RSB0  
GAA0/IO02RSB0  
IO01RSB0  
GEA2/IO71RSB1  
GEB2/IO70RSB1  
GEC2/IO69RSB1  
IO68RSB1  
IO67RSB1  
IO66RSB1  
IO65RSB1  
IO00RSB0  
IO64RSB1  
GND  
IO63RSB1  
VCC  
3-2  
v1.0  
Automotive ProASIC3 Packaging  
100-Pin VQFP  
100-Pin VQFP  
100-Pin VQFP  
Pin Number  
A3P250 Function  
GND  
Pin Number  
A3P250 Function  
IO85RSB2  
IO84RSB2  
VCC  
Pin Number  
A3P250 Function  
IO43NDB1  
1
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
2
GAA2/IO118UDB3  
IO118VDB3  
GAB2/IO117UDB3  
IO117VDB3  
GAC2/IO116UDB3  
IO116VDB3  
IO112PSB3  
GBC2/IO43PDB1  
GBB2/IO42PSB1  
IO41NDB1  
3
4
GND  
5
VCCIB2  
GBA2/IO41PDB1  
VMV1  
6
IO77RSB2  
IO74RSB2  
IO71RSB2  
GDC2/IO63RSB2  
GDB2/IO62RSB2  
GDA2/IO61RSB2  
GNDQ  
7
GNDQ  
8
GBA1/IO40RSB0  
GBA0/IO39RSB0  
GBB1/IO38RSB0  
GBB0/IO37RSB0  
GBC1/IO36RSB0  
GBC0/IO35RSB0  
IO29RSB0  
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
GFB1/IO109PDB3  
GFB0/IO109NDB3  
VCOMPLF  
GFA0/IO108NPB3  
VCCPLF  
TCK  
TDI  
GFA1/IO108PPB3  
GFA2/IO107PSB3  
VCC  
TMS  
IO27RSB0  
VMV2  
IO25RSB0  
GND  
IO23RSB0  
VCCIB3  
VPUMP  
IO21RSB0  
GFC2/IO105PSB3  
GEC1/IO100PDB3  
GEC0/IO100NDB3  
GEA1/IO98PDB3  
GEA0/IO98NDB3  
VMV3  
NC  
VCCIB0  
TDO  
GND  
TRST  
VCC  
VJTAG  
IO15RSB0  
GDA1/IO60USB1  
GDC0/IO58VDB1  
GDC1/IO58UDB1  
IO52NDB1  
GCB2/IO52PDB1  
GCA1/IO50PDB1  
GCA0/IO50NDB1  
GCC0/IO48NDB1  
GCC1/IO48PDB1  
VCCIB1  
IO13RSB0  
IO11RSB0  
GNDQ  
GAC1/IO05RSB0  
GAC0/IO04RSB0  
GAB1/IO03RSB0  
GAB0/IO02RSB0  
GAA1/IO01RSB0  
GAA0/IO00RSB0  
GNDQ  
GEA2/IO97RSB2  
GEB2/IO96RSB2  
GEC2/IO95RSB2  
IO93RSB2  
IO92RSB2  
IO91RSB2  
IO90RSB2  
VMV0  
IO88RSB2  
GND  
IO86RSB2  
VCC  
v1.0  
3-3  
Package Pin Assignments  
144-Pin FBGA  
A1 Ball Pad Corner  
2
12 11 10  
9
8
7
6
5
4
3
1
A
B
C
D
E
F
G
H
J
K
L
M
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
3-4  
v1.0  
Automotive ProASIC3 Packaging  
144-Pin FBGA  
144-Pin FBGA  
144-Pin FBGA  
Pin Number  
A3P060 Function  
GNDQ  
Pin Number  
A3P060 Function  
IO91RSB1  
Pin Number  
A3P060 Function  
GFA1/IO84RSB1  
GND  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
B1  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
VMV0  
IO92RSB1  
GAB0/IO04RSB0  
GAB1/IO05RSB0  
IO08RSB0  
IO93RSB1  
VCCPLF  
GAA2/IO51RSB1  
GAC0/IO06RSB0  
GAC1/IO07RSB0  
GBC0/IO19RSB0  
GBC1/IO20RSB0  
GBB2/IO27RSB0  
IO18RSB0  
GFA0/IO85RSB1  
GND  
GND  
GND  
IO11RSB0  
GND  
VCC  
GDC1/IO45RSB0  
IO32RSB0  
GCC2/IO43RSB0  
IO31RSB0  
GCB2/IO42RSB0  
VCC  
IO16RSB0  
GBA0/IO23RSB0  
GBA1/IO24RSB0  
GNDQ  
IO28RSB0  
GCB1/IO37RSB0  
VCC  
GAB2/IO53RSB1  
GND  
B2  
E2  
GFC0/IO88RSB1  
GFC1/IO89RSB1  
VCCIB1  
GFB2/IO82RSB1  
GFC2/IO81RSB1  
GEC1/IO77RSB1  
VCC  
B3  
GAA0/IO02RSB0  
GAA1/IO03RSB0  
IO00RSB0  
E3  
B4  
E4  
B5  
E5  
IO52RSB1  
B6  
IO10RSB0  
E6  
VCCIB0  
IO34RSB0  
IO44RSB0  
GDB2/IO55RSB1  
GDC0/IO46RSB0  
VCCIB0  
B7  
IO12RSB0  
E7  
VCCIB0  
B8  
IO14RSB0  
E8  
GCC1/IO35RSB0  
VCCIB0  
B9  
GBB0/IO21RSB0  
GBB1/IO22RSB0  
GND  
E9  
B10  
B11  
B12  
C1  
E10  
E11  
E12  
F1  
VCC  
GCA0/IO40RSB0  
IO30RSB0  
IO33RSB0  
VCC  
VMV0  
IO95RSB1  
GFB0/IO86RSB1  
VCOMPLF  
GEB1/IO75RSB1  
IO78RSB1  
VCCIB1  
C2  
GFA2/IO83RSB1  
GAC2/IO94RSB1  
VCC  
F2  
J2  
C3  
F3  
GFB1/IO87RSB1  
IO90RSB1  
J3  
C4  
F4  
J4  
GEC0/IO76RSB1  
IO79RSB1  
IO80RSB1  
VCC  
C5  
IO01RSB0  
F5  
GND  
J5  
C6  
IO09RSB0  
F6  
GND  
J6  
C7  
IO13RSB0  
F7  
GND  
J7  
C8  
IO15RSB0  
F8  
GCC0/IO36RSB0  
GCB0/IO38RSB0  
GND  
J8  
TCK  
C9  
IO17RSB0  
F9  
J9  
GDA2/IO54RSB1  
TDO  
C10  
C11  
C12  
GBA2/IO25RSB0  
IO26RSB0  
F10  
F11  
F12  
J10  
J11  
J12  
GCA1/IO39RSB0  
GCA2/IO41RSB0  
GDA1/IO49RSB0  
GDB1/IO47RSB0  
GBC2/IO29RSB0  
v1.0  
3-5  
Package Pin Assignments  
144-Pin FBGA  
Pin Number  
K1  
A3P060 Function  
GEB0/IO74RSB1  
GEA1/IO73RSB1  
GEA0/IO72RSB1  
GEA2/IO71RSB1  
IO65RSB1  
IO64RSB1  
GND  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
IO57RSB1  
GDC2/IO56RSB1  
GND  
K9  
K10  
K11  
K12  
L1  
GDA0/IO50RSB0  
GDB0/IO48RSB0  
GND  
L2  
VMV1  
L3  
GEB2/IO70RSB1  
IO67RSB1  
VCCIB1  
L4  
L5  
L6  
IO62RSB1  
IO59RSB1  
IO58RSB1  
TMS  
L7  
L8  
L9  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
VJTAG  
VMV1  
TRST  
GNDQ  
GEC2/IO69RSB1  
IO68RSB1  
IO66RSB1  
IO63RSB1  
IO61RSB1  
IO60RSB1  
NC  
TDI  
VCCIB1  
VPUMP  
GNDQ  
3-6  
v1.0  
Automotive ProASIC3 Packaging  
144-Pin FBGA  
144-Pin FBGA  
144-Pin FBGA  
Pin Number  
A3P125 Function  
GNDQ  
Pin Number  
A3P125 Function  
IO128RSB1  
Pin Number  
A3P125 Function  
GFA1/IO121RSB1  
GND  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
B1  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
VMV0  
IO129RSB1  
GAB0/IO02RSB0  
GAB1/IO03RSB0  
IO11RSB0  
IO130RSB1  
VCCPLF  
GAA2/IO67RSB1  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
GBC0/IO35RSB0  
GBC1/IO36RSB0  
GBB2/IO43RSB0  
IO28RSB0  
GFA0/IO122RSB1  
GND  
GND  
GND  
IO18RSB0  
GND  
VCC  
GDC1/IO61RSB0  
IO48RSB0  
IO25RSB0  
GBA0/IO39RSB0  
GBA1/IO40RSB0  
GNDQ  
GCC2/IO59RSB0  
IO47RSB0  
IO44RSB0  
GCB1/IO53RSB0  
VCC  
GCB2/IO58RSB0  
VCC  
GAB2/IO69RSB1  
GND  
B2  
E2  
GFC0/IO125RSB1  
GFC1/IO126RSB1  
VCCIB1  
GFB2/IO119RSB1  
GFC2/IO118RSB1  
GEC1/IO112RSB1  
VCC  
B3  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
IO08RSB0  
E3  
B4  
E4  
B5  
E5  
IO68RSB1  
B6  
IO14RSB0  
E6  
VCCIB0  
IO50RSB0  
B7  
IO19RSB0  
E7  
VCCIB0  
IO60RSB0  
B8  
IO22RSB0  
E8  
GCC1/IO51RSB0  
VCCIB0  
GDB2/IO71RSB1  
GDC0/IO62RSB0  
VCCIB0  
B9  
GBB0/IO37RSB0  
GBB1/IO38RSB0  
GND  
E9  
B10  
B11  
B12  
C1  
E10  
E11  
E12  
F1  
VCC  
GCA0/IO56RSB0  
IO46RSB0  
IO49RSB0  
VMV0  
VCC  
IO132RSB1  
GFA2/IO120RSB1  
GAC2/IO131RSB1  
VCC  
GFB0/IO123RSB1  
VCOMPLF  
GEB1/IO110RSB1  
IO115RSB1  
VCCIB1  
C2  
F2  
J2  
C3  
F3  
GFB1/IO124RSB1  
IO127RSB1  
GND  
J3  
C4  
F4  
J4  
GEC0/IO111RSB1  
IO116RSB1  
IO117RSB1  
VCC  
C5  
IO10RSB0  
F5  
J5  
C6  
IO12RSB0  
F6  
GND  
J6  
C7  
IO21RSB0  
F7  
GND  
J7  
C8  
IO24RSB0  
F8  
GCC0/IO52RSB0  
GCB0/IO54RSB0  
GND  
J8  
TCK  
C9  
IO27RSB0  
F9  
J9  
GDA2/IO70RSB1  
TDO  
C10  
C11  
C12  
GBA2/IO41RSB0  
IO42RSB0  
F10  
F11  
F12  
J10  
J11  
J12  
GCA1/IO55RSB0  
GCA2/IO57RSB0  
GDA1/IO65RSB0  
GDB1/IO63RSB0  
GBC2/IO45RSB0  
v1.0  
3-7  
Package Pin Assignments  
144-Pin FBGA  
Pin Number  
K1  
A3P125 Function  
GEB0/IO109RSB1  
GEA1/IO108RSB1  
GEA0/IO107RSB1  
GEA2/IO106RSB1  
IO100RSB1  
IO98RSB1  
GND  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
IO73RSB1  
GDC2/IO72RSB1  
GND  
K9  
K10  
K11  
K12  
L1  
GDA0/IO66RSB0  
GDB0/IO64RSB0  
GND  
L2  
VMV1  
L3  
GEB2/IO105RSB1  
IO102RSB1  
VCCIB1  
L4  
L5  
L6  
IO95RSB1  
IO85RSB1  
IO74RSB1  
TMS  
L7  
L8  
L9  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
VJTAG  
VMV1  
TRST  
GNDQ  
GEC2/IO104RSB1  
IO103RSB1  
IO101RSB1  
IO97RSB1  
IO94RSB1  
IO86RSB1  
IO75RSB1  
TDI  
VCCIB1  
VPUMP  
GNDQ  
3-8  
v1.0  
Automotive ProASIC3 Packaging  
144-Pin FBGA  
144-Pin FBGA  
144-Pin FBGA  
Pin Number  
A3P250 Function  
GNDQ  
Pin Number  
A3P250 Function  
IO112NDB3  
Pin Number  
A3P250 Function  
GFA1/IO108PPB3  
GND  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
B1  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
VMV0  
IO112PDB3  
GAB0/IO02RSB0  
GAB1/IO03RSB0  
IO16RSB0  
IO116VDB3  
VCCPLF  
GAA2/IO118UPB3  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
GBC0/IO35RSB0  
GBC1/IO36RSB0  
GBB2/IO42PDB1  
IO42NDB1  
GFA0/IO108NPB3  
GND  
GND  
GND  
IO29RSB0  
GND  
VCC  
GDC1/IO58UPB1  
IO53NDB1  
GCC2/IO53PDB1  
IO52NDB1  
GCB2/IO52PDB1  
VCC  
IO33RSB0  
GBA0/IO39RSB0  
GBA1/IO40RSB0  
GNDQ  
IO43NPB1  
GCB1/IO49PPB1  
VCC  
GAB2/IO117UDB3  
GND  
B2  
E2  
GFC0/IO110NDB3  
GFC1/IO110PDB3  
VCCIB3  
GFB2/IO106PDB3  
GFC2/IO105PSB3  
GEC1/IO100PDB3  
VCC  
B3  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
IO14RSB0  
E3  
B4  
E4  
B5  
E5  
IO118VPB3  
B6  
IO19RSB0  
E6  
VCCIB0  
IO79RSB2  
B7  
IO22RSB0  
E7  
VCCIB0  
IO65RSB2  
B8  
IO30RSB0  
E8  
GCC1/IO48PDB1  
VCCIB1  
GDB2/IO62RSB2  
GDC0/IO58VPB1  
VCCIB1  
B9  
GBB0/IO37RSB0  
GBB1/IO38RSB0  
GND  
E9  
B10  
B11  
B12  
C1  
E10  
E11  
E12  
F1  
VCC  
GCA0/IO50NDB1  
IO51NDB1  
GFB0/IO109NPB3  
VCOMPLF  
IO54PSB1  
VMV1  
VCC  
IO117VDB3  
GFA2/IO107PPB3  
GAC2/IO116UDB3  
VCC  
GEB1/IO99PDB3  
IO106NDB3  
VCCIB3  
C2  
F2  
J2  
C3  
F3  
GFB1/IO109PPB3  
IO107NPB3  
GND  
J3  
C4  
F4  
J4  
GEC0/IO100NDB3  
IO88RSB2  
C5  
IO12RSB0  
F5  
J5  
C6  
IO17RSB0  
F6  
GND  
J6  
IO81RSB2  
C7  
IO24RSB0  
F7  
GND  
J7  
VCC  
C8  
IO31RSB0  
F8  
GCC0/IO48NDB1  
GCB0/IO49NPB1  
GND  
J8  
TCK  
C9  
IO34RSB0  
F9  
J9  
GDA2/IO61RSB2  
TDO  
C10  
C11  
C12  
GBA2/IO41PDB1  
IO41NDB1  
GBC2/IO43PPB1  
F10  
F11  
F12  
J10  
J11  
J12  
GCA1/IO50PDB1  
GCA2/IO51PDB1  
GDA1/IO60UDB1  
GDB1/IO59UDB1  
v1.0  
3-9  
Package Pin Assignments  
144-Pin FBGA  
Pin Number  
K1  
A3P250 Function  
GEB0/IO99NDB3  
GEA1/IO98PDB3  
GEA0/IO98NDB3  
GEA2/IO97RSB2  
IO90RSB2  
IO84RSB2  
GND  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
IO66RSB2  
GDC2/IO63RSB2  
GND  
K9  
K10  
K11  
K12  
L1  
GDA0/IO60VDB1  
GDB0/IO59VDB1  
GND  
L2  
VMV3  
L3  
GEB2/IO96RSB2  
IO91RSB2  
VCCIB2  
L4  
L5  
L6  
IO82RSB2  
IO80RSB2  
IO72RSB2  
TMS  
L7  
L8  
L9  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
VJTAG  
VMV2  
TRST  
GNDQ  
GEC2/IO95RSB2  
IO92RSB2  
IO89RSB2  
IO87RSB2  
IO85RSB2  
IO78RSB2  
IO76RSB2  
TDI  
VCCIB2  
VPUMP  
GNDQ  
3-10  
v1.0  
Automotive ProASIC3 Packaging  
144-Pin FBGA  
144-Pin FBGA  
144-Pin FBGA  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
B1  
GNDQ  
VMV0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
IO213PDB3  
IO213NDB3  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
GFA1/IO207PPB3  
GND  
GAB0/IO02RSB0  
GAB1/IO03RSB0  
IO10RSB0  
IO223NDB3  
VCCPLF  
GAA2/IO225PPB3  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
GBC0/IO72RSB0  
GBC1/IO73RSB0  
GBB2/IO79PDB1  
IO79NDB1  
GFA0/IO207NPB3  
GND  
GND  
GND  
IO44RSB0  
GND  
VCC  
GDC1/IO111PPB1  
IO96NDB1  
GCC2/IO96PDB1  
IO95NDB1  
GCB2/IO95PDB1  
VCC  
IO69RSB0  
GBA0/IO76RSB0  
GBA1/IO77RSB0  
GNDQ  
IO80NPB1  
GCB1/IO92PPB1  
VCC  
GAB2/IO224PDB3  
GND  
B2  
E2  
GFC0/IO209NDB3  
GFC1/IO209PDB3  
VCCIB3  
GFB2/IO205PDB3  
GFC2/IO204PSB3  
GEC1/IO190PDB3  
VCC  
B3  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
IO13RSB0  
E3  
B4  
E4  
B5  
E5  
IO225NPB3  
B6  
IO26RSB0  
E6  
VCCIB0  
IO105PDB1  
IO105NDB1  
GDB2/IO115RSB2  
GDC0/IO111NPB1  
VCCIB1  
B7  
IO35RSB0  
E7  
VCCIB0  
B8  
IO60RSB0  
E8  
GCC1/IO91PDB1  
VCCIB1  
B9  
GBB0/IO74RSB0  
GBB1/IO75RSB0  
GND  
E9  
B10  
B11  
B12  
C1  
E10  
E11  
E12  
F1  
VCC  
GCA0/IO93NDB1  
IO94NDB1  
GFB0/IO208NPB3  
VCOMPLF  
IO101PSB1  
VCC  
VMV1  
IO224NDB3  
GFA2/IO206PPB3  
GAC2/IO223PDB3  
VCC  
GEB1/IO189PDB3  
IO205NDB3  
VCCIB3  
C2  
F2  
J2  
C3  
F3  
GFB1/IO208PPB3  
IO206NPB3  
GND  
J3  
C4  
F4  
J4  
GEC0/IO190NDB3  
IO160RSB2  
IO157RSB2  
VCC  
C5  
IO16RSB0  
F5  
J5  
C6  
IO29RSB0  
F6  
GND  
J6  
C7  
IO32RSB0  
F7  
GND  
J7  
C8  
IO63RSB0  
F8  
GCC0/IO91NDB1  
GCB0/IO92NPB1  
GND  
J8  
TCK  
C9  
IO66RSB0  
F9  
J9  
GDA2/IO114RSB2  
TDO  
C10  
C11  
C12  
GBA2/IO78PDB1  
IO78NDB1  
GBC2/IO80PPB1  
F10  
F11  
F12  
J10  
J11  
J12  
GCA1/IO93PDB1  
GCA2/IO94PDB1  
GDA1/IO113PDB1  
GDB1/IO112PDB1  
v1.0  
3-11  
Package Pin Assignments  
144-Pin FBGA  
Pin Number A3P1000 Function  
K1  
K2  
GEB0/IO189NDB3  
GEA1/IO188PDB3  
GEA0/IO188NDB3  
GEA2/IO187RSB2  
IO169RSB2  
IO152RSB2  
GND  
K3  
K4  
K5  
K6  
K7  
K8  
IO117RSB2  
GDC2/IO116RSB2  
GND  
K9  
K10  
K11  
K12  
L1  
GDA0/IO113NDB1  
GDB0/IO112NDB1  
GND  
L2  
VMV3  
L3  
GEB2/IO186RSB2  
IO172RSB2  
VCCIB2  
L4  
L5  
L6  
IO153RSB2  
IO144RSB2  
IO140RSB2  
TMS  
L7  
L8  
L9  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
VJTAG  
VMV2  
TRST  
GNDQ  
GEC2/IO185RSB2  
IO173RSB2  
IO168RSB2  
IO161RSB2  
IO156RSB2  
IO145RSB2  
IO141RSB2  
TDI  
VCCIB2  
VPUMP  
GNDQ  
3-12  
v1.0  
Automotive ProASIC3 Packaging  
256-Pin FBGA  
A1 Ball Pad Corner  
1
7
6
4
5
3
2
16 15 14 13 12 11 10 9  
8
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
v1.0  
3-13  
Package Pin Assignments  
256-Pin FBGA  
256-Pin FBGA  
Pin Number  
256-Pin FBGA  
Pin Number  
A1  
A3P250 Function  
GND  
A3P250 Function  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
IO13RSB0  
IO17RSB0  
IO22RSB0  
IO27RSB0  
IO31RSB0  
GBC0/IO35RSB0  
IO34RSB0  
NC  
Pin Number  
A3P250 Function  
C5  
C6  
E9  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
F1  
IO24RSB0  
A2  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
GAB0/IO02RSB0  
IO07RSB0  
VCCIB0  
A3  
C7  
VCCIB0  
VMV1  
A4  
C8  
A5  
C9  
GBC2/IO43PDB1  
IO46RSB1  
NC  
A6  
IO10RSB0  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
A7  
IO11RSB0  
A8  
IO15RSB0  
IO45PDB1  
IO113NDB3  
IO112PPB3  
NC  
A9  
IO20RSB0  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
IO25RSB0  
F2  
IO29RSB0  
IO42NPB1  
IO44PDB1  
IO114VDB3  
IO114UDB3  
GAC2/IO116UDB3  
NC  
F3  
IO33RSB0  
F4  
IO115VDB3  
VCCIB3  
GBB1/IO38RSB0  
GBA0/IO39RSB0  
GBA1/IO40RSB0  
GND  
F5  
D2  
F6  
GND  
D3  
F7  
VCC  
D4  
F8  
VCC  
GAB2/IO117UDB3  
GAA2/IO118UDB3  
NC  
D5  
GNDQ  
F9  
VCC  
B2  
D6  
IO08RSB0  
IO14RSB0  
IO18RSB0  
IO23RSB0  
IO28RSB0  
IO32RSB0  
GNDQ  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
VCC  
B3  
D7  
GND  
B4  
GAB1/IO03RSB0  
IO06RSB0  
D8  
VCCIB1  
B5  
D9  
IO43NDB1  
NC  
B6  
IO09RSB0  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
B7  
IO12RSB0  
IO47PPB1  
IO45NDB1  
IO111NDB3  
IO111PDB3  
IO112NPB3  
GFC1/IO110PPB3  
VCCIB3  
B8  
IO16RSB0  
B9  
IO21RSB0  
NC  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
IO26RSB0  
GBB2/IO42PPB1  
NC  
G2  
IO30RSB0  
G3  
GBC1/IO36RSB0  
GBB0/IO37RSB0  
NC  
IO44NDB1  
IO113PDB3  
NC  
G4  
G5  
E2  
G6  
VCC  
GBA2/IO41PDB1  
IO41NDB1  
IO117VDB3  
IO118VDB3  
NC  
E3  
IO116VDB3  
IO115UDB3  
VMV0  
G7  
GND  
E4  
G8  
GND  
E5  
G9  
GND  
C2  
E6  
VCCIB0  
G10  
G11  
G12  
GND  
C3  
E7  
VCCIB0  
VCC  
C4  
NC  
E8  
IO19RSB0  
VCCIB1  
3-14  
v1.0  
Automotive ProASIC3 Packaging  
256-Pin FBGA  
Pin Number  
256-Pin FBGA  
256-Pin FBGA  
A3P250 Function  
GCC1/IO48PPB1  
IO47NPB1  
IO54PDB1  
IO54NDB1  
GFB0/IO109NPB3  
GFA0/IO108NDB3  
GFB1/IO109PPB3  
VCOMPLF  
Pin Number  
A3P250 Function  
GFC2/IO105PDB3  
IO107NPB3  
IO104PPB3  
NC  
Pin Number  
A3P250 Function  
G13  
G14  
G15  
G16  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
K1  
K2  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
N1  
VMV3  
V
CCIB2  
K3  
VCCIB2  
NC  
K4  
K5  
V
CCIB3  
VCC  
IO74RSB2  
VCCIB2  
K6  
K7  
GND  
GND  
VCCIB2  
K8  
VMV2  
NC  
GFC0/IO110NPB3  
VCC  
K9  
GND  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
GND  
GDB1/IO59UPB1  
GDC1/IO58UDB1  
IO56NDB1  
IO103NDB3  
IO101PPB3  
GEC1/IO100PPB3  
NC  
GND  
VCC  
GND  
VCCIB1  
IO52NPB1  
IO55RSB1  
IO53NPB1  
IO51NDB1  
IO105NDB3  
IO104NPB3  
NC  
GND  
GND  
N2  
VCC  
N3  
GCC0/IO48NPB1  
GCB1/IO49PPB1  
GCA0/IO50NPB1  
NC  
N4  
N5  
GNDQ  
L2  
N6  
GEA2/IO97RSB2  
IO86RSB2  
IO82RSB2  
IO75RSB2  
IO69RSB2  
IO64RSB2  
GNDQ  
L3  
N7  
GCB0/IO49NPB1  
GFA2/IO107PPB3  
GFA1/IO108PDB3  
VCCPLF  
L4  
IO102RSB3  
VCCIB3  
GND  
N8  
L5  
N9  
J2  
L6  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
J3  
L7  
VCC  
J4  
IO106NDB3  
GFB2/IO106PDB3  
VCC  
L8  
VCC  
J5  
L9  
VCC  
NC  
J6  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
M4  
VCC  
VJTAG  
J7  
GND  
GND  
GDC0/IO58VDB1  
GDA1/IO60UDB1  
GEB1/IO99PDB3  
GEB0/IO99NDB3  
NC  
J8  
GND  
VCCIB1  
J9  
GND  
GDB0/IO59VPB1  
IO57VDB1  
IO57UDB1  
IO56PDB1  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
GND  
P2  
VCC  
P3  
GCB2/IO52PPB1  
GCA1/IO50PPB1  
GCC2/IO53PPB1  
NC  
P4  
NC  
IO103PDB3  
NC  
P5  
IO92RSB2  
IO89RSB2  
IO85RSB2  
IO81RSB2  
P6  
IO101NPB3  
GEC0/IO100NPB3  
P7  
GCA2/IO51PDB1  
P8  
v1.0  
3-15  
Package Pin Assignments  
256-Pin FBGA  
256-Pin FBGA  
Pin Number  
P9  
A3P250 Function  
IO76RSB2  
IO71RSB2  
IO66RSB2  
NC  
Pin Number  
A3P250 Function  
IO67RSB2  
GDA2/IO61RSB2  
TMS  
T13  
T14  
T15  
T16  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
GND  
TCK  
VPUMP  
TRST  
GDA0/IO60VDB1  
GEA1/IO98PDB3  
GEA0/IO98NDB3  
NC  
R2  
R3  
R4  
GEC2/IO95RSB2  
IO91RSB2  
IO88RSB2  
IO84RSB2  
IO80RSB2  
IO77RSB2  
IO72RSB2  
IO68RSB2  
IO65RSB2  
GDB2/IO62RSB2  
TDI  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
NC  
TDO  
GND  
T2  
IO94RSB2  
GEB2/IO96RSB2  
IO93RSB2  
IO90RSB2  
IO87RSB2  
IO83RSB2  
IO79RSB2  
IO78RSB2  
IO73RSB2  
IO70RSB2  
GDC2/IO63RSB2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
3-16  
v1.0  
Automotive ProASIC3 Packaging  
256-Pin FBGA  
256-Pin FBGA  
256-Pin FBGA  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
A1  
A2  
GND  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
GAB0/IO02RSB0  
IO16RSB0  
C5  
C6  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
IO25RSB0  
IO36RSB0  
IO42RSB0  
IO49RSB0  
IO56RSB0  
GBC0/IO72RSB0  
IO62RSB0  
VMV0  
E9  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
F1  
IO47RSB0  
CCIB0  
V
A3  
C7  
VCCIB0  
VMV1  
A4  
C8  
A5  
C9  
GBC2/IO80PDB1  
IO83PPB1  
IO86PPB1  
IO87PDB1  
IO217NDB3  
IO218NDB3  
IO216PDB3  
IO216NDB3  
VCCIB3  
A6  
IO22RSB0  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
A7  
IO28RSB0  
A8  
IO35RSB0  
A9  
IO45RSB0  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
IO50RSB0  
F2  
IO55RSB0  
IO78NDB1  
IO81NDB1  
IO222NDB3  
IO222PDB3  
GAC2/IO223PDB3  
IO223NDB3  
GNDQ  
F3  
IO61RSB0  
F4  
GBB1/IO75RSB0  
GBA0/IO76RSB0  
GBA1/IO77RSB0  
GND  
F5  
D2  
F6  
GND  
D3  
F7  
VCC  
D4  
F8  
VCC  
GAB2/IO224PDB3  
GAA2/IO225PDB3  
GNDQ  
D5  
F9  
VCC  
B2  
D6  
IO23RSB0  
IO29RSB0  
IO33RSB0  
IO46RSB0  
IO52RSB0  
IO60RSB0  
GNDQ  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
VCC  
B3  
D7  
GND  
B4  
GAB1/IO03RSB0  
IO17RSB0  
D8  
VCCIB1  
B5  
D9  
IO83NPB1  
IO86NPB1  
IO90PPB1  
IO87NDB1  
IO210PSB3  
IO213NDB3  
IO213PDB3  
GFC1/IO209PPB3  
VCCIB3  
B6  
IO21RSB0  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
B7  
IO27RSB0  
B8  
IO34RSB0  
B9  
IO44RSB0  
IO80NDB1  
GBB2/IO79PDB1  
IO79NDB1  
IO82NSB1  
IO217PDB3  
IO218PDB3  
IO221NDB3  
IO221PDB3  
VMV0  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
IO51RSB0  
G2  
IO57RSB0  
G3  
GBC1/IO73RSB0  
GBB0/IO74RSB0  
IO71RSB0  
G4  
G5  
E2  
G6  
VCC  
GBA2/IO78PDB1  
IO81PDB1  
E3  
G7  
GND  
E4  
G8  
GND  
IO224NDB3  
IO225NDB3  
VMV3  
E5  
G9  
GND  
C2  
E6  
VCCIB0  
G10  
G11  
G12  
GND  
C3  
E7  
VCCIB0  
VCC  
C4  
IO11RSB0  
E8  
IO38RSB0  
VCCIB1  
v1.0  
3-17  
Package Pin Assignments  
256-Pin FBGA  
Pin Number A3P1000 Function  
256-Pin FBGA  
256-Pin FBGA  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
G13  
G14  
G15  
G16  
H1  
GCC1/IO91PPB1  
IO90NPB1  
IO88PDB1  
IO88NDB1  
GFB0/IO208NPB3  
GFA0/IO207NDB3  
GFB1/IO208PPB3  
VCOMPLF  
K1  
K2  
GFC2/IO204PDB3  
IO204NDB3  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
N1  
VMV3  
CCIB2  
V
K3  
IO203NDB3  
VCCIB2  
IO147RSB2  
IO136RSB2  
VCCIB2  
K4  
IO203PDB3  
K5  
VCCIB3  
H2  
K6  
VCC  
H3  
K7  
GND  
GND  
VCCIB2  
H4  
K8  
VMV2  
IO110NDB1  
GDB1/IO112PPB1  
GDC1/IO111PDB1  
IO107NDB1  
IO194PSB3  
H5  
GFC0/IO209NPB3  
VCC  
K9  
GND  
H6  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
GND  
H7  
GND  
VCC  
H8  
GND  
VCCIB1  
IO95NPB1  
IO100NPB1  
IO102NDB1  
IO102PDB1  
IO202NDB3  
IO202PDB3  
IO196PPB3  
IO193PPB3  
VCCIB3  
GND  
H9  
GND  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
GND  
N2  
IO192PPB3  
VCC  
N3  
GEC1/IO190PPB3  
IO192NPB3  
GNDQ  
GCC0/IO91NPB1  
GCB1/IO92PPB1  
GCA0/IO93NPB1  
IO96NPB1  
GCB0/IO92NPB1  
GFA2/IO206PSB3  
GFA1/IO207PDB3  
VCCPLF  
N4  
N5  
L2  
N6  
GEA2/IO187RSB2  
IO161RSB2  
L3  
N7  
L4  
N8  
IO155RSB2  
L5  
N9  
IO141RSB2  
J2  
L6  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
IO129RSB2  
J3  
L7  
VCC  
IO124RSB2  
J4  
IO205NDB3  
GFB2/IO205PDB3  
VCC  
L8  
VCC  
GNDQ  
J5  
L9  
VCC  
IO110PDB1  
VJTAG  
J6  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
M4  
VCC  
J7  
GND  
GND  
GDC0/IO111NDB1  
GDA1/IO113PDB1  
GEB1/IO189PDB3  
GEB0/IO189NDB3  
VMV2  
J8  
GND  
VCCIB1  
J9  
GND  
GDB0/IO112NPB1  
IO106NDB1  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
GND  
P2  
VCC  
IO106PDB1  
P3  
GCB2/IO95PPB1  
GCA1/IO93PPB1  
GCC2/IO96PPB1  
IO100PPB1  
GCA2/IO94PSB1  
IO107PDB1  
P4  
IO179RSB2  
IO197NSB3  
P5  
IO171RSB2  
IO196NPB3  
P6  
IO165RSB2  
IO193NPB3  
P7  
IO159RSB2  
GEC0/IO190NPB3  
P8  
IO151RSB2  
3-18  
v1.0  
Automotive ProASIC3 Packaging  
256-Pin FBGA  
256-Pin FBGA  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
IO137RSB2  
IO134RSB2  
IO128RSB2  
VMV1  
T13  
T14  
T15  
T16  
IO120RSB2  
GDA2/IO114RSB2  
TMS  
GND  
TCK  
VPUMP  
TRST  
GDA0/IO113NDB1  
GEA1/IO188PDB3  
GEA0/IO188NDB3  
IO184RSB2  
GEC2/IO185RSB2  
IO168RSB2  
IO163RSB2  
IO157RSB2  
IO149RSB2  
IO143RSB2  
IO138RSB2  
IO131RSB2  
IO125RSB2  
GDB2/IO115RSB2  
TDI  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
GNDQ  
TDO  
GND  
T2  
IO183RSB2  
GEB2/IO186RSB2  
IO172RSB2  
IO170RSB2  
IO164RSB2  
IO158RSB2  
IO153RSB2  
IO142RSB2  
IO135RSB2  
IO130RSB2  
GDC2/IO116RSB2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
v1.0  
3-19  
Package Pin Assignments  
484-Pin FBGA  
A1 Ball Pad Corner  
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/solutions/package/docs.aspx.  
3-20  
v1.0  
Automotive ProASIC3 Packaging  
484-Pin FBGA*  
484-Pin FBGA*  
484-Pin FBGA*  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
A1  
A2  
GND  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C1  
IO63RSB0  
IO66RSB0  
IO68RSB0  
IO70RSB0  
NC  
D7  
D8  
GAB0/IO02RSB0  
IO16RSB0  
IO22RSB0  
IO28RSB0  
IO35RSB0  
IO45RSB0  
IO50RSB0  
IO55RSB0  
IO61RSB0  
GBB1/IO75RSB0  
GBA0/IO76RSB0  
GBA1/IO77RSB0  
GND  
GND  
A3  
VCCIB0  
D9  
A4  
IO07RSB0  
IO09RSB0  
IO13RSB0  
IO18RSB0  
IO20RSB0  
IO26RSB0  
IO32RSB0  
IO40RSB0  
IO41RSB0  
IO53RSB0  
IO59RSB0  
IO64RSB0  
IO65RSB0  
IO67RSB0  
IO69RSB0  
NC  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E1  
A5  
A6  
NC  
A7  
VCCIB1  
A8  
GND  
VCCIB3  
IO220PDB3  
NC  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
B1  
C2  
C3  
C4  
NC  
C5  
GND  
C6  
IO10RSB0  
IO14RSB0  
VCC  
NC  
C7  
NC  
C8  
NC  
C9  
VCC  
IO219NDB3  
NC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
D1  
IO30RSB0  
IO37RSB0  
IO43RSB0  
NC  
E2  
E3  
GND  
VCCIB0  
E4  
GAB2/IO224PDB3  
GAA2/IO225PDB3  
GNDQ  
GND  
E5  
GND  
VCC  
E6  
GND  
VCC  
E7  
GAB1/IO03RSB0  
IO17RSB0  
IO21RSB0  
IO27RSB0  
IO34RSB0  
IO44RSB0  
IO51RSB0  
IO57RSB0  
GBC1/IO73RSB0  
GBB0/IO74RSB0  
IO71RSB0  
GBA2/IO78PDB1  
IO81PDB1  
GND  
B2  
VCCIB3  
NC  
E8  
B3  
NC  
NC  
E9  
B4  
IO06RSB0  
IO08RSB0  
IO12RSB0  
IO15RSB0  
IO19RSB0  
IO24RSB0  
IO31RSB0  
IO39RSB0  
IO48RSB0  
IO54RSB0  
IO58RSB0  
GND  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
B5  
NC  
B6  
NC  
B7  
NC  
B8  
VCCIB1  
IO219PDB3  
IO220NDB3  
NC  
B9  
B10  
B11  
B12  
B13  
B14  
D2  
D3  
D4  
GND  
D5  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
D6  
v1.0  
3-21  
Package Pin Assignments  
484-Pin FBGA*  
Pin Number A3P1000 Function  
484-Pin FBGA*  
484-Pin FBGA*  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
E21  
E22  
F1  
NC  
IO84PDB1  
NC  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
H1  
IO52RSB0  
IO60RSB0  
GNDQ  
J5  
J6  
IO218NDB3  
IO216PDB3  
IO216NDB3  
J7  
F2  
IO215PDB3  
IO215NDB3  
IO224NDB3  
IO225NDB3  
VMV3  
IO80NDB1  
GBB2/IO79PDB1  
IO79NDB1  
IO82NPB1  
IO85PDB1  
IO85NDB1  
NC  
J8  
VCCIB3  
F3  
J9  
GND  
VCC  
F4  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
K1  
F5  
VCC  
F6  
VCC  
F7  
IO11RSB0  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
IO25RSB0  
IO36RSB0  
IO42RSB0  
IO49RSB0  
IO56RSB0  
GBC0/IO72RSB0  
IO62RSB0  
VMV0  
VCC  
F8  
GND  
F9  
NC  
VCCIB1  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G1  
H2  
NC  
IO83NPB1  
IO86NPB1  
IO90PPB1  
IO87NDB1  
NC  
H3  
VCC  
H4  
IO217PDB3  
IO218PDB3  
IO221NDB3  
IO221PDB3  
VMV0  
H5  
H6  
H7  
IO89PDB1  
IO89NDB1  
IO211PDB3  
IO211NDB3  
NC  
H8  
H9  
VCCIB0  
IO78NDB1  
IO81NDB1  
IO82PPB1  
NC  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
J1  
VCCIB0  
K2  
IO38RSB0  
IO47RSB0  
VCCIB0  
K3  
K4  
IO210PPB3  
IO213NDB3  
IO213PDB3  
GFC1/IO209PPB3  
VCCIB3  
K5  
IO84NDB1  
IO214NDB3  
IO214PDB3  
NC  
VCCIB0  
K6  
VMV1  
K7  
G2  
GBC2/IO80PDB1  
IO83PPB1  
IO86PPB1  
IO87PDB1  
VCC  
K8  
G3  
K9  
VCC  
G4  
IO222NDB3  
IO222PDB3  
GAC2/IO223PDB3  
IO223NDB3  
GNDQ  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
GND  
G5  
GND  
G6  
GND  
G7  
NC  
GND  
G8  
NC  
VCC  
G9  
IO23RSB0  
IO29RSB0  
IO33RSB0  
IO46RSB0  
IO212NDB3  
IO212PDB3  
NC  
VCCIB1  
G10  
G11  
G12  
J2  
GCC1/IO91PPB1  
IO90NPB1  
IO88PDB1  
J3  
J4  
IO217NDB3  
3-22  
v1.0  
Automotive ProASIC3 Packaging  
484-Pin FBGA*  
484-Pin FBGA*  
484-Pin FBGA*  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
K19  
K20  
K21  
K22  
L1  
IO88NDB1  
IO94NPB1  
IO98NDB1  
IO98PDB1  
NC  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
N1  
GND  
GND  
P3  
P4  
IO199NDB3  
IO202NDB3  
IO202PDB3  
IO196PPB3  
IO193PPB3  
VCCIB3  
GND  
GND  
P5  
VCC  
P6  
GCB2/IO95PPB1  
GCA1/IO93PPB1  
GCC2/IO96PPB1  
IO100PPB1  
GCA2/IO94PPB1  
IO101PPB1  
IO99PPB1  
NC  
P7  
L2  
IO200PDB3  
IO210NPB3  
GFB0/IO208NPB3  
GFA0/IO207NDB3  
GFB1/IO208PPB3  
VCOMPLF  
P8  
L3  
P9  
L4  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
R1  
VCC  
L5  
VCC  
L6  
VCC  
L7  
VCC  
L8  
GFC0/IO209NPB3  
VCC  
GND  
L9  
IO201NDB3  
IO201PDB3  
NC  
VCCIB1  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
GND  
N2  
GDB0/IO112NPB1  
IO106NDB1  
IO106PDB1  
IO107PDB1  
NC  
GND  
N3  
GND  
N4  
GFC2/IO204PDB3  
IO204NDB3  
IO203NDB3  
IO203PDB3  
VCCIB3  
GND  
N5  
VCC  
N6  
GCC0/IO91NPB1  
GCB1/IO92PPB1  
GCA0/IO93NPB1  
IO96NPB1  
GCB0/IO92NPB1  
IO97PDB1  
IO97NDB1  
IO99NPB1  
NC  
N7  
IO104PDB1  
IO103NDB1  
NC  
N8  
N9  
VCC  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
P1  
GND  
R2  
IO197PPB3  
VCC  
GND  
R3  
GND  
R4  
IO197NPB3  
IO196NPB3  
IO193NPB3  
GEC0/IO190NPB3  
VMV3  
GND  
R5  
VCC  
R6  
VCCIB1  
R7  
IO200NDB3  
IO206NDB3  
GFA2/IO206PDB3  
GFA1/IO207PDB3  
VCCPLF  
IO95NPB1  
IO100NPB1  
IO102NDB1  
IO102PDB1  
NC  
R8  
R9  
VCCIB2  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
VCCIB2  
IO147RSB2  
IO136RSB2  
IO205NDB3  
GFB2/IO205PDB3  
VCC  
IO101NPB1  
IO103PDB1  
NC  
VCCIB2  
VCCIB2  
VMV2  
GND  
P2  
IO199PDB3  
IO110NDB1  
v1.0  
3-23  
Package Pin Assignments  
484-Pin FBGA*  
Pin Number A3P1000 Function  
484-Pin FBGA*  
484-Pin FBGA*  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
R17  
R18  
R19  
R20  
R21  
R22  
T1  
GDB1/IO112PPB1  
GDC1/IO111PDB1  
IO107NDB1  
VCC  
U9  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
V1  
IO165RSB2  
IO159RSB2  
IO151RSB2  
IO137RSB2  
IO134RSB2  
IO128RSB2  
VMV1  
W1  
W2  
NC  
IO191PDB3  
NC  
W3  
W4  
GND  
IO104NDB1  
IO105PDB1  
IO198PDB3  
IO198NDB3  
NC  
W5  
IO183RSB2  
GEB2/IO186RSB2  
IO172RSB2  
IO170RSB2  
IO164RSB2  
IO158RSB2  
IO153RSB2  
IO142RSB2  
IO135RSB2  
IO130RSB2  
GDC2/IO116RSB2  
IO120RSB2  
GDA2/IO114RSB2  
TMS  
W6  
W7  
T2  
TCK  
W8  
T3  
VPUMP  
W9  
T4  
IO194PPB3  
IO192PPB3  
GEC1/IO190PPB3  
IO192NPB3  
GNDQ  
TRST  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y1  
T5  
GDA0/IO113NDB1  
NC  
T6  
T7  
IO108NDB1  
IO109PDB1  
NC  
T8  
T9  
GEA2/IO187RSB2  
IO161RSB2  
IO155RSB2  
IO141RSB2  
IO129RSB2  
IO124RSB2  
GNDQ  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
U1  
V2  
NC  
V3  
GND  
V4  
GEA1/IO188PDB3  
GEA0/IO188NDB3  
IO184RSB2  
GEC2/IO185RSB2  
IO168RSB2  
IO163RSB2  
IO157RSB2  
IO149RSB2  
IO143RSB2  
IO138RSB2  
IO131RSB2  
IO125RSB2  
GDB2/IO115RSB2  
TDI  
V5  
GND  
V6  
NC  
V7  
NC  
IO110PDB1  
VJTAG  
V8  
NC  
V9  
VCCIB3  
GDC0/IO111NDB1  
GDA1/IO113PDB1  
NC  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
Y2  
IO191NDB3  
NC  
Y3  
Y4  
IO182RSB2  
GND  
IO108PDB1  
IO105NDB1  
IO195PDB3  
IO195NDB3  
IO194NPB3  
GEB1/IO189PDB3  
GEB0/IO189NDB3  
VMV2  
Y5  
Y6  
IO177RSB2  
IO174RSB2  
VCC  
Y7  
U2  
Y8  
U3  
Y9  
VCC  
U4  
GNDQ  
Y10  
Y11  
Y12  
Y13  
Y14  
IO154RSB2  
IO148RSB2  
IO140RSB2  
NC  
U5  
TDO  
U6  
GND  
U7  
IO179RSB2  
IO171RSB2  
NC  
U8  
IO109NDB1  
VCC  
3-24  
v1.0  
Automotive ProASIC3 Packaging  
484-Pin FBGA*  
484-Pin FBGA*  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
Y15  
Y16  
VCC  
NC  
AB7  
AB8  
IO167RSB2  
IO162RSB2  
IO156RSB2  
IO150RSB2  
IO145RSB2  
IO144RSB2  
IO132RSB2  
IO127RSB2  
IO126RSB2  
IO123RSB2  
IO121RSB2  
IO118RSB2  
NC  
Y17  
NC  
AB9  
Y18  
GND  
NC  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
Y19  
Y20  
NC  
Y21  
NC  
Y22  
VCCIB1  
GND  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB1  
V
CCIB3  
NC  
IO181RSB2  
IO178RSB2  
IO175RSB2  
IO169RSB2  
IO166RSB2  
IO160RSB2  
IO152RSB2  
IO146RSB2  
IO139RSB2  
IO133RSB2  
NC  
VCCIB2  
GND  
GND  
NC  
IO122RSB2  
IO119RSB2  
IO117RSB2  
NC  
NC  
VCCIB1  
GND  
GND  
AB2  
GND  
AB3  
VCCIB2  
AB4  
IO180RSB2  
IO176RSB2  
IO173RSB2  
AB5  
AB6  
v1.0  
3-25  
Package Pin Assignments  
Part Number and Revision Date  
Part Number 51700099-003-0  
Revised January 2008  
Datasheet Categories  
Categories  
In order to provide the latest information to designers, some datasheets are published before data  
has been fully characterized. Datasheets are designated as "Product Brief," "Advance,"  
"Preliminary," and "Production." The definition of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advance or production) and contains  
general product information. This document gives an overview of specific device and family  
information.  
Advance  
This version contains initial estimated information based on simulation, other products, devices, or  
speed grades. This information can be used as estimates, but not for production. This label only  
applies to the DC and Switching Characteristics chapter of the datasheet and will only be used  
when the data has not been fully characterized.  
Preliminary  
The datasheet contains information based on simulation and/or initial characterization. The  
information is believed to be correct, but changes are possible.  
Unmarked (production)  
This version contains information that is considered to be final.  
Export Administration Regulations (EAR)  
The products described in this document are subject to the Export Administration Regulations  
(EAR). They could require an approved export license prior to export from the United States. An  
export includes release of product or disclosure of technology to a foreign national inside or  
outside the United States.  
Actel Safety Critical, Life Support, and High-Reliability  
Applications Policy  
The Actel products described in this advance status document may not have completed Actel’s  
qualification process. Actel may amend or enhance products during the product introduction and  
qualification process, resulting in changes in device functionality or performance. It is the  
responsibility of each customer to ensure the fitness of any Actel product (but especially a new  
product) for a particular purpose, including appropriateness for safety-critical, life-support, and  
other high-reliability applications. Consult Actel’s Terms and Conditions for specific liability  
exclusions relating to life-support applications. A reliability report covering all of Actel’s products is  
available on the Actel website at http://www.actel.com/documents/ORT_Report.pdf. Actel also  
offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your  
local Actel sales office for additional reliability information.  
3-26  
v1.0  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
www.actel.com  
Actel Corporation  
Actel Europe Ltd.  
Actel Japan  
Actel Hong Kong  
2061 Stierlin Court  
Mountain View, CA  
94043-4655 USA  
River Court,Meadows Business Park EXOS Ebisu Buillding 4F  
Room 2107, China Resources Building  
26 Harbour Road  
Wanchai, Hong Kong  
Station Approach, Blackwater  
Camberley Surrey GU17 9AB  
United Kingdom  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Phone 650.318.4200  
Fax 650.318.4600  
Phone +81.03.3445.7671  
Fax +81.03.3445.7668  
Phone +852 2185 6460  
Fax +852 2185 6488  
Phone +44 (0) 1276 609 300  
Fax +44 (0) 1276 607 540  
http://jp.actel.com  
www.actel.com.cn  
51700099-005-0/1.08  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY