EX256-FCS100I [ACTEL]

eX Automotive Family FPGAs; 汽车的eX系列FPGA
EX256-FCS100I
型号: EX256-FCS100I
厂家: Actel Corporation    Actel Corporation
描述:

eX Automotive Family FPGAs
汽车的eX系列FPGA

文件: 总44页 (文件大小:384K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v3.2  
eX Automotive Family FPGAs  
u
e
No Power-Up/Down Sequence Required for Supply  
Voltages  
Configurable Weak Resistor Pull-Up or Pull-Down  
for Tristated Outputs during Power-Up  
Individual Output Slew-Rate Control  
2.5 V and 3.3 V I/Os  
Software Design Support with Actel Designer and  
Libero® Integrated Design Environment (IDE)  
Tools  
Up to 100% Resource Utilization with 100% Pin  
Locking  
Specifications  
3,000 to 12,000 Available System Gates  
Maximum 512 Flip-Flops (Using CC Macros)  
0.22 µm CMOS Process Technology  
Up to 132 User-Programmable I/O Pins  
Features  
250 MHz Internal Performance, Low-Power Antifuse  
FPGA  
Deterministic Timing  
Advanced Small-Footprint Packages  
Pin-to-Pin Compatibility with eX Commercial- and  
Industrial-Grade Devices  
Hot-Swap Compliant I/Os  
Single-Chip Solution  
Nonvolatile  
Live on Power-Up  
Unique In-System Diagnostic and Verification  
Capability with Silicon Explorer II  
Boundary Scan Testing in Compliance with IEEE  
Standard 1149.1 (JTAG)  
FuseLock™ Secure Programming Technology  
Prevents Reverse Engineering and Design Theft  
Product Profile  
Device  
eX64  
eX128  
eX256  
Capacity  
3,000  
2,000  
6,000  
4,000  
12,000  
8,000  
System Gates  
Typical Gates  
Register Cells  
Dedicated Flip-Flops  
Maximum Flip-Flops  
64  
128  
128  
256  
256  
512  
Combinatorial Cells  
Maximum User I/Os  
128  
84  
256  
100  
512  
132  
Global Clocks  
Hardwired  
Routed  
1
2
1
2
1
2
Speed Grades*  
Std.  
A
Std.  
A
Std.  
A
Temperature Grades*  
Package (by pin count)  
TQFP  
CSP  
64, 100  
49, 128  
64, 100  
49, 128  
100  
128, 180  
Note: * The eX family is also offered in commercial and industrial temperature grades with –F, –P, and Std. speed grades. Refer to the eX  
Family FPGAs datasheet for more details.  
June 2006  
i
© 2006 Actel Corporation  
eX Automotive Family FPGAs  
Ordering Information  
eX128  
TQ  
G
100  
A
Application (Ambient Temperature Range)  
A= Automotive (-40˚C to 125˚C)  
Blank = Commercial (0˚C to 70˚C)  
I = Industrial (-40˚C to 85˚C)  
Package Lead Count  
Lead-Free Packaging  
Blank = Standard Packaging  
G = RoHS Compliant Packaging  
Package Type  
=
TQ Thin Quad Flat Pack (1.4mm pitch)  
=
CS  
Chip-Scale Package (0.8mm pitch)  
Speed Grade  
Blank= Standard Speed  
P = Approximately 30% Faster than Standard  
F = Approximately 40% Slower than Standard  
Part Number  
eX64 64 Dedicated Flip-Flops (3,000 System Gates)  
=
eX128 = 128 Dedicated Flip-Flops (6,000 System Gates)  
eX256 = 256 Dedicated Flip-Flops (12,000 System Gates)  
Note: Automotive grade parts (A grade) devices are tested at room temperature to specifications that have been guard banded based on  
characterization across the recommended operating conditions. A-grade parts are not tested at extended temperatures. If testing to  
ensure guaranteed operation at extended temperatures is required, please contact your local Actel Sales office to discuss testing  
options available.  
Plastic Device Resources  
User I/Os (Including Clock Buffers)  
Device  
eX64  
64-Pin TQFP  
100-Pin TQFP  
49-Pin CSP  
128-Pin CSP  
180-Pin CSP  
41  
46  
56  
70  
81  
36  
36  
84  
eX128  
eX256  
100  
100  
132  
Note: Package Definitions: TQFP = Thin Quad Flat Pack, CSP = Chip Scale Package  
Speed Grade and Temperature Grade Matrix  
Std.  
A
Note: Refer to the eX Family FPGAs datasheet for more details on commercial-  
and industrial-grade offerings.  
Contact your local Actel representative for device availability.  
ii  
v3.2  
eX Automotive Family FPGAs  
Table of Contents  
eX Automotive Family FPGAs  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
eX Family Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Other Architectural Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12  
2.5 V LVCMOS2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13  
3.3 V LVTTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14  
CEQ Values for eX Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15  
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16  
eX Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17  
Output Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18  
AC Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18  
Input Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19  
C-Cell Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19  
Cell Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19  
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20  
Temperature and Voltage Derating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20  
eX Family Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24  
Package Pin Assignments  
64-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
100-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
49-Pin CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
128-Pin CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
180-Pin CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11  
Datasheet Information  
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
This datasheet version contains information that is considered to be final. . . . . . 3-1  
Export Administration Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
v3.2  
iii  
eX Automotive Family FPGAs  
eX Automotive Family FPGAs  
low-signal impedance. The antifuses are normally open  
circuit and, when programmed, form a permanent low-  
impedance connection. Actel’s eX family provides two  
types of logic modules, the register cell (R-cell) and the  
combinatorial cell (C-cell).  
General Description  
Based on a 0.22 µm CMOS process technology, the eX  
family of FPGAs is a low-cost solution for low-power,  
high-performance designs. With the automotive  
temperature grade support (–40ºC to 125ºC), the eX  
devices can address many in-cabin telematics and  
automobile interconnect applications. The low-power  
attributes inherent in antifuse technology make the eX  
devices ideal for designers who are looking to integrate  
low-density, power-sensitive automotive applications  
into a programmable logic solution, enabling quick time-  
to-market.  
The R-cell contains a flip-flop featuring asynchronous  
clear, asynchronous preset, and clock enable (using the  
S0 and S1 lines) control signals (Figure 1-1). The R-cell  
registers feature programmable clock polarity selectable  
on a register-by-register basis. This provides additional  
flexibility while allowing mapping of synthesized  
functions into the eX FPGA. The clock source for the R-  
cell can be chosen from either the hardwired clock or the  
routed clock.  
The C-cell implements a range of combinatorial functions  
up to five inputs (Figure 1-2 on page 1-2). Inclusion of  
the DB input and its associated inverter function enables  
the implementation of more than 4,000 combinatorial  
functions in the eX architecture in a single module.  
eX Family Architecture  
The Actel eX family is implemented on a high-voltage  
twin-well CMOS process using 0.22 µm design rules. The  
eX family architecture uses a “sea-of-modules” structure  
where the entire floor of the device is covered with a  
grid of logic modules with virtually no chip area lost to  
interconnect elements or routing. Interconnection  
among these logic modules is achieved using Actel’s  
Two C-cells can be combined together to create a flip-  
flop to imitate an R-cell via the use of the CC macro. This  
is particularly useful when implementing nontiming-  
critical paths and when the design engineer is running  
out of R-cells. For more information about the CC macro,  
refer to the Actel Maximizing Logic Utilization in eX, SX  
and SX-A FPGA Devices Using CC Macros application  
note.  
patented  
metal-to-metal  
programmable  
antifuse  
interconnect elements. The antifuse interconnect is  
made up of a combination of amorphous silicon and  
dielectric material with barrier metals and has an "on"  
state resistance of 25 with a capacitance of 1.0 fF for  
Routed  
Data Input  
S0  
S1  
PSET  
DirectConnect  
Input  
D
Q
Y
HCLK  
CLKA,  
CLKB,  
Internal Logic  
CLR  
CKS  
CKP  
Figure 1-1 R-Cell  
v3.2  
1-1  
eX Automotive Family FPGAs  
DirectConnect is a horizontal routing resource that  
provides connections from a C-cell to its neighboring R-cell  
in a given SuperCluster. DirectConnect uses a hardwired  
signal path requiring no programmable interconnection to  
achieve its fast signal propagation time of less than 0.1 ns.  
Module Organization  
C-cell and R-cell logic modules are arranged into  
horizontal banks called Clusters, each of which contains  
two C-cells and one R-cell in a C-R-C configuration.  
Clusters are further organized into modules called  
SuperClusters for improved design efficiency and device  
performance, as shown in Figure 1-3 on page 1-3. Each  
SuperCluster is a two-wide grouping of Clusters.  
FastConnect enables horizontal routing between any  
two logic modules within a given SuperCluster and  
vertical routing with the SuperCluster immediately  
below it. Only one programmable connection is used in a  
FastConnect path, delivering maximum pin-to-pin  
propagation of 0.6 ns.  
Routing Resources  
In addition to DirectConnect and FastConnect, the  
architecture makes use of two globally oriented routing  
resources, known as segmented routing and high-drive  
routing. Actel’s segmented routing structure provides a  
variety of track lengths for extremely fast routing  
between SuperClusters. The exact combination of track  
lengths and antifuses within each path is chosen by the  
fully automatic place-and-route software to minimize  
signal propagation delays.  
Clusters and SuperClusters can be connected through the  
use of two innovative local routing resources called  
FastConnect and DirectConnect, which enable extremely  
fast and predictable interconnection of modules within  
Clusters and SuperClusters (Figure 1-4 on page 1-3). This  
routing architecture also dramatically reduces the  
number of antifuses required to complete a circuit,  
ensuring the highest possible performance.  
D0  
D1  
Y
D2  
D3  
Sa  
Sb  
DB  
B1  
A1  
A0 B0  
Figure 1-2 C-Cell  
1-2  
v3.2  
eX Automotive Family FPGAs  
R-Cell  
C-Cell  
Routed  
Data Input  
D0  
D1  
S1  
S0  
PSET  
CLR  
Y
D2  
D3  
DirectConnect  
Input  
Q
D
Y
Sb  
Sa  
HCLK  
CLKA,  
CLKB,  
DB  
Internal Logic  
CKS  
CKP  
A0 B0  
A1  
B1  
Cluster  
Cluster  
SuperCluster  
Figure 1-3 Cluster Organization  
DirectConnect  
• No antifuses  
• 0.1 ns routing delay  
SuperClusters  
FastConnect  
• One antifuse  
• 0.6 ns routing delay  
Routing Segments  
• Typically 2 antifuses  
• Max. 5 antifuses  
Figure 1-4 DirectConnect and FastConnect for SuperClusters  
v3.2  
1-3  
eX Automotive Family FPGAs  
Clock Resources  
eX’s high-drive routing structure provides three clock  
networks. The first clock, called HCLK, is hardwired from  
the HCLK buffer to the clock select MUX in each R-cell.  
HCLK cannot be connected to combinational logic. This  
provides a dedicated propagation path for the clock signal  
for the automotive-grade eX devices. The hardwired clock  
is tuned to provide a clock skew of less than 0.1 ns worst  
case. If not used, the HCLK pin must be tied Low or High  
and must not be left floating. Figure 1-5 describes the  
clock circuit used for the constant load HCLK.  
from internal logic signals (via the CLKINT routed clock  
buffer) within the eX device. CLKA and CLKB may be  
connected to sequential cells or to combinational logic. If  
CLKA or CLKB is sourced from internal logic signals, the  
external clock pin cannot be used for any other input  
and must be tied Low or High and must not float.  
Figure 1-6 describes the CLKA and CLKB circuit used in eX  
devices.  
Table 1-1 describes the possible connections of the  
routed clock networks, CLKA and CLKB.  
HCLK does not function until the fourth clock cycle each  
time the device is powered up to prevent false output  
levels due to any possible slow power-on-reset signal and  
fast start-up clock circuit. To activate HCLK from the first  
cycle, the TRST pin must be reserved in the Designer  
software and the pin must be tied to GND on the board.  
(See the "TRST, I/O Boundary Scan Reset Pin" section on  
page 1-24).  
Unused clock pins must not be left floating and must be  
tied to High or Low.  
Constant Load  
Clock Network  
HCLKBUF  
The remaining two clocks (CLKA, CLKB) are global routed  
clock networks that can be sourced from external pins or  
Figure 1-5 eX HCLK Clock Pad  
Clock Network  
From Internal Logic  
CLKBUF  
CLKBUFI  
CLKINT  
CLKINTI  
Figure 1-6 eX Routed Clock Buffer  
Table 1-1 Connections of Routed Clock Networks, CLKA  
and CLKB  
Module  
C-Cell  
Pins  
A0, A1, B0 and B1  
CLKA, CLKB, S0, S1, PSET, and CLR  
EN  
R-Cell  
I/O Cell  
1-4  
v3.2  
eX Automotive Family FPGAs  
to GND on the board. Each I/O module has an available  
pull-up or pull-down resistor of approximately 50 kΩ  
that can configure the I/O in a known state during  
power-up. Just shortly before VCCA reaches 2.5 V, the  
resistors are disabled and the I/Os will be controlled by  
user logic.  
Other Architectural Features  
Performance  
The combination of the various architectural features  
enables automotive-grade eX devices to operate with  
internal clock frequencies at 250 MHz for fast execution  
of complex logic functions.  
Table 1-2 describes the I/O features of eX devices. For  
more information on I/Os, refer to the Actel eX, SX-A,  
and RT54SX-S I/Os application note.  
Automotive-grade eX devices are the optimal platforms  
upon which to integrate in-cabin telematics and  
automobile interconnect applications previously only  
contained in ASICs or gate arrays.  
The automotive eX devices support I/O operation at 2.5 V  
and 3.3 V.  
The detailed description of the I/O pins in eX automotive  
devices can be found in "Pin Description" section on  
page 1-24.  
eX devices meet the performance goals of gate arrays,  
and, at the same time, present significant improvements  
in cost and time to market. Using timing-driven place-  
and-route tools, designers can achieve highly  
deterministic device performance.  
Table 1-2 I/O Features  
Function  
Description  
Input Buffer • 3.3 V LVTTL  
Threshold  
2.5 V LVCMOS2  
User Security  
Selection  
Nominal  
Output Drive  
3.3 V LVTTL  
The Actel FuseLock advantage ensures that unauthorized  
users will not be able to read back the contents of an  
Actel antifuse FPGA. In addition to the inherent  
strengths of the architecture, there is a special Security  
Fuse inside the eX device that disables the probing  
circuitry and prohibits further programming of the  
device. This Fuse cannot be accessed or bypassed without  
destroying access to the rest of the device, making both  
invasive and more-subtle noninvasive attacks ineffective  
against Actel antifuse FPGAs.  
2.5 V LVCMO 2  
Output Buffer “Hot-Swap” Capability  
I/O on an unpowered device does not sink  
current  
Can be used for “cold sparing”  
Selectable on an individual I/O basis  
Individually selectable low-slew option  
Power-Up  
Individually selectable pull-ups and pull-downs  
during power-up (default is to power-up in  
tristate)  
Look for this symbol to ensure your valuable IP is secure.  
Enables deterministic power-up of device  
VCCA and VCCI can be powered in any order  
FuseLock  
Hot Swapping  
eX I/Os are configured to be hot-swappable. During  
power-up/down (or partial up/down), all I/Os are tristated,  
provided VCCA ramps up within a diode drop of VCCI. VCCA  
and VCCI do not have to be stable during power-up/down,  
and they do not require a specific power-up or power-  
down sequence in order to avoid damage to the eX  
devices. In addition, all outputs can be programmed to  
have a weak resistor pull-up or pull-down for tristate  
output at power-up. After the eX device is plugged into  
an electrically active system, the device will not degrade  
the reliability of or cause damage to the host system. The  
device's output pins are driven to a high impedance state  
until normal chip operating conditions are reached. Please  
see the application note, Actel SX-A and RT54SX-S Devices  
in Hot-Swap and Cold-Sparing Applications, which also  
applies to eX devices, for more information on hot  
swapping.  
Figure 1-7 FuseLock  
For more information, refer to Actel's Implementation of  
Security in Actel Antifuse FPGAs application note.  
I/O Modules  
Each I/O on an eX device can be configured as an input, an  
output, a tristate output, or a bidirectional pin. I/O cells in  
eX devices do not contain embedded latches or flip-flops  
and can be inferred directly from HDL code. The device  
can easily interface with any other device in the system,  
which in turn enables parallel design of system  
components and reduces overall design time.  
All unused I/Os are configured as tristate outputs by  
Actel's Designer software, for maximum flexibility when  
designing new boards or migrating existing designs.  
However, it is still recommended to tie all unused I/O pins  
v3.2  
1-5  
eX Automotive Family FPGAs  
Power Requirements  
Power consumption is extremely low for the automotive-grade eX devices due to the low capacitance of the antifuse  
interconnects. The antifuse architecture does not require active circuitry to hold a charge (as do SRAM or EPROM),  
making it the lowest-power FPGA architecture available today.  
Figure 1-8 through Figure 1-11 on page 1-7 show some sample power characteristics of eX devices.  
300  
250  
eX64  
eX128  
eX256  
200  
150  
100  
50  
0
50  
100  
150  
200  
Frequency (MHz)  
Notes:  
1. Device filled with 16-bit counters.  
2. VCCA, VCCI = 2.7 V, device tested at room temperature.  
Figure 1-8 eX Dynamic Power Consumption – High Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
eX64  
eX128  
eX256  
0
10  
20  
30  
40  
50  
Frequency (MHz)  
Notes:  
1. Device filled with 16-bit counters.  
2. VCCA, VCCI = 2.7 V, device tested at room temperature.  
Figure 1-9 eX Dynamic Power Consumption – Low Frequency  
1-6  
v3.2  
eX Automotive Family FPGAs  
180  
160  
140  
120  
100  
80  
32-bit Decoder  
8 x 8-bit Counters  
SDRAM Controller  
60  
40  
20  
0
0
25  
50  
75  
100  
125  
150  
175  
200  
Frequency (MHz)  
Figure 1-10 Total Dynamic Power (mW)  
12  
10  
8
5% DC  
10% DC  
15% DC  
6
4
2
0
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Figure 1-11 System Power at 5%, 10%, and 15% Duty Cycle  
v3.2  
1-7  
eX Automotive Family FPGAs  
Boundary Scan Testing (BST)  
Flexible Mode  
All eX devices are IEEE 1149.1 compliant. eX devices offer  
superior diagnostic and testing capabilities by providing  
Boundary Scan Testing (BST) and probing capabilities.  
These functions are controlled through the special test  
pins (TMS, TDI, TCK, TDO and TRST). The functionality of  
each pin is defined by two available modes, Dedicated  
and Flexible, and is described in Table 1-3. In the  
dedicated test mode, TCK, TDI, and TDO are dedicated  
pins and cannot be used as regular I/Os. In flexible mode  
(default mode), TMS should be set High through a pull-  
up resistor of 10 k. TMS can be pulled Low to initiate  
the test sequence.  
In Flexible mode, TDI, TCK and TDO may be used as  
either user I/Os or as JTAG input pins. The internal  
resistors on the TMS and TDI pins are disabled in flexible  
JTAG mode, and an external 10 kpull-resistor to VCCI is  
required on the TMS pin.  
To select the Flexible mode, users need to uncheck the  
"Reserve JTAG" box in "Device Selection Wizard" in  
Actel Designer software. The functionality of TDI, TCK,  
and TDO pins is controlled by the BST TAP controller. The  
TAP controller receives two control inputs; TMS and TCK.  
Upon power-up, the TAP controller enters the Test-Logic-  
Reset state. In this state, TDI, TCK, and TDO function as  
user I/Os. The TDI, TCK, and TDO pins are transformed  
from user I/Os into BST pins when the TMS pin is Low at  
the first rising edge of TCK. The TDI, TCK, and TDO pins  
return to user I/Os when TMS is held High for at least five  
TCK cycles.  
Table 1-3 Boundary Scan Pin Functionality  
Dedicated Test Mode  
Flexible Mode  
TCK, TDI, TDO are dedicated TCK, TDI, TDO are flexible and  
BST pins may be used as I/Os  
No need for pull-up resistor for Use a pull-up resistor of 10 k  
Table 1-4  
describes  
the  
different  
configuration  
TMS and TDI  
on TMS  
requirements of BST pins and their functionality in  
different modes.  
Dedicated Test Mode  
Table 1-4 Boundary Scan Pin Configurations and  
Functions  
In Dedicated mode, all JTAG pins are reserved for BST;  
designers cannot use them as regular I/Os. An internal  
pull-up resistor is automatically enabled on both TMS  
and TDI pins, and the TMS pin will function as defined in  
the IEEE 1149.1 (JTAG) specification.  
Designer  
"Reserve JTAG"  
Selection  
TAP Controller  
State  
Mode  
Dedicated (JTAG)  
Flexible (User I/O)  
Flexible (JTAG)  
Checked  
Unchecked  
Unchecked  
Any  
To select Dedicated mode, users need to reserve the JTAG  
pins in Actel's Designer software by checking the  
"Reserve JTAG" box in "Device Selection Wizard"  
(Figure 1-12). JTAG pins comply with LVTTL/TTL I/O  
specification regardless of whether they are used as a  
user I/O or a JTAG I/O. Refer to the "3.3 V LVTTL Electrical  
Specifications" section on page 1-13 for detailed  
specifications.  
Test-Logic-Reset  
Any EXCEPT Test-  
Logic-Reset  
TRST Pin  
The TRST pin functions as a dedicated Boundary-Scan  
Reset pin when the "Reserve JTAG Test Reset" option is  
selected as shown in Figure 1-12. An internal pull-up  
resistor is permanently enabled on the TRST pin in this  
mode. It is recommended to connect this pin to GND in  
normal operation to keep the JTAG state controller in  
the Test-Logic-Reset state. When JTAG is being used, it  
can be left floating or be driven High.  
When the "Reserve JTAG Test Reset" option is not  
selected, this pin will function as a regular I/O. If unused  
as an I/O in the design, it will be configured as a tristated  
output.  
Figure 1-12 Device Selection Wizard  
1-8  
v3.2  
eX Automotive Family FPGAs  
The procedure for programming an eX device using  
Silicon Sculptor II is as follows:  
JTAG Instructions  
Table 1-5 lists the supported instructions with the  
corresponding IR codes for eX devices.  
1. Load the .AFM file  
2. Select the device to be programmed  
3. Begin programming  
Table 1-5 JTAG Instruction Code  
Instructions (IR4: IR0)  
EXTEST  
Binary Code  
00000  
When the design is ready to go to production, Actel  
offers device volume-programming services either  
through distribution partners or via in-house  
programming from the factory.  
SAMPLE / PRELOAD  
INTEST  
00001  
00010  
For more details on programming eX Automotive  
devices, please refer to the Programming Antifuse  
Devices and the Silicon Sculptor II User's Guides.  
USERCODE  
IDCODE  
00011  
00100  
HIGHZ  
01110  
CLAMP  
01111  
Probing Capabilities  
Diagnostic  
BYPASS  
10000  
Automotive-grade eX devices provide internal probing  
capability that is accessed with the JTAG pins. The Silicon  
Explorer II Diagnostic hardware is used to control the  
TDI, TCK, TMS, and TDO pins to select the desired nets  
for debugging. The user assigns the selected internal  
nets in the Silicon Explorer II software to the PRA/PRB  
output pins for observation. Probing functionality is  
activated when the BST pins are in JTAG mode and the  
TRST pin is driven High or left floating. If the TRST pin is  
held Low, the TAP controller will remain in the Test-  
Logic-Reset state, so no probing can be performed. The  
Silicon Explorer II automatically places the device into  
JTAG mode, but the user must drive the TRST pin High or  
allow the internal pull-up resistor to pull TRST High.  
11111  
Reserved  
All others  
Table 1-6 lists the codes returned after executing the  
IDCODE instruction for eX devices. Note that bit 0 is  
always "1." Bits 11-1 are always "02F," which is Actel's  
manufacturer code.  
Table 1-6 IDCODE for eX Devices  
Device  
eX64  
Revision  
Bits 31-28  
Bits 27-12  
40B2, 42B2  
40B0, 42B0  
40B5, 42B5  
40B2, 42B2  
40B0, 42B0  
40B5, 42B5  
0
0
0
1
1
1
8
9
9
A
B
B
eX128  
eX256  
eX64  
When you select the "Reserve Probe" box, as shown in  
Figure 1-12 on page 1-8, the Designer software reserves  
the PRA and PRB pins as dedicated outputs for probing.  
This "reserve" option is merely a guideline. If the  
Designer software requires that the PRA and PRB pins be  
user I/Os to achieve successful layout, the tool will use  
these pins for user I/Os. If you assign user I/Os to the PRA  
and PRB pins and select the "Reserve Probe" option,  
Designer Layout will override the option and place user  
I/Os on those pins.  
eX128  
eX256  
Programming  
Device programming is supported through Silicon  
Sculptor series of programmers. In particular, Silicon  
Sculptor II is a compact, robust, single-site and multi-site  
device programmer for the PC.  
To allow for probing capabilities, the security fuse must  
not be programmed. Programming the security fuse will  
disable the probe circuitry. Table 1-7 on page 1-10  
summarizes the possible device configurations for  
probing once the device leaves the "Test-Logic-Reset"  
JTAG state.  
With standalone software, Silicon Sculptor II allows  
concurrent programming of multiple units from the  
same PC, ensuring the fastest programming times  
possible. Each fuse is subsequently verified by Silicon  
Sculptor II to insure correct programming. In addition,  
integrity tests ensure that no extra fuses are  
programmed. Silicon Sculptor II also provides extensive  
hardware self-testing capability.  
v3.2  
1-9  
eX Automotive Family FPGAs  
The Silicon Explorer II tool uses the boundary scan ports  
(TDI, TCK, TMS and TDO) to select the desired nets for  
verification. The selected internal nets are assigned to the  
PRA/PRB pins for observation. Figure 1-13 illustrates the  
interconnection between Silicon Explorer II and the  
automotive-grade eX device to perform in-circuit  
verification.  
Silicon Explorer II Probe  
Silicon Explorer II is an integrated hardware and  
software solution that, in conjunction with Actel  
Designer software tools, allows users to examine any of  
the internal nets of the device while it is operating in a  
prototype or a production system. The user can probe  
into an eX device via the PRA and PRB pins without  
changing the placement and routing of the design and  
without using any additional resources. Silicon  
Explorer II's noninvasive method does not alter timing or  
loading effects, thus shortening the debug cycle.  
Silicon Explorer II does not require relayout or additional  
MUXes to bring signals out to an external pin, which is  
necessary when using programmable logic devices from  
other suppliers.  
Silicon Explorer II samples data at 100 MHz  
(asynchronous) or 66 MHz (synchronous). Silicon  
Explorer II attaches to a PC's standard COM port, turning  
the PC into a fully functional 18-channel logic analyzer.  
Silicon Explorer II allows designers to complete the  
design verification process at their desks and reduces  
verification time from several hours per cycle to a few  
seconds.  
Design Considerations  
The TDI, TCK, TDO, PRA, and PRB pins should not be used  
as input or bidirectional ports. Since these pins are active  
during probing, critical signals input through these pins  
are not available while probing. In addition, the Security  
Fuse should not be programmed because doing so  
disables the probe circuitry. It is recommended to use a  
70series termination resistor on every probe connector  
(TDI, TCK, TMS, TDO, PRA, PRB). The 70 series  
termination is used to prevent data transmission  
corruption during probing and reading back the  
checksum.  
Table 1-7 Device Configuration Options for Probe Capability (TRST pin reserved)  
JTAG Mode  
Dedicated  
Flexible  
TRST1  
Low  
Low  
High  
High  
Security Fuse Programmed  
PRA, PRB2  
User I/O3  
User I/O3  
TDI, TCK, TDO2  
Probing Unavailable  
User I/O3  
No  
No  
No  
No  
Yes  
Dedicated  
Flexible  
Probe Circuit Outputs  
Probe Circuit Outputs  
Probe Circuit Secured  
Probe Circuit Inputs  
Probe Circuit Inputs  
Probe Circuit Secured  
Notes:  
1. If TRST pin is not reserved, the device behaves according to TRST = High in the table.  
2. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, input  
signals will not pass through these pins and may cause contention.  
3. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. Unused pins are automatically tristated by  
Actel’s Designer software.  
16 Pin  
Connection  
eX FPGAs  
TDI  
TCK  
TMS  
TDO  
Serial  
Silicon Explorer II  
Connection  
PRA  
PRB  
22 Pin  
Connection  
Additional 16 Channels  
(Logic Analyzer)  
Figure 1-13 Silicon Explorer II Probe Setup  
1-10  
v3.2  
eX Automotive Family FPGAs  
Development Tool Support  
The automotive-grade eX family of FPGAs is fully  
supported by both the Actel Libero® Integrated Design  
Environment (IDE) and Designer FPGA Development  
software. Actel Libero IDE is a design management  
environment, seamlessly integrating design tools while  
guiding the user through the design flow, managing all  
design and log files, and passing necessary design data  
among tools. Libero IDE allows users to integrate both  
schematic and HDL synthesis into a single flow and verify  
the entire design in a single environment. Libero IDE  
includes Synplify® for Actel from Synplicity®,  
ViewDraw® for Actel from Mentor Graphics®,  
ModelSim® HDL Simulator from Mentor Graphics,  
WaveFormer Lite™ from SynaptiCAD®, and Designer  
software from Actel. Refer to the Libero IDE flow  
(located on Actel’s website) diagram for more  
information.  
Related Documents  
Datasheet  
eX Family FPGAs  
http://www.actel.com/documents/eX_DS.pdf  
Application Notes  
Maximizing Logic Utilization in eX, SX and SX-A FPGA  
Devices Using CC Macros  
http://www.actel.com/documents/CC_Macro_AN.pdf  
Implementation of Security in Actel Antifuse FPGAs  
http://www.actel.com/documents/  
Antifuse_Security_AN.pdf  
Actel eX, SX-A, and RT54SX-S I/Os  
http://www.actel.com/documents/antifuseIO_AN.pdf  
Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-  
Sparing Applications  
http://www.actel.com/documents/  
HotSwapColdSparing_AN.pdf  
Actel's Designer software is a place-and-route tool and  
provides a comprehensive suite of backend support tools  
for FPGA development. The Designer software includes  
Design for Low Power in Actel Antifuse FPGAs  
http://www.actel.com/documents/Low_Power_AN.pdf  
Programming Antifuse Devices  
http://www.actel.com/documents/  
AntifuseProgram_AN.pdf  
timing-driven place-and-route, and  
a
world-class  
integrated static timing analyzer and constraints editor.  
With the Designer software, a user can select and lock  
package pins while only minimally impacting the results  
of place-and-route. Additionally, the back-annotation  
flow is compatible with all the major simulators and the  
simulation results can be cross-probed with Silicon  
Explorer II, Actel’s integrated verification and logic  
analysis tool. Another tool included in the Designer  
software is the SmartGen core builder, which easily  
creates popular and commonly used logic functions for  
implementation into your schematic or HDL design.  
Actel's Designer software is compatible with the most  
popular FPGA design entry and verification tools from  
companies such as Mentor Graphics, Synplicity,  
Synopsys®, and Cadence Design Systems. The Designer  
software is available for both the Windows and UNIX  
operating systems.  
User Guides  
Silicon Sculptor II User's Guide  
http://www.actel.com/techdocs/manuals/  
default.asp#programmers  
Miscellaneous  
Libero IDE flow  
http://www.actel.com/products/tools/libero/flow.html  
v3.2  
1-11  
eX Automotive Family FPGAs  
Operating Conditions  
Table 1-8 Absolute Maximum Ratings*  
Symbol  
VCCI  
VCCA  
VI  
Parameter  
Limits  
–0.3 to +4.0  
–0.3 to +3.0  
–0.5 to VCCI + 0.5  
–0.5 to +VCCI  
–65 to +150  
–65 to +150  
Units  
DC Supply Voltage for I/Os  
DC Supply Voltage for Array  
Input Voltage  
V
V
V
VO  
Output Voltage  
V
TSTG  
Tj  
Storage Temperature  
Maximum Junction Temperature  
°C  
°C  
Note: *Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to  
temperatures between absolute maximum and recommended operating conditions for extended periods may affect device  
reliability. Devices should not be operated outside the Recommended Operating Conditions.  
Table 1-9 Recommended Operating Conditions  
Parameter  
Automotive  
–40 to +125  
2.3 to 2.7  
Units  
°C  
Temperature Range (Tj)  
2.5 V Power Supply  
V
Range (VCCA, VCCI  
)
3.3 V Power Supply  
3.0 to 3.6  
V
Range (VCCI  
)
Note: Automotive grade parts (A grade) devices are tested at room temperature to specifications that have been guard banded based on  
characterization across the recommended operating conditions. A-grade parts are not tested at extended temperatures. If testing  
to ensure guaranteed operation at extended temperatures is required, please contact your local Actel Sales office to discuss testing  
options available.  
Table 1-10 Typical Automotive-Grade eX Standby Current at 25°C  
VCCA= 2.5 V  
VCCA = 2.5 V  
Product  
eX64  
VCCI = 2.5 V  
VCCI = 3.3 V  
397 µA  
497 µA  
eX128  
eX256  
696 µA  
795 µA  
698 µA  
796 µA  
1-12  
v3.2  
eX Automotive Family FPGAs  
Automotive  
2.5 V LVCMOS2 Electrical Specifications  
Symbol  
VOH  
Parameter  
Min.  
Max.  
Units  
V
VCCI = MIN, VI = VIH or VIL  
(IOH = –1 mA)  
(IOL= 1 mA)  
2.0  
VOL  
VCCI = MIN, VI = VIH or VIL  
0.4  
0.7  
V
VIL  
Input Low Voltage, VOUT VOL(max)  
Input High Voltage, VOUT VOH(min)  
Input Leakage Current, VIN = VCCI or GND  
Tristate Output Leakage Current, VOUT = Tristate  
Input Transition Time tR, tF  
Input Capacitance  
V
VIH  
1.7  
–20  
–20  
V
IIL / IIH  
IOZ  
20  
20  
10  
10  
25  
µA  
µA  
ns  
1,2  
tR, tF  
CIN  
pF  
3
ICC  
Standby Current  
mA  
IV Curve  
Can be derived from the IBIS model at www.actel.com/custsup/models/ibis.html.  
Notes:  
1. tR is the transition time from 0.7 V to 1.7 V.  
2. tF is the transition time from 1.7 V to 0.7 V.  
3. ICC = ICCI + ICCA  
3.3 V LVTTL Electrical Specifications  
Automotive  
Symbol  
VOH  
Parameter  
Min.  
Max.  
Units  
V
VCCI = MIN, VI = VIH or VIL  
(IOH = –3.5 mA)  
(IOL= 3.5 mA)  
2.4  
VOL  
VCCI = MIN, VI = VIH or VIL  
0.4  
0.8  
V
VIL  
Input Low Voltage, VOUT VOL(max)  
Input High Voltage, VOUT VOH(min)  
Input Leakage Current, VIN = VCCI or GND  
Tristate Output Leakage Current, VOUT = Tristate  
Input Transition Time tR, tF  
Input Capacitance  
V
VIH  
2.0  
–20  
–20  
V
IIL / IIH  
IOZ  
20  
20  
10  
10  
35  
µA  
µA  
ns  
1,2  
tR, tF  
CIN  
pF  
mA  
3
ICC  
Standby Current  
IV Curve  
Can be derived from the IBIS model at www.actel.com/custsup/models/ibis.html.  
Notes:  
1. tR is the transition time from 0.8 V to 2.0 V.  
2. tF is the transition time from 2.0 V to 0.8 V.  
3. ICC = ICCI + ICCA  
4. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.  
v3.2  
1-13  
eX Automotive Family FPGAs  
5 V Tolerance of 3.3 V LVTTL I/Os Using a Tristate Buffer  
Input: 3.3 V LVTTL I/Os are 5-V-input tolerant only if the non-PCI mode is used (no clamp diode).  
Output: To configure an Actel eX device to drive 5 V with VCCI = 3.3 V, users can utilize an Open Drain configuration of  
the I/O cell with an array inverter cell and an external pull-up resistor to 5 V. The recommended configuration is  
illustrated in Figure 1-14. The I/O configuration must be set to LVTTL to disable the PCI clamp diode. For the  
recommended resistor value in a specific application, please contact Actel Technical Support. For more details, refer to  
the Design Tips section of the Actel eX, SX-A and RT54SX-S I/Os application note.  
Actel Open Drain Configuration  
5 V  
User Internal Signal  
E
PAD  
TRIBUFF  
Figure 1-14 Open-Drain Configuration for eX  
CEQ = Equivalent capacitance  
Power Dissipation  
F
= switching frequency  
Power consumption for eX devices can be divided into  
two components: static and dynamic.  
Equivalent capacitance is calculated by measuring ICCA at  
a specified frequency and voltage for each circuit  
component of interest. Measurements have been made  
Static Power Component  
over a range of frequencies at a fixed value of VCCA  
.
Equivalent capacitance is frequency-independent, so the  
results can be used over a wide range of operating  
conditions. Equivalent capacitance values are shown  
below.  
The power due to standby current is typically a small  
component of the overall power. Typical standby current  
for eX devices is listed in Table 1-10 on page 1-12. For  
example, the typical static power for eX128 at 3.3 V VCCI  
is:  
I
CC * VCCA = 795 µA x 2.5 V = 1.99 mW  
CEQ Values for eX Devices  
Combinatorial modules (Ceqcm) 1.70 pF  
Dynamic Power Component  
Sequential modules (Ceqsm)  
Input buffers (Ceqi)  
Output buffers (Ceqo)  
Routed array clocks (Ceqcr)  
1.70 pF  
1.30 pF  
7.40 pF  
1.05 pF  
Power dissipation in CMOS devices is usually dominated  
by the dynamic power dissipation. This component is  
frequency-dependent and a function of the logic and the  
external I/O. Dynamic power dissipation results from  
charging internal chip capacitance. An additional  
component of the dynamic power dissipation is the  
totem pole current in the CMOS transistor pairs. The net  
effect can be associated with an equivalent capacitance  
that can be combined with frequency and voltage to  
represent dynamic power dissipation.  
The variable and fixed capacitance of other device  
components must also be taken into account when  
estimating the dynamic power dissipation.  
Dynamic power dissipation = CEQ * VCCA2 x F  
1-14  
v3.2  
eX Automotive Family FPGAs  
Table 1-11 shows the capacitance of the clock  
components of eX devices.  
fn  
fp  
= Average input buffer switching frequency,  
typically F/5  
= Average output buffer switching frequency,  
typically F/5  
= Frequency of routed clock A  
= Frequency of routed clock B  
= Frequency of dedicated array clock  
Table 1-11 Capacitance of Clock Components of eX  
Devices  
fq1  
fq2  
fs1  
eX64  
eX128  
eX256  
Dedicated array clock –  
variable (Ceqhv)  
0.85 pF  
0.85 pF  
0.85 pF  
The eX, SX-A and RTSX-S Power Calculator can be used to  
estimate the total power dissipation (static and dynamic)  
of eX devices and can be found at  
http://www.actel.com/products/rescenter/power/  
calculators.aspx.  
Dedicated array clock – fixed  
(Ceqhf)  
18.00 pF 20.00 pF 25.00 pF  
Routed array clock A (r1)  
Routed array clock B (r2)  
23.00 pF 28.00 pF 35.00 pF  
23.00 pF 28.00 pF 35.00 pF  
Junction Temperature  
The estimation of the dynamic power dissipation is a  
piece-wise linear summation of the power dissipation of  
each component.  
The temperature variable in the Designer software refers  
to the junction temperature, not the ambient  
temperature. This is an important distinction because the  
heat generated from dynamic power consumption is  
usually hotter than the ambient temperature. EQ 1-1,  
shown below, can be used to calculate junction  
temperature. Please refer to Table 1-9 on page 1-12 for  
the recommended operating conditions.  
Dynamic power dissipation  
= VCCA2 * [(mc * Ceqcm * fmC)Comb Modules + (ms * Ceqsm  
*
fmS)Seq Modules + (n * Ceqi * fn)Input Buffers + (0.5 * (q1 *  
Ceqcr * fq1) + (r1 * fq1))RCLKA + (0.5 * (q2 * Ceqcr * fq2) +  
(r2 * fq2))RCLKB + (0.5 * (s1 * Ceqhv * fs1)+(Ceqhf  
*
fs1))HCLK] + VCCI2 * [(p * (Ceqo + CL) * fp)Output Buffers  
where:  
]
EQ 1-1  
mc  
ms  
n
= Number of combinatorial cells switching at  
Junction Temperature = T + Ta(1)  
frequency fm, typically 20% of C-cells  
= Number of sequential cells switching at  
frequency fm, typically 20% of R-cells  
= Number of input buffers switching at  
frequency fn, typically number of inputs / 4  
= Number of output buffers switching at  
frequency fp, typically number of outputs / 4  
= Number of R-cells driven by routed array  
clock A  
Where:  
Ta = Ambient Temperature  
T = Temperature gradient between junction (silicon)  
and ambient = θja * P  
p
P = Power  
q1  
q2  
θ
= Junction to ambient of package. θ numbers are  
ja  
located in the "Package Thermal Characteristics" section  
on page 1-16.  
ja  
= Number of R-cells driven by routed array  
clock B  
r1  
r2  
s1  
= Fixed capacitance due to routed array clock A  
= Fixed capacitance due to routed array clock B  
= Number of R-cells driven by dedicated array  
clock  
Ceqcm = Equivalent capacitance of combinatorial  
modules  
Ceqsm = Equivalent capacitance of sequential modules  
Ceqi = Equivalent capacitance of input buffers  
Ceqcr = Equivalent capacitance of routed array clocks  
Ceqhv = Variable capacitance of dedicated array clock  
Ceqhf = Fixed capacitance of dedicated array clock  
Ceqo = Equivalent capacitance of output buffers  
CL  
= Average output loading capacitance, typically  
10pF  
fmc  
= Average C-cell switching frequency, typically  
F/10  
fms = Average R-cell switching frequency, typically  
F/10  
v3.2  
1-15  
eX Automotive Family FPGAs  
Package Thermal Characteristics  
The device junction-to-case thermal characteristic is θjc,  
and the junction-to-ambient air characteristic is θja. The  
thermal characteristics for θja are shown with two  
different air flow rates. θjc is provided for reference.  
The maximum power dissipation allowed for eX devices  
is a function of θja. A sample calculation of the absolute  
maximum power dissipation allowed for a TQFP 100-pin  
package at automotive temperature and still air is as  
follows:  
The maximum junction temperature is 150°C.  
Max. junction temp. (°C) Max. ambient temp. (°C) 150°C 125°C  
--------------------------------------------------------------------------------------------------------------------------------- -------------------------------------  
= 0.746 W  
Maximum Power Allowed =  
=
θja(°C/W)  
33.5°C/W  
Table 1-12 Package Thermal Characteristics  
θja  
ja 1.0 m/s  
36.3  
Package Type  
Pin Count  
θjc  
Still Air  
42.4  
θ
θ
ja 2.5 m/s  
Units  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Thin Quad Flat Pack  
Thin Quad Flat Pack  
Chip-Scale Package  
Chip-Scale Package  
Chip-Scale Package  
64  
100  
49  
12.0  
14.0  
34.0  
33.5  
27.4  
25.0  
72.2  
59.5  
54.1  
128  
180  
54.1  
44.6  
40.6  
57.8  
47.6  
43.3  
1-16  
v3.2  
eX Automotive Family FPGAs  
eX Timing Model  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
Combinatorial  
Cell  
t
t
= 0.5 ns  
= 0.7 ns  
I/O Module  
I/O Module  
IRD1  
IRD2  
t
= 1.3 ns  
INYH  
t
= 4.9 ns  
DHL  
t
= 1.1 ns  
PD  
t
t
t
= 0.6 ns  
RD1  
= 1.1 ns  
RD4  
= 1.9 ns  
RD8  
I/O Module  
Register  
Cell  
t
= 4.0 ns  
ENZL  
D
Q
t
t
t
RD1  
= 0.8 ns  
= 0.6 ns  
SUD  
HD  
= 0.0 ns  
t
= 4.9 ns  
DHL  
Routed  
Clock  
t
= 2.3 ns  
RCKH  
t
= 1.0 ns  
(100% Load)  
RCO  
I/O Module  
Register  
Cell  
I/O Module  
t
= 1.3 ns  
t
= 4.0 ns  
INYH  
ENZL  
t
= 0.5 ns  
= 0.8 ns  
IRD1  
D
Q
t
t
t
RD1  
= 0.6 ns  
SUD  
= 0.0 ns  
HD  
t
= 4.9 ns  
DHL  
Hardwired  
Clock  
t
t
RCO  
= 1.8 ns  
= 1.0 ns  
HCKH  
Note: *Values shown for eX128, worst-case automotive conditions (2.3 V VCCA, 3.3 V VCCI, 35 pF Pad Load).  
Figure 1-15 eX Timing Model  
Hardwired Clock  
Routed Clock  
External Setup = tINYH + tIRD1 + tSUD – tHCKH  
External Setup = tINYH + tIRD2 + tSUD – tRCKH  
=
1.3 + 0.5 + 0.8 – 1.8 = 0.8 ns  
=
1.3 + 0.7 + 0.8 – 2.3 = 0.5 ns  
Clock-to-Out (Pad-to-Pad), typical  
Clock-to-Out (Pad-to-Pad), typical  
=
=
t
HCKH + tRCO + tRD1 + tDHL  
=
=
t
RCKH + tRCO + tRD1 + tDHL  
1.8 + 1.0 + 0.6 + 4.9 = 8.3 ns  
2.3 + 1.0 + 0.6 + 4.9 = 8.8 ns  
v3.2  
1-17  
eX Automotive Family FPGAs  
Output Buffer Delays  
E
D
PAD To AC test loads (shownbelow)  
VCC  
TRIBUFF  
VCC  
VCC  
50% 50%  
VCC  
In  
50%  
50%  
GND  
1.5 V  
50% 50%  
VOH  
GND  
En  
GND  
90%  
En  
Out  
VOH  
1.5 V  
1.5 V  
10%  
Out  
VOL  
1.5 V  
Out  
GND  
VOL  
t
t
t
t
t
ENHZ  
t
DHL  
DLH  
ENZL  
ENZH  
ENLZ  
Table 1-13 Output Buffer Delays  
AC Test Loads  
Load 3  
(Used to measure disable delays)  
Load 1  
(used to measure  
propagation delay)  
Load 2  
(Used to measure enable delays)  
GND  
GND  
VCC  
VCC  
To the output  
under test  
t
t
R to VCC for PLZ  
R to VCC for PZL  
35 pF  
t
t
To the output  
under test  
To the output  
under test  
R to GND for PHZ  
R to GND for PHZ  
R = 1 k  
R = 1 kΩ  
35 pF  
5 pF  
Figure 1-16 AC Test Loads  
1-18  
v3.2  
eX Automotive Family FPGAs  
Input Buffer Delays  
C-Cell Delays  
S
Y
A
B
Y
PAD  
INBUF  
VCC  
S, A, or B  
50%  
tPD  
50%  
VCC  
GND  
3V  
1.5 V 1.5 V  
50%  
Out  
GND  
50%  
In  
0V  
tPD  
V
CC  
50%  
VCC  
Out  
Out  
50%  
GND  
tPD  
50%  
tPD  
50%  
GND  
tINY  
tINY  
Table 1-14 Input Buffer Delays  
Table 1-15 C-Cell Delays  
Cell Timing Characteristics  
D
Q
PRESET  
CLR  
CLK  
(Positive edge triggered)  
tHD  
D
tHP  
tSUD  
tHPWH  
,
tRPWH  
CLK  
,
tHPWL  
tRPWL  
tRCO  
Q
tPRESET  
tCLR  
tWASYN  
CLR  
PRESET  
Figure 1-17 Flip-Flops  
v3.2  
1-19  
eX Automotive Family FPGAs  
Long Tracks  
Timing Characteristics  
Some nets in the design use long tracks. Long tracks are  
special routing resources that span multiple rows,  
columns, or modules. Long tracks employ three to five  
antifuse connections. This increases capacitance and  
resistance, resulting in longer net delays for macros  
connected to long tracks. Typically, no more than six  
percent of nets in a fully utilized device require long  
tracks. Long tracks contribute approximately 4 ns to  
8.4 ns delay. This additional delay is represented  
statistically in higher fanout routing delays.  
Timing characteristics for eX devices fall into three  
categories: family-dependent, device-dependent, and  
design-dependent. The input and output buffer  
characteristics are common to all eX family members.  
Internal routing delays are device-dependent. Design  
dependency means actual delays are not determined  
until after placement and routing of the user’s design are  
complete. Delay values may then be determined by using  
the Timer tool in the Designer software or performing  
simulation with post-layout delays.  
Table 1-17  
on  
page 1-21  
lists  
sample  
timing  
characteristics for automotive eX devices.  
Timing Derating  
eX devices are manufactured with a CMOS process.  
Therefore, device performance varies according to  
temperature, voltage, and process changes. Minimum  
timing parameters reflect maximum operating voltage,  
minimum operating temperature, and best-case  
processing. Maximum timing parameters reflect  
minimum operating voltage, maximum operating  
temperature, and worst-case processing.  
Critical Nets and Typical Nets  
Propagation delays are expressed only for typical nets,  
which are used for initial design performance evaluation.  
Critical net delays can then be applied to the most timing  
critical paths. Critical nets are determined by net  
property assignment prior to placement and routing. Up  
to six percent of the nets in a design may be designated  
as critical.  
Temperature and Voltage Derating Factors  
Table 1-16 Temperature and Voltage Derating Factors  
(Normalized to Worst-Case Commercial, TJ = 125°C, VCCA = 2.3 V)  
Junction Temperature (TJ)  
25 70  
VCCA  
2.3  
–55  
0.70  
0.65  
0.61  
–40  
0.70  
0.66  
0.62  
0
85  
125  
1.00  
0.93  
0.88  
0.77  
0.72  
0.67  
0.78  
0.73  
0.69  
0.88  
0.83  
0.78  
0.91  
0.85  
0.80  
2.5  
2.7  
1-20  
v3.2  
eX Automotive Family FPGAs  
eX Family Timing Characteristics  
Table 1-17 eX Family Timing Characteristics  
(Worst-Case Automotive Conditions, VCCA = 2.3 V, TJ = 125°C)  
‘Std.’ Speed  
Parameter  
Description  
Min.  
Max.  
Units  
C-Cell Propagation Delays1  
tPD  
Internal Array Module  
1.1  
ns  
Predicted Routing Delays2  
tDC  
FO=1 Routing Delay, DirectConnect  
0.1  
0.6  
0.6  
0.7  
0.9  
1.1  
1.9  
2.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO=1 Routing Delay, FastConnect  
FO=1 Routing Delay  
tRD1  
tRD2  
FO=2 Routing Delay  
tRD3  
FO=3 Routing Delay  
tRD4  
FO=4 Routing Delay  
tRD8  
FO=8 Routing Delay  
tRD12  
R-Cell Timing  
tRCO  
FO=12 Routing Delay  
Sequential Clock-to-Q  
1.0  
0.9  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
Asynchronous Recovery Time  
Asynchronous Hold Time  
tPRESET  
tSUD  
0.8  
0.0  
2.2  
0.6  
0.6  
tHD  
tWASYN  
tRECASYN  
tHASYN  
2.5 V Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y High  
Input Data Pad-to-Y Low  
1.1  
1.4  
ns  
ns  
3.3 V Input Module Propagation Delays  
tINYH  
Input Data Pad-to-Y High  
1.3  
1.6  
ns  
ns  
tINYL  
Input Data Pad-to-Y Low  
Input Module Predicted Routing Delays2  
tIRD1  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
0.5  
0.7  
0.9  
ns  
ns  
ns  
tIRD2  
tIRD3  
Notes:  
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance.  
3. Clock skew improves as the clock network becomes more heavily loaded.  
4. Delays based on 35 pF loading.  
v3.2  
1-21  
eX Automotive Family FPGAs  
Table 1-17 eX Family Timing Characteristics  
(Worst-Case Automotive Conditions, VCCA = 2.3 V, TJ = 125°C)  
‘Std.’ Speed  
Parameter  
tIRD4  
Description  
Min.  
Max.  
Units  
ns  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
1.1  
1.9  
2.8  
tIRD8  
ns  
tIRD12  
ns  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
Input Low to High  
(Pad to R-Cell Input)  
1.8  
1.8  
ns  
ns  
tHCKL  
Input High to Low  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
2.0  
2.0  
ns  
ns  
0.1  
ns  
Minimum Period  
4.0  
ns  
fHMAX  
Maximum Frequency  
250  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input Low to High (Light Load)  
(Pad to R-Cell Input)  
1.6  
1.6  
1.9  
1.9  
2.3  
2.3  
ns  
ns  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-Cell Input)  
Input Low to High (50% Load)  
(Pad to R-Cell Input)  
Input High to Low (50% Load)  
(Pad to R-Cell Input)  
Input Low to High (100% Load)  
(Pad to R-Cell Input)  
Input High to Low (100% Load)  
(Pad to R-Cell Input)  
tRPWH  
Min. Pulse Width High  
2.0  
2.0  
ns  
ns  
ns  
ns  
ns  
tRPWL  
Min. Pulse Width Low  
3
3
3
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.3  
0.2  
0.1  
2.5 V LVCMOS2 Output Module Timing4 (VCCI = 2.3 V)  
tDLH  
Data-to-Pad Low to High  
5.9  
6.3  
ns  
ns  
ns  
tDHL  
Data-to-Pad High to Low  
tDHLS  
Notes:  
Data-to-Pad High to Low—Low Slew  
20.8  
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance.  
3. Clock skew improves as the clock network becomes more heavily loaded.  
4. Delays based on 35 pF loading.  
1-22  
v3.2  
eX Automotive Family FPGAs  
‘Std.’ Speed  
Table 1-17 eX Family Timing Characteristics  
(Worst-Case Automotive Conditions, VCCA = 2.3 V, TJ = 125°C)  
Parameter  
tENZL  
Description  
Min.  
Max.  
4.5  
Units  
ns  
Enable-to-Pad, Z to L  
tENZLS  
tENZH  
Enable-to-Pad Z to L—Low Slew  
Enable-to-Pad, Z to H  
21.2  
6.1  
ns  
ns  
tENLZ  
Enable-to-Pad, L to Z  
3.8  
ns  
tENHZ  
Enable-to-Pad, H to Z  
7.1  
ns  
dTLH  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
Delta Delay vs. Load High to Low—Low Slew  
0.058  
0.028  
0.090  
ns/pF  
ns/pF  
ns/pF  
dTHL  
dTHLS  
3.3 V LVTTL Output Module Timing1 (VCCI = 3.0 V)  
tDLH  
Data-to-Pad Low to High  
5.0  
4.9  
ns  
ns  
tDHL  
Data-to-Pad High to Low  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
Data-to-Pad High to Low—Low Slew  
Enable-to-Pad, Z to L  
17.4  
4.0  
ns  
ns  
Enable-to-Pad Z to L—Low Slew  
Enable-to-Pad, Z to H  
17.4  
5.0  
ns  
ns  
Enable-to-Pad, L to Z  
5.0  
ns  
Enable-to-Pad, H to Z  
4.8  
ns  
Delta Delay vs. Load Low to High  
Delta Delay vs. Load High to Low  
Delta Delay vs. Load High to Low—Low Slew  
0.038  
0.028  
0.090  
ns/pF  
ns/pF  
ns/pF  
dTHL  
dTHLS  
Notes:  
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance.  
3. Clock skew improves as the clock network becomes more heavily loaded.  
4. Delays based on 35 pF loading.  
v3.2  
1-23  
eX Automotive Family FPGAs  
Pin Description  
CLKA/B  
Routed Clock A and B  
TDI, I/O  
Test Data Input  
These pins are clock inputs for clock distribution  
networks. Input levels are compatible with LVTTL and  
LVCMOS specifications. The clock input is buffered prior  
to clocking the R-cells. If not used, this pin must be set  
Low or High on the board. It must not be left floating.  
Serial input for boundary scan testing and diagnostic  
probe. In flexible mode, TDI is active when the TMS pin is  
set Low (refer to Table 1-3 on page 1-8). This pin  
functions as an I/O when the boundary scan state  
machine reaches the “logic reset” state.  
GND  
Ground  
TDO, I/O  
Test Data Output  
Low supply voltage.  
Serial output for boundary scan testing. In flexible mode,  
TDO is active when the TMS pin is set Low (refer to  
Table 1-3 on page 1-8). This pin functions as an I/O when  
the boundary scan state machine reaches the "logic  
reset" state. When Silicon Explorer is being used, TDO  
will act as an output when the "checksum" command is  
run. It will return to a user I/O when "checksum" is  
complete.  
HCLK  
Dedicated (Hardwired)  
Array Clock  
This pin is the clock input for sequential modules. Input  
levels are compatible with LVTTL and LVCMOS  
specifications. This input is directly wired to each R-cell and  
offers clock speeds independent of the number of R-cells  
being driven. If not used, this pin must be set Low or High  
on the board. It must not be left floating.  
TMS  
Test Mode Select  
The TMS pin controls the use of the IEEE 1149.1  
boundary scan pins (TCK, TDI, TDO, TRST). In flexible  
mode, when the TMS pin is set Low, the TCK, TDI, and  
TDO pins are boundary scan pins (refer to Table 1-3 on  
page 1-8). Once the boundary scan pins are in test mode,  
they will remain in that mode until the internal  
boundary scan state machine reaches the “logic reset”  
state. At this point, the boundary scan pins will be  
released and will function as regular I/O pins. The “logic  
reset” state is reached five TCK cycles after the TMS pin is  
set High. In dedicated test mode, TMS functions as  
specified in the IEEE 1149.1 specifications.  
I/O  
Input/Output  
The I/O pin functions as an input, output, tristate, or  
bidirectional buffer. Input and output levels are  
compatible with LVTTL and LVCMOS specifications.  
Unused I/O pins are automatically tristated by the  
Designer software. It is recommended to tie unused I/Os  
to Low on the board. This also applies to dual-purpose  
pins when configured as I/Os.  
NC  
No Connection  
This pin is not connected to circuitry within the device.  
These pins can be driven to any voltage or can be left  
floating with no effect on the operation of the device.  
TRST, I/O  
Boundary Scan Reset Pin  
Once it is configured as the JTAG Reset pin, the TRST pin  
functions as an active-low input to asynchronously  
initialize or reset the boundary scan circuit. The TRST pin  
is equipped with an internal pull-up resistor. This pin  
functions as an I/O when the “Reserve JTAG Reset Pin” is  
not selected in the Designer software.  
PRA/PRB, I/O  
Probe A/B  
The Probe pin is used to output data from any user-  
defined design node within the device. This diagnostic  
pin can be used independently or in conjunction with the  
other probe pin to allow real-time diagnostic output of  
any signal path within the device. The Probe pin can be  
employed as a user-defined I/O when verification has  
been completed. The pin’s probe capabilities can be  
permanently disabled to protect programmed design  
confidentiality.  
V
Supply Voltage  
CCI  
Supply voltage for I/Os.  
V
Supply Voltage  
CCA  
Supply voltage for Array.  
TCK, I/O  
Test Clock  
Test clock input for diagnostic probe and device  
programming. In flexible mode, TCK becomes active  
when the TMS pin is set Low (refer to Table 1-3 on  
page 1-8). This pin functions as an I/O when the  
boundary scan state machine reaches the “logic reset”  
state.  
1-24  
v3.2  
eX Automotive Family FPGAs  
Package Pin Assignments  
64-Pin TQFP  
64  
1
64-Pin  
TQFP  
Figure 2-1 64-Pin TQFP  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/rescenter/package/index.html.  
v3.2  
2-1  
eX Automotive Family FPGAs  
64-Pin TQFP  
64-Pin TQFP  
eX64  
eX128  
eX64  
eX128  
Pin Number  
Function  
Function  
Pin Number  
Function  
Function  
1
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
GND  
I/O  
GND  
I/O  
2
3
I/O  
I/O  
4
TMS  
GND  
VCCI  
I/O  
TMS  
GND  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
5
6
7
I/O  
I/O  
8
I/O  
I/O  
NC  
I/O  
9
NC  
I/O  
NC  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
NC  
I/O  
I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
NC  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
PRB, I/O  
VCCA  
GND  
I/O  
PRB, I/O  
VCCA  
GND  
I/O  
I/O  
I/O  
CLKA  
CLKB  
VCCA  
GND  
PRA, I/O  
I/O  
CLKA  
CLKB  
VCCA  
GND  
PRA, I/O  
I/O  
HCLK  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
TDO, I/O  
TCK, I/O  
TCK, I/O  
2-2  
v3.2  
eX Automotive Family FPGAs  
100-Pin TQFP  
100  
1
100-Pin  
TQFP  
Figure 2-2 100-Pin TQFP (Top View)  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/rescenter/package/index.html.  
v3.2  
2-3  
eX Automotive Family FPGAs  
100-Pin TQFP  
100-Pin TQFP  
eX64  
eX128  
eX256  
eX64  
eX128  
eX256  
Pin Number  
Function  
Function  
Function  
Pin Number  
Function  
GND  
NC  
Function  
Function  
1
GND  
TDI, I/O  
NC  
GND  
TDI, I/O  
NC  
GND  
TDI, I/O  
I/O  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
GND  
NC  
GND  
NC  
2
3
I/O  
I/O  
I/O  
4
NC  
NC  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
5
NC  
NC  
I/O  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
7
TMS  
TMS  
TMS  
I/O  
I/O  
I/O  
8
V
V
V
CCI  
I/O  
I/O  
I/O  
CCI  
CCI  
9
GND  
NC  
GND  
I/O  
GND  
I/O  
V
V
V
CCI  
CCI  
CCI  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
NC  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
NC  
I/O  
I/O  
TRST, I/O  
NC  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
GND  
NC  
GND  
NC  
GND  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
NC  
I/O  
I/O  
NC  
NC  
I/O  
V
V
V
CCI  
I/O  
I/O  
I/O  
CCI  
CCI  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
V
V
CCA  
CCA  
CCA  
NC  
NC  
I/O  
V
V
V
CCI  
CCI  
CCI  
NC  
NC  
I/O  
NC  
I/O  
NC  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
V
V
CCA  
CCA  
CCA  
I/O  
I/O  
I/O  
GND  
GND  
GND  
PRB, I/O  
PRB, I/O  
PRB, I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
V
V
V
CCA  
CCA  
CCA  
2-4  
v3.2  
eX Automotive Family FPGAs  
100-Pin TQFP  
eX64  
eX128  
eX256  
Pin Number  
Function  
Function  
Function  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
I/O  
I/O  
I/O  
NC  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
V
V
V
CCI  
CCI  
CCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
V
V
V
CCA  
CCA  
CCA  
GND  
PRA, I/O  
I/O  
GND  
PRA, I/O  
I/O  
GND  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
v3.2  
2-5  
eX Automotive Family FPGAs  
49-Pin CSP  
A1 Ball Pad Corner  
2
3
6
1
5
7
4
A
B
C
D
E
F
G
Figure 2-3 49-Pin CSP (Top View)  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/rescenter/package/index.html.  
2-6  
v3.2  
eX Automotive Family FPGAs  
49-Pin CSP  
49-Pin CSP  
eX64  
eX128  
eX64  
eX128  
Pin Number  
Function  
Function  
Pin Number  
Function  
Function  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
D1  
D2  
D3  
D4  
I/O  
I/O  
I/O  
I/O  
D5  
D6  
D7  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
F1  
VCCA  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
TRST, I/O  
VCCI  
GND  
I/O  
TRST, I/O  
VCCI  
GND  
I/O  
I/O  
I/O  
TCK, I/O  
I/O  
TCK, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
PRA, I/O  
CLKA  
I/O  
PRA, I/O  
CLKA  
I/O  
F2  
I/O  
I/O  
F3  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
F4  
I/O  
I/O  
F5  
HCLK  
I/O  
HCLK  
I/O  
TDI, I/O  
VCCI  
GND  
CLKB  
VCCA  
I/O  
TDI, I/O  
VCCI  
GND  
CLKB  
VCCA  
I/O  
F6  
F7  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
VCCA  
I/O  
PRB, I/O  
VCCA  
I/O  
I/O  
I/O  
TMS  
GND  
GND  
TMS  
GND  
GND  
I/O  
I/O  
v3.2  
2-7  
eX Automotive Family FPGAs  
128-Pin CSP  
A1 Ball Pad Corner  
2
3
4
5
6
8
12  
1
7
9
10  
11  
A
B
C
D
E
F
G
H
J
K
L
M
Figure 2-4 128-Pin CSP (Top View)  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/rescenter/package/index.html.  
2-8  
v3.2  
eX Automotive Family FPGAs  
128-Pin CSP  
128-Pin CSP  
eX64  
eX128  
eX256  
eX64  
eX128  
eX256  
Pin Number  
A1  
Function  
Function  
Function  
Pin Number  
C12  
D1  
Function  
Function  
Function  
I/O  
I/O  
TCK, I/O  
VCCI  
I/O  
I/O  
TCK, I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A2  
TCK, I/O  
VCCI  
I/O  
NC  
A3  
D2  
I/O  
I/O  
I/O  
A4  
D3  
I/O  
I/O  
I/O  
A5  
I/O  
I/O  
I/O  
D4  
I/O  
I/O  
I/O  
A6  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
D5  
I/O  
I/O  
I/O  
A7  
D6  
GND  
I/O  
GND  
I/O  
GND  
I/O  
A8  
I/O  
I/O  
I/O  
D7  
A9  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
D8  
GND  
I/O  
GND  
I/O  
GND  
I/O  
A10  
A11  
A12  
B1  
D9  
I/O  
I/O  
I/O  
D10  
D11  
D12  
E1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TMS  
I/O  
TMS  
I/O  
TMS  
I/O  
VCCI  
NC  
VCCI  
I/O  
VCCI  
I/O  
B2  
B3  
I/O  
I/O  
I/O  
E2  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
B4  
I/O  
I/O  
I/O  
E3  
B5  
I/O  
I/O  
I/O  
E4  
GND  
GND  
I/O  
GND  
GND  
I/O  
GND  
GND  
I/O  
B6  
PRA, I/O  
CLKB  
I/O  
PRA, I/O  
CLKB  
I/O  
PRA, I/O  
CLKB  
I/O  
E9  
B7  
E10  
E11  
E12  
F1  
B8  
GND  
VCCA  
NC  
GND  
VCCA  
I/O  
GND  
VCCA  
I/O  
B9  
I/O  
I/O  
I/O  
B10  
B11  
B12  
C1  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
F2  
NC  
I/O  
I/O  
F3  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
F4  
I/O  
I/O  
I/O  
C2  
TDI, I/O  
I/O  
TDI, I/O  
I/O  
TDI, I/O  
I/O  
F9  
GND  
NC  
GND  
I/O  
GND  
I/O  
C3  
F10  
F11  
F12  
G1  
C4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
C5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
C6  
CLKA  
I/O  
CLKA  
I/O  
CLKA  
I/O  
NC  
I/O  
I/O  
C7  
G2  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
C8  
I/O  
I/O  
I/O  
G3  
C9  
I/O  
I/O  
I/O  
G4  
GND  
GND  
NC  
GND  
GND  
I/O  
GND  
GND  
I/O  
C10  
C11  
NC  
I/O  
I/O  
G9  
NC  
I/O  
I/O  
G10  
v3.2  
2-9  
eX Automotive Family FPGAs  
128-Pin CSP  
128-Pin CSP  
eX64  
eX128  
eX256  
eX64  
eX128  
eX256  
Pin Number  
Function  
Function  
Function  
Pin Number  
K8  
Function  
Function  
Function  
G11  
G12  
H1  
H2  
H3  
H4  
H9  
H10  
H11  
H12  
J1  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
K9  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
K10  
K11  
K12  
L1  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
VCCI  
GND  
I/O  
VCCI  
GND  
I/O  
VCCI  
GND  
I/O  
I/O  
I/O  
I/O  
L2  
I/O  
I/O  
I/O  
VCCI  
VCCA  
NC  
VCCI  
VCCA  
I/O  
VCCI  
VCCA  
I/O  
L3  
NC  
I/O  
I/O  
L4  
I/O  
I/O  
I/O  
L5  
I/O  
I/O  
I/O  
NC  
NC  
VCCA  
I/O  
L6  
I/O  
I/O  
I/O  
J2  
I/O  
I/O  
L7  
I/O  
I/O  
I/O  
J3  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
L8  
I/O  
I/O  
I/O  
J4  
L9  
I/O  
I/O  
I/O  
J5  
I/O  
I/O  
I/O  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
I/O  
I/O  
I/O  
J6  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
J7  
GND  
I/O  
GND  
I/O  
GND  
I/O  
VCCI  
GND  
I/O  
VCCI  
GND  
I/O  
VCCI  
GND  
I/O  
J8  
J9  
GND  
I/O  
GND  
I/O  
GND  
I/O  
J10  
J11  
J12  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
HCLK  
PRB, I/O  
HCLK  
PRB, I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2-10  
v3.2  
eX Automotive Family FPGAs  
180-Pin CSP  
A1 Ball Pad Corner  
12  
1
2
3
4
5
6
7
9 10  
14  
13  
8
11  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Figure 2-5 180-Pin CSP  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.actel.com/products/rescenter/package/index.html.  
v3.2  
2-11  
eX Automotive Family FPGAs  
180-Pin CSP  
180-Pin CSP  
180-Pin CSP  
180-Pin CSP  
Pin  
eX256  
Pin  
eX256  
Pin  
eX256  
Pin  
eX256  
Number  
Function  
Number  
Function  
Number  
E11  
E12  
E13  
E14  
F1  
Function  
Number  
H14  
J1  
Function  
A1  
A2  
I/O  
I/O  
C6  
I/O  
PRA, I/O  
CLKB  
I/O  
I/O  
I/O  
I/O  
I/O  
C7  
A3  
GND  
NC  
C8  
VCCI  
I/O  
J2  
GND  
I/O  
A4  
C9  
J3  
A5  
NC  
C10  
C11  
C12  
C13  
C14  
D1  
I/O  
I/O  
J4  
VCCI  
GND  
I/O  
A6  
NC  
I/O  
F2  
I/O  
J5  
A7  
NC  
GND  
I/O  
F3  
VCCI  
I/O  
J10  
J11  
J12  
J13  
J14  
K1  
A8  
NC  
F4  
VCCI  
VCCA  
I/O  
A9  
NC  
I/O  
F5  
GND  
GND  
I/O  
A10  
A11  
A12  
A13  
A14  
B1  
NC  
I/O  
F10  
F11  
F12  
F13  
F14  
G1  
NC  
D2  
I/O  
I/O  
I/O  
D3  
TDI, I/O  
I/O  
GND  
VCCA  
I/O  
I/O  
I/O  
D4  
K2  
VCCA  
I/O  
I/O  
D5  
I/O  
K3  
I/O  
D6  
I/O  
VCCA  
I/O  
K4  
VCCI  
I/O  
B2  
I/O  
D7  
CLKA  
I/O  
G2  
K5  
B3  
TCK, I/O  
VCCI  
I/O  
D8  
G3  
I/O  
K6  
I/O  
B4  
D9  
I/O  
G4  
I/O  
K7  
I/O  
B5  
D10  
D11  
D12  
D13  
D14  
E1  
I/O  
G5  
I/O  
K8  
GND  
I/O  
B6  
I/O  
I/O  
G10  
G11  
G12  
G13  
G14  
H1  
GND  
I/O  
K9  
B7  
VCCA  
I/O  
I/O  
K10  
K11  
K12  
K13  
K14  
L1  
GND  
I/O  
B8  
I/O  
I/O  
B9  
I/O  
I/O  
I/O  
I/O  
B10  
B11  
B12  
B13  
B14  
C1  
VCCI  
I/O  
I/O  
VCCA  
I/O  
I/O  
E2  
I/O  
I/O  
I/O  
E3  
I/O  
H2  
I/O  
I/O  
I/O  
E4  
I/O  
H3  
TRST, I/O  
I/O  
L2  
I/O  
I/O  
E5  
I/O  
H4  
L3  
I/O  
I/O  
E6  
I/O  
H5  
GND  
GND  
I/O  
L4  
I/O  
C2  
TMS  
I/O  
E7  
GND  
I/O  
H10  
H11  
H12  
H13  
L5  
I/O  
C3  
E8  
L6  
I/O  
C4  
I/O  
E9  
GND  
I/O  
I/O  
L7  
PRB, I/O  
HCLK  
C5  
I/O  
E10  
I/O  
L8  
2-12  
v3.2  
eX Automotive Family FPGAs  
180-Pin CSP  
180-Pin CSP  
Pin  
eX256  
Pin  
eX256  
Number  
Function  
Number  
N14  
P1  
Function  
L9  
I/O  
I/O  
I/O  
I/O  
L10  
L11  
L12  
L13  
L14  
M1  
I/O  
P2  
I/O  
TDO, I/O  
I/O  
P3  
I/O  
P4  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GND  
I/O  
I/O  
P5  
I/O  
P6  
M2  
I/O  
P7  
M3  
I/O  
P8  
M4  
I/O  
P9  
M5  
I/O  
P10  
P11  
P12  
P13  
M6  
I/O  
M7  
I/O  
M8  
I/O  
M9  
I/O  
M10  
M11  
M12  
M13  
M14  
N1  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
N2  
GND  
I/O  
N3  
N4  
I/O  
N5  
I/O  
N6  
I/O  
N7  
I/O  
N8  
VCCA  
I/O  
N9  
N10  
N11  
N12  
N13  
I/O  
I/O  
I/O  
I/O  
v3.2  
2-13  
eX Automotive Family FPGAs  
Datasheet Information  
List of Changes  
The following table lists critical changes that were made in the current version of the document.  
Previous version Changes in current version (v3.2)  
Page  
v3.1  
The "Ordering Information" section was updated to include RoHS information. The TQFP ii  
measurement was also updated.  
(Published 4/06)  
The "Dedicated Test Mode" section was updated.  
1-8  
Note 4 was added to the"3.3 V LVTTL Electrical Specifications" table.  
A note was added to the "Ordering Information" section.  
1-13  
ii  
v3.0  
(Published 6/04)  
The Junction temperature was added to Table 1-8 • Absolute Maximum Ratings*.  
The note was changed in Table 1-9 • Recommended Operating Conditions.  
The IOH and IOL values were updated in the "3.3 V LVTTL Electrical Specifications" table.  
The "5 V Tolerance of 3.3 V LVTTL I/Os Using a Tristate Buffer" section is new.  
1-12  
1-12  
1-13  
1-14  
A reference to Table 1-9 • Recommended Operating Conditions was added to the 1-12  
"Junction Temperature".  
v2.0  
"Speed Grade and Temperature Grade Matrix" section table is new.  
Table 1-2 was updated.  
ii  
1-5  
Table 1-9 was updated.  
1-12  
1-14  
1-16  
1-19  
1-17  
1-24  
The "CEQ Values for eX Devices" sectionis new.  
The "Package Thermal Characteristics" section was updated.  
Table 1-14 was updated.  
Figure 1-15 was updated.  
The "Pin Description" section was updated.  
Datasheet Categories  
In order to provide the latest information to designers, some datasheets are published before data has been fully  
characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet  
Supplement." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advanced or production) containing general product  
information. This brief gives an overview of specific device and family information.  
Advanced  
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed  
grades. This information can be used as estimates, but not for production.  
Unmarked (production)  
This datasheet version contains information that is considered to be final.  
Export Administration Regulations (EAR)  
The product described in this datasheet is subject to the Export Administration Regulations (EAR). They could require  
an approved export license prior to export from the United States. An export includes release of product or disclosure  
of technology to a foreign national inside or outside the United States.  
v3.2  
3-1  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
http://www.actel.com  
Actel Corporation  
Actel Europe Ltd.  
Actel Japan  
www.jp.actel.com  
Actel Hong Kong  
www.actel.com.cn  
2061 Stierlin Court  
Mountain View, CA  
94043-4655 USA  
Dunlop House, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
EXOS Ebisu Bldg. 4F  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Suite 2114, Two Pacific Place  
88 Queensway, Admiralty  
Hong Kong  
Phone 650.318.4200  
Fax 650.318.4600  
Phone +44 (0) 1276 401 450  
Fax +44 (0) 1276 401 490  
Phone +81.03.3445.7671  
Fax +81.03.3445.7668  
Phone +852 2185 6460  
Fax +852 2185 6488  
51700017-4/6.06  

相关型号:

EX256-FCS100PP

eX Family FPGAs
ACTEL

EX256-FCS128

Field Programmable Gate Array, 512 CLBs, 12000 Gates, 178MHz, 768-Cell, CMOS, PBGA128, 0.80 MM PITCH, PLASTIC, CSP-128
MICROSEMI

EX256-FCS128I

Field Programmable Gate Array, 12000 Gates, 178MHz, 768-Cell, CMOS, PBGA128, 0.8 MM PITCH, CSP-128
ACTEL

EX256-FCS128IX79

Field Programmable Gate Array, 178MHz, 768-Cell, CMOS, PBGA128,
ACTEL

EX256-FCS128PP

eX Family FPGAs
ETC

EX256-FCS128X79

Field Programmable Gate Array, 512 CLBs, 12000 Gates, 178MHz, 768-Cell, CMOS, PBGA128, 0.80 MM PITCH, PLASTIC, CSP-128
MICROSEMI

EX256-FCS180

Field Programmable Gate Array
MICROSEMI

EX256-FCS180I

Field Programmable Gate Array, 12000 Gates, 178MHz, 768-Cell, CMOS, PBGA180, 0.8 MM PITCH, CSP-180
ACTEL

EX256-FCS180I

Field Programmable Gate Array
MICROSEMI

EX256-FCS180IX79

Field Programmable Gate Array, 178MHz, 768-Cell, CMOS, PBGA180,
ACTEL

EX256-FCS180PP

eX Family FPGAs
ETC

EX256-FCS180X79

Field Programmable Gate Array, 512 CLBs, 12000 Gates, 178MHz, 768-Cell, CMOS, PBGA180, 0.80 MM PITCH, PLASTIC, CSP-180
MICROSEMI