EX256-FCS180I [MICROSEMI]

Field Programmable Gate Array;
EX256-FCS180I
型号: EX256-FCS180I
厂家: Microsemi    Microsemi
描述:

Field Programmable Gate Array

时钟 栅 可编程逻辑
文件: 总49页 (文件大小:410K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v4.3  
eX Family FPGAs  
FuseLock  
Live on Power-Up  
No Power-Up/Down Sequence Required for Supply  
Voltages  
Leading Edge Performance  
240 MHz System Performance  
350 MHz Internal Performance  
3.9 ns Clock-to-Out (Pad-to-Pad)  
Configurable Weak-Resistor Pull-Up or Pull-Down  
for Tristated Outputs during Power-Up  
Individual Output Slew Rate Control  
2.5 V, 3.3 V, and 5.0 V Mixed-Voltage Operation  
with 5.0V Input Tolerance and 5.0V Drive Strength  
Software Design Support with Actel Designer and  
Libero™ Integrated Design Environment (IDE)  
Tools  
Specifications  
3,000 to 12,000 Available System Gates  
Maximum 512 Flip-Flops (Using CC Macros)  
0.22µm CMOS Process Technology  
Up to 132 User-Programmable I/O Pins  
Up to 100% Resource Utilization with 100% Pin  
Locking  
Deterministic Timing  
Unique In-System Diagnostic and Verification  
Capability with Silicon Explorer II  
Boundary Scan Testing in Compliance with IEEE  
Standard 1149.1 (JTAG)  
Fuselock™ Secure Programming Technology  
Prevents Reverse Engineering and Design Theft  
Features  
High-Performance, Low-Power Antifuse FPGA  
LP/Sleep Mode for Additional Power Savings  
Advanced Small-Footprint Packages  
Hot-Swap Compliant I/Os  
Single-Chip Solution  
Nonvolatile  
Product Profile  
Device  
eX64  
eX128  
eX256  
Capacity  
3,000  
2,000  
6,000  
4,000  
12,000  
8,000  
System Gates  
Typical Gates  
Register Cells  
Dedicated Flip-Flops  
Maximum Flip-Flops  
64  
128  
128  
256  
256  
512  
Combinatorial Cells  
Maximum User I/Os  
128  
84  
256  
100  
512  
132  
Global Clocks  
Hardwired  
Routed  
1
2
1
2
1
2
Speed Grades  
F, Std, –P  
C, I, A  
F, Std, –P  
C, I, A  
F, Std, –P  
C, I, A  
Temperature Grades*  
Package (by pin count)  
TQFP  
CSP  
64, 100  
49, 128  
64, 100  
49, 128  
100  
128, 180  
Note: *Refer to the eX Automotive Family FPGAs datasheet for details on automotive temperature offerings.  
June 2006  
i
© 2006 Actel Corporation  
eX Family FPGAs  
Ordering Information  
eX128  
P
TQ  
G
100  
Application (Ambient Temperature Range)  
Blank = Commercial (0˚C to 70˚C)  
I = Industrial (-40˚C to 85˚C)  
A= Automotive (-40˚C to 125˚C)  
PP = Pre-production  
Package Lead Count  
Lead-Free Packaging  
Blank = Standard Packaging  
G = RoHS Compliant Packaging  
Package Type  
=
TQ Thin Quad Flat Pack (0.5 mm pitch)  
=
CS  
Chip-Scale Package (0.8 mm pitch)  
Speed Grade  
Blank= Standard Speed  
P = Approximately 30% Faster than Standard  
F = Approximately 40% Slower than Standard  
Part Number  
eX64 = 64 Dedicated Flip-Flops (3,000 System Gates)  
eX128 = 128 Dedicated Flip-Flops (6,000 System Gates)  
eX256 = 256 Dedicated Flip-Flops (12,000 System Gates)  
Plastic Device Resources  
User I/Os (Including Clock Buffers)  
Device  
TQFP 64-Pin  
TQFP 100-Pin  
CSP 49-Pin  
CSP 128-Pin  
CSP 180-Pin  
eX64  
41  
46  
56  
70  
81  
36  
36  
84  
eX128  
eX256  
100  
100  
132  
Note: Package Definitions:TQFP = Thin Quad Flat Pack, CSP = Chip Scale Package  
Temperature Grade Offerings  
Device\Package  
eX64  
TQFP 64-Pin  
C, I, A  
TQFP 100-Pin  
C, I, A  
CSP 49-Pin  
C, I, A  
CSP 128-Pin  
C, I, A  
CSP 180-Pin  
C, I, A  
eX128  
C, I, A  
C, I, A  
C, I, A  
C, I, A  
C, I, A  
eX256  
C, I, A  
C, I, A  
C, I, A  
C, I, A  
C, I, A  
Notes:  
C = Commercial  
I = Industrial  
A = Automotive  
Speed Grade and Temperature Grade Matrix  
–F  
Std  
–P  
C
I
A
Notes:  
P = Approximately 30% faster than Standard  
–F = Approximately 40% slower than Standard  
Refer to the eX Automotive Family FPGAs datasheet for details on automotive temperature offerings.  
Contact your local Actel representative for device availability.  
ii  
v4.3  
eX Family FPGAs  
Table of Contents  
eX Family FPGAs  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
eX Family Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Other Architectural Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5  
Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12  
2.5V/3.3V/5.0V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13  
2.5V LVCMOS2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14  
3.3V LVTTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15  
5.0V TTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17  
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17  
eX Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18  
Output Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19  
AC Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19  
Input Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20  
C-Cell Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20  
Cell Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20  
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21  
Temperature and Voltage Derating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21  
eX Family Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26  
Package Pin Assignments  
64-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
100-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
49-Pin CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
128-Pin CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8  
180-Pin CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11  
Datasheet Information  
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Export Administration Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
v4.3  
iii  
eX Family FPGAs  
eX Family FPGAs  
impedance connection. Actel’s eX family provides two  
types of logic modules, the register cell (R-cell) and the  
combinatorial cell (C-cell).  
General Description  
The eX family of FPGAs is a low-cost solution for low-  
power, high-performance designs. The inherent low  
power attributes of the antifuse technology, coupled  
with an additional low static power mode, make these  
devices ideal for power-sensitive applications. Fabricated  
with an advanced 0.22µm CMOS antifuse technology,  
these devices achieve high performance with no power  
penalty.  
The R-cell contains a flip-flop featuring asynchronous  
clear, asynchronous preset, and clock enable (using the  
S0 and S1 lines) control signals (Figure 1-1). The R-cell  
registers feature programmable clock polarity selectable  
on a register-by-register basis. This provides additional  
flexibility while allowing mapping of synthesized  
functions into the eX FPGA. The clock source for the R-  
cell can be chosen from either the hard-wired clock or  
the routed clock.  
eX Family Architecture  
The C-cell implements a range of combinatorial functions  
up to five inputs (Figure 1-2 on page 1-2). Inclusion of  
the DB input and its associated inverter function enables  
the implementation of more than 4,000 combinatorial  
functions in the eX architecture in a single module.  
Actel's eX family is implemented on a high-voltage twin-  
well CMOS process using 0.22µm design rules. The eX  
family architecture uses a “sea-of-modules” structure  
where the entire floor of the device is covered with a  
grid of logic modules with virtually no chip area lost to  
interconnect elements or routing. Interconnection  
among these logic modules is achieved using Actel’s  
Two C-cells can be combined together to create a flip-  
flop to imitate an R-cell via the use of the CC macro. This  
is particularly useful when implementing non-timing-  
critical paths and when the design engineer is running  
out of R-cells. More information about the CC macro can  
be found in Actel’s Maximizing Logic Utilization in eX, SX  
and SX-A FPGA Devices Using CC Macros application  
note.  
patented  
metal-to-metal  
programmable  
antifuse  
interconnect elements. The antifuse interconnect is  
made up of a combination of amorphous silicon and  
dielectric material with barrier metals and has an "on"  
state resistance of 25with a capacitance of 1.0fF for  
low-signal impedance. The antifuses are normally open  
circuit and, when programmed, form a permanent low-  
Routed  
Data Input  
S0  
S1  
PSET  
DirectConnect  
Input  
D
Q
Y
HCLK  
CLKA,  
CLKB,  
Internal Logic  
CLR  
CKS  
CKP  
Figure 1-1 R-Cell  
v4.3  
1-1  
eX Family FPGAs  
Module Organization  
C-cell and R-cell logic modules are arranged into horizontal banks called Clusters, each of which contains two C-cells  
and one R-cell in a C-R-C configuration.  
Clusters are further organized into modules called SuperClusters for improved design efficiency and device  
performance, as shown in Figure 1-3. Each SuperCluster is a two-wide grouping of Clusters.  
D0  
D1  
Y
D2  
D3  
Sa  
Sb  
DB  
B1  
A1  
A0 B0  
Figure 1-2 C-Cell  
R-Cell  
C-Cell  
Routed  
Data Input  
D0  
D1  
S1  
S0  
PSET  
CLR  
Y
D2  
D3  
DirectConnect  
Q
D
Y
Input  
Sb  
B1  
Sa  
HCLK  
CLKA,  
CLKB,  
DB  
Internal Logic  
CKS  
CKP  
A0 B0  
A1  
Cluster  
Cluster  
SuperCluster  
Figure 1-3 Cluster Organization  
1-2  
v4.3  
eX Family FPGAs  
Routing Resources  
Clusters and SuperClusters can be connected through the  
use of two innovative local routing resources called  
FastConnect and DirectConnect, which enable extremely  
fast and predictable interconnection of modules within  
Clusters and SuperClusters (Figure 1-4). This routing  
architecture also dramatically reduces the number of  
antifuses required to complete a circuit, ensuring the  
highest possible performance.  
FastConnect enables horizontal routing between any  
two logic modules within a given SuperCluster and  
vertical routing with the SuperCluster immediately  
below it. Only one programmable connection is used in a  
FastConnect path, delivering maximum pin-to-pin  
propagation of 0.3 ns (–P speed grade).  
In addition to DirectConnect and FastConnect, the  
architecture makes use of two globally oriented routing  
resources known as segmented routing and high-drive  
routing. Actel’s segmented routing structure provides a  
variety of track lengths for extremely fast routing  
between SuperClusters. The exact combination of track  
lengths and antifuses within each path is chosen by the  
fully automatic place-and-route software to minimize  
signal propagation delays.  
DirectConnect is a horizontal routing resource that  
provides connections from a C-cell to its neighboring R-  
cell in a given SuperCluster. DirectConnect uses a hard-  
wired signal path requiring no programmable  
interconnection to achieve its fast signal propagation  
time of less than 0.1 ns (–P speed grade).  
DirectConnect  
• No antifuses  
SuperClusters  
• 0.1 ns routing delay  
FastConnect  
• One antifuse  
• 0.5 ns routing delay  
Routing Segments  
• Typically 2 antifuses  
• Max. 5 antifuses  
Figure 1-4 DirectConnect and FastConnect for SuperClusters  
v4.3  
1-3  
eX Family FPGAs  
The remaining two clocks (CLKA, CLKB) are global routed  
clock networks that can be sourced from external pins or  
from internal logic signals (via the CLKINT routed clock  
buffer) within the eX device. CLKA and CLKB may be  
connected to sequential cells or to combinational logic. If  
CLKA or CLKB is sourced from internal logic signals, the  
external clock pin cannot be used for any other input  
and must be tied LOW or HIGH and must not float.  
Figure 1-6 describes the CLKA and CLKB circuit used in eX  
devices.  
Clock Resources  
eX’s high-drive routing structure provides three clock  
networks. The first clock, called HCLK, is hardwired from  
the HCLK buffer to the clock select MUX in each R-Cell.  
HCLK cannot be connected to combinational logic. This  
provides a fast propagation path for the clock signal,  
enabling the 3.9 ns clock-to-out (pad-to-pad)  
performance of the eX devices. The hard-wired clock is  
tuned to provide a clock skew of less than 0.1 ns worst  
case. If not used, the HCLK pin must be tied LOW or HIGH  
and must not be left floating. Figure 1-5 describes the  
clock circuit used for the constant load HCLK.  
Table 1-1 describes the possible connections of the  
routed clock networks, CLKA and CLKB.  
HCLK does not function until the fourth clock cycle each  
time the device is powered up to prevent false output  
levels due to any possible slow power-on-reset signal and  
fast start-up clock circuit. To activate HCLK from the first  
cycle, the TRST pin must be reserved in the Design  
software and the pin must be tied to GND on the board.  
(See the "TRST, I/O Boundary Scan Reset Pin" on page 1-  
26).  
Unused clock pins must not be left floating and must be  
tied to HIGH or LOW.  
Constant Load  
Clock Network  
HCLKBUF  
Figure 1-5 eX HCLK Clock Pad  
Clock Network  
From Internal Logic  
CLKBUF  
CLKBUFI  
CLKINT  
CLKINTI  
Figure 1-6 eX Routed Clock Buffer  
Table 1-1 Connections of Routed Clock Networks, CLKA  
and CLKB  
Module  
C-Cell  
Pins  
A0, A1, B0 and B1  
CLKA, CLKB, S0, S1, PSET, and CLR  
EN  
R-Cell  
I/O-Cell  
1-4  
v4.3  
eX Family FPGAs  
Other Architectural Features  
All unused I/Os are configured as tristate outputs by  
Actel's Designer software, for maximum flexibility when  
designing new boards or migrating existing designs. Each  
I/O module has an available pull-up or pull-down resistor  
of approximately 50 kthat can configure the I/O in a  
known state during power-up. Just shortly before VCCA  
reaches 2.5 V, the resistors are disabled and the I/Os will be  
controlled by user logic.  
Performance  
The combination of architectural features described  
above enables eX devices to operate with internal clock  
frequencies exceeding 350 MHz for very fast execution  
of complex logic functions. The eX family is an optimal  
platform upon which the functionality previously  
contained in CPLDs can be integrated. eX devices meet  
the performance goals of gate arrays, and at the same  
time, present significant improvements in cost and time  
to market. Using timing-driven place-and-route tools,  
designers can achieve highly deterministic device  
performance.  
Table 1-2 describes the I/O features of eX devices. For  
more information on I/Os, refer to Actel eX, SX-A, and  
RT54SX-S I/Os application note.  
Table 1-2 I/O Features  
Function  
Description  
User Security  
Input Buffer • 5.0V TTL  
Threshold  
3.3V LVTTL  
The Actel FuseLock advantage ensures that unauthorized  
users will not be able to read back the contents of an  
Actel antifuse FPGA. In addition to the inherent  
strengths of the architecture, special security fuses that  
prevent internal probing and overwriting are hidden  
throughout the fabric of the device. They are located  
such that they cannot be accessed or bypassed without  
destroying the rest of the device, making both invasive  
and more-subtle noninvasive attacks ineffective against  
Actel antifuse FPGAs.  
Selection  
2.5V LVCMOS2  
5.0V TTL/CMOS  
3.3V LVTTL  
Nominal  
Output Drive  
2.5V LVCMOS 2  
Output Buffer “Hot-Swap” Capability  
I/O on an unpowered device does not sink  
current  
Can be used for “cold sparing”  
Look for this symbol to ensure your valuable IP is secure.  
Selectable on an individual I/O basis  
Individually selectable low-slew option  
Power-Up  
Individually selectable pull ups and pull downs  
during power-up (default is to power up in  
tristate)  
Enables deterministic power-up of device  
FuseLock  
VCCA and VCCI can be powered in any order  
Figure 1-7 Fuselock  
For more information, refer to Actel's Implementation of  
Security in Actel Antifuse FPGAs application note.  
The eX family supports mixed-voltage operation and is  
designed to tolerate 5.0 V inputs in each case.  
A detailed description of the I/O pins in eX devices can be  
found in "Pin Description" on page 1-26.  
I/O Modules  
Each I/O on an eX device can be configured as an input,  
an output, a tristate output, or a bidirectional pin. Even  
without the inclusion of dedicated I/O registers, these I/  
Os, in combination with array registers, can achieve  
clock-to-out (pad-to-pad) timing as fast as 3.9 ns. I/O cells  
in eX devices do not contain embedded latches or flip-  
flops and can be inferred directly from HDL code. The  
device can easily interface with any other device in the  
system, which in turn enables parallel design of system  
components and reduces overall design time.  
v4.3  
1-5  
eX Family FPGAs  
Hot Swapping  
Low Power Mode  
eX I/Os are configured to be hot-swappable. During  
power-up/down (or partial up/down), all I/Os are  
tristated, provided VCCA ramps up within a diode drop of  
VCCI. VCCA and VCCI do not have to be stable during  
power-up/down, and they do not require a specific  
power-up or power-down sequence in order to avoid  
damage to the eX devices. In addition, all outputs can be  
programmed to have a weak resistor pull-up or pull-  
down for output tristate at power-up. After the eX  
device is plugged into an electrically active system, the  
device will not degrade the reliability of or cause  
damage to the host system. The device's output pins are  
driven to a high impedance state until normal chip  
operating conditions are reached. Please see the  
application note, Actel SX-A and RT54SX-S Devices in  
Hot-Swap and Cold-Sparing Applications, which also  
applies to the eX devices, for more information on hot  
swapping.  
The eX family has been designed with a Low Power  
Mode. This feature, activated with setting the special LP  
pin to HIGH for a period longer than 800 ns, is  
particularly useful for battery-operated systems where  
battery life is a primary concern. In this mode, the core of  
the device is turned off and the device consumes minimal  
power with low standby current. In addition, all input  
buffers are turned off, and all outputs and bidirectional  
buffers are tristated when the device enters this mode.  
Since the core of the device is turned off, the states of  
the registers are lost. The device must be re-initialized  
when returning to normal operating mode. I/Os can be  
driven during LP mode. For details, refer to the Design  
for Low Power in Actel Antifuse FPGAs application note  
under the section Using the LP Mode Pin on eX Devices.  
Clock pins should be driven either HIGH or LOW and  
should not float; otherwise, they will draw current and  
burn power. The device must be re-initialized when  
exiting LP mode. To exit the LP mode, the LP pin must be  
driven LOW for over 200µs to allow for the charge  
pumps to power-up and device initialization can begin.  
Table 1-3 illustrates the standby current of eX devices in  
LP mode.  
Power Requirements  
Power consumption is extremely low for the eX family  
due to the low capacitance of the antifuse interconnects.  
The antifuse architecture does not require active circuitry  
to hold a charge (as do SRAM or EPROM), making it the  
lowest-power FPGA architecture available today.  
Table 1-3 Standby Power of eX Devices in LP Mode  
Typical Conditions, VCCA, VCCI = 2.5 V, TJ = 25° C  
Product  
eX64  
Low Power Standby Current  
Units  
µA  
100  
111  
134  
eX128  
eX256  
µA  
µA  
1-6  
v4.3  
eX Family FPGAs  
Figure 1-8 to Figure 1-11 on page 1-8 show some sample power characteristics of eX devices.  
300  
250  
eX64  
200  
150  
100  
50  
eX128  
eX256  
0
50  
100  
150  
200  
Frequency (MHz)  
Notes:  
1. Device filled with 16-bit counters.  
2. VCCA, VCCI = 2.7 V, device tested at room temperature.  
Figure 1-8 eX Dynamic Power Consumption – High Frequency  
80  
70  
60  
50  
40  
30  
20  
10  
0
eX64  
eX128  
eX256  
0
10  
20  
30  
40  
50  
Frequency (MHz)  
Notes:  
1. Device filled with 16-bit counters.  
2. VCCA, VCCI = 2.7 V, device tested at room temperature.  
Figure 1-9 eX Dynamic Power Consumption – Low Frequency  
v4.3  
1-7  
eX Family FPGAs  
180  
160  
140  
120  
100  
80  
32-bit Decoder  
8 x 8-bit Counters  
SDRAM Controller  
60  
40  
20  
0
0
25  
50  
75  
100  
125  
150  
175  
200  
Frequency (MHz)  
Figure 1-10 Total Dynamic Power (mW)  
12,000  
10,000  
8,000  
6,000  
4,000  
2,000  
0
5% DC  
10% DC  
15% DC  
0
10  
20  
30  
40  
50  
60  
Frequency (MHz)  
Figure 1-11 System Power at 5%, 10%, and 15% Duty Cycle  
1-8  
v4.3  
eX Family FPGAs  
Boundary Scan Testing (BST)  
Flexible Mode  
All eX devices are IEEE 1149.1 compliant. eX devices offer  
superior diagnostic and testing capabilities by providing  
Boundary Scan Testing (BST) and probing capabilities.  
These functions are controlled through the special test  
pins (TMS, TDI, TCK, TDO and TRST). The functionality of  
each pin is defined by two available modes: Dedicated  
and Flexible, and is described in Table 1-4. In the  
dedicated test mode, TCK, TDI, and TDO are dedicated  
pins and cannot be used as regular I/Os. In flexible mode  
(default mode), TMS should be set HIGH through a pull-  
up resistor of 10 k. TMS can be pulled LOW to initiate  
the test sequence.  
In Flexible Mode, TDI, TCK and TDO may be used as  
either user I/Os or as JTAG input pins. The internal  
resistors on the TMS and TDI pins are disabled in flexible  
JTAG mode, and an external 10 kpull-resistor to VCCI is  
required on the TMS pin.  
To select the Flexible mode, users need to uncheck the  
"Reserve JTAG" box in "Device Selection Wizard" in  
Actel's Designer software. The functionality of TDI, TCK,  
and TDO pins is controlled by the BST TAP controller. The  
TAP controller receives two control inputs, TMS and TCK.  
Upon power-up, the TAP controller enters the Test-Logic-  
Reset state. In this state, TDI, TCK, and TDO function as  
user I/Os. The TDI, TCK, and TDO pins are transformed  
from user I/Os into BST pins when the TMS pin is LOW at  
the first rising edge of TCK. The TDI, TCK, and TDO pins  
return to user I/Os when TMS is held HIGH for at least  
five TCK cycles.  
Table 1-4 Boundary Scan Pin Functionality  
Dedicated Test Mode  
Flexible Mode  
TCK, TDI, TDO are dedicated TCK, TDI, TDO are flexible and  
BST pins may be used as I/Os  
No need for pull-up resistor for Use a pull-up resistor of 10 kΩ  
Table 1-5  
describes  
the  
different  
configuration  
TMS and TDI  
on TMS  
requirements of BST pins and their functionality in  
different modes.  
Dedicated Test Mode  
Table 1-5 Boundary-Scan Pin Configurations and  
Functions  
In Dedicated mode, all JTAG pins are reserved for BST;  
designers cannot use them as regular I/Os. An internal  
pull-up resistor is automatically enabled on both TMS  
and TDI pins, and the TMS pin will function as defined in  
the IEEE 1149.1 (JTAG) specification.  
Designer  
"Reserve JTAG"  
Selection  
TAP Controller  
State  
Mode  
Dedicated (JTAG)  
Flexible (User I/O)  
Flexible (JTAG)  
Checked  
Unchecked  
Unchecked  
Any  
To select Dedicated mode, users need to reserve the JTAG  
pins in Actel's Designer software by checking the  
"Reserve JTAG" box in "Device Selection Wizard"  
(Figure 1-12). JTAG pins comply with LVTTL/TTL I/O  
specification regardless of whether they are used as a  
user I/O or a JTAG I/O. Refer to the "3.3V LVTTL Electrical  
Specifications" and "5.0V TTL Electrical Specifications"  
on page 1-15 for detailed specifications.  
Test-Logic-Reset  
Any EXCEPT Test-  
Logic-Reset  
TRST Pin  
The TRST pin functions as a dedicated Boundary-Scan  
Reset pin when the "Reserve JTAG Test Reset" option is  
selected as shown in Figure 1-12. An internal pull-up  
resistor is permanently enabled on the TRST pin in this  
mode. It is recommended to connect this pin to GND in  
normal operation to keep the JTAG state controller in  
the Test-Logic-Reset state. When JTAG is being used, it  
can be left floating or be driven HIGH.  
When the "Reserve JTAG Test Reset" option is not  
selected, this pin will function as a regular I/O. If unused  
as an I/O in the design, it will be configured as a tristated  
output.  
Figure 1-12 Device Selection Wizard  
v4.3  
1-9  
eX Family FPGAs  
1. Load the .AFM file  
JTAG Instructions  
Table 1-6 lists the supported instructions with the  
corresponding IR codes for eX devices.  
2. Select the device to be programmed  
3. Begin programming  
When the design is ready to go to production, Actel  
offers device volume-programming services either  
through distribution partners or via in-house  
programming from the factory.  
Table 1-6 JTAG Instruction Code  
Instructions (IR4: IR0)  
EXTEST  
Binary Code  
00000  
For more details on programming eX devices, please  
refer to the Programming Antifuse Devices application  
note and the Silicon Sculptor II User's Guide.  
SAMPLE / PRELOAD  
INTEST  
00001  
00010  
USERCODE  
IDCODE  
00011  
Probing Capabilities  
00100  
eX devices provide internal probing capability that is  
accessed with the JTAG pins. The Silicon Explorer II  
Diagnostic hardware is used to control the TDI, TCK, TMS  
and TDO pins to select the desired nets for debugging.  
The user simply assigns the selected internal nets in the  
Silicon Explorer II software to the PRA/PRB output pins  
for observation. Probing functionality is activated when  
the BST pins are in JTAG mode and the TRST pin is driven  
HIGH or left floating. If the TRST pin is held LOW, the  
TAP controller will remain in the Test-Logic-Reset state so  
no probing can be performed. The Silicon Explorer II  
automatically places the device into JTAG mode, but the  
user must drive the TRST pin HIGH or allow the internal  
pull-up resistor to pull TRST HIGH.  
HIGHZ  
01110  
CLAMP  
01111  
Diagnostic  
BYPASS  
10000  
11111  
Reserved  
All others  
Table 1-7 lists the codes returned after executing the  
IDCODE instruction for eX devices. Note that bit 0 is  
always "1." Bits 11-1 are always "02F", which is Actel's  
manufacturer code.  
Table 1-7 IDCODE for eX Devices  
When you select the "Reserve Probe Pin" box as shown  
in Figure 1-12 on page 1-9, the layout tool reserves the  
PRA and PRB pins as dedicated outputs for probing. This  
"reserve" option is merely a guideline. If the Layout tool  
requires that the PRA and PRB pins be user I/Os to  
achieve successful layout, the tool will use these pins for  
user I/Os. If you assign user I/Os to the PRA and PRB pins  
and select the "Reserve Probe Pin" option, Designer  
Layout will override the "Reserve Probe Pin" option and  
place your user I/Os on those pins.  
Device  
eX64  
Revision  
Bits 31-28  
Bits 27-12  
40B2, 42B2  
40B0, 42B0  
40B5, 42B5  
40B2, 42B2  
40B0, 42B0  
40B5, 42B5  
0
0
0
1
1
1
8
9
9
A
B
B
eX128  
eX256  
eX64  
eX128  
eX256  
To allow for probing capabilities, the security fuse must  
not be programmed. Programming the security fuse will  
disable the probe circuitry. Table 1-8 on page 1-11  
summarizes the possible device configurations for  
probing once the device leaves the "Test-Logic-Reset"  
JTAG state.  
Programming  
Device programming is supported through Silicon  
Sculptor series of programmers. In particular, Silicon  
Sculptor II is a compact, robust, single-site and multi-site  
device programmer for the PC.  
With standalone software, Silicon Sculptor II allows  
concurrent programming of multiple units from the  
same PC, ensuring the fastest programming times  
possible. Each fuse is subsequently verified by Silicon  
Sculptor II to insure correct programming. In addition,  
integrity tests ensure that no extra fuses are  
programmed. Silicon Sculptor II also provides extensive  
hardware self-testing capability.  
Silicon Explorer II Probe  
Silicon Explorer II is an integrated hardware and  
software solution that, in conjunction with Actel’s  
Designer software tools, allow users to examine any of  
the internal nets of the device while it is operating in a  
prototype or a production system. The user can probe  
into an eX device via the PRA and PRB pins without  
changing the placement and routing of the design and  
without using any additional resources. Silicon  
The procedure for programming an eX device using  
Silicon Sculptor II is as follows:  
1-10  
v4.3  
eX Family FPGAs  
Explorer II's noninvasive method does not alter timing or  
loading effects, thus shortening the debug cycle.  
interconnection between Silicon Explorer II and the eX  
device to perform in-circuit verification.  
Silicon Explorer II does not require re-layout or  
additional MUXes to bring signals out to an external pin,  
which is necessary when using programmable logic Design Considerations  
devices from other suppliers.  
The TDI, TCK, TDO, PRA, and PRB pins should not be used  
Silicon Explorer II samples data at 100 MHz  
(asynchronous) or 66 MHz (synchronous). Silicon Explorer  
II attaches to a PC's standard COM port, turning the PC  
into a fully functional 18-channel logic analyzer. Silicon  
Explorer II allows designers to complete the design  
verification process at their desks and reduces  
verification time from several hours per cycle to a few  
seconds.  
as input or bidirectional ports. Since these pins are active  
during probing, critical signals input through these pins  
are not available while probing. In addition, the Security  
Fuse should not be programmed because doing so  
disables the probe circuitry. It is recommended to use a  
series 70termination resistor on every probe connector  
(TDI, TCK, TMS, TDO, PRA, PRB). The 70series  
termination is used to prevent data transmission  
corruption during probing and reading back the  
checksum.  
The Silicon Explorer II tool uses the boundary scan ports  
(TDI, TCK, TMS and TDO) to select the desired nets for  
verification. The selected internal nets are assigned to the  
PRA/PRB pins for observation. Figure 1-13 illustrates the  
Table 1-8 Device Configuration Options for Probe Capability (TRST pin reserved)  
JTAG Mode  
Dedicated  
Flexible  
TRST1  
LOW  
LOW  
HIGH  
HIGH  
Security Fuse Programmed  
PRA, PRB2  
User I/O3  
TDI, TCK, TDO2  
Probing Unavailable  
User I/O3  
No  
No  
No  
No  
Yes  
User I/O3  
Dedicated  
Flexible  
Probe Circuit Outputs  
Probe Circuit Outputs  
Probe Circuit Secured  
Probe Circuit Inputs  
Probe Circuit Inputs  
Probe Circuit Secured  
Notes:  
1. If TRST pin is not reserved, the device behaves according to TRST = HIGH in the table.  
2. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, input  
signals will not pass through these pins and may cause contention.  
3. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. Unused pins are automatically tristated by  
Actel’s Designer software.  
16 Pin  
Connection  
eX FPGAs  
TDI  
TCK  
TMS  
TDO  
Serial  
Silicon Explorer II  
Connection  
PRA  
PRB  
22 Pin  
Connection  
Additional 16 Channels  
(Logic Analyzer)  
Figure 1-13 Silicon Explorer II Probe Setup  
v4.3  
1-11  
eX Family FPGAs  
Development Tool Support  
The eX family of FPGAs is fully supported by both Actel's  
Libero™ Integrated Design Environment and Designer  
FPGA Development software. Actel Libero IDE is a design  
management environment that streamlines the design  
flow. Libero IDE provides an integrated design manager  
that seamlessly integrates design tools while guiding the  
user through the design flow, managing all design and  
log files, and passing necessary design data among tools.  
Additionally, Libero IDE allows users to integrate both  
schematic and HDL synthesis into a single flow and verify  
the entire design in a single environment. Libero IDE  
includes Synplify® for Actel from Synplicity®, ViewDraw  
for Actel from Mentor Graphics, ModelSim™ HDL  
Simulator from Mentor Graphics®, WaveFormer Lite™  
from SynaptiCAD™, and Designer software from Actel.  
Refer to the Libero IDE flow (located on Actel’s website)  
diagram for more information.  
Related Documents  
Datasheet  
eX Automotive Family FPGAs  
http://www.actel.com/documents/eXAuto_DS.pdf  
Application Notes  
Maximizing Logic Utilization in eX, SX and SX-A FPGA  
Devices Using CC Macros  
http://www.actel.com/documents/CC_Macro_AN.pdf  
Actel's Implementation of Security in Actel Antifuse FPGAs  
http://www.actel.com/documents/  
Antifuse_Security_AN.pdf  
Actel eX, SX-A, and RT54SX-S I/Os  
http://www.actel.com/documents/antifuseIO_AN.pdf  
Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-  
Sparing Applications  
http://www.actel.com/documents/  
HotSwapColdSparing_AN.pdf  
Design For Low Power in Actel Antifuse FPGAs  
http://www.actel.com/documents/Low_Power_AN.pdf  
Programming Antifuse Devices  
Actel's Designer software is a place-and-route tool and  
provides a comprehensive suite of backend support tools  
for FPGA development. The Designer software includes  
timing-driven place-and-route, and  
a
world-class  
integrated static timing analyzer and constraints editor.  
With the Designer software, a user can lock his/her  
design pins before layout while minimally impacting the  
results of place-and-route. Additionally, the back-  
annotation flow is compatible with all the major  
simulators and the simulation results can be cross-probed  
with Silicon Explorer II, Actel’s integrated verification  
and logic analysis tool. Another tool included in the  
Designer software is the SmartGen core generator, which  
easily creates popular and commonly used logic  
functions for implementation into your schematic or HDL  
design. Actel's Designer software is compatible with the  
most popular FPGA design entry and verification tools  
from companies such as Mentor Graphics, Synplicity,  
Synopsys, and Cadence Design Systems. The Designer  
software is available for both the Windows and UNIX  
operating systems.  
http://www.actel.com/documents/  
AntifuseProgram_AN.pdf  
User Guides  
Silicon Sculptor II User's Guide  
http://www.actel.com/techdocs/manuals/  
default.asp#programmers  
Miscellaneous  
Libero IDE flow  
http://www.actel.com/products/tools/libero/flow.html  
1-12  
v4.3  
eX Family FPGAs  
2.5 V / 3.3 V /5.0 V Operating Conditions  
Table 1-9 Absolute Maximum Ratings*  
Symbol  
VCCI  
VCCA  
VI  
Parameter  
Limits  
Units  
DC Supply Voltage for I/Os  
DC Supply Voltage for Array  
Input Voltage  
–0.3 to +6.0  
–0.3 to +3.0  
–0.5 to +5.75  
–0.5 to +VCCI  
–65 to +150  
V
V
V
VO  
Output Voltage  
V
TSTG  
Storage Temperature  
°C  
Note: *Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to  
absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the  
Recommended Operating Conditions.  
Table 1-10 Recommended Operating Conditions  
Parameter  
Commercial  
0 to +70  
Industrial  
–40 to +85  
2.3 to 2.7  
Units  
°C  
Temperature Range*  
2.5V Power Supply  
2.3 to 2.7  
V
Range (VCCA, VCCI  
)
3.3V Power Supply  
3.0 to 3.6  
3.0 to 3.6  
V
V
Range (VCCI  
)
5.0V Power Supply  
4.75 to 5.25  
4.75 to 5.25  
Range (VCCI  
)
Note: *Ambient temperature (TA).  
Table 1-11 Typical eX Standby Current at 25°C  
V
CCA= 2.5 V  
VCCA = 2.5 V  
VCCA = 2.5 V  
Product  
eX64  
VCCI = 2.5 V  
VCCI = 3.3 V  
VCCI = 5.0 V  
397 µA  
696 µA  
698 µA  
49 7µA  
795 µA  
796 µA  
700 µA  
eX128  
eX256  
1,000 µA  
2,000 µA  
v4.3  
1-13  
eX Family FPGAs  
2.5 V LVCMOS2 Electrical Specifications  
Commercial  
Industrial  
Symbol Parameter  
Min.  
(IOH = -100 µA) 2.1  
Max.  
Min.  
Max.  
Units  
VOH  
VCCI = MIN, VI = VIH or VIL  
CCI = MIN, VI = VIH or VIL  
2.1  
2.0  
1.7  
V
V
V
V
V
V
V
V
V
(IOH = -1 mA)  
(IOH = -2 mA)  
(IOL= 100 µA)  
(IOL= 1mA)  
2.0  
1.7  
VCCI = MIN, VI = VIH or VIL  
VCCI = MIN, VI = VIH or VIL  
VOL  
0.2  
0.4  
0.7  
0.7  
0.2  
0.4  
0.7  
0.7  
V
CCI = MIN, VI = VIH or VIL  
VCCI = MIN,VI = VIH or VIL  
(IOL= 2 mA)  
VIL  
Input Low Voltage, VOUT VOL(max)  
Input High Voltage, VOUT VOH(min)  
–0.3  
-0.3  
VIH  
1.7 VCCI + 0.3 1.7  
VCCI  
0.3  
+
IIL/ IIH  
IOZ  
Input Leakage Current, VIN = VCCI or GND  
3-State Output Leakage Current, VOUT = VCCI or GND  
Input Transition Time  
–10  
–10  
10  
10  
10  
10  
1.0  
–10  
–10  
10  
10  
10  
10  
3.0  
µA  
µA  
ns  
1,2  
tR, tF  
CIO  
I/O Capacitance  
pF  
3,4  
ICC  
Standby Current  
mA  
IV Curve Can be derived from the IBIS model at www.actel.com/custsup/models/ibis.html.  
Notes:  
1. tR is the transition time from 0.7 V to 1.7 V.  
2. tF is the transition time from 1.7 V to 0.7 V.  
3. ICC max Commercial –F = 5.0 mA  
4. ICC = ICCI + ICCA  
1-14  
v4.3  
eX Family FPGAs  
3.3 V LVTTL Electrical Specifications  
Commercial  
Industrial  
Symbol Parameter  
Min.  
Max.  
Min.  
Max.  
Units  
V
VOH  
VOL  
VIL  
VCCI = MIN, VI = VIH or VIL  
VCCI = MIN, VI = VIH or VIL  
Input Low Voltage  
(IOH = –8 mA)  
(IOL= 12 mA)  
2.4  
2.4  
0.4  
0.8  
0.4  
0.8  
V
V
VIH  
Input High Voltage  
2.0  
–10  
–10  
VCCI +0.5  
10  
2.0  
–10  
–10  
VCCI +0.5  
10  
V
IIL/ IIH  
IOZ  
Input Leakage Current, VIN = VCCI or GND  
3-State Output Leakage Current, VOUT = VCCI or GND  
Input Transition Time  
µA  
µA  
ns  
10  
10  
1,2  
tR, tF  
10  
10  
CIO  
I/O Capacitance  
10  
10  
pF  
mA  
3,4  
ICC  
Standby Current  
1.5  
10  
IV Curve Can be derived from the IBIS model at www.actel.com/custsup/models/ibis.html.  
Notes:  
1. tR is the transition time from 0.8 V to 2.0 V.  
2. tF is the transition time from 2.0 V to 0.8 V.  
3. ICC max Commercial –F = 5.0 mA  
4. ICC = ICCI + ICCA  
5. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.  
5.0VTTLElectricalSpecifications  
Commercial  
Industrial  
Symbol Parameter  
Min.  
Max.  
Min.  
Max. Units  
VOH  
VOL  
VIL  
VCCI = MIN, VI = VIH or VIL  
(IOH = –8 mA)  
(IOL= 12 mA)  
2.4  
2.4  
V
VCCI = MIN, VI = VIH or VIL  
Input Low Voltage  
0.4  
0.8  
0.4  
0.8  
V
V
VIH  
Input High Voltage  
2.0  
–10  
–10  
VCCI +0.5  
10  
2.0  
–10  
–10  
VCCI +0.5  
10  
V
IIL/ IIH  
Input Leakage Current, VIN = VCCI or GND  
3-State Output Leakage Current, VOUT = VCCI or GND  
Input Transition Time  
µA  
µA  
ns  
pF  
mA  
IOZ  
10  
10  
1,2  
tR, tF  
10  
10  
CIO  
I/O Capacitance  
10  
10  
3,4  
ICC  
Standby Current  
15  
20  
IV Curve Can be derived from the IBIS model at www.actel.com/custsup/models/ibis.html.  
Note:  
1. tR is the transition time from 0.8 V to 2.0 V.  
2. tF is the transition time from 2.0 V to 0.8 V.  
3. ICC max Commercial –F=20mA  
4. ICC = ICCI + ICCA  
5. JTAG pins comply with LVTTL/TTL I/O specification regardless of whether they are used as a user I/O or a JTAG I/O.  
v4.3  
1-15  
eX Family FPGAs  
CEQ Values for eX Devices  
Combinatorial modules (Ceqcm) 1.70 pF  
Power Dissipation  
Power consumption for eX devices can be divided into  
two components: static and dynamic.  
Sequential modules (Ceqsm)  
Input buffers (Ceqi)  
Output buffers (Ceqo)  
Routed array clocks (Ceqcr)  
1.70 pF  
1.30 pF  
7.40 pF  
1.05 pF  
Static Power Component  
The power due to standby current is typically a small  
component of the overall power. Typical standby current  
for eX devices is listed in the Table 1-11 on page 1-13. For  
example, the typical static power for eX128 at 3.3 V VCCI  
is:  
The variable and fixed capacitance of other device  
components must also be taken into account when  
estimating the dynamic power dissipation.  
Table 1-12 shows the capacitance of the clock  
components of eX devices.  
I
CC * VCCA = 795 µA x 2.5 V = 1.99 mW  
Table 1-12 Capacitance of Clock Components of eX  
Devices  
Dynamic Power Component  
eX64  
eX128  
eX256  
Power dissipation in CMOS devices is usually dominated  
by the dynamic power dissipation. This component is  
frequency-dependent and a function of the logic and the  
external I/O. Dynamic power dissipation results from  
charging internal chip capacitance due to PC board  
traces and load device inputs. An additional component  
of the dynamic power dissipation is the totem pole  
current in the CMOS transistor pairs. The net effect can  
be associated with an equivalent capacitance that can be  
combined with frequency and voltage to represent  
dynamic power dissipation.  
Dedicated array clock  
variable (Ceqhv)  
0.85 pF  
0.85 pF  
0.85 pF  
Dedicated array clock – fixed 18.00 pF 20.00 pF 25.00 pF  
(Ceqhf)  
Routed array clock A (r1)  
Routed array clock B (r2)  
23.00 pF 28.00 pF 35.00 pF  
23.00 pF 28.00 pF 35.00 pF  
The estimation of the dynamic power dissipation is a  
piece-wise linear summation of the power dissipation of  
each component.  
Dynamic power dissipation = CEQ * VCCA2 x F  
where:  
Dynamic power dissipation  
= VCCA2 * [(mc * Ceqcm * fmC)Comb Modules + (ms * Ceqsm  
*
CEQ = Equivalent capacitance  
fmS)Seq Modules + (n * Ceqi * fn)Input Buffers + (0.5 * (q1 *  
Ceqcr * fq1) + (r1 * fq1))RCLKA + (0.5 * (q2 * Ceqcr * fq2) +  
F
= switching frequency  
Equivalent capacitance is calculated by measuring ICCA at  
a specified frequency and voltage for each circuit  
component of interest. Measurements have been made  
(r2 * fq2))RCLKB + (0.5 * (s1 * Ceqhv * fs1)+(Ceqhf  
*
fs1))HCLK] + VCCI2 * [(p * (Ceqo + CL) * fp)Output Buffers  
where:  
]
over a range of frequencies at a fixed value of VCC  
.
mc  
ms  
n
= Number of combinatorial cells switching at  
Equivalent capacitance is frequency-independent, so the  
results can be used over a wide range of operating  
conditions. Equivalent capacitance values are shown  
below.  
frequency fm, typically 20% of C-cells  
= Number of sequential cells switching at  
frequency fm, typically 20% of R-cells  
= Number of input buffers switching at  
frequency fn, typically number of inputs / 4  
= Number of output buffers switching at  
frequency fp, typically number of outputs / 4  
= Number of R-cells driven by routed array  
clock A  
p
q1  
q2  
=
Number of R-cells driven by routed array  
clock B  
r1  
r2  
s1  
= Fixed capacitance due to routed array clock A  
= Fixed capacitance due to routed array clock B  
= Number of R-cells driven by dedicated array  
clock  
Ceqcm  
=
Equivalent capacitance of combinatorial  
modules  
1-16  
v4.3  
eX Family FPGAs  
Ceqsm  
=
Equivalent capacitance of sequential  
modules  
Thermal Characteristics  
The temperature variable in the Designer software refers  
to the junction temperature, not the ambient  
temperature. This is an important distinction because the  
heat generated from dynamic power consumption is  
usually hotter than the ambient temperature. EQ 1-1,  
shown below, can be used to calculate junction  
temperature.  
Ceqi = Equivalent capacitance of input buffers  
Ceqcr = Equivalent capacitance of routed array clocks  
Ceqhv = Variable capacitance of dedicated array clock  
Ceqhf = Fixed capacitance of dedicated array clock  
Ceqo = Equivalent capacitance of output buffers  
CL  
=
Average output loading capacitance,  
typically 10 pF  
fmc  
= Average C-cell switching frequency, typically  
F/10  
EQ 1-1  
Junction Temperature = T + Ta(1)  
Where:  
fms = Average R-cell switching frequency, typically  
F/10  
fn  
= Average input buffer switching frequency,  
typically F/5  
= Average output buffer switching frequency,  
typically F/5  
Ta = Ambient Temperature  
T = Temperature gradient between junction  
(silicon) and ambient = θja * P  
fp  
fq1  
fq2  
fs1  
= Frequency of routed clock A  
= Frequency of routed clock B  
= Frequency of dedicated array clock  
P = Power  
θ
= Junction to ambient of package. θ numbers are  
ja  
located in the "Package Thermal Characteristics" section  
below.  
ja  
The eX, SX-A and RTSX-S Power Calculator can be used to  
estimate the total power dissipation (static and dynamic)  
of eX devices and can be found at  
http://www.actel.com/products/rescenter/power/  
calculators.asp.  
Package Thermal Characteristics  
The device junction-to-case thermal characteristic is θjc,  
and the junction-to-ambient air characteristic is θja. The  
thermal characteristics for θja are shown with two  
different air flow rates. θjc is provided for reference.  
The maximum junction temperature is 150°C.  
The maximum power dissipation allowed for eX devices  
is a function of θja. A sample calculation of the absolute  
maximum power dissipation allowed for a TQFP 100-pin  
package at commercial temperature and still air is as  
follows:  
Max. junction temp. (°C) Max. ambient temp. (°C) 150°C 70°C  
--------------------------------------------------------------------------------------------------------------------------------- ----------------------------------  
Maximum Power Allowed =  
=
= 2.39W  
θja(°C/W)  
33.5°C/W  
θja  
1.0 m/s  
2.5 m/s  
Package Type  
Pin Count  
θjc  
Still Air  
42.4  
200 ft/min  
500 ft/min  
Units  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Thin Quad Flat Pack (TQFP)  
Thin Quad Flat Pack (TQFP)  
Chip Scale Package (CSP)  
Chip Scale Package (CSP)  
Chip Scale Package (CSP)  
64  
100  
49  
12.0  
14.0  
36.3  
27.4  
59.5  
44.6  
47.6  
34.0  
25.0  
54.1  
40.6  
43.3  
33.5  
72.2  
128  
180  
54.1  
57.8  
v4.3  
1-17  
eX Family FPGAs  
eX Timing Model  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
Combinatorial  
Cell  
t
t
= 0.3 ns  
= 0.4 ns  
I/O Module  
I/O Module  
IRD1  
IRD2  
t
= 0.7 ns  
INYH  
t
= 2.6 ns  
DHL  
t
= 0.7 ns  
PD  
t
t
t
= 0.3 ns  
RD1  
= 0.7 ns  
RD4  
= 1.2 ns  
RD8  
I/O Module  
Register  
Cell  
t
= 1.9 ns  
ENZL  
D
Q
t
t
t
RD1  
= 0.5 ns  
= 0.3 ns  
SUD  
HD  
= 0.0 ns  
t
= 2.6 ns  
DHL  
Routed  
Clock  
t
= 1.3 ns  
RCKH  
t
= 0.6 ns  
(100% Load)  
RCO  
I/O Module  
Register  
Cell  
I/O Module  
t
= 1.3 ns  
t
= 1.9 ns  
INYH  
ENZL  
t
= 0.3 ns  
= 0.5 ns  
IRD1  
D
Q
t
t
t
RD1  
= 0.3 ns  
SUD  
= 0.0 ns  
HD  
t
= 2.6 ns  
DHL  
Hard-Wired  
Clock  
t
t
RCO  
= 1.1 ns  
= 0.6 ns  
HCKH  
Note: Values shown for eX128–P, worst-case commercial conditions (5.0V, 35pF Pad Load).  
Figure 1-14 eX Timing Model  
Hardwired Clock  
Routed Clock  
External Setup = tINYH + tIRD1 + tSUD – tHCKH  
External Setup = tINYH + tIRD2 + tSUD – tRCKH  
0.7 + 0.4 + 0.5 – 1.3= 0.3 ns  
Clock-to-Out (Pad-to-Pad), typical  
=
0.7 + 0.3 + 0.5 – 1.1 = 0.4 ns  
=
Clock-to-Out (Pad-to-Pad), typical  
=
=
t
HCKH + tRCO + tRD1 + tDHL  
=
=
t
RCKH + tRCO + tRD1 + tDHL  
1.1 + 0.6 + 0.3 + 2.6 = 4.6 ns  
1.3+ 0.6 + 0.3 + 2.6 = 4.8 ns  
1-18  
v4.3  
eX Family FPGAs  
Output Buffer Delays  
E
D
PAD To AC test loads (shownbelow)  
VCC  
TRIBUFF  
VCC  
VCC  
50% 50%  
VCC  
In  
50%  
50%  
GND  
1.5 V  
50% 50%  
VOH  
GND  
En  
GND  
90%  
En  
Out  
VOH  
1.5 V  
1.5 V  
10%  
Out  
VOL  
1.5 V  
Out  
GND  
VOL  
t
t
t
t
t
ENHZ  
t
DHL  
DLH  
ENZL  
ENZH  
ENLZ  
Table 1-13 Output Buffer Delays  
AC Test Loads  
Load 3  
(Used to measure disable delays)  
Load 1  
(used to measure  
propagation delay)  
Load 2  
(Used to measure enable delays)  
GND  
GND  
VCC  
VCC  
To the output  
under test  
t
t
R to VCC for PLZ  
R to VCC for PZL  
35 pF  
t
t
To the output  
under test  
To the output  
under test  
R to GND for PHZ  
R to GND for PHZ  
R = 1 k  
R = 1 kΩ  
35pF  
5pF  
Figure 1-15 AC Test Loads  
v4.3  
1-19  
eX Family FPGAs  
Input Buffer Delays  
C-Cell Delays  
S
Y
A
B
Y
PAD  
INBUF  
VCC  
50%  
50%  
S, A or B  
GND  
VCC  
50%  
3V  
50%  
Out  
GND  
In  
0V  
1.5 V 1.5 V  
t
t
PD  
PD  
V
CC  
50%  
Out  
VCC  
Out  
50%  
GND  
t
50%  
50%  
GND  
t
tINY  
tINY  
PD  
PD  
Table 1-14 Input Buffer Delays  
Table 1-15 C-Cell Delays  
Cell Timing Characteristics  
D
Q
PRESET  
CLR  
CLK  
(Positive edge triggered)  
tHD  
D
tHP  
tSUD  
tHPWH  
,
tRPWH  
CLK  
,
tHPWL  
tRPWL  
tRCO  
Q
tPRESET  
tCLR  
tWASYN  
CLR  
PRESET  
Figure 1-16 Flip-Flops  
1-20  
v4.3  
eX Family FPGAs  
Long Tracks  
Timing Characteristics  
Some nets in the design use long tracks. Long tracks are  
special routing resources that span multiple rows,  
columns, or modules. Long tracks employ three to five  
antifuse connections. This increases capacitance and  
resistance, resulting in longer net delays for macros  
connected to long tracks. Typically, no more than six  
percent of nets in a fully utilized device require long  
tracks. Long tracks contribute approximately 4 ns to  
8.4 ns delay. This additional delay is represented  
statistically in higher fanout routing delays.  
Timing characteristics for eX devices fall into three  
categories: family-dependent, device-dependent, and  
design-dependent. The input and output buffer  
characteristics are common to all eX family members.  
Internal routing delays are device-dependent. Design  
dependency means actual delays are not determined  
until after placement and routing of the user’s design are  
complete. Delay values may then be determined by using  
the Timer utility or performing simulation with post-  
layout delays.  
Timing Derating  
Critical Nets and Typical Nets  
eX devices are manufactured with a CMOS process.  
Therefore, device performance varies according to  
temperature, voltage, and process changes. Minimum  
timing parameters reflect maximum operating voltage,  
minimum operating temperature, and best-case  
processing. Maximum timing parameters reflect  
minimum operating voltage, maximum operating  
temperature, and worst-case processing.  
Propagation delays are expressed only for typical nets,  
which are used for initial design performance evaluation.  
Critical net delays can then be applied to the most timing  
critical paths. Critical nets are determined by net  
property assignment prior to placement and routing. Up  
to six percent of the nets in a design may be designated  
as critical.  
Temperature and Voltage Derating Factors  
Table 1-16 Temperature and Voltage Derating Factors  
(Normalized to Worst-Case Commercial, TJ = 70°C, VCCA = 2.3V)  
Junction Temperature (TJ)  
25 70  
VCCA  
2.3  
–55  
0.79  
0.74  
0.69  
–40  
0.80  
0.74  
0.70  
0
85  
125  
1.13  
1.06  
1.00  
0.87  
0.81  
0.76  
0.88  
0.83  
0.78  
1.00  
0.93  
0.88  
1.04  
0.97  
0.91  
2.5  
2.7  
v4.3  
1-21  
eX Family FPGAs  
eX Family Timing Characteristics  
Table 1-17 eX Family Timing Characteristics  
(Worst-Case Commercial Conditions, VCCA = 2.3 V TJ = 70°C)  
,
‘–P’ Speed  
‘Std’ Speed  
‘–F’ Speed  
Min. Max.  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
C-Cell Propagation Delays1  
tPD  
Internal Array Module  
0.7  
1.0  
1.4  
ns  
Predicted Routing Delays2  
tDC  
FO=1 Routing Delay, DirectConnect  
0.1  
0.3  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.1  
0.5  
0.5  
0.6  
0.8  
1.0  
1.7  
2.5  
0.2  
0.7  
0.7  
0.8  
1.1  
1.3  
2.4  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO=1 Routing Delay, FastConnect  
FO=1 Routing Delay  
tRD1  
tRD2  
FO=2 Routing Delay  
tRD3  
FO=3 Routing Delay  
tRD4  
FO=4 Routing Delay  
tRD8  
FO=8 Routing Delay  
tRD12  
R-Cell Timing  
tRCO  
FO=12 Routing Delay  
Sequential Clock-to-Q  
0.6  
0.6  
0.7  
0.9  
0.8  
0.9  
1.3  
1.2  
1.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
Asynchronous Recovery Time  
Asynchronous Hold Time  
tPRESET  
tSUD  
0.5  
0.0  
1.3  
0.3  
0.3  
0.7  
0.0  
1.9  
0.5  
0.5  
1.0  
0.0  
2.6  
0.7  
0.7  
tHD  
tWASYN  
tRECASYN  
tHASYN  
2.5 V Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
0.6  
0.8  
0.9  
1.1  
1.3  
1.5  
ns  
ns  
3.3 V Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
0.7  
0.9  
1.0  
1.3  
1.4  
1.8  
ns  
ns  
5.0 V Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
0.7  
0.9  
1.0  
1.3  
1.4  
1.8  
ns  
ns  
Input Module Predicted Routing Delays2  
tIRD1  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.4  
0.6  
0.8  
1.0  
1.7  
2.5  
0.5  
0.8  
1.1  
1.3  
2.4  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
tIRD12  
Notes:  
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance.  
1-22  
v4.3  
eX Family FPGAs  
Table 1-18 eX Family Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.3 V, VCCI = 4.75 V, TJ = 70°C)  
‘–P’ Speed ‘Std’ Speed  
Min. Max.  
‘–F’ Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max. Units  
Dedicated (Hard-Wired) Array Clock Networks  
tHCKH  
tHCKL  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.1  
1.1  
1.6  
1.6  
2.3  
2.3  
ns  
ns  
Input HIGH to LOW  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
2.0  
2.0  
2.8  
2.8  
ns  
ns  
<0.1  
357  
<0.1  
250  
<0.1  
178  
ns  
Minimum Period  
2.8  
4.0  
5.6  
ns  
fHMAX  
Maximum Frequency  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input) MAX.  
1.1  
1.0  
1.2  
1.2  
1.3  
1.3  
1.6  
1.4  
1.7  
1.7  
1.9  
1.9  
2.2  
2.0  
2.4  
2.4  
2.6  
2.6  
ns  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input) MAX.  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input) MAX.  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input) MAX.  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input) MAX.  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input) MAX.  
tRPWH  
Min. Pulse Width HIGH  
1.5  
1.5  
2.1  
2.1  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
*
*
*
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.2  
0.1  
0.1  
0.3  
0.2  
0.1  
0.4  
0.3  
0.2  
Note: *Clock skew improves as the clock network becomes more heavily loaded.  
v4.3  
1-23  
eX Family FPGAs  
Table 1-19 eX Family Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.3V, VCCI = 2.3 V or 3.0V, TJ = 70°C)  
‘–P’ Speed ‘Std’ Speed  
Min. Max.  
‘–F’ Speed  
Min. Max. Units  
Parameter  
Description  
Min.  
Max.  
Dedicated (Hard-Wired) Array Clock Networks  
tHCKH  
tHCKL  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.1  
1.1  
1.6  
1.6  
2.3  
2.3  
ns  
ns  
Input HIGH to LOW  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
2.0  
2.0  
2.8  
2.8  
ns  
ns  
<0.1  
357  
<0.1  
250  
<0.1  
178  
ns  
Minimum Period  
2.8  
4.0  
5.6  
ns  
fHMAX  
Maximum Frequency  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input) MAX.  
1.0  
1.0  
1.2  
1.2  
1.4  
1.4  
1.4  
1.4  
1.7  
1.7  
2.0  
2.0  
2.0  
2.0  
2.4  
2.4  
2.8  
2.8  
ns  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input) MAX.  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input) MAX.  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input) MAX.  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input) MAX.  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input) MAX.  
tRPWH  
Min. Pulse Width HIGH  
1.4  
1.4  
2.0  
2.0  
2.8  
2.8  
ns  
ns  
ns  
ns  
ns  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
*
*
*
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.2  
0.2  
0.1  
0.3  
0.2  
0.1  
0.4  
0.3  
0.2  
Note: *Clock skew improves as the clock network becomes more heavily loaded.  
1-24  
v4.3  
eX Family FPGAs  
Table 1-20 eX Family Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.3 V, TJ = 70°C)  
‘–P’ Speed  
Min. Max.  
‘Std’ Speed  
‘–F’ Speed  
Min. Max.  
Parameter  
Description  
Min.  
Max.  
Units  
2.5 V LVCMOS Output Module Timing1 (VCCI = 2.3 V)  
tDLH  
Data-to-Pad LOW to HIGH  
3.3  
3.5  
4.7  
5.0  
6.6  
7.0  
ns  
ns  
tDHL  
Data-to-Pad HIGH to LOW  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
Data-to-Pad HIGH to LOW—Low Slew  
Enable-to-Pad, Z to L  
11.6  
2.5  
16.6  
3.6  
23.2  
5.1  
ns  
ns  
Enable-to-Pad Z to L—Low Slew  
Enable-to-Pad, Z to H  
11.8  
3.4  
16.9  
4.9  
23.7  
6.9  
ns  
ns  
Enable-to-Pad, L to Z  
2.1  
3.0  
4.2  
ns  
Enable-to-Pad, H to Z  
2.4  
5.67  
0.046  
0.022  
0.072  
7.94  
0.066  
0.05  
0.1  
ns  
Delta Delay vs. Load LOW to HIGH  
Delta Delay vs. Load HIGH to LOW  
Delta Delay vs. Load HIGH to LOW—Low Slew  
0.034  
0.016  
0.05  
ns/pF  
ns/pF  
ns/pF  
dTHL  
dTHLS  
3.3 V LVTTL Output Module Timing1 (VCCI = 3.0 V)  
tDLH  
Data-to-Pad LOW to HIGH  
2.8  
2.7  
4.0  
3.9  
5.6  
5.4  
ns  
ns  
tDHL  
Data-to-Pad HIGH to LOW  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
Data-to-Pad HIGH to LOW—Low Slew  
Enable-to-Pad, Z to L  
9.7  
13.9  
3.2  
19.5  
4.4  
ns  
2.2  
ns  
Enable-to-Pad Z to L—Low Slew  
Enable-to-Pad, Z to H  
9.7  
13.9  
4.0  
19.6  
5.6  
ns  
2.8  
ns  
Enable-to-Pad, L to Z  
2.8  
4.0  
5.6  
ns  
Enable-to-Pad, H to Z  
2.6  
3.8  
5.3  
ns  
Delta Delay vs. Load LOW to HIGH  
Delta Delay vs. Load HIGH to LOW  
Delta Delay vs. Load HIGH to LOW—Low Slew  
0.02  
0.016  
0.05  
0.03  
0.022  
0.072  
0.046  
0.05  
0.1  
ns/pF  
ns/pF  
ns/pF  
dTHL  
dTHLS  
5.0 V TTL Output Module Timing* (VCCI = 4.75 V)  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Data-to-Pad HIGH to LOW—Low Slew  
Enable-to-Pad, Z to L  
2.0  
2.6  
6.8  
1.9  
6.8  
2.1  
3.3  
2.9  
3.7  
9.7  
2.7  
9.8  
3.0  
4.8  
4.0  
5.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
13.6  
3.8  
Enable-to-Pad Z to L—Low Slew  
Enable-to-Pad, Z to H  
13.7  
4.1  
Enable-to-Pad, L to Z  
6.6  
Note: *Delays based on 35 pF loading.  
v4.3  
1-25  
eX Family FPGAs  
Pin Description  
CLKA/B  
Routed Clock A and B  
TCK, I/O  
Test Clock  
These pins are clock inputs for clock distribution  
networks. Input levels are compatible with standard TTL  
or LVTTL specifications. The clock input is buffered prior  
to clocking the R-cells. If not used, this pin must be set  
LOW or HIGH on the board. It must not be left floating.  
Test clock input for diagnostic probe and device  
programming. In flexible mode, TCK becomes active  
when the TMS pin is set LOW (refer to Table 1-4 on  
page 1-9). This pin functions as an I/O when the  
boundary scan state machine reaches the “logic reset”  
state.  
GND  
Ground  
TDI, I/O  
Test Data Input  
LOW supply voltage.  
Serial input for boundary scan testing and diagnostic  
probe. In flexible mode, TDI is active when the TMS pin is  
set LOW (refer to Table 1-4 on page 1-9). This pin  
functions as an I/O when the boundary scan state  
machine reaches the “logic reset” state.  
HCLK  
Dedicated (Hardwired)  
Array Clock  
This pin is the clock input for sequential modules. Input  
levels are compatible with standard TTL or LVTTL  
specifications. This input is directly wired to each R-cell  
and offers clock speeds independent of the number of R-  
cells being driven. If not used, this pin must be set LOW  
or HIGH on the board. It must not be left floating.  
TDO, I/O  
Test Data Output  
Serial output for boundary scan testing. In flexible mode,  
TDO is active when the TMS pin is set LOW (refer to  
Table 1-4 on page 1-9). This pin functions as an I/O when  
the boundary scan state machine reaches the "logic  
reset" state. When Silicon Explorer is being used, TDO  
will act as an output when the "checksum" command is  
run. It will return to user I/O when "checksum" is  
complete.  
I/O  
Input/Output  
The I/O pin functions as an input, output, tristate, or  
bidirectional buffer. Based on certain configurations,  
input and output levels are compatible with standard  
TTL or LVTTL specifications. Unused I/O pins are  
automatically tristated by the Designer software.  
TMS  
Test Mode Select  
LP  
Low Power Pin  
The TMS pin controls the use of the IEEE 1149.1  
Boundary scan pins (TCK, TDI, TDO, TRST). In flexible  
mode when the TMS pin is set LOW, the TCK, TDI, and  
TDO pins are boundary scan pins (refer to Table 1-4 on  
page 1-9). Once the boundary scan pins are in test mode,  
they will remain in that mode until the internal  
boundary scan state machine reaches the “logic reset”  
state. At this point, the boundary scan pins will be  
released and will function as regular I/O pins. The “logic  
reset” state is reached five TCK cycles after the TMS pin is  
set HIGH. In dedicated test mode, TMS functions as  
specified in the IEEE 1149.1 specifications.  
Controls the low power mode of the eX devices. The  
device is placed in the low power mode by connecting  
the LP pin to logic HIGH. In low power mode, all I/Os are  
tristated, all input buffers are turned OFF, and the core  
of the device is turned OFF. To exit the low power mode,  
the LP pin must be set LOW. The device enters the low  
power mode 800 ns after the LP pin is driven to a logic  
HIGH. It will resume normal operation 200 µs after the LP  
pin is driven to a logic LOW. LP pin should not be left  
floating. Under normal operating condition it should be  
tied to GND via 10 kresistor.  
NC  
No Connection  
TRST, I/O  
Boundary Scan Reset Pin  
This pin is not connected to circuitry within the device.  
These pins can be driven to any voltage or can be left  
floating with no effect on the operation of the device.  
Once it is configured as the JTAG Reset pin, the TRST pin  
functions as an active-low input to asynchronously  
initialize or reset the boundary scan circuit. The TRST pin  
is equipped with an internal pull-up resistor. This pin  
functions as an I/O when the “Reserve JTAG Reset Pin” is  
not selected in the Designer software.  
PRA/PRB, I/O  
Probe A/B  
The Probe pin is used to output data from any user-  
defined design node within the device. This diagnostic  
pin can be used independently or in conjunction with the  
other probe pin to allow real-time diagnostic output of  
any signal path within the device. The Probe pin can be  
used as a user-defined I/O when verification has been  
completed. The pin’s probe capabilities can be  
permanently disabled to protect programmed design  
confidentiality.  
V
Supply Voltage  
CCI  
Supply voltage for I/Os.  
V
Supply Voltage  
CCA  
Supply voltage for Array.  
1-26  
v4.3  
eX Family FPGAs  
Package Pin Assignments  
64-Pin TQFP  
64  
1
64-Pin  
TQFP  
Figure 2-1 64-Pin TQFP  
Note  
For Package Manufacturing and Environmental information, visit Resource center at  
http://www.actel.com/products/rescenter/package/index.html.  
v4.3  
2-1  
eX Family FPGAs  
64-Pin TQFP  
64-Pin TQFP  
eX64  
eX128  
eX64  
eX128  
Pin Number  
Function  
Function  
Pin Number  
Function  
Function  
1
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45*  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
GND  
I/O  
GND  
I/O  
2
3
I/O  
I/O  
4
TMS  
GND  
VCCI  
I/O  
TMS  
GND  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
5
6
7
I/O  
I/O  
8
I/O  
I/O  
NC  
I/O  
9
NC  
I/O  
NC  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
NC  
I/O  
I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
I/O  
I/O  
VCCA  
GND/LP  
GND  
I/O  
VCCA  
GND/ LP  
GND  
I/O  
NC  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
PRB, I/O  
VCCA  
GND  
I/O  
PRB, I/O  
VCCA  
GND  
I/O  
I/O  
I/O  
CLKA  
CLKB  
VCCA  
GND  
PRA, I/O  
I/O  
CLKA  
CLKB  
VCCA  
GND  
PRA, I/O  
I/O  
HCLK  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
TDO, I/O  
TCK, I/O  
TCK, I/O  
Note: *Please read the LP pin descriptions for restrictions on their use.  
2-2  
v4.3  
eX Family FPGAs  
100-Pin TQFP  
100  
1
100-Pin  
TQFP  
Figure 2-2 100-Pin TQFP (Top View)  
Note  
For Package Manufacturing and Environmental information, visit Resource center at  
http://www.actel.com/products/rescenter/package/index.html.  
v4.3  
2-3  
eX Family FPGAs  
100-Pin TQFP  
100-Pin TQFP  
eX64  
eX128  
eX256  
eX64  
eX128  
eX256  
Pin Number  
Function  
GND  
TDI, I/O  
NC  
Function  
Function  
Pin Number  
Function  
GND  
NC  
Function  
Function  
1
GND  
TDI, I/O  
NC  
GND  
TDI, I/O  
I/O  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
GND  
NC  
GND  
NC  
2
3
I/O  
I/O  
I/O  
4
NC  
NC  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
5
NC  
NC  
I/O  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
7
TMS  
VCCI  
GND  
NC  
TMS  
VCCI  
GND  
I/O  
TMS  
VCCI  
GND  
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
9
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
NC  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
NC  
I/O  
I/O  
TRST, I/O  
NC  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
GND  
NC  
GND  
NC  
GND  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
NC  
I/O  
I/O  
NC  
NC  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
VCCA  
VCCI  
NC  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
NC  
NC  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND/LP  
GND  
I/O  
VCCA  
GND/LP  
GND  
I/O  
VCCA  
GND/LP  
GND  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
VCCA  
PRB, I/O  
VCCA  
PRB, I/O  
VCCA  
Note: *Please read the LP pin descriptions for restrictions on their use.  
2-4  
v4.3  
eX Family FPGAs  
100-Pin TQFP  
eX64  
eX128  
eX256  
Pin Number  
Function  
Function  
Function  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
I/O  
NC  
NC  
I/O  
NC  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
VCCA  
GND  
PRA, I/O  
I/O  
VCCA  
GND  
PRA, I/O  
I/O  
VCCA  
GND  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
Note: *Please read the LP pin descriptions for restrictions on their use.  
v4.3  
2-5  
eX Family FPGAs  
49-Pin CSP  
A1 Ball Pad Corner  
2
3
6
1
5
7
4
A
B
C
D
E
F
G
Figure 2-3 49-Pin CSP (Top View)  
Note  
For Package Manufacturing and Environmental information, visit Resource center at  
http://www.actel.com/products/rescenter/package/index.html.  
2-6  
v4.3  
eX Family FPGAs  
49-Pin CSP  
49-Pin CSP  
eX64  
eX128  
eX64  
eX128  
Pin Number  
Function  
Function  
Pin Number  
Function  
Function  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
B1  
B2  
I/O  
I/O  
I/O  
I/O  
D5  
D6  
D7  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
F1  
VCCA  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
TRST, I/O  
VCCI  
GND  
I/O  
TRST, I/O  
VCCI  
GND  
I/O  
I/O  
I/O  
TCK, I/O  
I/O  
TCK, I/O  
I/O  
I/O  
I/O  
B3  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
B4  
PRA, I/O  
CLKA  
I/O  
PRA, I/O  
CLKA  
I/O  
B5  
B6  
F2  
I/O  
I/O  
F3  
I/O  
I/O  
B7*  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
D1  
D2  
D3  
D4  
GND/LP*  
I/O  
GND/LP*  
I/O  
F4  
I/O  
I/O  
F5  
HCLK  
I/O  
HCLK  
I/O  
TDI, I/O  
VCCI  
GND  
CLKB  
VCCA  
I/O  
TDI, I/O  
VCCI  
GND  
CLKB  
VCCA  
I/O  
F6  
F7  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
VCCA  
I/O  
PRB, I/O  
VCCA  
I/O  
I/O  
I/O  
TMS  
GND  
GND  
TMS  
GND  
GND  
I/O  
I/O  
Note: *Please read the LP pin descriptions for restrictions on their use.  
v4.3  
2-7  
eX Family FPGAs  
128-Pin CSP  
A1 Ball Pad Corner  
2
3
4
5
6
8
12  
1
7
9
10  
11  
A
B
C
D
E
F
G
H
J
K
L
M
Figure 2-4 128-Pin CSP (Top View)  
Note  
For Package Manufacturing and Environmental information, visit Resource center at  
http://www.actel.com/products/rescenter/package/index.html.  
2-8  
v4.3  
eX Family FPGAs  
128-Pin CSP  
128-Pin CSP  
eX64  
eX128  
eX256  
eX64  
eX128  
eX256  
Pin Number  
A1  
Function  
Function  
Function  
Pin Number  
C12  
D1  
Function  
Function  
Function  
I/O  
I/O  
TCK, I/O  
VCCI  
I/O  
I/O  
TCK, I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A2  
TCK, I/O  
VCCI  
I/O  
NC  
A3  
D2  
I/O  
I/O  
I/O  
A4  
D3  
I/O  
I/O  
I/O  
A5  
I/O  
I/O  
I/O  
D4  
I/O  
I/O  
I/O  
A6  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
D5  
I/O  
I/O  
I/O  
A7  
D6  
GND  
I/O  
GND  
I/O  
GND  
I/O  
A8  
I/O  
I/O  
I/O  
D7  
A9  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
D8  
GND  
I/O  
GND  
I/O  
GND  
I/O  
A10  
A11  
A12  
B1  
D9  
I/O  
I/O  
I/O  
D10  
D11  
D12  
E1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TMS  
I/O  
TMS  
I/O  
TMS  
I/O  
VCCI  
NC  
VCCI  
I/O  
VCCI  
I/O  
B2  
B3  
I/O  
I/O  
I/O  
E2  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
B4  
I/O  
I/O  
I/O  
E3  
B5  
I/O  
I/O  
I/O  
E4  
GND  
GND  
I/O  
GND  
GND  
I/O  
GND  
GND  
I/O  
B6  
PRA, I/O  
CLKB  
I/O  
PRA, I/O  
CLKB  
I/O  
PRA, I/O  
CLKB  
I/O  
E9  
B7  
E10  
E11*  
E12  
F1  
B8  
GND/LP*  
VCCA  
NC  
GND/LP*  
VCCA  
I/O  
GND/LP*  
VCCA  
I/O  
B9  
I/O  
I/O  
I/O  
B10  
B11  
B12  
C1  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
F2  
NC  
I/O  
I/O  
F3  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
F4  
I/O  
I/O  
I/O  
C2  
TDI, I/O  
I/O  
TDI, I/O  
I/O  
TDI, I/O  
I/O  
F9  
GND  
NC  
GND  
I/O  
GND  
I/O  
C3  
F10  
F11  
F12  
G1  
C4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
C5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
C6  
CLKA  
I/O  
CLKA  
I/O  
CLKA  
I/O  
NC  
I/O  
I/O  
C7  
G2  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
C8  
I/O  
I/O  
I/O  
G3  
C9  
I/O  
I/O  
I/O  
G4  
GND  
GND  
NC  
GND  
GND  
I/O  
GND  
GND  
I/O  
C10  
C11  
NC  
I/O  
I/O  
G9  
NC  
I/O  
I/O  
G10  
Note: *Please read the LP pin descriptions for restrictions on their use.  
v4.3  
2-9  
eX Family FPGAs  
128-Pin CSP  
128-Pin CSP  
eX64  
eX128  
eX256  
eX64  
eX128  
eX256  
Pin Number  
Function  
Function  
Function  
Pin Number  
K8  
Function  
Function  
Function  
G11  
G12  
H1  
H2  
H3  
H4  
H9  
H10  
H11  
H12  
J1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
K9  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
K10  
K11  
K12  
L1  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
VCCI  
GND  
I/O  
VCCI  
GND  
I/O  
VCCI  
GND  
I/O  
I/O  
I/O  
I/O  
L2  
I/O  
I/O  
I/O  
VCCI  
VCCA  
NC  
VCCI  
VCCA  
I/O  
VCCI  
VCCA  
I/O  
L3  
NC  
I/O  
I/O  
L4  
I/O  
I/O  
I/O  
L5  
I/O  
I/O  
I/O  
NC  
NC  
VCCA  
I/O  
L6  
I/O  
I/O  
I/O  
J2  
I/O  
I/O  
L7  
I/O  
I/O  
I/O  
J3  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
L8  
I/O  
I/O  
I/O  
J4  
L9  
I/O  
I/O  
I/O  
J5  
I/O  
I/O  
I/O  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
I/O  
I/O  
I/O  
J6  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
J7  
GND  
I/O  
GND  
I/O  
GND  
I/O  
VCCI  
GND  
I/O  
VCCI  
GND  
I/O  
VCCI  
GND  
I/O  
J8  
J9  
GND  
I/O  
GND  
I/O  
GND  
I/O  
J10  
J11  
J12  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
HCLK  
PRB, I/O  
HCLK  
PRB, I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Note: *Please read the LP pin descriptions for restrictions on their use.  
2-10  
v4.3  
eX Family FPGAs  
180-Pin CSP  
A1 Ball Pad Corner  
12  
1
2
3
4
5
6
7
9 10  
14  
13  
8
11  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Figure 2-5 180-Pin CSP  
Note  
For Package Manufacturing and Environmental information, visit Resource center at  
http://www.actel.com/products/rescenter/package/index.html.  
v4.3  
2-11  
eX Family FPGAs  
180-Pin CSP  
180-Pin CSP  
180-Pin CSP  
180-Pin CSP  
Pin  
eX256  
Pin  
eX256  
Pin  
eX256  
Pin  
eX256  
Number  
Function  
Number  
Function  
Number  
Function  
Number  
J10  
J11  
J12  
J13  
J14  
K1  
Function  
A1  
A2  
A3  
I/O  
C8  
CLKB  
I/O  
F1  
I/O  
I/O  
I/O  
VCCI  
VCCA  
I/O  
I/O  
C9  
F2  
GND  
NC  
C10  
C11  
C12  
C13  
C14  
D1  
I/O  
F3  
VCCI  
I/O  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
B1  
I/O  
F4  
NC  
GND  
I/O  
F5  
GND  
GND  
I/O  
I/O  
NC  
F10  
F11  
F12*  
F13  
F14  
G1  
I/O  
NC  
I/O  
K2  
VCCA  
I/O  
NC  
I/O  
GND/LP*  
VCCA  
I/O  
K3  
NC  
D2  
I/O  
K4  
VCCI  
I/O  
NC  
D3  
TDI, I/O  
I/O  
K5  
NC  
D4  
VCCA  
I/O  
K6  
I/O  
I/O  
D5  
I/O  
G2  
K7  
I/O  
I/O  
D6  
I/O  
G3  
I/O  
K8  
GND  
I/O  
I/O  
D7  
CLKA  
I/O  
G4  
I/O  
K9  
I/O  
D8  
G5  
I/O  
K10  
K11  
K12  
K13  
K14  
L1  
GND  
I/O  
B2  
I/O  
D9  
I/O  
G10  
G11  
G12  
G13  
G14  
H1  
GND  
I/O  
B3  
TCK, I/O  
VCCI  
I/O  
D10  
D11  
D12  
D13  
D14  
E1  
I/O  
I/O  
B4  
I/O  
I/O  
I/O  
B5  
I/O  
I/O  
I/O  
B6  
I/O  
I/O  
VCCA  
I/O  
I/O  
B7  
VCCA  
I/O  
I/O  
L2  
I/O  
B8  
I/O  
H2  
I/O  
L3  
I/O  
B9  
I/O  
E2  
I/O  
H3  
TRST, I/O  
I/O  
L4  
I/O  
B10  
B11  
B12  
B13  
B14  
C1  
C2  
VCCI  
I/O  
E3  
I/O  
H4  
L5  
I/O  
E4  
I/O  
H5  
GND  
GND  
I/O  
L6  
I/O  
I/O  
E5  
I/O  
H10  
H11  
H12  
H13  
H14  
J1  
L7  
PRB, I/O  
HCLK  
I/O  
I/O  
E6  
I/O  
L8  
I/O  
E7  
GND  
I/O  
I/O  
L9  
I/O  
E8  
I/O  
L10  
L11  
L12  
L13  
L14  
M1  
M2  
I/O  
TMS  
I/O  
E9  
GND  
I/O  
I/O  
I/O  
C3  
C4  
C5  
C6  
C7  
E10  
E11  
E12  
E13  
E14  
I/O  
TDO, I/O  
I/O  
I/O  
I/O  
J2  
GND  
I/O  
I/O  
I/O  
J3  
I/O  
I/O  
VCCI  
I/O  
J4  
VCCI  
GND  
I/O  
PRA, I/O  
J5  
I/O  
Note: *Please read the LP pin descriptions for restrictions on their use.  
2-12  
v4.3  
eX Family FPGAs  
180-Pin CSP  
180-Pin CSP  
Pin  
eX256  
Pin  
eX256  
Number  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
N1  
Function  
Number  
Function  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
NC  
NC  
NC  
P10  
NC  
NC  
P11  
P12  
GND  
I/O  
P13  
N2  
N3  
N4  
N5  
N6  
N7  
N8  
N9  
N10  
N11  
N12  
N13  
N14  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
P9  
Note: *Please read the LP pin descriptions for restrictions on their use.  
v4.3  
2-13  
eX Family FPGAs  
Datasheet Information  
List of Changes  
The following table lists critical changes that were made in the current version of the document.  
Previous version Changes in current version (v4.3)  
Page  
v4.2  
The "Ordering Information" was updated with RoHS information. The TQFP measurement ii  
was also updated.  
(June 2004)  
The "Dedicated Test Mode" was updated.  
1-9  
Note 5 was added to the "3.3V LVTTL Electrical Specifications" and "5.0V TTL Electrical 1-15  
Specifications" tables  
The "LP Low Power Pin" description was updated.  
The "eX Timing Model" was updated.  
1-26  
1-18  
1-12  
1-17  
1-i  
v4.1  
v4.0  
The "Development Tool Support" section was updated.  
The "Package Thermal Characteristics" section was updated.  
The "Product Profile" section was updated.  
v3.0  
The "Ordering Information" section was updated.  
The "Temperature Grade Offerings" section is new.  
The "Speed Grade and Temperature Grade Matrix" section is new.  
The "General Description" section was updated.  
The "Clock Resources" section was updated.  
1-ii  
1-ii  
1-ii  
1-1  
1-4  
Table 1-1 • Connections of Routed Clock Networks, CLKA and CLKB is new.  
The "User Security" section was updated.  
1-4  
1-5  
The "I/O Modules" section was updated.  
1-5  
The "Hot Swapping" section was updated.  
1-6  
The "Power Requirements" section was updated.  
The "Low Power Mode" section was updated.  
1-6  
1-6  
The "Boundary Scan Testing (BST)" section was updated.  
The "Dedicated Test Mode" section was updated.  
The "Flexible Mode" section was updated.  
1-9  
1-9  
1-9  
Table 1-5 • Boundary-Scan Pin Configurations and Functions is new.  
The "TRST Pin" section was updated.  
1-9  
1-9  
The "Probing Capabilities" section is new.  
1-10  
1-10  
1-10  
1-10  
1-11  
1-12  
1-13  
1-21  
1-26  
The "Programming" section was updated.  
The "Probing Capabilities" section was updated.  
The "Silicon Explorer II Probe" section was updated.  
The "Design Considerations" section was updated.  
The "Development Tool Support" section was updated.  
The "Absolute Maximum Ratings*" section was updated.  
The "Temperature and Voltage Derating Factors" section was updated.  
The "TDI, I/O Test Data Input" section was updated.  
v4.3  
3-1  
eX Family FPGAs  
Previous version Changes in current version (v4.3)  
Page  
1-26  
1-26  
1-26  
v3.0  
The "TDO, I/O Test Data Output" section was updated.  
The "TMS Test Mode Select" section was updated.  
The "TRST, I/O Boundary Scan Reset Pin" section was updated.  
All VSV pins were changed to VCCA. The change affected the following pins:  
64-Pin TQFP –Pin 36  
(continued)  
100-Pin TQFP –Pin 57  
49-Pin CSP –Pin D5  
128-Pin CSP–Pin H11 and Pin J1 for eX256  
180-Pin CSP –Pins J12 and K2  
v2.0.1  
The "Recommended Operating Conditions" section has been changed.  
The "3.3V LVTTL Electrical Specifications" section has been updated.  
The "5.0V TTL Electrical Specifications" section has been updated.  
The "Total Dynamic Power (mW)" section is new.  
The "System Power at 5%, 10%, and 15% Duty Cycle" section is new.  
The "eX Timing Model" section has been updated.  
The I/O Features table, Table 1-2 on page 1-5, was updated.  
1-13  
1-15  
1-15  
1-8  
1-8  
1-18  
1-5  
Advanced v0.4  
The table, "Standby Power of eX Devices in LP Mode Typical Conditions, VCCA, VCCI = 1-6  
2.5V, TJ = 25× C" section, was updated.  
"Typical eX Standby Current at 25°C" section is a new table.  
1-13  
The table in the section, "Package Thermal Characteristics" section has been updated for 1-17  
the 49-Pin CSP.  
The "eX Timing Model" section has been updated.  
1-18  
The timing numbers found in, "eX Family Timing Characteristics" section have been 1-22  
updated.  
The VSV pin has been added to the "Pin Description" section.  
1-26  
Please see the following pin tables for the VSV pin and an important footnote including the 2-1, 2-3, 2-6, 2-11  
pin: "64-Pin TQFP","100-Pin TQFP",, ,"128-Pin CSP", and "180-Pin CSP".  
The figure, "64-Pin TQFP" section has been updated.  
2-1  
1-i  
1-i  
Advanced v0.3  
In the Product Profile, the Maximum User I/Os for eX64 was changed to 84.  
In the Product Profile table, the Maximum User I/Os for eX128 was changed to 100.  
3-2  
v4.3  
eX Family FPGAs  
Previous version Changes in current version (v4.3)  
Advanced v0.2 The Mechanical Drawings section has been removed from the data sheet. The mechanical  
Page  
drawings are now contained in a separate document, “Package Characteristics and  
Mechanical Drawings,” available on the Actel web site.  
A new section describing "Clock Resources"has been added.  
A new table describing "I/O Features"has been added.  
The "Pin Description"section has been updated and clarified.  
1-4  
1-5  
1-26  
The original Electrical Specifications table was separated into two tables (2.5V and 3.3/ Page 8 and 9  
5.0V). In both tables, several different currents are specified for VOH and VOL  
.
A new table listing 2.5V low power specifications and associated power graphs were added. page 9  
Pin functions for eX256 TQ100 have been added to the "100-Pin TQFP"table. 2-3  
A CS49 pin drawing and pin assignment table including eX64 and eX128 pin functions have page 26  
been added.  
A CS128 pin drawing and pin assignment table including eX64, eX128, and eX256 pin pages 26-27  
functions have been added.  
A CS180 pin drawing and pin assignment table for eX256 pin functions have been added. pages 27, 31  
Advanced v.1  
The following table note was added to the eX Timing Characteristics table for clarification: pages 14-15  
Clock skew improves as the clock network becomes more heavily loaded.  
v4.3  
3-3  
eX Family FPGAs  
Datasheet Categories  
In order to provide the latest information to designers, some datasheets are published before data has been fully  
characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet  
Supplement." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advanced or production) containing general product  
information. This brief gives an overview of specific device and family information.  
Advanced  
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed  
grades. This information can be used as estimates, but not for production.  
Unmarked (production)  
This datasheet version contains information that is considered to be final.  
Datasheet Supplement  
The datasheet supplement gives specific device information for a derivative family that differs from the general family  
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and  
for specifications that do not differ between the two families.  
Export Administration Regulations (EAR)  
The product described in this datasheet is subject to the Export Administration Regulations (EAR). They could require  
an approved export license prior to export from the United States. An export includes release of product or disclosure  
of technology to a foreign national inside or outside the United States.  
3-4  
v4.3  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
http://www.actel.com  
Actel Corporation  
Actel Europe Ltd.  
Actel Japan  
www.jp.actel.com  
Actel Hong Kong  
www.actel.com.cn  
2061 Stierlin Court  
Mountain View, CA  
94043-4655 USA  
Dunlop House, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
EXOS Ebisu Bldg. 4F  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Suite 2114, Two Pacific Place  
88 Queensway, Admiralty  
Hong Kong  
Phone 650.318.4200  
Fax 650.318.4600  
Phone +44 (0) 1276 401 450  
Fax +44 (0) 1276 401 490  
Phone +81.03.3445.7671  
Fax +81.03.3445.7668  
Phone +852 2185 6460  
Fax +852 2185 6488  
5172154-8/6.06  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY