RT54SX16-1CG256B [ACTEL]

SX Family FPGAs RadTolerant and HiRel; SX系列FPGA RadTolerant和HiRel它
RT54SX16-1CG256B
型号: RT54SX16-1CG256B
厂家: Actel Corporation    Actel Corporation
描述:

SX Family FPGAs RadTolerant and HiRel
SX系列FPGA RadTolerant和HiRel它

文件: 总46页 (文件大小:393K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v2.1  
SX Family FPGAs RadTolerant and HiRel  
High Density Devices  
Features  
16,000 and 32,000 Available Logic Gates  
Up to 225 User I/Os  
Up to 1,080 Dedicated Flip-Flops  
RadTolerant SX Family  
Tested Total Ionizing Dose (TID) Survivability Level  
Radiation Performance to 100 Krads (Si) (ICC Standby  
Parametric)  
Easy Logic Integration  
Nonvolatile, User Programmable  
Highly Predictable Performance with 100%  
Automatic Place-and-Route  
Devices Available from Tested Pedigreed Lots  
Up to 160 MHz On-Chip Performance  
Offered as Class B and E-Flow (Actel Space Level  
Flow)  
100% Resource Utilization with 100% Pin Locking  
Mixed Voltage Support – 3.3 V Operation with 5.0 V  
Input Tolerance for Low-Power Operation  
JTAG Boundary Scan Testing in Compliance with IEEE  
Standard 1149.1  
Secure Programming Technology Prevents Reverse  
Engineering and Design Theft  
QMl Certified Devices  
HiRel SX Family  
Fastest HiRel FPGA Family Available  
Up to 240 MHz On-Chip Performance  
Low Cost Prototyping Vehicle for RadTolerant  
Devices  
Permanently Programmed for Operation on Power-  
Up  
Unique In-System Diagnostic and Debug Facility with  
Silicon Explorer  
Offered as Commercial or Military Temperature  
Tested and Class B  
Cost Effective QML MIL-Temp Plastic Packaging  
Options  
Software Design Support with Actel Designer and  
®
Libero Integrated Design Environment (IDE) Tools  
Predictable, Reliable, and Permanent Antifuse  
Technology Performance  
Standard Hermetic Packaging Offerings  
QML Certified Devices  
Product Profile  
RT54SX16  
(Obsolete)  
RT54SX32  
(Obsolete)  
Device  
A54SX16  
A54SX32  
Capacity  
System Gates  
Logic Gates  
24,000  
16,000  
24,000  
16,000  
48,000  
32,000  
48,000  
32,000  
Logic Modules  
Register Cells  
Combinatorial Cells  
User I/Os (Maximum)  
JTAG  
1,452  
528  
924  
179  
Yes  
1,452  
528  
924  
180  
Yes  
2,880  
1,080  
1,800  
227  
2,880  
1,080  
1,800  
228  
Yes  
Yes  
Packages (by pin count)  
CQFP  
208, 256  
208, 256  
208, 256  
208, 256  
March 2005  
i
© 2005 Actel Corporation  
See Actel’s website for the latest version of the datasheet.  
SX Family FPGAs RadTolerant and HiRel  
Ordering Information  
CQ  
1
256  
RT54SX32  
B
Application (Temperature Range)  
Blank = Commercial (0 to +70˚C)  
M = Military (-55 to +125˚C)  
B = MIL-STD-883  
E = E-Flow (Actel Space Level Flow)  
Package Lead Count  
Package Type  
CQ = Ceramic Quad Flat Pack  
Speed Grade  
Blank = Standard Speed  
–1 = Approximately 15% Faster than Standard  
Part Number  
A54SX16 = 16,000 System Gates  
A54SX32 = 32,000 System Gates  
RT54SX16 = 16,000 System Gates – RadTolerant (Obsolete)  
RT54SX32 = 32,000 System Gates – RadTolerant (Obsolete)  
Product Plan  
Speed Grade  
Application  
Std  
–1*  
C
M
B
E
RT54SX16 Devices  
208-Pin Ceramic Quad Flat Pack (CQFP)  
256-Pin Ceramic Quad Flat Pack (CQFP)  
A54SX16 Devices  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
208-Pin Ceramic Quad Flat Pack (CQFP)  
256-Pin Ceramic Quad Flat Pack (CQFP)  
RT54SX32 Devices  
208-Pin Ceramic Quad Flat Pack (CQFP)  
256-Pin Ceramic Quad Flat Pack (CQFP)  
A54SX32 Devices  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
Obsolete  
208-Pin Ceramic Quad Flat Pack (CQFP)  
256-Pin Ceramic Quad Flat Pack (CQFP)  
Applications:  
Availability:  
*Speed Grade:  
C = Commercial  
M = Military  
= Available  
P = Planned  
–1= Approx. 15% faster than Standard  
B = MIL-STD-883  
E = E-flow (Actel Space Level Flow)  
– = Not Planned  
Ceramic Device Resources  
User I/Os  
CQFP 208-Pin  
CQFP 256-Pin  
Device  
RT54SX16  
A54SX16  
RT54SX32  
A54SX32  
174  
175  
173  
174  
179  
180  
227  
228  
Note: Contact your Actel sales representative for product availability.  
ii  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
Table of Contents  
SX Family FPGAs RadTolerant and HiRel  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
SX Family Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Other Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8  
Development Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10  
RTSX Probe Circuit Control Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10  
Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-11  
3.3 V / 5 V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13  
Power-Up Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13  
Power-Down Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13  
Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15  
Temperature and Voltage Derating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17  
SX Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17  
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19  
A54SX16 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20  
RT54SX16 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22  
A54SX32 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24  
RT54SX32 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28  
Package Pin Assignments  
208-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
256-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
Datasheet Information  
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
Export Administration Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
v2.1  
iii  
SX Family FPGAs RadTolerant and HiRel  
SX Family FPGAs RadTolerant and HiRel  
General Description  
The Actel RadTolerant (RT) and HiRel versions of the SX  
Radiation Survivability  
Family of FPGAs offer many advantages for applications  
such as commercial and military satellites, deep space  
probes, and all types of military and high reliability  
equipment.  
Total dose results are summarized in two ways. First, by  
the maximum total dose level that is reached when the  
parts fail to meet a device specification but remain  
functional. For Actel FPGAs, the parameter that exceeds  
the specification first is ICC, the standby supply current.  
Second, by the maximum total dose that is reached prior  
to the functional failure of the device.  
The RT and HiRel versions are fully pin-compatible,  
allowing designs to migrate across different applications  
that may or may not have radiation requirements. Also,  
the HiRel devices can be used as a low cost prototyping  
tool for RT designs.  
The RTSX devices have varying total dose radiation  
survivability. The ability of these devices to survive  
radiation effects is both device- and lot-dependent. The  
customer must evaluate and determine the applicability  
of these devices to their specific design and  
environmental requirements.  
The programmable architecture of these devices offers  
high performance, design flexibility, and fast and  
inexpensive prototyping—all without the expense of test  
vectors, NRE charges, long lead times, and schedule and  
cost penalties for design modifications required by ASIC  
devices.  
Actel will provide total dose radiation testing data along  
with the test data on each pedigreed lot available for  
sale. These reports are available on the Actel website, or  
you can contact your local sales representative to receive  
a copy. A listing of available lots and devices will also be  
provided. These results are only provided for reference  
and for customer information.  
Device Description  
The RT54SX16 and A54SX16 devices have 16,000  
available gates and up to 179 I/Os. The RT54SX32 and  
A54SX32 have 32,000 available gates and up to 228 I/Os.  
All of these devices support JTAG boundary scan  
testability.  
For a radiation performance summary, see Radiation  
Performance of Actel Products. This summary will also  
show single event upset (SEU) and single event latch-up  
(SEL) testing that has been performed on Actel FPGAs.  
All of these devices are available in Ceramic Quad Flat  
Pack (CQFP) packaging, with 208-pin and 256-pin  
versions. The 256-pin version offers the user the highest  
I/O capability, while the 208-pin version offers pin  
compatibility with the commercial Plastic Quad Flat Pack  
(PQFP-208). This compatibility allows the user to  
prototype using the very low cost plastic package and  
then switch to the ceramic package for production. For  
more information on plastic packages, refer to the 54SX  
Family FPGAs datasheet.  
QML Certification  
Actel has achieved full QML certification, demonstrating  
that quality management, procedures, processes, and  
controls are in place and comply with MIL-PRF-38535, the  
performance specification used by the Department of  
Defense for monolithic integrated circuits. QML  
certification is a good example of Actel's commitment to  
supplying the highest quality products for all types of  
high-reliability, military, and space applications.  
The A54SX16 and A54SX32 devices are manufactured  
using  
a
0.35  
µ
technology at the Chartered  
Semiconductor facility in Singapore. These devices offer  
the highest speed performance available in FPGAs today.  
Many suppliers of microelectronics components have  
implemented QML as their primary worldwide business  
system. Appropriate use of this system not only helps in  
the implementation of advanced technologies, but also  
allows for quality, reliable, and cost-effective logistics  
support throughout the life cycles of QML products.  
The RT54SX16 and RT54SX32 devices are manufactured  
using a 0.6 µ technology at the Matsushita (MEC) facility  
in Japan. These devices offer levels of radiation  
survivability far in excess of typical CMOS devices.  
v2.1  
1-1  
SX Family FPGAs RadTolerant and HiRel  
Disclaimer  
Programmable Interconnect Element  
All radiation performance information is provided for  
information purposes only and is not guaranteed. The  
total dose effects are lot-dependent, and Actel does not  
guarantee that future devices will continue to exhibit  
similar radiation characteristics. In addition, actual  
performance can vary widely due to a variety of factors,  
including but not limited to, characteristics of the orbit,  
radiation environment, proximity to satellite exterior,  
amount of inherent shielding from other sources within  
the satellite, and actual bare die variations. For these  
reasons, Actel does not guarantee any level of radiation  
survivability, and it is solely the responsibility of the  
customer to determine whether the device will meet the  
requirements of the specific design.  
Actel’s SX family provides much more efficient use of  
silicon by locating the routing interconnect resources  
between the Metal 2 (M2) and Metal 3 (M3) layers  
(Figure 1-1). This completely eliminates the channels of  
routing and interconnect resources between logic  
modules (as implemented on SRAM FPGAs and previous  
generations of antifuse FPGAs), and enables the entire  
floor of the device to be spanned with an uninterrupted  
grid of logic modules.  
Interconnection between these logic modules is achieved  
using Actel’s patented metal-to-metal programmable  
antifuse interconnect elements, which are embedded  
between the M2 and M3 layers. The antifuses are  
normally open circuit and, when programmed, form a  
permanent low-impedance connection.  
The extremely small size of these interconnect elements  
gives the SX family abundant routing resources and  
provides excellent protection against design pirating.  
Reverse engineering is virtually impossible, because it is  
extremely difficult to distinguish between programmed  
and unprogrammed antifuses, and there is no  
configuration bitstream to intercept.  
SX Family Architecture  
The SX family architecture was designed to satisfy next-  
generation performance and integration requirements  
for production-volume designs in a broad range of  
applications.  
Additionally, the interconnects (i.e., the antifuses and  
metal tracks) have lower capacitance and lower  
resistance than any other device of similar capacity,  
leading to the fastest signal propagation in the industry.  
Routing Tracks  
Metal 3  
Amorphous Silicon/  
Dielectric Antifuse  
Tungsten Plug Via  
Metal 2  
Metal 1  
Tungsten Plug  
Contact  
Silicon Substrate  
Figure 1-1 SX Family Interconnect Elements  
1-2  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
Logic Module Design  
The SX family architecture has been called a “sea-of-  
modules” architecture because the entire floor of the  
device is covered with a grid of logic modules with  
virtually no chip area lost to interconnect elements or  
routing (see Figure 1-2). Actel provides two types of logic  
modules, the register cell (R-cell) and the combinatorial  
cell (C-cell).  
FPGA. The clock source for the R-cell can be chosen from  
the hardwired clock or the routed clock.  
The C-cell implements a range of combinatorial functions  
with up to five inputs (Figure 1-4 on page 1-4). Inclusion  
of the DB input and its associated inverter function  
dramatically increases the number of combinatorial  
functions that can be implemented in a single module  
from 800 options in previous architectures to more than  
4,000 in the SX architecture. An example of the improved  
flexibility enabled by the inversion capability is the  
ability to integrate a three-input exclusive-OR function  
into a single C-cell. This facilitates construction of nine-  
bit parity-tree functions with 2 ns propagation delays. At  
the same time, the C-cell structure is extremely synthesis-  
friendly, simplifying the overall design and reducing  
synthesis time.  
The R-cell contains a flip-flop featuring more control  
signals than in previous Actel architectures, including  
asynchronous clear, asynchronous preset, and clock  
enable (using the S0 and S1 lines). The R-cell registers  
feature programmable clock polarity, selectable on a  
register-by-register basis (Figure 1-3 on page 1-4). This  
provides the designer with additional flexibility while  
allowing mapping of synthesized functions into the SX  
Channeled Array Architecture  
Sea-of-Modules Architecture  
Figure 1-2 Channeled Array and Sea-of-Modules Architectures  
v2.1  
1-3  
SX Family FPGAs RadTolerant and HiRel  
Routed  
Data Input  
S0  
S1  
PSETB  
CLRB  
Direct  
Connect  
Input  
D
Q
Y
HCLK  
CLKA  
CLKB  
CKS  
CKP  
Figure 1-3 R-Cell  
D0  
D1  
Y
D2  
D3  
Sa  
Sb  
DB  
A0 B0  
A1 B1  
Figure 1-4 C-Cell  
1-4  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
To increase design efficiency and device performance,  
Actel has further organized these modules into  
SuperClusters (see Figure 1-5). SuperCluster 1 is a two-  
wide grouping of Type 1 Clusters. SuperCluster 2 is a two-  
wide group containing one Type 1 Cluster and one  
Type 2 Cluster. SX devices feature more SuperCluster 1  
modules than SuperCluster 2 modules because designers  
typically require more combinatorial logic than flip-flops.  
Chip Architecture  
The SX family’s chip architecture provides a unique  
approach to module organization and chip routing that  
delivers the best register/logic mix for a wide variety of  
new and emerging applications.  
Module Organization  
Actel has arranged all C-cell and R-cell logic modules into  
horizontal banks called Clusters. There are two types of  
Clusters: Type 1 contains two C-cells and one R-cell, and  
Type 2 contains one C-cell and two R-cells.  
R-Cell  
C-Cell  
Routed  
D0  
D1  
Data Input  
S1  
S0  
PSETB  
Y
D2  
Direct  
Connect  
D3  
D
Q
Y
Input  
Sa  
Sb  
HCLK  
CLKA  
CLKB  
CLRB  
DB  
CKS  
CKP  
A0 B0  
A1 B1  
Cluster 1  
Cluster 2  
Cluster 2  
Cluster 1  
Type 1 SuperCluster  
Type 2 SuperCluster  
Figure 1-5 Cluster Organization  
v2.1  
1-5  
SX Family FPGAs RadTolerant and HiRel  
Routing Resources  
Clusters and SuperClusters can be connected through the  
use of two innovative local routing resources called  
FastConnect and DirectConnect that enable extremely  
fast and predictable interconnections of modules within  
Clusters and SuperClusters (see Figure 1-6 and Figure 1-7  
on page 1-7). This routing architecture also dramatically  
reduces the number of antifuses required to complete a  
circuit, ensuring the highest possible performance.  
FastConnect enables horizontal routing between any  
two logic modules within a given SuperCluster, and  
vertical routing to the SuperCluster immediately below  
it. Only one programmable connection is used in a  
FastConnect path, delivering a maximum pin-to-pin  
propagation of 0.4 ns.  
In addition to DirectConnect and FastConnect, the  
architecture makes use of two globally oriented routing  
resources known as segmented routing and high-drive  
routing. Actel’s segmented routing structure provides a  
variety of track lengths for extremely fast routing  
between SuperClusters. The exact combination of track  
lengths and antifuses within each path is chosen by the  
100% automatic place-and-route software to minimize  
signal propagation delays.  
DirectConnect is a horizontal routing resource that  
provides connections from a C-cell to its neighboring  
R-cell in a given SuperCluster. DirectConnect uses a  
hardwired signal path requiring no programmable  
interconnection to achieve its fast signal propagation  
time of less than 0.1 ns.  
DirectConnect  
• No Antifuses  
FastConnect  
• One Antifuse  
Routing Segments  
• Typically Two Antifuses  
• Max. Five Antifuses  
Type 1 SuperClusters  
Figure 1-6 DirectConnect and FastConnect for Type 1 SuperClusters  
1-6  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
DirectConnect  
• No Antifuses  
FastConnect  
• One Antifuse  
Routing Segments  
• Typically Two Antifuses  
• Max. Five antifuses  
Type 2 SuperClusters  
Figure 1-7 DirectConnect and FastConnect for Type 2 SuperClusters  
Clock Resources  
Actel’s high-drive routing structure provides three clock  
networks. The first clock, called HCLK, is hardwired from  
the HCLK buffer to the clock select MUX in each R-cell.  
HCLK cannot be connected to combinational logic. This  
provides a fast propagation path for the clock signal,  
enabling the 8.9 ns clock-to-out (pad-to-pad)  
performance of the RTSX devices. The hardwired clock is  
tuned to provide clock skew is less than 0.5 ns worst case.  
Constant Load  
Clock Network  
HCLKBUF  
Figure 1-8 RTSX Constant Load Clock Pad  
The remaining two clocks (CLKA and CLKB) are global  
clocks that can be sourced from external pins or from  
internal logic signals within the RTSX device. CLKA and  
CLKB may be connected to sequential cells or to  
combinational logic. If CLKA or CLKB is sourced from  
internal logic signals, then the external clock pin cannot  
be used for any other input and must be tied low or  
high. Figure 1-8 describes the clock circuit used for the  
constant load HCLK. Figure 1-9 describes the CLKA and  
CLKB circuit used in all RTSX devices with the exception  
of the RT54SX72S device.  
Clock Network  
From Internal Logic  
CLKBUF  
CLKBUFI  
CLKINT  
CLKINTI  
Figure 1-9 RTSX Clock Pads  
v2.1  
1-7  
SX Family FPGAs RadTolerant and HiRel  
Power Requirements  
Other Architecture  
The RTSX family supports either 3.3 V or 5.0 V I/O voltage  
operation and is designed to tolerate 5 V inputs in each  
case (Table 1-1). Power consumption is extremely low  
due to the very short distances signals are required to  
travel to complete a circuit. Power requirements are  
further reduced due to the small number of antifuses in  
the path, and because of the low resistance properties of  
the antifuses. The antifuse architecture does not require  
active circuitry to hold a charge (as do SRAM or EPROM),  
making it the lowest-power architecture on the market.  
Performance  
The combination of architectural features described  
above enables RT54SX devices to operate with internal  
clock frequencies exceeding 160 MHz, enabling very fast  
execution of complex logic functions. Thus, the RTSX  
family is an optimal platform upon which to integrate  
the functionality previously contained in multiple CPLDs.  
In addition, designs that previously would have required  
a gate array to meet performance goals can now be  
integrated into an RTSX device with dramatic  
improvements in cost and time-to-market. Using timing-  
driven place-and-route tools, designers can achieve  
highly deterministic device performance. With RTSX  
devices, there is no need to use complicated  
performance-enhancing design techniques such as  
redundant logic to reduce fanout on critical nets, or the  
instantiation of macros in HDL code to achieve high  
performance.  
Table 1-1 Supply Voltages  
Maximum Maximum  
Input  
Output  
Drive  
VCCA VCCI VCCR Tolerance  
A54SX16 3.3 V 3.3 V 5.0 V  
A54SX32  
5.0 V  
5.0 V  
3.3 V  
RTSX16  
RTSX32  
3.3 V 3.3 V 5.0 V  
3.3 V  
I/O Modules  
Boundary Scan Testing (BST)  
Each I/O on an RTSX device can be configured as an input,  
an output, a tristate output, or a bidirectional pin. Even  
without the inclusion of dedicated registers, these I/Os, in  
combination with array registers, can achieve clock-to-out  
(PAD-to-PAD) timing as fast as 5.8 ns. I/O cells including  
embedded latches and flip-flops require instantiation in  
HDL code. This is a design complication not encountered  
in RTSX FPGAs. Fast PAD-to-PAD timing ensures that the  
device will have little trouble interfacing with any other  
device in the system, which in turn enables parallel design  
of system components and reduces overall design time.  
All RTSX devices are IEEE 1149.1 (JTAG) compliant. They  
offer superior diagnostic and testing capabilities by  
providing BST and probing capabilities. These functions  
are controlled through the special test pins in conjunction  
with the program fuse. The functionality of each pin is  
described in Table 1-2. Figure 1-10 on page 1-9 is a block  
diagram of the RTSX JTAG circuitry.  
Table 1-2 Boundary Scan Pin Functionality  
Program Fuse Blown  
(Dedicated Test Mode)  
Program Fuse Not Blown  
(Flexible Mode)  
TCK, TDI, TDO are dedicated TCK, TDI, TDO are flexible and  
test pins may be used as I/Os  
No need for pull-up resistor for Use a pull-up resistor of  
TMS 10 kon TMS  
1-8  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
TDI  
Data Registers (DRs)  
0
Output  
TDO  
Stage  
1
Instruction Register (IR)  
Clocks and/or Controls  
TMS  
TCK  
TAP Controller  
TRST External  
Hardwired Pin  
Figure 1-10 RTSX JTAG Circuitry  
Configuring Diagnostic Pins  
Dedicated Test Mode  
The JTAG and Probe pins (TDI, TCK, TMS, TDO, PRA, and  
PRB) are placed in the desired mode by selecting the  
appropriate check boxes in the Variation dialog  
window. This dialog window is accessible through the  
Design Setup Wizard under the Tools menu in the Actel  
Designer software.  
When the Reserve JTAG check box is selected in the  
Designer software, the RTSX is placed in Dedicated Test  
mode, which configures the TDI, TCK, and TDO pins for  
BST or in-circuit verification with Silicon Explorer II. An  
internal pull-up resistor is automatically enabled on both  
the TMS and TDI pins. In dedicated test mode, TCK, TDI,  
and TDO are dedicated test pins and become unavailable  
for pin assignment in the Pin Editor. The TMS pin will  
function as specified in the IEEE 1149.1 (JTAG)  
Specification.  
TRST Pin  
The TRST pin functions as a Boundary Scan Reset pin. The  
TRST pin is an asynchronous, active-low input to initialize  
or reset the BST circuit. An internal pull-up resistor is  
automatically enabled on the TRST pin.  
v2.1  
1-9  
SX Family FPGAs RadTolerant and HiRel  
Actel Designer software is a place-and-route tool and  
provides a comprehensive suite of back-end support  
tools for FPGA development. The Designer software  
includes timing-driven place-and-route and a world-class  
integrated static timing analyzer and constraints editor.  
With the Designer software, a user can lock his/her  
design pins before layout while minimally impacting the  
results of place-and-route. Additionally, the back-  
annotation flow is compatible with all the major  
simulators and the simulation results can be cross-probed  
with Silicon Explorer II, the Actel integrated verification  
and logic analysis tool. Another tool included in the  
Designer software is the ACTgen macro builder, which  
easily creates popular and commonly used logic  
functions for implementation in your schematic or HDL  
design. Actel Designer software is compatible with the  
most popular FPGA design entry and verification tools  
from companies such as Mentor Graphics, Synplicity,  
Synopsys, and Cadence Design Systems. The Designer  
software is available for both the Windows and UNIX  
operating systems.  
Flexible Mode  
When the Reserve JTAG check box is cleared (the  
default setting in the Designer software), the RTSX is  
placed in flexible mode, which allows the TDI, TCK, and  
TDO pins to function as user I/Os or BST pins. In this  
mode the internal pull-up resistors on the TMS and TDI  
pins are disabled. An external 10 kpull-up resistor to  
VCCI is required on the TMS pin.  
The TDI, TCK, and TDO pins are transformed from user I/Os  
into BST pins when a rising edge is detected on TCK while  
TMS is at logical low. Once the BST pins are in test mode  
they will remain in BST mode until the internal BST state  
machine reaches the "logic reset" state. At this point the  
BST pins will be released and will function as regular I/O  
pins. The "logic reset" state is reached five TCK cycles after  
the TMS pin is set to logical HIGH.  
The program fuse determines whether the device is in  
Dedicated Test or Flexible mode. The default (fuse not  
programmed) is Flexible mode.  
Development Tool Support  
RTSX Probe Circuit Control Pins  
The RTSX family of FPGAs is fully supported by both Actel  
Libero® Integrated Design Environment (IDE) and  
Designer FPGA Development software. Actel Libero IDE  
is a design management environment that streamlines  
the design flow. Libero IDE provides an integrated  
design manager that seamlessly integrates design tools  
while guiding the user through the design flow,  
managing all design and log files, and passing necessary  
design data among tools. Additionally, Libero IDE allows  
users to integrate both schematic and HDL synthesis into  
a single flow and verify the entire design in a single  
environment. Libero IDE includes Synplify® for Actel  
from Synplicity®, ViewDraw® for Actel from Mentor  
Graphics®, ModelSim™ HDL Simulator from Mentor  
Graphics, WaveFormer Lite™ from SynaptiCAD™, and  
Designer software from Actel. Refer to the Libero IDE  
Design Flow (located on the Actel website) diagram for  
more information.  
The RTSX RadTolerant devices contain internal probing  
circuitry that provides built-in access to every node in a  
design, enabling 100-percent real-time observation and  
analysis of a device's internal logic nodes without design  
iteration. The probe circuitry is accessed using Silicon  
Explorer II, an easy-to-use integrated verification and  
logic analysis tool that can sample data at 100 MHz  
(asynchronous) or 66 MHz (synchronous). Silicon Explorer  
attaches to a PC’s standard COM port, turning the PC  
into a fully functional 18-channel logic analyzer. Silicon  
Explorer allows designers to complete the design  
verification process at their desks and reduces  
verification time from several hours per cycle to a few  
seconds.  
The Silicon Explorer II tool uses the boundary scan ports  
(TDI, TRST, TCK, TMS, and TDO) to select the desired nets  
for verification. The selected internal nets are assigned  
to the PRA/PRB pins for observation. Figure 1-11 on page  
1-11 illustrates the interconnection between Silicon  
Explorer II and the FPGA to perform in-circuit  
verification.  
1-10  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
Design Considerations  
For prototyping, the TDI, TCK, TDO, PRA, and PRB pins should not be used as input or bidirectional ports. Because  
these pins are active during probing, critical signals input through these pins are not available while probing. In  
addition, the security fuse should not be programmed during prototyping because doing so disables the probe  
circuitry.  
RTSX-S FPGA  
TRST  
TCK  
TMS  
Silicon Explorer II  
Serial Connection  
TDO  
PRA  
PRB  
Figure 1-11 Probe Setup  
Related Documents  
Datasheets  
54SX Family FPGAs  
http://www.actel.com/documents/A54SXDS.pdf  
Application Notes  
Power-Up and Power-Down Behavior of 54SX and RT54SX Devices  
http://www.actel.com/documents/PowerUpAN.pdf  
v2.1  
1-11  
SX Family FPGAs RadTolerant and HiRel  
3.3 V / 5 V Operating Conditions  
Recommended Operating Conditions  
Table 1-3 Absolute Maximum Ratings  
Symbol  
VCCR  
VCCA  
VCCI  
VI  
Parameter  
Limits  
Units  
DC Supply Voltage  
DC Supply Voltage  
DC Supply Voltage  
Input Voltage  
–0.3 to +6.0  
–0.3 to +4.0  
–0.3 to +4.0  
–0.5 to +5.5  
–0.5 to +3.6  
–30 to +5.0  
V
V
V
V
VO  
Output Voltage  
V
IIO  
I/O Source Sink  
Current2  
mA  
TSTG  
Storage Temperature  
–40 to +125  
°C  
Notes:  
1. Stresses beyond those listed in Table 1-3 may cause permanent damage to the device. Exposure to absolute maximum rated  
conditions for extended periods may affect device reliability. Device should not be operated outside the Recommended Operating  
Conditions.  
2. The I/O source sink numbers refer to tristated inputs and outputs  
Table 1-4 Recommended Operating Conditions  
Parameter  
Commercial  
0 to +70  
±10  
Military  
–55 to +125  
±10  
Units  
°C  
Temperature Range1  
3.3 V Power2  
%VCC  
Supply Tolerance  
5 V Power Supply 2  
Tolerance  
±5  
±10  
%VCC  
Notes:  
1. Ambient temperature (TA) is used for commercial and industrial; case temperature (TC) is used for military.  
2. All power supplies must be in the recommended operating range for 250 µs. For more information, refer to the Power-Up and  
Power-Down Behavior of 54SX and RT54SX Devices application note.  
1-12  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
Electrical Specifications  
Table 1-5 Electrical Specifications  
Commercial  
Military  
Symbol  
Parameter  
(IOH = –20 µA) (CMOS)  
Min.  
Max.  
Min.  
Max.  
Units  
VOH  
(VCCI – 0.1)  
2.4  
VCCI  
VCCI  
(VCCI – 0.1)  
VCCI  
V
(IOH = –8 mA) (TTL)  
(IOH = –6 mA) (TTL)  
2.4  
VCCI  
VOL  
(IOL = 20 µA) (CMOS)  
(IOL = 12 mA) (TTL)  
(IOL = 8 mA) (TTL)  
0.10  
0.50  
V
0.50  
0.8  
VIL  
Low Level Inputs  
0.8  
V
V
VIH  
High Level Inputs  
2.0  
2.0  
tR, tF  
CIO  
Input Transition Time tR, tF  
CIO I/O Capacitance  
Standby Current, ICC  
50  
10  
50  
10  
25  
ns  
pF  
mA  
ICC  
4.0  
ICC(D)  
ICC(D) Dynamic  
I
VCC Supply Current  
See the "Power Dissipation" section on page 1-15.  
Power-Up Sequencing  
Table 1-6 RT54SX16, A54SX16, RT54SX32, A54SX32  
VCCA  
VCCR  
VCCI  
Power-Up Sequence  
Comments  
No possible damage to device  
3.3 V  
5.0 V  
3.3 V  
5.0 V First  
3.3 V Second  
3.3 V First  
Possible damage to device  
5.0 V Second  
Power-Down Sequencing  
Table 1-7 RT54SX16, A54SX16, RT54SX32, A54SX32  
VCCA  
VCCR  
VCCI  
Power-Down Sequence  
Comments  
3.3 V  
5.0 V  
3.3 V  
5.0 V First  
Possible damage to device  
3.3 V Second  
3.3 V First  
No possible damage to device  
5.0 V Second  
v2.1  
1-13  
SX Family FPGAs RadTolerant and HiRel  
Package Thermal Characteristics  
The device junction-to-case thermal characteristic is θjc, and the junction-to-ambient air characteristic is θja. The  
thermal characteristics for θja are shown with two different air flow rates.  
Maximum junction temperature is 150°C.  
A sample calculation of the absolute maximum power dissipation allowed for an RT54SX16 in a CQFP 256-pin package  
at military temperature and still air is shown in EQ 1-1:  
Max. junction temp. (°C) – Max. ambient temp. (°C)  
Absolute Maximum Power Allowed = ------------------------------------------------------------------------------------------------------------------------------------ = -------------------------------------- = 1.09 W  
(°C/W) 23°C/W  
150°C – 125°C  
θ
ja  
EQ 1-1  
Table 1-8 Package Thermal Characteristics  
θja  
Package Type  
Pin Count  
θjc  
Still Air  
Units  
RT54SX16  
Ceramic Quad Flat Pack (CQFP)  
Ceramic Quad Flat Pack (CQFP)  
RT54SX32  
208  
256  
7.5  
4.6  
29  
23  
°C/W  
°C/W  
Ceramic Quad Flat Pack (CQFP)  
Ceramic Quad Flat Pack (CQFP)  
A54SX16  
208  
256  
6.9  
3.5  
35  
20  
°C/W  
°C/W  
Ceramic Quad Flat Pack (CQFP)  
Ceramic Quad Flat Pack (CQFP)  
A54SX32  
208  
256  
7.9  
5.6  
30  
25  
°C/W  
°C/W  
Ceramic Quad Flat Pack (CQFP)  
Ceramic Quad Flat Pack (CQFP)  
208  
256  
7.6  
4.8  
30  
24  
°C/W  
°C/W  
1-14  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
Active Power Component  
Power Dissipation  
Power dissipation in CMOS devices is usually dominated  
by the active (dynamic) power dissipation. This  
component is frequency-dependent, a function of the  
logic and the external I/O. Active power dissipation  
results from charging the internal chip capacitances of  
the interconnects, unprogrammed antifuses, module  
inputs, and module outputs, plus external capacitance  
due to PCB traces and load device inputs. An additional  
component of the active power dissipation is the totem  
pole current in CMOS transistor pairs. The net effect can  
be associated with an equivalent capacitance that can be  
combined with frequency and voltage to represent  
active power dissipation.  
P = (ICCstandby + ICCactive) * VCCA + IOL * VOL * N +  
IOH * (VCCA – VOH) * M  
EQ 1-2  
where:  
ICCstandby is the current flowing when no inputs or  
outputs are changing.  
I
I
CCactive is the current flowing due to CMOS switching.  
OL, IOH are TTL sink/source currents.  
V
OL, VOH are TTL level output voltages.  
N is the number of outputs driving TTL loads to VOL  
M is the number of outputs driving TTL loads to VOH  
.
.
Equivalent Capacitance  
The power dissipated by a CMOS circuit can be expressed  
by EQ 1-3:  
Accurate values for N and M are difficult to determine  
because they depend on the design and on the system I/O.  
The power can be divided into two components: static  
and active.  
Power (µW) = CEQ * VCCA2 * F  
EQ 1-3  
Static Power Component  
where:  
Power consumption due to standby current is typically a  
small component of the total power consumption.  
Standby power is shown below for military, worst-case  
conditions (70°C).  
CEQ  
VCCA  
F
= Equivalent capacitance in pF  
= Power supply in volts (V)  
= Switching frequency in MHz  
ICC  
VCC  
Power  
Equivalent capacitance is calculated by measuring  
CCactive at a specified frequency and voltage for each  
20 mA  
3.6 V  
72 mW  
I
circuit component of interest. Measurements have been  
made over a range of frequencies at a fixed value of  
VCCA. Equivalent capacitance is frequency-independent  
so that the results may be used over a wide range of  
operating conditions. Equivalent capacitance values are  
shown in Table 1-9.  
Table 1-9 Equivalent Capacitance Values  
RT54SX16  
A54SX16  
RT54SX32  
A54SX32  
Equivalent Capacitance (pF)  
Modules  
CEQM  
CEQI  
7.0  
2.0  
3.9  
1.0  
7.0  
2.0  
3.9  
1.0  
Input Buffers  
Output Buffers  
CEQO  
CEQCR  
CEQCD  
10.0  
0.4  
5.0  
10.0  
0.6  
5.0  
Routed Array Clock Buffer Loads  
Dedicated Clock Buffer Loads  
Fixed Capacitance (pF)  
routed_Clk1  
0.2  
0.3  
0.25  
0.15  
0.34  
0.23  
r1  
r2  
120  
120  
60  
60  
210  
210  
107  
107  
routed_Clk2  
Fixed Clock Loads  
Clock Loads on Dedicated Array Clock  
s1  
528  
528  
1,080  
1,080  
v2.1  
1-15  
SX Family FPGAs RadTolerant and HiRel  
C
Values (pF)  
Determining Average Switching  
Frequency  
To determine the switching frequency for a design, you  
must have a detailed understanding of the data input  
values to the circuit. The following guidelines are meant  
to represent worst-case scenarios so they can be  
generally used to predict the upper limits of power  
dissipation.  
EQ  
To calculate the active power dissipated by the complete  
design, the switching frequency of each part of the logic  
must be known. EQ 1-4 shows a piecewise linear  
summation over all components.  
Power = VCCA2 * [(m * CEQM * fm)modules  
(n * CEQI * fn)inputs+ (p * (CEQO + CL) * fp)outputs  
0.5 * (q1 * CEQCR * fq1 routed_Clk1 + (r1 * fq1 routed_Clk1  
0.5 * (q2 * CEQCR * fq2 routed_Clk2+ (r2 * fq2 routed_Clk2  
0.5 * (s1 * CEQCD * fs1)dedicated_CLK  
+
+
)
)
)
+
+
)
Logic Modules (m)  
=
=
=
=
80% of modules  
# inputs/4  
]
Inputs Switching (n)  
EQ 1-4  
Outputs Switching (p)  
First Routed Array Clock Loads (q1)  
# output/4  
where:  
40% of sequential  
modules  
m
n
= Number of logic modules switching at fm  
= Number of input buffers switching at fn  
= Number of output buffers switching at fp  
Second Routed Array Clock Loads =  
(q2)  
40% of sequential  
modules  
p
Load Capacitance (CL)  
=
35 pF  
F/10  
q1  
= Number of clock loads on the first routed  
array clock  
Average Logic Module Switching =  
Rate (fm)  
q2  
r1  
r2  
s1  
= Number of clock loads on the second routed  
array clock  
Average Input Switching Rate (fn)  
=
F/5  
= Fixed capacitance due to first routed array  
clock  
Average Output Switching Rate (fp) =  
Average First Routed Array Clock =  
F/10  
F/2  
= Fixed capacitance due to second routed  
array clock  
Rate (fq1  
Average Second Routed Array =  
Clock Rate (fq2  
)
F/2  
F
= Fixed number of clock loads on the  
dedicated array clock (528 for A54SX16)  
)
Average Dedicated Array Clock =  
Rate (fs1)  
CEQM = Equivalent capacitance of logic modules in  
pF  
CEQI  
= Equivalent capacitance of input buffers in pF  
CEQO = Equivalent capacitance of output buffers in  
pF  
CEQCR = Equivalent capacitance of routed array clock  
in pF  
CEQCD = Equivalent capacitance of dedicated array  
clock in pF  
CL  
fm  
fn  
= Output lead capacitance in pF  
= Average logic module switching rate in MHz  
= Average input buffer switching rate in MHz  
= Average output buffer switching rate in MHz  
= Average first routed array clock rate in MHz  
fp  
fq1  
fq2  
= Average second routed array clock rate in  
MHz  
1-16  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
Temperature and Voltage Derating Factors  
Table 1-10 Temperature and Voltage Derating Factors  
(Normalized to Worst-Case Commercial, TJ = 70°C, VCCA = 3.0 V)  
Junction Temperature (TJ)  
VCCA  
3.0  
–40  
0.78  
0.73  
0.69  
0
25  
70  
85  
125  
1.16  
1.08  
1.02  
0.87  
0.82  
0.77  
0.89  
0.83  
0.78  
1.00  
0.93  
0.87  
1.04  
0.97  
0.92  
3.3  
3.6  
SX Timing Model  
Predicted  
Routing  
Delays  
Input Delays  
I/O Module  
Internal Delays  
Output Delays  
I/O Module  
Combinatorial Cell  
t
t
INY = 2.2 ns  
IRD2 = 1.2 ns  
t
DHL = 2.8 ns  
t
t
t
RD1 = 0.7 ns  
RD4 = 2.2 ns  
RD8 = 4.3 ns  
t
PD = 0.9 ns  
I/O Module  
t
DLH = 2.8 ns  
Register Cell  
Register Cell  
D
Q
D
Q
t
t
RD1 = 0.7 ns  
RD1 = 0.7 ns  
t
ENZH = 2.8 ns  
t
t
SUD = 0.8 ns  
HD = 0.0 ns  
t
t
RCO = 0.6 ns  
RCO = 0.6 ns  
Routed  
Clock  
t
RCKH = 2.8 ns (100% Load)  
F
MAX = 175 MHz  
Hardwired  
Clock  
t
HCKH = 1.3 ns  
F
HMAX = 240 MHz  
Note:  
Values shown for A54SX16-1 at worst-case commercial conditions.  
Figure 1-12 SX Timing Model  
Hardwired Clock  
External Setup  
Routed Clock  
External Setup  
=
tINY + tIRD1 + tSUD – tRCKH  
=
=
=
=
tINY + tIRD1 + tSUD – tHCKH  
=
=
=
2.2 + 0.7 + 0.8 – 2.4 = 1.3 ns  
tRCKH + tRCO + tRD1 + tDHL  
2.2 + 0.7 + 0.8 – 1.7 = 2.0 ns  
Clock-to-Out (Pin-to-Pin)  
t
HCKH + tRCO + tRD1 + tDHL  
Clock-to-Out (Pin-to-Pin)  
1.7 + 0.6 + 0.7 + 2.8 = 5.8 ns  
2.4 + 0.6 + 0.7 + 2.8 = 6.5 ns  
v2.1  
1-17  
SX Family FPGAs RadTolerant and HiRel  
E
D
PAD To AC Test Loads (shown below)  
TRIBUFF  
VCC  
VCC  
VCC  
GND  
GND  
En  
GND  
90%  
In  
50%  
VOH  
En  
50%  
50% 50%  
VCC  
50% 50%  
VOH  
1.5 V  
1.5 V  
1.5 V  
Out  
VOL  
1.5 V  
Out  
Out  
GND  
10%  
VOL  
t
t
t
t
t
t
DLH  
DHL  
ENZL  
ENLZ  
ENZH  
ENHZ  
Figure 1-13 Output Buffer Delays  
Load 2  
(Used to Measure rising/falling delays)  
Load 1  
(Used to measure  
propagation delay)  
VCC  
GND  
To the Output  
Under Test  
R to VCC for t  
R to GND for t  
R = 1 k  
/t  
PLZ PZL  
50 pF  
/
To the Output  
Under Test  
PHZ tPZL  
50 pF  
Figure 1-14 AC Test Loads  
S
A
B
Y
Y
PA D  
INBUF  
VCC  
S, A or B  
50%  
CC  
GND  
50%  
50%  
V
50%  
3 V  
Out  
In  
0 V  
1.5 V  
VCC  
1.5 V  
GND  
tPD  
tPD  
50%  
Out  
GND  
50%  
VCC  
50%  
Out  
50%  
tPD  
GND  
tPD  
t
t
INY  
INY  
Figure 1-15 Input Buffer Delays  
Figure 1-16 C-Cell Delays  
1-18  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
D
PRESET  
CLR  
Q
CLK  
(Positive Edge Triggered)  
tHD  
D
tHP  
tSUD  
tHPWH'  
tRPWH  
CLK  
tHPWL'  
tRPWL  
tRCO  
Q
tPRESET  
tCLR  
CLR  
tWASYN  
PRESET  
Figure 1-17 Register Cell Timing Characteristics – Flip-Flops  
Long Tracks  
Timing Characteristics  
Some nets in the design use long tracks. Long tracks are  
special routing resources that span multiple rows,  
columns, or modules. Long tracks employ three and  
sometimes five antifuse connections. This increases  
capacitance and resistance, resulting in longer net delays  
for macros connected to long tracks. Typically up to 6  
percent of nets in a fully utilized device require long  
tracks. Long tracks contribute approximately 4 ns to 8.4  
ns delay. This additional delay is represented statistically  
in higher fanout (FO = 24) routing delays in the data  
sheet specifications section.  
Timing characteristics for SX devices fall into three  
categories: family-dependent, device-dependent, and  
design-dependent. The input and output buffer  
characteristics are common to all SX family members.  
Internal routing delays are device-dependent. Design  
dependence means actual delays are not determined  
until after placement and routing of the user’s design is  
complete. Delay values may then be determined by using  
the Timer tool or performing simulation with post-layout  
delays.  
Critical Nets and Typical Nets  
Timing Derating  
Propagation delays are expressed only for typical nets,  
which are used for initial design performance evaluation.  
Critical net delays can then be applied to the most time-  
critical paths. Critical nets are determined by net  
property assignment prior to placement and routing. Up  
to 6 percent of the nets in a design may be designated as  
critical, whereas 90 percent of the nets in a design are  
typical.  
SX devices are manufactured in a CMOS process.  
Therefore, device performance varies according to  
temperature, voltage, and process variations. Minimum  
timing parameters reflect maximum operating voltage,  
minimum operating temperature, and best-case  
processing. Maximum timing parameters reflect  
minimum operating voltage, maximum operating  
temperature, and worst-case processing.  
v2.1  
1-19  
SX Family FPGAs RadTolerant and HiRel  
A54SX16 Timing Characteristics  
Table 1-11 A54SX16  
(Worst-Case Military Conditions, VCCR = 4.75 V, VCCA, VCCI = 3.0 V, TJ = 125°C)  
'–1' Speed  
'Std' Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
C-Cell Propagation Delays1  
tPD  
Internal Array Module  
0.9  
1.0  
ns  
Predicted Routing Delays2  
tDC  
FO = 1 Routing Delay, Direct Connect  
FO = 1 Routing Delay, Fast Connect  
FO = 1 Routing Delay  
0.1  
0.6  
0.7  
1.2  
1.7  
2.2  
4.3  
5.6  
9.4  
12.4  
0.1  
0.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
tRD1  
0.8  
tRD2  
FO = 2 Routing Delay  
1.4  
tRD3  
FO = 3 Routing Delay  
2.0  
tRD4  
FO = 4 Routing Delay  
2.6  
tRD8  
FO = 8 Routing Delay  
5.0  
tRD12  
tRD18  
tRD24  
R-Cell Timing  
tRCO  
FO = 12 Routing Delay  
FO = 18 Routing Delay  
FO = 24 Routing Delay  
6.6  
11.0  
14.6  
Sequential Clock-to-Q  
0.6  
0.6  
0.8  
0.8  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Flip-Flop Data Input Setup  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
tSUD  
0.8  
0.0  
2.4  
0.9  
0.0  
2.9  
tHD  
tWASYN  
I/O Module Input Propagation Delays  
tINYH  
Input Data Pad-to-Y HIGH  
2.2  
2.2  
2.6  
2.6  
ns  
ns  
tINYL  
Input Data Pad-to-Y LOW  
Predicted Input Routing Delays2  
tIRD1  
FO = 1 Routing Delay  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
FO = 12 Routing Delay  
FO = 18 Routing Delay  
FO = 24 Routing Delay  
0.7  
1.2  
1.7  
2.2  
4.3  
5.6  
9.4  
12.4  
0.8  
1.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIRD2  
tIRD3  
2.0  
tIRD4  
2.6  
tIRD8  
5.0  
tIRD12  
tIRD18  
tIRD24  
Notes:  
6.6  
11.0  
14.6  
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn, or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route  
timing is based on actual routing delay measurements performed on the device prior to shipment.  
1-20  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
Table 1-12 A54SX16  
(Worst-Case Military Conditions, VCCR = 4.75 V, VCCA, VCCI = 3.0 V, TJ = 125°C)  
'–1' Speed  
'Std' Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
I/O Module – TTL Output Timing*  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to LOW  
Enable-to-Pad, Z to HIGH  
Enable-to-Pad, LOW to Z  
Enable-to-Pad, HIGH to Z  
Delta LOW to HIGH  
2.8  
2.8  
3.3  
3.3  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
dTLH  
dTHL  
2.3  
2.8  
ns  
2.8  
3.3  
ns  
4.5  
5.2  
ns  
2.2  
2.6  
ns  
0.05  
0.05  
0.06  
0.08  
ns/pF  
ns/pF  
Delta HIGH to LOW  
Dedicated (Hardwired) Array Clock Network  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.7  
1.9  
2.0  
2.2  
ns  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
2.1  
2.1  
2.4  
2.4  
ns  
ns  
0.4  
0.4  
ns  
Minimum Period  
4.2  
4.9  
ns  
fHMAX  
Maximum Frequency  
240  
205  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
2.4  
2.7  
2.9  
2.9  
2.8  
2.9  
2.9  
3.1  
3.3  
3.5  
3.3  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
tRPWH  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
3.1  
3.1  
3.7  
3.7  
ns  
ns  
ns  
ns  
ns  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
0.6  
0.8  
0.8  
0.8  
0.9  
0.9  
Note: *Delays based on 35 pF loading, except for tENZL and tENZH. For tENZL and tENZH, the loading is 5 pF.  
v2.1  
1-21  
SX Family FPGAs RadTolerant and HiRel  
RT54SX16 Timing Characteristics  
Table 1-13 RT54SX16  
(Worst-Case Military Conditions, VCCR = 4.75 V, VCCA, VCCI = 3.0 V, TJ = 125°C)  
'–1' Speed  
'Std' Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
C-Cell Propagation Delays1  
tPD  
Internal Array Module  
1.7  
1.8  
ns  
Predicted Routing Delays2  
tDC  
FO = 1 Routing Delay, Direct Connect  
FO = 1 Routing Delay, Fast Connect  
FO = 1 Routing Delay  
0.2  
1.1  
0.2  
1.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
tRD1  
1.3  
1.5  
tRD2  
FO = 2 Routing Delay  
2.2  
2.6  
tRD3  
FO = 3 Routing Delay  
3.1  
3.6  
tRD4  
FO = 4 Routing Delay  
4.0  
4.7  
tRD8  
FO = 8 Routing Delay  
7.8  
9.0  
tRD12  
tRD18  
tRD24  
R-Cell Timing  
tRCO  
FO = 12 Routing Delay  
FO = 18 Routing Delay  
FO = 24 Routing Delay  
10.1  
17.0  
22.4  
11.9  
19.8  
26.3  
Sequential Clock-to-Q  
1.5  
1.5  
2.0  
2.0  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Flip-Flop Data Input Setup  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
tSUD  
2.0  
0.0  
4.4  
2.2  
0.0  
5.3  
tHD  
tWASYN  
I/O Module Input Propagation Delays  
tINYH  
Input Data Pad-to-Y HIGH  
4.0  
4.0  
4.7  
4.7  
ns  
ns  
tINYL  
Input Data Pad-to-Y LOW  
Predicted Input Routing Delays2  
tIRD1  
FO = 1 Routing Delay  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
FO = 12 Routing Delay  
FO = 18 Routing Delay  
FO = 24 Routing Delay  
1.3  
2.2  
1.5  
2.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIRD2  
tIRD3  
3.1  
3.6  
tIRD4  
4.0  
4.7  
tIRD8  
7.8  
9.0  
tIRD12  
tIRD18  
tIRD24  
Notes:  
10.1  
17.0  
22.4  
11.9  
19.8  
26.3  
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route  
timing is based on actual routing delay measurements performed on the device prior to shipment.  
1-22  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
Table 1-14 RT54SX16  
(Worst-Case Military Conditions, VCCR = 4.75 V, VCCA, VCCI = 3.0 V, TJ = 125°C)  
'–1' Speed  
'Std' Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
I/O Module – TTL Output Timing*  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to LOW  
Enable-to-Pad, Z to HIGH  
Enable-to-Pad, LOW to Z  
Enable-to-Pad, HIGH to Z  
Delta LOW to HIGH  
5.1  
5.1  
6.0  
6.0  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
dTLH  
dTHL  
4.2  
5.1  
ns  
5.1  
6.0  
ns  
8.1  
9.4  
ns  
4.0  
4.7  
ns  
0.09  
0.09  
0.11  
0.15  
ns/pF  
ns/pF  
Delta HIGH to LOW  
Dedicated (Hardwired) Array Clock Network  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
3.1  
3.5  
3.6  
4.0  
ns  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
3.8  
3.8  
4.4  
4.4  
ns  
ns  
0.8  
0.8  
ns  
Minimum Period  
7.6  
8.9  
ns  
fHMAX  
Maximum Frequency  
130  
110  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
4.4  
4.9  
5.3  
5.3  
5.1  
5.3  
5.3  
5.6  
6.0  
6.3  
6.0  
6.3  
ns  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
tRPWH  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
5.6  
5.6  
6.7  
6.7  
ns  
ns  
ns  
ns  
ns  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
1.1  
1.5  
1.5  
1.5  
1.7  
1.7  
Note: *Delays based on 35 pF loading, except for tENZL and tENZH. For tENZL and tENZH the loading is 5 pF.  
v2.1  
1-23  
SX Family FPGAs RadTolerant and HiRel  
A54SX32 Timing Characteristics  
Table 1-15 A54SX32 Timing Characteristics  
(Worst-Case Military Conditions, VCCR = 4.75 V, VCCA, VCCI = 3.0 V, TJ = 125°C)  
'–1' Speed  
'Std' Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
C-Cell Propagation Delays1  
tPD  
Internal Array Module  
0.9  
1.0  
ns  
Predicted Routing Delays2  
tDC  
FO = 1 Routing Delay, Direct Connect  
FO = 1 Routing Delay, Fast Connect  
FO = 1 Routing Delay  
0.1  
0.6  
0.7  
1.2  
1.7  
2.2  
4.3  
5.6  
9.4  
12.4  
0.1  
0.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
tRD1  
0.8  
tRD2  
FO = 2 Routing Delay  
1.4  
tRD3  
FO = 3 Routing Delay  
2.0  
tRD4  
FO = 4 Routing Delay  
2.6  
tRD8  
FO = 8 Routing Delay  
5.0  
tRD12  
tRD18  
tRD24  
R-Cell Timing  
tRCO  
FO = 12 Routing Delay  
FO = 18 Routing Delay  
FO = 24 Routing Delay  
6.6  
11.0  
14.6  
Sequential Clock-to-Q  
0.6  
0.6  
0.8  
0.8  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
tSUD  
0.8  
0.0  
2.4  
0.9  
0.0  
2.9  
tHD  
tWASYN  
I/O Module Input Propagation Delays  
tINYH  
Input Data Pad-to-Y HIGH  
2.2  
2.2  
2.6  
2.6  
ns  
ns  
tINYL  
Input Data Pad-to-Y LOW  
Predicted Input Routing Delays2  
tIRD1  
FO = 1 Routing Delay  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
FO = 12 Routing Delay  
FO = 18 Routing Delay  
FO = 24 Routing Delay  
0.7  
1.2  
1.7  
2.2  
4.3  
5.6  
9.4  
12.4  
0.8  
1.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIRD2  
tIRD3  
2.0  
tIRD4  
2.6  
tIRD8  
5.0  
tIRD12  
tIRD18  
tIRD24  
Notes:  
6.6  
11.0  
14.6  
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route  
timing is based on actual routing delay measurements performed on the device prior to shipment.  
1-24  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
Table 1-16 A54SX32 Timing Characteristics  
(Worst-Case Military Conditions, VCCR = 4.75 V, VCCA, VCCI = 3.0 V, TJ = 125°C)  
'–1' Speed  
'Std' Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
I/O Module – TTL Output Timing*  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to LOW  
Enable-to-Pad, Z to HIGH  
Enable-to-Pad, LOW to Z  
Enable-to-Pad, HIGH to Z  
Delta LOW to HIGH  
2.8  
2.8  
3.3  
3.3  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
dTLH  
dTHL  
2.3  
2.8  
ns  
2.8  
3.3  
ns  
4.5  
5.2  
ns  
2.2  
2.6  
ns  
0.05  
0.05  
0.06  
0.08  
ns/pF  
ns/pF  
Delta HIGH to LOW  
Dedicated (Hardwired) Array Clock Network  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.7  
1.9  
2.0  
2.2  
ns  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
2.1  
2.1  
2.4  
2.4  
ns  
ns  
0.4  
0.4  
ns  
Minimum Period  
4.2  
4.8  
ns  
fHMAX  
Maximum Frequency  
240  
205  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
2.4  
2.7  
2.9  
2.9  
2.8  
2.9  
2.9  
3.1  
3.3  
3.5  
3.3  
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
tRPWH  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
3.1  
3.1  
3.7  
3.7  
ns  
ns  
ns  
ns  
ns  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
0.6  
0.8  
0.8  
0.8  
0.9  
0.9  
Note: *Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH the loading is 5 pF.  
v2.1  
1-25  
SX Family FPGAs RadTolerant and HiRel  
RT54SX32 Timing Characteristics  
Table 1-17 RT54SX32 Timing Characteristics  
(Worst-Case Military Conditions, VCCR = 4.75 V, VCCA, VCCI = 3.0 V, TJ = 125°C)  
'–1' Speed  
'Std' Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
C-Cell Propagation Delays1  
tPD  
Internal Array Module  
1.7  
1.8  
ns  
Predicted Routing Delays2  
tDC  
FO = 1 Routing Delay, Direct Connect  
FO = 1 Routing Delay, Fast Connect  
FO = 1 Routing Delay  
0.2  
1.1  
0.2  
1.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
tRD1  
1.3  
1.5  
tRD2  
FO = 2 Routing Delay  
2.2  
2.6  
tRD3  
FO = 3 Routing Delay  
3.1  
3.6  
tRD4  
FO = 4 Routing Delay  
4.0  
4.7  
tRD8  
FO = 8 Routing Delay  
7.8  
9.0  
tRD12  
tRD18  
tRD24  
R-Cell Timing  
tRCO  
FO = 12 Routing Delay  
FO = 18 Routing Delay  
FO = 24 Routing Delay  
10.1  
17.0  
22.4  
11.9  
19.8  
26.3  
Sequential Clock-to-Q  
1.5  
1.5  
2.0  
2.0  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
tSUD  
2.0  
0.0  
4.4  
2.2  
0.0  
5.3  
tHD  
tWASYN  
I/O Module Input Propagation Delays  
tINYH  
Input Data Pad-to-Y HIGH  
4.0  
4.0  
4.7  
4.7  
ns  
ns  
tINYL  
Input Data Pad-to-Y LOW  
Predicted Input Routing Delays2  
tIRD1  
FO = 1 Routing Delay  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
FO = 12 Routing Delay  
FO = 18 Routing Delay  
FO = 24 Routing Delay  
1.3  
2.2  
1.5  
2.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tIRD2  
tIRD3  
3.1  
3.6  
tIRD4  
4.0  
4.7  
tIRD8  
7.8  
9.0  
tIRD12  
tIRD18  
tIRD24  
Notes:  
10.1  
17.0  
22.4  
11.9  
19.8  
26.3  
1. For dual-module macros, use tPD + tRD1 + tPDn, tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD, whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating  
device performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route  
timing is based on actual routing delay measurements performed on the device prior to shipment.  
1-26  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
Table 1-18 RT54SX32 Timing Characteristics  
(Worst-Case Military Conditions, VCCR = 4.75 V, VCCA, VCCI = 3.0 V, TJ = 125°C)  
'–1' Speed  
'Std' Speed  
Parameter  
Description  
Min.  
Max.  
Min.  
Max.  
Units  
I/O Module – TTL Output Timing*  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to LOW  
Enable-to-Pad, Z to HIGH  
Enable-to-Pad, LOW to Z  
Enable-to-Pad, HIGH to Z  
Delta LOW to HIGH  
5.1  
5.1  
6.0  
6.0  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
dTLH  
dTHL  
4.2  
5.1  
ns  
5.1  
6.0  
ns  
8.1  
9.4  
ns  
4.0  
4.7  
ns  
0.09  
0.09  
0.11  
0.15  
ns/pF  
ns/pF  
Delta HIGH to LOW  
Dedicated (Hardwired) Array Clock Network  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
3.1  
3.5  
3.6  
4.0  
ns  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
3.8  
3.8  
4.4  
4.4  
ns  
ns  
0.8  
0.8  
ns  
Minimum Period  
7.6  
8.9  
ns  
fHMAX  
Maximum Frequency  
130  
110  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
4.4  
4.9  
5.3  
5.3  
5.1  
5.3  
5.3  
5.6  
6.0  
6.3  
6.0  
6.3  
ns  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
tRPWH  
tRPWL  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
5.6  
5.6  
6.7  
6.7  
ns  
ns  
Note: *Delays based on 35 pF loading, except tENZL and tENZH. For tENZL and tENZH the loading is 5 pF.  
v2.1  
1-27  
SX Family FPGAs RadTolerant and HiRel  
Pin Description  
CLKA/B  
Clock A and B  
TDI, I/O  
Test Data Input  
These pins are clock inputs for clock distribution  
networks. Input levels are compatible with standard TTL,  
LVTTL, 3.3 V PCI, or 5.0 V PCI specifications. The clock  
input is buffered prior to clocking the R-cells. If not used,  
this pin must be set LOW or HIGH on the board. It must  
not be left floating. (For RT54SX72S, these clocks can be  
configured as user I/O.)  
Serial input for boundary scan testing and diagnostic  
probe. In flexible mode, TDI is active when the TMS pin is  
set LOW (refer to Table 1-2 on page 1-8). This pin  
functions as an I/O when the boundary scan state  
machine reaches the “logic reset” state.  
TDO, I/O  
Test Data Output  
Serial output for boundary scan testing. In flexible mode,  
TDO is active when the TMS pin is set LOW (refer to  
Table 1-2 on page 1-8). This pin functions as an I/O when  
the boundary scan state machine reaches the “logic  
reset” state.  
GND  
Ground  
LOW supply voltage.  
HCLK  
Dedicated (Hardwired) Array Clock  
This pin is the clock input for sequential modules. Input  
levels are compatible with standard TTL, LVTTL, 3.3 V PCI  
or 5.0 V PCI specifications. This input is directly wired to  
each R-cell and offers clock speeds independent of the  
number of R-cells being driven. If not used, this pin must  
be set LOW or HIGH on the board. It must not be left  
floating.  
TMS  
Test Mode Select  
The TMS pin controls the use of the IEEE 1149.1  
boundary scan pins (TCK, TDI, TDO, TRST). In flexible  
mode, when the TMS pin is set LOW, the TCK, TDI, and  
TDO pins are boundary scan pins (refer to Table 1-2 on  
page 1-8). Once the boundary scan pins are in test mode,  
they will remain in that mode until the internal  
boundary scan state machine reaches the "logic reset"  
state. At this point, the boundary scan pins will be  
released and will function as regular I/O pins. The "logic  
reset" state is reached five TCK cycles after the TMS pin is  
set HIGH. In dedicated test mode, TMS functions as  
specified in the IEEE 1149.1 specifications.  
I/O  
Input/Output  
The I/O pin functions as an input, output, tristate, or  
bidirectional buffer. Based on certain configurations,  
input and output levels are compatible with standard TTL,  
LVTTL, 3.3 V PCI, or 5.0 V PCI specifications. Unused I/O  
pins are automatically tristated by the Designer software.  
NC  
No Connection  
TRST, I/O  
Boundary Scan Reset Pin  
This pin is not connected to circuitry within the device.  
These pins can be driven to any voltage or can be left  
floating with no effect on the operation of the device.  
Once it is configured as the JTAG Reset pin, the TRST pin  
functions as an active-low input to asynchronously  
initialize or reset the boundary scan circuit. The TRST pin  
is equipped with an internal pull-up resistor. This pin  
functions as an I/O when the Reserve JTAG Reset Pin  
check box is cleared in Designer.  
PRA, I/O,  
Probe A/B PRB, I/O  
The Probe pin is used to output data from any user-  
defined design node within the device. This independent  
diagnostic pin can be used in conjunction with the other  
probe pin to allow real-time diagnostic output of any  
signal path within the device. The Probe pin can be used  
as a user-defined I/O when verification has been  
completed. The pin’s probe capabilities can be  
permanently disabled to protect programmed design  
confidentiality.  
V
Supply Voltage  
CCI  
Supply voltage for I/Os. See Table 1-1 on page 1-8.  
V
Supply Voltage  
CCA  
Supply voltage for Array. See Table 1-1 on page 1-8.  
V
Supply Voltage  
CCR  
Supply voltage for input tolerance (required for internal  
biasing). See Table 1-1 on page 1-8.  
TCK, I/O  
Test Clock (Input)  
Test clock input for diagnostic probe and device  
programming. In flexible mode, TCK becomes active  
when the TMS pin is set LOW (see Table 1-2 on page 1-8).  
This pin functions as an I/O when the JTAG state machine  
reaches the "logic reset" state.  
1-28  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
Package Pin Assignments  
208-Pin CQFP  
208 207 206 205 204 203 202 201 200  
164 163 162 161 160 159 158 157  
Pin #1  
Index  
1
2
3
4
5
6
7
8
156  
155  
154  
153  
152  
151  
150  
149  
208-Pin  
CQFP  
44  
45  
46  
47  
48  
49  
50  
51  
52  
113  
112  
111  
110  
109  
108  
107  
106  
105  
53 54 55 56 57 58 59 60 61  
97 98 99 100 101 102 103 104  
Figure 2-1 208-Pin CQFP (Top View)  
v2.1  
2-1  
SX Family FPGAs RadTolerant and HiRel  
208-Pin CQFP  
208-Pin CQFP  
Pin  
A54SX16 RT54SX16 A54SX32 RT54SX32  
Pin  
A54SX16 RT54SX16 A54SX32 RT54SX32  
Number Function Function Function Function  
Number Function Function Function Function  
1
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
I/O  
I/O  
I/O  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2
3
4
I/O  
I/O  
I/O  
I/O  
5
I/O  
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
I/O  
9
I/O  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
I/O  
I/O  
I/O  
I/O  
TMS  
VCCI  
I/O  
TMS  
VCCI  
I/O  
TMS  
VCCI  
I/O  
TMS  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCR  
GND  
VCCA  
GND  
I/O  
VCCR  
GND  
VCCA  
GND  
I/O  
VCCR  
GND  
VCCA  
GND  
I/O  
VCCR  
GND  
VCCA  
GND  
I/O  
I/O  
TRST  
I/O  
I/O  
TRST  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Notes:  
1. Pin 30 in RT54SX16 and RT54SX32-CQ208 is a TRST pin.  
2. Pin 65 in A54SX32 and RT54SX32-CQ208 is a No Connect.  
2-2  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
208-Pin CQFP  
208-Pin CQFP  
Pin  
A54SX16 RT54SX16 A54SX32 RT54SX32  
Pin  
A54SX16 RT54SX16 A54SX32 RT54SX32  
Number Function Function Function Function  
Number Function Function Function Function  
73  
74  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
75  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
76  
PRB, I/O  
GND  
VCCA  
GND  
VCCR  
I/O  
PRB, I/O  
GND  
VCCA  
GND  
VCCR  
I/O  
PRB, I/O  
GND  
VCCA  
GND  
VCCR  
I/O  
PRB, I/O  
GND  
VCCA  
GND  
VCCR  
I/O  
I/O  
I/O  
I/O  
I/O  
77  
I/O  
I/O  
I/O  
I/O  
78  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
79  
80  
81  
I/O  
I/O  
I/O  
I/O  
82  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
83  
I/O  
I/O  
I/O  
I/O  
84  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
85  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
86  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
87  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
88  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
89  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
90  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
91  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
92  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
93  
I/O  
I/O  
I/O  
I/O  
GND  
VCCA  
GND  
VCCR  
I/O  
GND  
VCCA  
GND  
VCCR  
I/O  
GND  
VCCA  
GND  
VCCR  
I/O  
GND  
VCCA  
GND  
VCCR  
I/O  
94  
I/O  
I/O  
I/O  
I/O  
95  
I/O  
I/O  
I/O  
I/O  
96  
I/O  
I/O  
I/O  
I/O  
97  
I/O  
I/O  
I/O  
I/O  
98  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
99  
I/O  
I/O  
I/O  
I/O  
100  
101  
102  
103  
104  
105  
106  
107  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
108  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Notes:  
1. Pin 30 in RT54SX16 and RT54SX32-CQ208 is a TRST pin.  
2. Pin 65 in A54SX32 and RT54SX32-CQ208 is a No Connect.  
v2.1  
2-3  
SX Family FPGAs RadTolerant and HiRel  
208-Pin CQFP  
208-Pin CQFP  
Pin  
A54SX16 RT54SX16 A54SX32 RT54SX32  
Pin  
A54SX16 RT54SX16 A54SX32 RT54SX32  
Number Function Function Function Function  
Number Function Function Function Function  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
CLKB  
VCCR  
GND  
VCCA  
GND  
PRA, I/O  
I/O  
CLKB  
VCCR  
GND  
VCCA  
GND  
PRA, I/O  
I/O  
CLKB  
VCCR  
GND  
VCCA  
GND  
PRA, I/O  
I/O  
CLKB  
VCCR  
GND  
VCCA  
GND  
PRA, I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
180  
Notes:  
CLKA  
CLKA  
CLKA  
CLKA  
1. Pin 30 in RT54SX16 and RT54SX32-CQ208 is a TRST pin.  
2. Pin 65 in A54SX32 and RT54SX32-CQ208 is a No Connect.  
2-4  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
256-Pin CQFP  
256 255 254 253 252 251 250 249 248  
200 199 198 197 196 195 194 193  
Pin #1  
Index  
1
2
3
4
5
6
7
8
192  
191  
190  
189  
188  
187  
186  
185  
256-Pin  
CQFP  
56  
57  
58  
59  
60  
61  
62  
63  
64  
137  
136  
135  
134  
133  
132  
131  
130  
129  
65 66 67 68 69 70 71 72 73  
121 122 123 124 125 126 127 128  
Figure 2-2 256-Pin CQFP (Top View)  
v2.1  
2-5  
SX Family FPGAs RadTolerant and HiRel  
256-Pin CQFP  
256-Pin CQFP  
Pin  
A54SX16 RT54SX16 A54SX32 RT54SX32  
Pin  
A54SX16 RT54SX16 A54SX32 RT54SX32  
Number Function Function Function Function  
Number Function Function Function Function  
1
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
GND  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
GND  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2
3
4
I/O  
I/O  
I/O  
I/O  
5
I/O  
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
I/O  
9
I/O  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
I/O  
I/O  
I/O  
I/O  
TMS  
NC  
NC  
I/O  
TMS  
NC  
NC  
I/O  
TMS  
I/O  
TMS  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
GND  
VCCA  
GND  
NC  
I/O  
VCCI  
GND  
VCCA  
GND  
NC  
I/O  
VCCI  
GND  
VCCA  
GND  
I/O  
VCCI  
GND  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
TRST  
I/O  
I/O  
TRST  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
Note: Pin 34 in RT54SX16 and RT54SX32-CQ256 is a TRST pin.  
2-6  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
256-Pin CQFP  
256-Pin CQFP  
Pin  
A54SX16 RT54SX16 A54SX32 RT54SX32  
Pin  
A54SX16 RT54SX16 A54SX32 RT54SX32  
Number Function Function Function Function  
Number Function Function Function Function  
75  
76  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
77  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
78  
I/O  
I/O  
I/O  
I/O  
79  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
80  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
81  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
82  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
83  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
84  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
85  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
86  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
87  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
88  
I/O  
I/O  
I/O  
I/O  
NC  
TDO, I/O  
NC  
GND  
I/O  
NC  
TDO, I/O  
NC  
GND  
I/O  
I/O  
I/O  
89  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
90  
PRB, I/O  
GND  
VCCI  
GND  
VCCA  
I/O  
PRB, I/O  
GND  
VCCI  
GND  
VCCA  
I/O  
PRB, I/O  
GND  
VCCI  
GND  
VCCA  
I/O  
PRB, I/O  
GND  
VCCI  
GND  
VCCA  
I/O  
91  
GND  
I/O  
GND  
I/O  
92  
93  
I/O  
I/O  
I/O  
I/O  
94  
I/O  
I/O  
I/O  
I/O  
95  
I/O  
I/O  
I/O  
I/O  
96  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
97  
I/O  
I/O  
I/O  
I/O  
98  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
99  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
VCCA  
I/O  
NC  
NC  
NC  
VCCA  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Note: Pin 34 in RT54SX16 and RT54SX32-CQ256 is a TRST pin.  
v2.1  
2-7  
SX Family FPGAs RadTolerant and HiRel  
256-Pin CQFP  
256-Pin CQFP  
Pin  
A54SX16 RT54SX16 A54SX32 RT54SX32  
Pin  
A54SX16 RT54SX16 A54SX32 RT54SX32  
Number Function Function Function Function  
Number Function Function Function Function  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
NC  
NC  
NC  
GND  
VCCR  
GND  
VCCI  
I/O  
NC  
NC  
NC  
GND  
VCCR  
GND  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCCR  
GND  
VCCI  
I/O  
GND  
VCCR  
GND  
VCCI  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA  
CLKB  
VCCI  
GND  
CLKA  
CLKB  
VCCI  
GND  
CLKA  
CLKB  
VCCI  
GND  
CLKA  
CLKB  
VCCI  
GND  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
Note: Pin 34 in RT54SX16 and RT54SX32-CQ256 is a TRST pin.  
2-8  
v2.1  
SX Family FPGAs RadTolerant and HiRel  
256-Pin CQFP  
Pin  
A54SX16 RT54SX16 A54SX32 RT54SX32  
Number Function Function Function Function  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
VCCR  
GND  
PRA, I/O  
I/O  
VCCR  
GND  
PRA, I/O  
I/O  
VCCR  
GND  
PRA, I/O  
I/O  
VCCR  
GND  
PRA, I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
Note: Pin 34 in RT54SX16 and RT54SX32-CQ256 is a TRST pin.  
v2.1  
2-9  
SX Family FPGAs RadTolerant and HiRel  
Datasheet Information  
List of Changes  
The following table lists critical changes that were made in the current version of the document.  
Previous Version Changes in Current Version (v2.1)  
Page  
v2.0  
The "Product Profile" was updated.  
The "Ordering Information" was updated.  
The "Product Plan" was updated.  
Table 1-1 was updated.  
i
ii  
ii  
8
Preliminary v1.5  
Power-up and -down sequencing information was modified: damage to the device is possible when 13  
3.3 V is powered-up first and when 5.0 V is powered-down first.  
The last line of EQ 1-4 was cut off in the previous version. It has been replaced in the existing version.  
The User I/Os changed.  
16  
8
Preliminary v1.5.2  
The following sections are new or were updated: "Clock Resources", "Performance", "I/O Modules", 7  
"Power Requirements", "Boundary Scan Testing (BST)","Configuring Diagnostic Pins", "TRST Pin", 11  
"Dedicated Test Mode", "Flexible Mode", "Development Tool Support", "RTSX Probe Circuit Control  
Pins", and "Design Considerations".  
to  
The "Pin Description" has been updated.  
28  
Note that the “Package Characteristics and Mechanical Drawings” section has been eliminated from the N/A  
data sheet. The mechanical drawings are now contained in a separate document, Package Characteristics  
and Mechanical Drawings, available on the Actel web site.  
v2.1  
3-1  
SX Family FPGAs RadTolerant and HiRel  
Datasheet Categories  
In order to provide the latest information to designers, some datasheets are published before data has been fully  
characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet  
Supplement." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advanced or production) containing general product  
information. This brief gives an overview of specific device and family information.  
Advanced  
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed  
grades. This information can be used as estimates, but not for production.  
Unmarked (production)  
This datasheet version contains information that is considered to be final.  
Datasheet Supplement  
The datasheet supplement gives specific device information for a derivative family that differs from the general family  
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and  
for specifications that do not differ between the two families.  
Export Administration Regulations (EAR)  
The product described in this datasheet is subject to the Export Administration Regulations (EAR). They could require  
an approved export license prior to export from the United States. An export includes release of product or disclosure  
of technology to a foreign national inside or outside the United States.  
3-2  
v2.1  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
www.actel.com  
Actel Corporation  
Actel Europe Ltd.  
Actel Japan  
www.jp.actel.com  
Actel Hong Kong  
www.actel.com.cn  
2061 Stierlin Court  
Mountain View, CA  
94043-4655 USA  
Dunlop House, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
EXOS Ebisu Bldg. 4F  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Suite 2114, Two Pacific Place  
88 Queensway, Admiralty  
Hong Kong  
Phone 650.318.4200  
Fax 650.318.4600  
Phone +44 (0) 1276 401 450  
Fax +44 (0) 1276 401 490  
Phone +81.03.3445.7671  
Fax +81.03.3445.7668  
Phone +852 2185 6460  
Fax +852 2185 6488  
5172141-8/3.05  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY