5962-01-385-6686 [ADI]

IC,A/D CONVERTER,SINGLE,12-BIT,HYBRID,DIP,32PIN;
5962-01-385-6686
型号: 5962-01-385-6686
厂家: ADI    ADI
描述:

IC,A/D CONVERTER,SINGLE,12-BIT,HYBRID,DIP,32PIN

光电二极管 转换器
文件: 总12页 (文件大小:368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Very Fast, Complete  
10- or 12-Bit A/D Converters  
a
AD578/AD579  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Complete 12-Bit ADC with Reference and Clock  
Fast Conversion: 3 s Max  
Buried Zener Reference for Long-Term Stability and  
Low Gain TC: ؎30 ppm/؇C Max (AD578)  
؎40 ppm/؇C Max (AD579)  
AD578/AD579  
(AD578)  
BIT 12  
(AD578)  
BIT 11  
BIT 10  
BIT 9  
BIT 8  
BIT 7  
BIT 6  
BIT 5  
1
2
3
4
5
6
7
8
9
32  
–15V  
31 +15V  
100  
20k⍀  
30 ANALOG GND  
20k⍀  
5k⍀  
29  
28  
ZERO ADJ  
5k⍀  
Max Nonlinearity: <؎0.012%  
20V SPAN INPUT  
No Missing Codes over Temperature  
Low Power: 555 mW (AD578); 775 mW (AD579)  
Available to MIL-STD-883  
Positive-True Parallel or Serial Logic Outputs  
Short Cycle Capability  
Precision 10 V Reference for External Applications  
Adjustable Internal Clock  
Z Models for ؎12 V Supplies  
27 10V SPAN INPUT  
10k⍀  
26  
25  
BIPOLAR OFFSET  
GAIN (REF IN)  
24 REF OUT  
BIT 4  
BIT 3 10  
BIT 2 11  
BIT 1 12  
BIT 1 13  
23 SERIAL OUT  
22  
SERIAL OUT  
21 CONVERT START  
20 EOC  
SHORT  
14  
15  
19 CLOCK IN  
18 CLOCK OUT  
17 CLOCK ADJ  
CYCLE  
DIGITAL  
GND  
SAR  
CLOCK  
+5V 16  
COMPARATOR  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD578 and AD579 are high speed 12-bit and 10-bit  
successive approximation ADCs that include an internal clock,  
reference, and comparator. Their hybrid design utilizes MSI  
digital and linear ICs in conjunction with a 12-bit or 10-bit  
monolithic, monotonic DAC to provide superior performance  
and versatility with IC size, price, and reliability.  
1. Both the AD578 and AD579 are complete ADCs. No  
external components are required to perform a conversion.  
2. The fast conversion rates3 µs for the AD578 and 1.8 µs for  
the AD579make them ideal candidates for high speed data  
acquisition systems requiring high throughput.  
3. The internal buried Zener reference is laser trimmed to high  
initial accuracy and low TC and is available externally.  
Important performance characteristics of the AD578 include  
1/2 LSB12 linearity error maximum at +25°C, maximum gain  
temperature coefficient of 30 ppm/°C, and maximum conver-  
sion time of 3 µs at a typical power dissipation of 555 mW. The  
10-bit AD579 provides 1/2 LSB10 maximum linearity error at  
1.8 µs maximum and 775 mW typical PD.  
4. Precision thin-film scaling resistors on the DAC provide for  
excellent thermal tracking.  
5. Short cycle and external clock capabilities are provided for  
applications requiring faster conversion speeds and/or lower  
resolution.  
Both the AD578 and AD579 include scaling resistors that provide  
analog input signal ranges of 5 V, 10 V, and 0 V to +10 V.  
Both are contained in 32-lead ceramic side-brazed DIP pack-  
ages and are available with MIL-STD-883 Class B processing.  
The serial output function is no longer supported on this  
product after date code 9623.  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
(Typical @ 25؇C, ؎15 V and +5 V, unless otherwise noted.)  
AD578/AD579–SPECIFICATIONS  
Parameter  
AD578J  
AD578K  
AD578L  
RESOLUTION  
12 Bits  
12 Bits  
12 Bits  
ANALOG INPUTS  
Voltage Ranges  
Bipolar  
5.0 V, 10 V  
0 V to +10 V, 0 V to +20 V  
5.0 V, 10 V  
0 V to +10 V, 0 V to +20 V  
5.0 V, 10 V  
0 V to +10 V, 0 V to +20 V  
Unipolar  
Input Impedance  
0 V to +10 V, 5 V  
10 V, 0 V to +20 V  
5 k  
10 kΩ  
5 kΩ  
10 kΩ  
5 kΩ  
10 kΩ  
DIGITAL INPUTS  
Convert Command1  
Clock Input  
1 LSTTL Load  
1 LSTTL Load  
1 LSTTL Load  
1 LSTTL Load  
1 LSTTL Load  
1 LSTTL Load  
TRANSFER CHARACTERISTICS  
Gain Error2, 3  
0.1% FSR, 0.25% FSR max  
0.1% FSR, 0.25% FSR max  
0.1% FSR, 0.25% FSR max  
1/2 LSB max  
0.1% FSR, 0.25% FSR max  
0.1% FSR, 0.25% FSR max  
0.1% FSR, 0.25% FSR max  
1/2 LSB max  
0.1% FSR, 0.25% FSR max  
0.1% FSR, 0.25% FSR max  
0.1% FSR, 0.25% FSR max  
1/2 LSB max  
Unipolar Offset3  
Bipolar Error3, 4  
Linearity Error, 25°C  
TMIN to TMAX  
3/4 LSB  
3/4 LSB  
3/4 LSB  
DIFFERENTIAL LINEARITY ERROR  
(Minimum resolution for which no  
missing codes are guaranteed)  
25°C  
12 Bits  
12 Bits  
12 Bits  
12 Bits  
12 Bits  
12 Bits  
TMIN to TMAX  
POWER SUPPLY SENSITIVITY  
+15 V 10%  
–15 V 10%  
0.005%/%VS max  
0.005%/%VS max  
0.005%/%VS max  
0.005%/%VS max  
0.005%/%VS max  
0.005%/%VS max  
0.005%/%VS max  
0.005%/%VS max  
0.005%/%VS max  
+5 V 10%  
TEMPERATURE COEFFICIENTS  
Gain  
15 ppm/°C typ  
30 ppm/°C max  
3 ppm/°C typ  
10 ppm/°C max  
8 ppm/°C typ  
20 ppm/°C max  
2 ppm/°C typ  
15 ppm/°C typ  
30 ppm/°C max  
3 ppm/°C typ  
10 ppm/°C max  
8 ppm/°C typ  
20 ppm/°C max  
2 ppm/°C typ  
15 ppm/°C typ  
30 ppm/°C max  
3 ppm/°C typ  
10 ppm/°C max  
8 ppm/°C typ  
20 ppm/°C max  
2 ppm/°C typ  
Unipolar Offset  
Bipolar Offset  
Differential Linearity  
CONVERSION TIME5, 6, 7 (max)  
6.0 µs  
4.5 µs  
3 µs  
PARALLEL OUTPUTS  
Unipolar Code  
Bipolar Code  
Binary  
Binary  
Binary  
Offset Binary/Twos Complement  
2 LSTTL Loads  
Offset Binary/Twos Complement  
2 LSTTL Loads  
Offset Binary/Twos Complement  
2 LSTTL Loads  
Output Drive  
SERIAL OUTPUTS (NRZ FORMAT)  
Unipolar Code  
Bipolar Code  
Binary/Complementary Binary  
Offset Binary/Comp. Offset Binary  
2 LSTTL Loads  
Binary/Complementary Binary  
Offset Binary/Comp. Offset Binary  
2 LSTTL Loads  
Binary/Complementary Binary  
Offset Binary/Comp. Offset Binary  
2 LSTTL Loads  
Output Drive  
END OF CONVERSION (EOC)  
Output Drive  
Logic l During Conversion  
8 LSTTL Loads  
Logic l During Conversion  
8 LSTTL Loads  
Logic l During Conversion  
8 LSTTL Loads  
INTERNAL CLOCK7  
Output Drive  
2 LSTTL Loads  
2 LSTTL Loads  
2 LSTTL Loads  
INTERNAL REFERENCE  
Voltage  
Drift  
10.000 100 mV  
12 ppm/°C, 20 ppm/°C max  
1 mA max  
10.000 100 mV  
12 ppm/°C, 20 ppm/°C max  
1 mA max  
10.000 100 mV  
12 ppm/°C, 20 ppm/°C max  
1 mA max  
External Current  
POWER SUPPLY REQUIREMENTS8  
Range for Rated Accuracy  
+4.75 to +5.25 and 13.5 to 16.5 +4.75 to +5.25 and 13.5 to 16.5 +4.75 to +5.25 and 13.5 to 16.5  
Supply Current  
+15 V  
–15 V  
+5 V  
5 mA typ, 8 mA max  
22 mA typ, 35 mA max  
30 mA typ, 40 mA max  
555 mW typ  
5 mA typ, 8 mA max  
22 mA typ, 35 mA max  
30 mA typ, 40 mA max  
555 mW typ  
5 mA typ, 8 mA max  
22 mA typ, 35 mA max  
30 mA typ, 40 mA max  
555 mW typ  
Power Dissipation  
TEMPERATURE RANGE  
Operating  
Storage  
0°C to +70°C  
–65°C to +150°C  
0°C to +70°C  
–65°C to +150°C  
0°C to +70°C  
–65°C to +150°C  
See Page 3 for notes.  
–2–  
REV. C  
AD578/AD579  
Parameter  
AD578SD9  
AD578TD9  
RESOLUTION  
12 Bits  
12 Bits  
ANALOG INPUTS  
Voltage Ranges  
Bipolar  
5.0 V, 10 V  
0 V to +10 V, 0 V to +20 V  
5.0 V, 10 V  
0 V to +10 V, 0 V to +20 V  
Unipolar  
Input Impedance  
0 V to +10 V, 5 V  
10 V, 0 V to +20 V  
5 k  
10 kΩ  
5 kΩ  
10 kΩ  
DIGITAL INPUTS  
Convert Command1  
Clock Input  
1 LSTTL Load  
1 LSTTL Load  
1 LSTTL Load  
1 LSTTL Load  
TRANSFER CHARACTERISTICS  
Gain Error2, 3  
0.1% FSR, 0.25% FSR max  
0.1% FSR, 0.25% FSR max  
0.1% FSR, 0.25% FSR max  
1/2 LSB max  
0.1% FSR, 0.25% FSR max  
0.1% FSR, 0.25% FSR max  
0.1% FSR, 0.25% FSR max  
1/2 LSB max  
Unipolar Offset3  
Bipolar Error3, 4  
Linearity Error, 25°C  
TMIN to TMAX  
3/4 LSB max  
3/4 LSB max  
DIFFERENTIAL LINEARITY ERROR  
(Minimum resolution for which no  
missing codes are guaranteed)  
25°C  
12 Bits  
12 Bits  
12 Bits  
12 Bits  
TMIN to TMAX  
POWER SUPPLY SENSITIVITY  
+15 V 10%  
–15 V 10%  
0.005%/%VS max  
0.005%/%VS max  
0.005%/%VS max  
0.005%/%VS max  
0.005%/%VS max  
0.005%/%VS max  
+5 V 10%  
TEMPERATURE COEFFICIENTS  
Gain  
15 ppm/°C typ  
50 ppm/°C max  
3 ppm/°C typ  
15 ppm/°C max  
8 ppm/°C typ  
25 ppm/°C max  
2 ppm/°C typ  
15 ppm/°C typ  
30 ppm/°C max  
3 ppm/°C typ  
10 ppm/°C max  
8 ppm/°C typ  
20 ppm/°C max  
2 ppm/°C typ  
Unipolar Offset  
Bipolar Offset  
Differential Linearity  
CONVERSION TIME5, 6, 7 (max)  
6.0 µs  
4.5 µs  
PARALLEL OUTPUTS  
Unipolar Code  
Bipolar Code  
Binary  
Binary  
Offset Binary/Twos Complement  
2 LSTTL Loads  
Offset Binary/Twos Complement  
2 LSTTL Loads  
Output Drive  
SERIAL OUTPUTS (NRZ FORMAT)  
Unipolar Code  
Bipolar Code  
Binary/Complementary Binary  
Offset Binary/Comp. Offset Binary  
2 LSTTL Loads  
Binary/Complementary Binary  
Offset Binary/Comp. Offset Binary  
2 LSTTL Loads  
Output Drive  
END OF CONVERSION (EOC)  
Output Drive  
Logic l During Conversion  
8 LSTTL Loads  
Logic l During Conversion  
8 LSTTL Loads  
INTERNAL CLOCK7  
Output Drive  
2 LSTTL Loads  
2 LSTTL Loads  
INTERNAL REFERENCE  
Voltage  
Drift  
10.000 100 mV  
12 ppm/°C, 20 ppm/°C max  
1 mA max  
10.000 100 mV  
12 ppm/°C, 20 ppm/°C max  
1 mA max  
External Current  
POWER SUPPLY REQUIREMENTS8  
Range for Rated Accuracy  
Supply Current +15 V  
–15 V  
+4.75 to +5.25 and 13.5 to 16.5  
5 mA typ, 8 mA max  
22 mA typ, 35 mA max  
30 mA typ, 40 mA max  
555 mW typ  
+4.75 to +5.25 and 13.5 to 16.5  
5 mA typ, 8 mA max  
22 mA typ, 35 mA max  
30 mA typ, 40 mA max  
555 mW typ  
+5 V  
Power Dissipation  
TEMPERATURE RANGE  
Operating  
Storage  
–55°C to +125°C  
–65°C to +150°C  
–55°C to +125°C  
–65°C to +150°C  
NOTES  
1Positive pulse 200 ns wide (min) leading edge (0 to 1) resets outputs. Trailing edge initiates conversion.  
2With 50 , 1% fixed resistor in place of gain adjust potentiometer.  
3Adjustable to 0.  
4With 50 , 1% resistor between REF OUT and BIPOLAR OFFSET (Pins 24 and 26).  
5Conversion time is defined as the time between the falling edge of convert start and the falling edge of the EOC.  
6Each grade is specified at the conversion speed shown.  
7Externally adjustable by a resistor or capacitor (see Figure 6).  
8For Z models, order AD578ZJ, AD578ZK, or AD578ZL ( 11.6 V to 16.5 V).  
9Available to MIL-STD-883, Level B. See ADI Military Products Databook for detailed specifications.  
S
pecifications subject to change without notice.  
REV. C  
–3–  
AD578/AD579  
Parameter  
AD579JN  
AD579KN  
RESOLUTION  
10 Bits  
10 Bits  
ANALOG INPUTS  
Voltage Ranges  
Bipolar  
±5.0 V, ±10 V  
0 V to +10 V, 0 V to +20 V  
±5.0 V, ±10 V  
0 V to +10 V, 0 V to +20 V  
Unipolar  
Input Impedance  
0 V to +10 V, ±5 V  
±10 V, 0 V to +20 V  
5 kW (±20%)  
10 kW (±20%)  
5 kW (±20%)  
10 kW (±20%)  
DIGITAL INPUTS  
Convert Command1  
Clock Input  
1 LSTTL Load  
1 LSTTL Load  
1 LSTTL Load  
1 LSTTL Load  
TRANSFER CHARACTERISTICS  
Gain Error2, 3  
±0.1% FSR, ±0.25% FSR max  
±0.1% FSR, ±0.25% FSR max  
±0.1% FSR, ±0.25% FSR max  
±1/2 LSB max  
±0.1% FSR, ±0.25% FSR max  
±0.1% FSR, ±0.25% FSR max  
±0.1% FSR, ±0.25% FSR max  
±1/2 LSB max  
Unipolar Offset3  
Bipolar Error3, 4  
Linearity Error, 25C  
TMIN to TMAX  
±3/4 LSB  
±3/4 LSB  
DIFFERENTIAL LINEARITY ERROR  
(Minimum resolution for which no  
missing codes are guaranteed)  
25C  
10 Bits  
10 Bits  
10 Bits  
10 Bits  
TMIN to TMAX  
POWER SUPPLY SENSITIVITY  
+15 V ± 10%  
0.005%/%DVS max  
0.005%/%DVS max  
0.001%/%DVS max  
0.005%/%DVS max  
0.005%/%DVS max  
0.001%/%DVS max  
15 V ± 10%  
+5 V ± 10%  
Z Versions  
+12 V ± 5%  
12 V ± 5%  
0.007%/%DVS max  
0.007%/%DVS max  
0.007%/%DVS max  
0.007%/%DVS max  
TEMPERATURE COEFFICIENTS  
Gain  
±25 ppm/C typ  
±40 ppm/C max  
±5 ppm/C typ  
±15 ppm/C max  
±8 ppm/C typ  
±20 ppm/C max  
±2 ppm/C typ  
±25 ppm/C typ  
±40 ppm/C max  
±5 ppm/C typ  
±15 ppm/C max  
±8 ppm/C typ  
±20 ppm/C max  
±2 ppm/C typ  
Unipolar Offset  
Bipolar Offset  
Differential Linearity  
CONVERSION TIME5, 6 (max)  
TMIN to TMAX  
2.2 ms  
2.4 ms  
1.8 ms  
2.0 ms  
PARALLEL OUTPUTS  
Unipolar Code  
Bipolar Code  
Binary  
Binary  
Offset Binary/Twos Complement  
2 LSTTL Loads  
Offset Binary/Twos Complement  
2 LSTTL Loads  
Output Drive  
SERIAL OUTPUTS (NRZ FORMAT)  
Unipolar Code  
Binary/Complementary Binary  
Offset Binary/Comp. Offset Binary  
2 LSTTL Loads  
Binary/Complementary Binary  
Offset Binary/Comp. Offset Binary  
2 LSTTL Loads  
Bipolar Code  
Output Drive  
END OF CONVERSION (EOC)  
Output Drive  
Logic 1 During Conversion  
8 LSTTL Loads  
Logic 1 During Conversion  
8 LSTTL Loads  
INTERNAL CLOCK7  
Output Drive  
2 LSTTL Loads  
2 LSTTL Loads  
INTERNAL REFERENCE  
Voltage  
Temperature Coefficient  
External Current  
10.000 ± 100 mV typ  
±15 ppm/C  
±1 mA max  
10.000 ± 100 mV typ  
±15 ppm/C  
±1 mA max  
POWER SUPPLY REQUIREMENTS  
Range for Rated Accuracy  
Z Models8  
+4.75 to +5.25 and ±13.5 to ±16.5  
+4.75 to +5.25 and ±11.4 to ±16.5  
5 mA typ, 8 mA max  
22 mA typ, 35 mA max  
100 mA typ, 150 mA max  
775 mW typ  
+4.75 to +5.25 and ±13.5 to ±16.5  
+4.75 to +5.25 and ±11.4 to ±16.5  
5 mA typ, 8 mA max  
22 mA typ, 35 mA max  
100 mA typ, 150 mA max  
775 mW typ  
Supply Current  
+15 V  
15 V  
+5 V  
Power Dissipation  
TEMPERATURE RANGE  
Operating  
Storage  
0C to +70C  
65C to +150C  
0C to +70C  
65C to +150C  
NOTES  
1Positive pulse 200 ns wide (min) leading edge (0 to 1) resets outputs. Trailing edge initiates conversion.  
2With 50 W, 1% fixed resistor in place of gain adjust potentiometer.  
3Adjustable to zero.  
4With 50 W, 1% resistor between REF OUT and BIPOLAR OFFSET (Pins 24 and 26).  
5Conversion time is defined as the time between the falling edge of convert start and the falling edge of the EOC.  
(Continued on page 5)  
REV. C  
–4–  
AD578/AD579  
Parameter  
AD579TD9  
RESOLUTION  
10 Bits  
ANALOG INPUTS  
Voltage Ranges  
Bipolar  
±5.0 V, ±10 V  
0 V to +10 V, 0 V to +20 V  
Unipolar  
Input Impedance  
0 V to +10 V, ±5 V  
±10 V, 0 V to +20 V  
5 kW (±20%)  
10 kW (±20%)  
DIGITAL INPUTS  
Convert Command1  
Clock Input  
1 LSTTL Load  
1 LSTTL Load  
TRANSFER CHARACTERISTICS  
Gain Error2, 3  
±0.1% FSR, ±0.25% FSR max  
±0.1% FSR, ±0.25% FSR max  
±0.1% FSR, ±0.25% FSR max  
±1/2 LSB max  
Unipolar Offset3  
Bipolar Error3, 4  
Linearity Error, 25C  
TMIN to TMAX  
±3/4 LSB  
DIFFERENTIAL LINEARITY ERROR  
(Minimum resolution for which no  
missing codes are guaranteed)  
25C  
10 Bits  
10 Bits  
TMIN to TMAX  
POWER SUPPLY SENSITIVITY  
+15 V ± 10%  
0.005%/%DVS max  
0.005%/%DVS max  
0.001%/%DVS max  
15 V ± 10%  
+5 V ± 10%  
Z Versions  
+12 V ± 5%  
12 V ± 5%  
0.007%/%DVS max  
0.007%/%DVS max  
TEMPERATURE COEFFICIENTS  
Gain  
±25 ppm/C typ  
±40 ppm/C max  
±5 ppm/C typ  
±15 ppm/C max  
±8 ppm/C typ  
±20 ppm/C max  
±2 ppm/C typ  
Unipolar Offset  
Bipolar Offset  
Differential Linearity  
CONVERSION TIME5, 6 (max)  
TMIN to TMAX  
1.8 ms  
2.0 ms  
PARALLEL OUTPUTS  
Unipolar Code  
Bipolar Code  
Binary  
Offset Binary/Twos Complement  
2 LSTTL Loads  
Output Drive  
SERIAL OUTPUTS (NRZ FORMAT)  
Unipolar Code  
Bipolar Code  
Binary/Complementary Binary  
Offset Binary/Comp. Offset Binary  
2 LSTTL Loads  
Output Drive  
END OF CONVERSION (EOC)  
Output Drive  
Logic 1 During Conversion  
8 LSTTL Loads  
INTERNAL CLOCK7  
Output Drive  
2 LSTTL Loads  
INTERNAL REFERENCE  
Voltage  
Temperature Coefficient  
External Current  
10.000 ± 100 mV typ  
±15 ppm/C  
±1 mA max  
POWER SUPPLY REQUIREMENTS  
Range for Rated Accuracy  
Z Models8  
+4.75 to +5.25 and ±13.5 to ±16.5  
+4.75 to +5.25 and ±11.4 to ±16.5  
5 mA typ, 8 mA max  
22 mA typ, 35 mA max  
100 mA typ, 150 mA max  
775 mW typ  
Supply Current  
+15 V  
15 V  
+5 V  
Power Dissipation  
TEMPERATURE RANGE  
Operating  
Storage  
55C to +125C  
65C to +150C  
NOTES (continued)  
6Each grade is specified at the conversion speed shown.  
7Externally adjustable by a resistor or capacitor. See Figure 8 for appropriate connections.  
8For Z models, order AD579ZJN, AD579ZKN, or AD579ZTD.  
9Available to MIL-STD-883, Level B. See ADI Military Products Databook for detailed specifications.  
Specifications subject to change without notice.  
REV. C  
–5–  
AD578/AD579  
ORDERING GUIDE1  
Conversion  
Speed  
Temperature  
Range  
Package  
Option2  
Model  
Resolution  
AD578JN (JD)  
AD578KN (KD)  
AD578LN (LD)  
AD578SD  
12 Bits  
12 Bits  
12 Bits  
12 Bits  
12 Bits  
12 Bits  
12 Bits  
10 Bits  
10 Bits  
10 Bits  
10 Bits  
6.0 ms  
4.5 ms  
3.0 ms  
6.0 ms  
4.5 ms  
6.0 ms  
4.5 ms  
2.2 ms  
1.8 ms  
1.8 ms  
1.8 ms  
0C to +70C  
0C to +70C  
0C to +70C  
DH-32B  
DH-32B  
DH-32B  
DH-32B  
DH-32B  
DH-32B  
DH-32B  
DH-32B  
DH-32B  
DH-32B  
DH-32B  
55C to +125C  
55C to +125C  
55C to +125C  
55C to +125C  
0C to +70C  
0C to +70C  
55C to +125C  
55C to +125C  
AD578TD  
AD578SD/883B  
AD578TD/883B  
AD579JN  
AD579KN  
AD579TD  
AD579TD/883B  
NOTES  
1For ±12 V operation Z Version, order AD578ZTD.  
2DH = Side Brazed Ceramic DIP.  
200ns, min  
THEORY OF OPERATION  
CONVERT  
START  
The AD578 is a complete pretrimmed 12-bit ADC that requires  
no external components to provide the successive approximation  
analog-to-digital conversion function. A block diagram of the  
AD578/AD579 is shown in Figure 1.  
200ns  
80ns  
CLOCK  
160ns  
10ns  
100ns  
EOC  
AD578/AD579  
(AD578)  
BIT 1  
1
2
3
4
5
6
7
8
9
32  
–15V  
BIT 12  
(AD578)  
BIT 11  
31 +15V  
BIT 2  
BIT 3  
100  
20k⍀  
30 ANALOG GND  
BIT 10  
BIT 9  
BIT 8  
BIT 7  
BIT 6  
BIT 5  
20k⍀  
5k⍀  
29  
28  
ZERO ADJ  
5k⍀  
20V SPAN INPUT  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
BIT 9  
27 10V SPAN INPUT  
10k⍀  
26  
25  
BIPOLAR OFFSET  
GAIN (REF IN)  
24 REF OUT  
BIT 4  
BIT 3 10  
BIT 2 11  
BIT 1 12  
BIT 1 13  
23 SERIAL OUT  
22  
SERIAL OUT  
21 CONVERT START  
20 EOC  
SHORT  
14  
15  
19 CLOCK IN  
18 CLOCK OUT  
17 CLOCK ADJ  
CYCLE  
DIGITAL  
GND  
SAR  
CLOCK  
BIT 10  
BIT 11  
+5V 16  
COMPARATOR  
Figure 1. AD578/AD579 Functional Block Diagram and  
Pinout  
BIT 12  
SERIAL  
OUT  
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12  
When the control section is commanded to initiate a conversion,  
it enables the clock and resets the successive approximation regis-  
ter (SAR). The SAR, timed by the clock, sequences through the  
conversion cycle and returns an end-of-convert flag to the control  
section. The control section disables the clock and brings the  
output status flag low. The data bits are valid on the falling  
edge of the clock pulse starting with t1 and ending with t12  
(Figures 2a and 2b) and accurately represent the input signal to  
within ±1/2 LSB.  
CLOCK  
INTERNAL: CONNECT CLOCK OUT (18) TO CLOCK IN (19)  
EXTERNAL: CONNECT EXTERNAL CLOCK TO CLOCK IN (19)  
CLOCK SHOULD BE AT LEAST 30% DUTY CYCLE WITH  
MINIMUM PERIOD,T OF 100ns.  
MIN  
NOTE  
THE RISING EDGE OF CONVERT START PULSE RESETS THE MSB TO ZERO,  
AND THE LSBs TO ONE.THE TRAILING EDGE INITIATES CONVERSION.  
Figure 2a. AD578 Timing Diagram  
REV. C  
–6–  
AD578/AD579  
200ns, min  
UNIPOLAR CALIBRATION  
CONVERT  
START  
CONVERSION TIME  
70ns  
100ns  
The AD578/AD579 are intended to have a nominal 1/2 LSB  
offset so that the exact analog input for a given code will be in  
the middle of that code (halfway between the transitions to the  
codes above and below it). Thus, when properly calibrated, the  
first transition (from 0000 0000 0000 to 0000 0000 0001) will  
occur for an input level of +1/2 LSB.  
125ns  
~15ns  
GATED  
CLOCK  
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10  
t0  
100ns  
CONVERSION IN PROGRESS  
PARALLEL DATA VALID  
EOC  
25ns  
75ns  
BIT 1  
(MSB)  
If Pin 26 is connected to Pin 30, the unit will behave in this  
manner, within specifications. Refer to Table I, Table II, and  
Figure 3 for further clarification. If the offset trim (R1) is used,  
it should be trimmed as above, although a different offset can be  
set for a particular system requirement. This circuit will give  
approximately 25 mV of offset trim range.  
BIT 2  
BIT 3  
BIT 4  
BIT 5  
BIT 6  
BIT 7  
BIT 8  
BIT 9  
BIT 10  
The full-scale trim is done by applying a signal 1 1/2 LSB  
below the nominal full scale. Trim R2 to give the last transition  
(1111 1111 1110 to 1111 1111 11111).  
+15V  
R1  
ZERO ADJ  
10k  
–15V  
0V TO +20V  
20V IN  
B1 B2 B3 B4 B5 B6 B7 B8 B9 B10  
SERIAL  
CLOCK  
ANALOG INPUTS  
BITS 1–12 (AD578)  
10V IN  
BITS 1–10 (AD579)  
0V TO +10V  
INTERNAL: CONNECT CLOCK OUT (18) TO CLOCK IN (19)  
EXTERNAL: CONNECT EXTERNAL CLOCK TO CLOCK IN (19)  
CLOCK SHOULD BE AT LEAST 30% DUTY CYCLE WITH  
AD578/AD579  
MINIMUM PERIOD,T  
OF 100ns.  
MIN  
BIP OFF  
Figure 2b. AD579 Timing Diagram  
CLK OUT  
CLK IN  
REF IN  
The temperature-compensated buried Zener reference provides the  
primary voltage reference to the DAC and guarantees excellent  
stability with both time and temperature. The reference is  
trimmed to 10 V 1.0%; it is buffered and can supply up to  
1 mA to an external load in addition to the current required to  
drive the reference input resistor (0.5 mA) and bipolar offset  
resistor (1 mA). The thin-film application resistors are trimmed  
to match the full-scale output current of the DAC. Two 5 k  
input scaling resistors allow either a 10 V or a 20 V span. The  
10 kbipolar offset resistor is grounded for unipolar operation  
or connected to the 10 V reference for bipolar operation.  
R2  
100⍀  
REF OUT  
+
6.8F  
DIG GND  
ANA GND  
Figure 3. Unipolar Input Connections  
Table I. AD578 Digital Output Codes vs. Analog Input for Unipolar and Bipolar Ranges  
Digital Output Code  
Analog Input—Volts  
(Center of Quantization Interval)  
(Binary for Unipolar Ranges;  
Offset Binary for Bipolar Ranges)  
0 V to +10 V  
Range  
0 V to +20 V  
Range  
–5 V to +5 V  
Range  
–10 V to +10 V  
Range  
B1  
(MSB)  
B12  
(LSB)  
+9.9976  
+19.9951  
+4.9976  
+9.9951  
1 1 1 1 1 1 1 1 1 1 1 1  
+9.9952  
+19.9902  
+4.9952  
+9.9902  
1 1 1 1 1 1 1 1 1 1 1 0  
+5.0024  
+5.0000  
+10.0049  
+10.0000  
+0.0024  
+0.0000  
+0.0049  
+0.0000  
1 0 0 0 0 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 0 0 0 0 0  
+0.0024  
+0.0000  
+0.0051  
+0.0000  
–4.9976  
–5.0000  
–9.9951  
–10.0000  
0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0  
REV. C  
–7–  
AD578/AD579  
Table II. AD579 Digital Output Codes vs. Analog Input for Unipolar and Bipolar Ranges  
Digital Output Code  
(Binary for Unipolar Ranges;  
Analog Input—Volts  
(Center of Quantization Interval)  
Offset Binary for Bipolar Ranges)  
0 V to +10 V  
Range  
0 V to +20 V  
Range  
–5 V to +5 V  
Range  
–10 V to +10 V  
Range  
B1  
(MSB)  
B12  
(LSB)  
+9.9902  
+9.9804  
+19.9804  
+19.9609  
+4.9902  
+4.9804  
+9.9804  
+9.9609  
1 1 1 1 1 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 1 1 1 0  
+10.0195  
+10.0000  
+5.0097  
+5.0000  
+0.0097  
+0.0000  
+0.0195  
+0.0000  
1 0 0 0 0 0 0 0 0 0 0 1  
1 0 0 0 0 0 0 0 0 0 0 0  
+0.0097  
+0.0000  
+0.0195  
+0.0000  
4.9902  
5.0000  
9.9804  
10.0000  
0 0 0 0 0 0 0 0 0 0 0 1  
0 0 0 0 0 0 0 0 0 0 0 0  
BIPOLAR OPERATION  
LAYOUT CONSIDERATIONS  
The connections for bipolar ranges are shown in Figure 4. Again,  
as for the unipolar ranges, if the offset and gain specifications  
are sufficient, the 100 W trimmer shown can be replaced by a  
50 W ± 1% fixed resistor. The analog input is applied as for the  
unipolar ranges. Bipolar calibration is similar to unipolar calibra-  
tion. First, a signal 1/2 LSB above negative full scale is applied,  
and R1 is trimmed to give the first transition (0000 0000 0000  
to 0000 0000 0001). A signal 1 1/2 LSB below positive full  
scale is applied and R2 trimmed to give the last transition  
(1111 1111 1110 to 1111 1111 1111).  
Many data acquisition components have two or more ground pins  
that are not connected together within the device. These grounds  
are usually referred to as the logic power return, analog com-  
mon (analog power return), and analog signal ground. These  
grounds must be tied together at one point, usually at the system  
power supply ground. Ideally, a single solid ground would be  
desirable. However, since current flows through the ground  
wires and etch stripes of the circuit cards, and since these paths  
have resistance and inductance, hundreds of millivolts can be  
generated between the system ground point and the ground pin  
of the AD578 or AD579. Separate ground returns should be  
provided to minimize the current flow in the path from sensitive  
points to the system ground point. In this way, supply currents  
and logic-gate return currents are not summed into the same  
return path as analog signals, where they would cause measure-  
ment errors.  
ZERO ADJ  
؎10V  
20V IN  
ANALOG INPUTS  
BITS 1–12 (AD578)  
10V IN  
BITS 1–10 (AD579)  
–15V  
؎5V  
+5V  
0.1F  
0.1F  
0.1F  
10F  
AD578/AD579  
+
+
ANALOG  
COMMON  
BIP OFF  
R1  
10F  
DIG  
COM  
100⍀  
10F  
+
CLK OUT  
CLK IN  
REF IN  
+15V  
R2  
100⍀  
REF OUT  
Figure 5. Basic Bypassing Practice  
+
6.8F  
Each of the AD578 or AD579 supply terminals should be capaci-  
tively decoupled as close to the ADC as possible. A large value  
capacitor such as 10 mF in parallel with a 0.1 mF capacitor is  
usually sufficient. Analog supplies are bypassed to the analog  
power return pin and the logic supply is bypassed to the digital  
GND pin.  
DIG GND  
ANA GND  
Figure 4. Bipolar Input Connections  
To minimize noise, the reference output (Pin 24) should be  
decoupled by a 6.8 mF capacitor to Pin 30.  
REV. C  
–8–  
AD578/AD579  
CLOCK RATE CONTROL  
J GRADE  
K,T GRADES  
The internal clock is preset to a nominal conversion time of 5.6 µs  
(AD578) or 4.8 µs (AD579). It can be adjusted for either faster  
or slower conversion rates. For faster conversions, connect the  
appropriate 1% resistor between Pins 17 and 18 and short Pin 18  
to Pin 19 (see Figures 6, 7, and 8).  
2.2s  
CONVERSION  
RATE  
1.8s  
CONVERSION  
RATE  
649⍀  
422⍀  
1%  
1%  
For slower conversions (AD578 only), connect a capacitor  
between Pins 15 and 17.  
Figure 8. AD579 Clock Rate Control Connection  
Note that the No Missing Code operation is not guaranteed  
when operating in this mode if a particular grades conversion  
speed specification is exceeded.  
Short Cycle InputA short cycle input, Pin 14, permits the  
timing cycle to be terminated after any number of desired bits  
has been converted, allowing shorter conversion times in appli-  
cations not requiring the full 10-bit (AD579) or 12-bit (AD578)  
resolution. Short cycle pin connections and associated conver-  
sion times are summarized in Tables III and IV.  
3s  
CONVERSION  
RATE  
6s  
CONVERSION  
RATE  
4.5s  
CONVERSION  
RATE  
L GRADE  
K,T GRADES  
J, S GRADES  
TO SLOW  
CONVERSION,  
USE C  
FROM  
FIGURE 7  
Table III. AD578 Short Cycle Connections  
825⍀  
؎1%  
3.32⍀  
؎1%  
Connect  
Pin 14 to  
Conversion Speed  
(s)  
For Resolution Bit  
Figure 6. AD578 Clock Rate Control Connection  
12  
10  
8
Pin 16  
Pin 2  
Pin 4  
3
2.5  
2
CAPACITANCE – pF  
1000  
680  
330  
13.0  
10.0  
8.0  
Table IV. AD579 Short Cycle Connections  
CAPACITOR  
RESISTOR  
Connect  
Pin 14 to  
Conversion Speed  
(s)  
For Resolution Bit  
10  
8
Pin 2  
Pin 4  
1.8  
1.5  
6.0  
4.0  
2.0  
External ClockAn external clock may be connected directly  
to the clock input, Pin 19. When operating in this mode, the  
convert start should be held high for a minimum of one clock  
period in order to reset the SAR and synchronize the conversion  
cycle. A positive-going pulse width of 100 ns to 200 ns will provide  
a continuous string of conversions that start on the first rising  
edge of the external clock after the EOC output has gone low.  
1.5  
10k  
200  
2k  
RESISTANCE –  
Figure 7. AD578 Conversion Times vs. R or C Values  
External Buffer AmplifierIn applications where the AD578 or  
AD579 is to be driven from high impedance sources or directly  
from an analog multiplexer, a fast slewing, wideband op amp like  
the AD711 should be used (see Figure 9).  
V
V
GND  
SS  
DD  
+5V +15V –15V  
+V  
AD711  
–V  
OUT  
ANALOG INPUT  
0V TO 10V  
S1  
AD7506  
S16  
DATA BITS  
1 TO 12  
A0 A1 A2 A3  
EN  
AD578  
OR  
AD579  
Figure 9. Input Buffer  
REV. C  
–9–  
AD578/AD579  
OUTLINE DIMENSIONS  
32-Lead Side Brazed Ceramic DIP [SBDIP/H]  
(DH-32B)  
Dimensions shown in inches and (millimeters)  
0.005 (0.13) MIN  
32  
0.080 (2.03) MAX  
17  
1
16  
0.605 (15.37)  
0.580 (14.73)  
1.640 (41.66)  
1.584 (40.23)  
PIN 1  
0.230 (5.84)  
MAX  
0.060 (1.52)  
0.040 (1.02)  
0.012 (0.31)  
0.009 (0.23)  
0.610 (15.49)  
0.590 (14.99)  
0.180 (4.57)  
MIN  
0.175 (4.46)  
0.125 (3.18)  
0.020 (0.51)  
0.016 (0.41)  
0.055 (1.40)  
0.045 (1.14)  
0.100 (2.54)  
BSC  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. C  
–10–  
AD578/AD579  
Revision History  
Location  
Page  
10/03—Data Sheet changed from REV. B to REV. C  
Change analog-to-digital converter to ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal  
Replaced OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3/03—Data Sheet changed from REV. A to REV. B  
Added text to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Reformatted SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Renumbered Figures 6–9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
REV. C  
–11–  
–12–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY