5962-9756301HXC [ADI]

10-Bit, 100 MSPS A/D Converter; 10位, 100 MSPS A / D转换器
5962-9756301HXC
型号: 5962-9756301HXC
厂家: ADI    ADI
描述:

10-Bit, 100 MSPS A/D Converter
10位, 100 MSPS A / D转换器

转换器 模数转换器 CD
文件: 总16页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
10-Bit, 100 MSPS  
A/D Converter  
a
AD9070  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
10-Bit, 100 MSPS ADC  
Low Power: 600 mW Typical at 100 MSPS  
On-Chip Track/Hold  
VREF  
IN  
VREF  
REF  
OUT COMP BYPASS  
230 MHz Analog Bandwidth  
SINAD = 54 dB @ 41 MHz  
On–Chip Reference  
1 V p-p Analog Input Range  
Single Supply Operation: +5 V or –5 V  
Differential Clock Input  
SOIC (BR)  
PACKAGE  
ONLY  
–2.5V  
AD9070  
AIN  
ADC  
DAC  
ADC  
T/H  
10  
AIN  
D9 D0  
ENCODE  
LOGIC  
SUM  
AMP  
Available in Standard Military Drawing Version  
OR  
ENCODE  
TIMING  
APPLICATIONS  
Digital Communications  
Signal Intelligence  
Digital Oscilloscopes  
Spectrum Analyzers  
Medical Imaging  
Radar  
DIP  
PACKAGE  
ONLY  
ENCODE  
GND  
V
EE  
HDTV  
GENERAL DESCRIPTION  
The input amplifier supports single-ended interfaces. An  
internal –2.5 V reference is included in the SOIC packaged  
device (an external voltage reference is required for the DIP  
version).  
The AD9070 is a monolithic sampling analog-to-digital  
converter with an on-chip track-and-hold circuit and ECL  
digital interfaces. The product operates at a 100 MSPS  
conversion rate with outstanding dynamic performance over  
its full operating range.  
Fabricated on an advanced bipolar process, the AD9070  
is available in a plastic SOIC package specified over the  
industrial temperature range (–40°C to +85°C), and a full  
MIL-PRF-38534 QML version (–55°C to +125°C) in a  
ceramic Dual-in-Line Package (DIP).  
The ADC requires only a single –5 V supply and an encode  
clock for full performance operation. The digital outputs are  
ECL compatible, while a differential clock input accommodates  
a wide range of logic levels. The AD9070 may be operated in a  
Positive ECL (PECL) environment with a single +5 V supply.  
An Out-of-Range output (OR) is available in the DIP version to  
indicate that a conversion result is outside the operating range.  
In both package styles, the output data are held at saturation  
levels during an out-of-range condition.  
REV. B  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
(VEE = –5 V, ENCODE = 100 MSPS, outputs loaded with 100 to –2 V unless  
otherwise noted)  
AD9070–SPECIFICATIONS  
Test  
Temp Level Min  
AD9070BR  
5962-9756301HXC  
Parameter  
Typ  
Max  
Min  
Typ  
Max  
Units  
RESOLUTION  
10  
10  
Bit  
DC ACCURACY  
Differential Nonlinearity  
+25°C  
Full  
+25°C  
Full  
Full  
+25°C  
Full  
I
VI  
I
VI  
VI  
I
VI  
V
0.6  
0.7  
0.6  
+1.25/–1.0  
+1.5/–1.0  
1.5  
0.6  
0.9  
0.6  
1.5  
+1.25/–1.0 LSB  
+2.00/–1.0 LSB  
Integral Nonlinearity  
1.5  
2.25  
LSB  
LSB  
0.9  
Guaranteed  
1
No Missing Codes  
Gain Error1  
Guaranteed  
4
1
2
130  
4
6
% FS  
% FS  
Gain Tempco1  
Full  
115  
ppm/°C  
ANALOG INPUT  
Input Voltage Range (with Respect to AIN)  
Common-Mode Voltage  
Input Offset Voltage  
Full  
Full  
+25°C  
Full  
+25°C  
Full  
+25°C  
+25°C  
Full  
V
V
I
I
I
I
V
I
I
V
512  
–2.5 0.2  
512  
–2.5 0.2  
mV p-p  
V
mV  
mV  
kΩ  
7
8
40  
40  
3
75  
75  
230  
18  
7
9
40  
40  
3
75  
75  
230  
18  
20  
Input Resistance  
10  
10  
10  
kΩ  
pF  
µA  
µA  
Input Capacitance  
Input Bias Current  
200  
200  
200  
Analog Bandwidth, Full Power  
+25°C  
MHz  
REFERENCE OUTPUT  
Output Voltage  
Temperature Coefficient  
Full  
Full  
VI  
V
–2.4  
100  
–2.5  
170  
–2.6  
N/A  
N/A  
V
ppm/°C  
SWITCHING PERFORMANCE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Encode Pulse Width High (tEH  
Encode Pulse Width Low (tEL  
Aperture Delay (tA)  
Full  
Full  
+25°C IV  
+25°C IV  
+25°C  
+25°C  
Full  
Full  
Full  
Full  
VI  
IV  
100  
MSPS  
MSPS  
ns  
ns  
ns  
ps rms  
ns  
ns  
ns  
ns  
40  
13  
13  
40  
13  
13  
)
)
4.5  
4.5  
4.5  
4.5  
V
V
VI  
VI  
VI  
VI  
0.85  
2.5  
2.6  
3.0  
0.5  
0.5  
0.85  
2.5  
2.6  
3.0  
0.5  
0.5  
Aperture Uncertainty (Jitter)  
Output Valid Time (tV)2  
1.5  
1.5  
2
Output Propagation Delay (tPD  
Output Rise Time (tR)  
Output Fall Time (tF)  
)
4.0  
4.0  
1.2  
1.2  
DIGITAL INPUTS  
Logic “1” Voltage  
Logic “0” Voltage  
Logic “1” Current  
Logic “0” Current  
Input Capacitance  
Full  
Full  
Full  
Full  
IV  
IV  
VI  
VI  
V
–1.1  
–0.4  
–1.5  
10  
–1.1  
–0.4  
–1.5  
10  
V
V
µA  
µA  
pF  
10  
10  
+25°C  
3
3
DIGITAL OUTPUTS  
Logic “1” Voltage  
Logic “0” Voltage  
Output Coding  
Full  
Full  
VI  
VI  
–1.1  
–1.15  
V
V
–1.65  
–1.60  
Twos Complement  
Twos Complement  
POWER SUPPLY  
VEE Supply Current (VEE = –5 V)  
Full  
Full  
+25°C  
VI  
VI  
I
80  
400  
120  
600  
0.005  
150  
750  
0.012  
80  
400  
120  
600  
0.005  
150  
750  
0.012  
mA  
mW  
V/V  
Power Dissipation3  
Power Supply Sensitivity4  
REV. B  
–2–  
AD9070  
Test  
AD9070BR  
5962-9756301HXC  
Parameter  
Temp  
Level  
Min  
Typ  
Max  
Min  
Typ  
Max  
Units  
DYNAMIC PERFORMANCE5  
Transient Response  
Overvoltage Recovery Time  
Signal-to-Noise Ratio (SNR)  
(Without Harmonics)  
+25°C  
+25°C  
V
V
3
4
3
4
ns  
ns  
fIN = 10.3 MHz  
+25°C  
Full  
+25°C  
Full  
I
V
I
55  
54  
57  
56  
56  
55  
55  
54  
57  
55  
56  
54  
dB  
dB  
dB  
dB  
f
IN = 41 MHz  
V
Signal-to-Noise Ratio (SINAD)  
(With Harmonics)  
fIN = 10.3 MHz  
+25°C  
Full  
+25°C  
Full  
I
V
I
54  
51  
56  
55  
54  
53  
54  
51  
56  
54  
54  
52  
dB  
dB  
dB  
dB  
f
IN = 41 MHz  
V
Effective Number of Bit  
fIN = 10.3 MHz  
fIN = 41 MHz  
+25°C  
+25°C  
I
I
8.8  
8.3  
9.2  
8.9  
8.8  
8.3  
9.2  
8.9  
Bits  
Bits  
2nd Harmonic Distortion  
fIN = 10.3 MHz  
fIN = 41 MHz  
+25°C  
+25°C  
I
I
63  
58  
70  
63  
63  
58  
70  
63  
dBc  
dBc  
3rd Harmonic Distortion  
fIN = 10.3 MHz  
fIN = 41 MHz  
+25°C  
+25°C  
I
I
65  
57  
71  
61  
65  
57  
71  
61  
dBc  
dBc  
Two-Tone Intermod Distortion (IMD)  
fIN = 10.3 MHz  
fIN = 41 MHz  
+25°C  
+25°C  
V
V
70  
60  
70  
60  
dBc  
dBc  
NOTES  
1Gain error and gain temperature coefficient are based on the ADC only (with a fixed –2.5 V external reference).  
2tV and tPD are measured from the threshold crossing of the ENCODE input to the 50% levels of the digital outputs. The output ac load during test is 10 pF.  
3Power dissipation is measured under the following conditions: fS 100 MSPS, analog input is –1 dBfs at 10.3 MHz. Power dissipation does not include the current of  
the external ECL pull-down resistors that set the current in the ECL output followers.  
4A change in input offset voltage with respect to a change in VEE  
.
5SNR/harmonics based on an analog input voltage of –1.0 dBfs referenced to a 1.024 V full-scale input range.  
Typical thermal impedance for the R style (SOIC) 28-lead package:  
θ
JC = 23°C/W, θCA = 48°C/W, θJA = 71°C/W.  
Typical thermal impedance for the DH style (Ceramic DIP) 28-lead package:  
θJC = 8°C/W, θCA = 43°C/W, θJA = 51°C/W.  
Contact DSCC to obtain the latest revision of the 5962-9756301 drawing.  
Specifications subject to change without notice.  
SAMPLE N1  
SAMPLE N  
SAMPLE N+3  
SAMPLE N+4  
AIN  
SAMPLE N+1  
1/fs  
SAMPLE N+2  
tA  
tEH  
tEL  
ENCODE  
ENCODE  
tPD  
tV  
D9D0  
DATA N4  
DATA N3  
DATA N2  
DATA N1  
DATA N  
DATA N+1  
Figure 1. Timing Diagram  
REV. B  
–3–  
AD9070  
ABSOLUTE MAXIMUM RATINGS*  
Table I. Output Coding  
Twos  
VEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –6 V  
Analog Inputs . . . . . . . . . . . . . . . . . . . . . VEE –1 V to +1.0 V  
Digital Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . VEE to 0.0 V  
VREF IN, VREF OUT . . . . . . . . . . . . . . . . . . . . VEE to 0.0 V  
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Operating Temperature . . . . . . . . . . . . . . . . –55°C to +125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . +175°C  
Maximum Case Temperature . . . . . . . . . . . . . . . . . . +150°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions outside of those indicated in the operation  
sections of this specification is not implied. Exposure to absolute maximum ratings  
for extended periods may affect device reliability.  
Step  
AINAIN  
Code  
Complement  
OR  
1024  
1023  
1022  
0.512 V  
0.511 V  
0.510 V  
>511  
511  
01 1111 1111  
01 1111 1111  
1
0
0
0
0
0
510  
01 1111 1110  
1
513  
512  
511  
0.001 V  
0.000 V  
–0.001 V  
00 0000 0001  
00 0000 0000  
11 1111 1111  
0
–1  
EXPLANATION OF TEST LEVELS  
Test Level  
1
–0.511 V  
–0.512 V  
–0.513 V  
–511  
–512  
<512  
10 0000 0001  
10 0000 0000  
10 0000 0000  
0
0
1
0
–1  
I
– 100% production tested.  
II – 100% production tested at +25°C and sample tested at  
specified temperatures.  
III – Sample tested only.  
ORDERING GUIDE  
Temperature Range Package Option*  
IV – Parameter is guaranteed by design and characterization  
testing.  
Model  
AD9070BR  
AD9070/PCB  
5962-9756301HXC –55°C to +125°C  
–40°C to +85°C  
+25°C  
R-28  
Evaluation Board  
DH-28  
V
– Parameter is a typical value only.  
VI – 100% production tested at +25°C; guaranteed by design  
and characterization testing for industrial temperature  
range; 100% production tested at temperature extremes  
for military devices.  
*DH = Ceramic DIP; R = Small Outline IC (SOIC).  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD9070 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
4–  
AD9070  
PIN FUNCTION DESCRIPTIONS  
Function  
Pin Numbers  
AD9070BR  
AD9070DIP  
D Package  
R Package  
Name  
1, 7, 12, 21, 23  
1, 7, 9, 14, 21  
VEE  
Negative Power Supply. Nominally –5.0 V.  
Ground.  
2, 8, 11, 20, 22  
2, 6, 8, 10, 13, 15, 22 GND  
3
N/A  
VREF OUT  
Internal Reference Output (–2.5 V typical); Bypass with 0.1 µF to Ground.  
4
3
VREF IN  
COMP  
Reference Input for ADC (–2.5 V typical).  
5
N/A  
Internal Amplifier Compensation, 0.1 µF to VEE.  
6
N/A  
REF BYPASS Reference Bypass Node, 0.1 µF to VEE.  
9
4
AIN  
Analog Input – Complement.  
10  
5
AIN  
Analog Input – True.  
13  
11  
ENCODE  
ENCODE  
D9–D0  
OR  
Encode Clock for ADC (ADC Samples on Rising Edge of ENCODE).  
Encode Clock Complement (ADC Samples on Falling Edge of ENCODE).  
Digital Outputs of ADC. D9 is the MSB. Data is twos complement.  
14  
12  
28–24, 19–15  
N/A  
27–23, 20–16  
28  
Out-of-Range Output. Goes HIGH when the converted sample is more  
positive than 1FFh or more negative than 200h (Twos Complement Coding).  
PIN CONFIGURATIONS  
Ceramic DIP  
SOIC  
28 OR  
28 D9 (MSB)  
27 D8  
26 D7  
25 D6  
24 D5  
23  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
V
EE  
V
EE  
27 D9 (MSB)  
26 D8  
GND  
VREF IN  
AIN  
GND  
VREF OUT  
VREF IN  
25 D7  
24 D6  
AIN  
COMP  
23 D5  
GND  
REF BYPASS  
V
EE  
AD9070DIP  
TOP VIEW  
(Not to Scale)  
AD9070BR  
TOP VIEW  
(Not to Scale)  
22  
21  
20  
19  
18  
17  
16  
15  
22  
21  
20  
19  
18  
17  
16  
15  
GND  
GND  
V
V
EE  
EE  
GND  
V
GND  
V
EE  
EE  
D4  
GND  
D4  
V
AIN  
EE  
GND 10  
D3  
AIN 10  
ENCODE 11  
D2  
GND 11  
D3  
12  
D1  
V
12  
13  
14  
D2  
ENCODE  
EE  
GND 13  
D0 (LSB)  
GND  
D1  
ENCODE  
V
ENCODE  
D0 (LSB)  
14  
EE  
REV. B  
5–  
AD9070Typical Circuit Applications  
AIN  
AIN  
D9 D0  
OR  
V
V
EE  
EE  
Figure 5. Equivalent Digital Output Circuit  
Figure 2. Equivalent Analog Input Circuit  
VREF  
OUT  
VREF IN  
V
EE  
V
EE  
Figure 6. Equivalent Reference Output Circuit  
Figure 3. Equivalent Reference Input Circuit  
ENCODE  
ENCODE  
V
EE  
Figure 4. Equivalent Encode Input Circuit  
REV. B  
6–  
Typical Performance CharacteristicsAD9070  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FUNDAMENTAL = 1.0dBfs  
SNR = 58.5dB  
SINAD = 58.0dB  
2nd HARMONIC = 76.8dB  
3rd HARMONIC = 68.1dB  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
F1 = 40.1MHz  
F2 = 41.0MHz  
F1 = F2 = 7.0dBfs  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
MHz  
MHz  
Figure 10. Two Tone Intermodulation Distortion  
Figure 7. Spectrum: fS = 100 MSPS, fIN = 10 MHz  
60  
55  
0
FUNDAMENTAL = 1.0dBfs  
SNR = 56.8dB  
10  
SINAD = 55.0dB  
2nd HARMONIC = 66.6dB  
3rd HARMONIC = 60.8dB  
SNR  
20  
50  
30  
45  
40  
50  
60  
70  
80  
90  
100  
SINAD  
40  
NYQUIST  
FREQUENCY  
(50 MHz)  
35  
30  
25  
20  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
F
MHz  
MHz  
IN  
Figure 8. Spectrum: fS = 100 MSPS, fIN = 40 MHz  
Figure 11. SNR vs. fIN; fS = 100 MSPS  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
0
F1 = 9.57MHz  
F2 = 10.3MHz  
F1 = F2 = 7.0dBfs  
10  
SNR  
20  
SINAD  
30  
40  
50  
60  
70  
80  
90  
100  
0
20  
40  
60  
80  
MSPS  
100  
120  
140  
160  
0
5
10  
15  
20  
25  
MHz  
30  
35  
40  
45  
50  
F
S
Figure 12. SNR vs. fS: fIN = 10.3 MHz  
Figure 9. Two Tone Intermodulation Distortion  
REV. B  
7–  
AD9070  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
60  
59  
58  
57  
SNR  
SINAD  
56  
55  
F
F
= 100MSPS  
= 10.1MHz  
S
F
F
= 100MSPS  
= 10.1MHz  
S
IN  
54  
53  
52  
IN  
51  
50  
0
1
2
3
4
5
6
7
8
9
10  
ENCODE PULSEWIDTH ns  
60 40 20  
0
20  
40  
؇C  
60  
80  
100 120 140  
T
C
Figure 13. SNR vs. TC: BR Package (SOIC)  
Figure 15. SNR vs. Clock Pulse Width (tEH  
)
60  
0
1  
2  
59  
58  
57  
SNR  
SINAD  
56  
55  
NYQUIST  
FREQUENCY  
50MHz  
3  
F
F
= 100MSPS  
= 10.1MHz  
S
54  
53  
52  
IN  
4  
5  
51  
50  
0
50  
100  
150  
MHz  
200  
250  
300  
60 40 20  
0
20  
40  
؇C  
60  
80  
100 120 140  
F
IN  
T
C
Figure 14. SNR vs. TC: DIP Package  
Figure 16. Frequency Response  
REV. B  
8–  
AD9070  
recommended. A better approach is to develop the required  
voltage from the internal or external converter voltage reference  
(VREF OUT).  
APPLICATION NOTES  
Theory of Operation  
The AD9070 employs a two-step subranging architecture with  
digital error correction.  
Very small timing errors can reduce the performance of an A/D  
dramatically. Total jitter of only 3.2 ps will limit the perfor-  
mance of an A/D sampling a full-scale 50 MHz signal to nine  
effective bits. The AD9070’s specified aperture jitter of 2.5 ps  
leaves only 2.0 ps of jitter budget for the clock source (an RSS  
calculation).  
The sampling and conversion process is initiated by a rising  
edge at the ENCODE input. The analog input signal is  
buffered by a high speed differential amplifier and applied to a  
track-and-hold (T/H) circuit that captures the value of the  
input at the sampling instant and maintains it for the duration  
of the conversion.  
The cleanest clock source is only a crystal oscillator producing a  
pure sine wave. In this configuration, or with any roughly  
symmetrical clock input, the input can be ac coupled and biased  
to a reference voltage that also provides the ENCODE input  
(Figure 17). This ensures that the reference voltage is centered  
on the ENCODE signal.  
The coarse quantizer (ADC) produces a five-bit estimate of the  
input value. Its digital output is reconverted to analog form by  
the reconstruction DAC and subtracted from the input signal in  
the SUM AMP. The second stage quantizer generates a six-bit  
representation of the difference signal. The eleven bits are  
presented to the ENCODE LOGIC, which corrects for range  
overlap errors and produces an accurate ten-bit result.  
Digital Outputs  
The digital outputs are compatible with 10K ECL logic. The  
suggested pull-down is 100 to –2 V. However, to reduce  
power consumption, higher value pull-down resistors can be  
used when driving very low capacitance loads or at reduced  
encode rates. The falling edge slew rate of the output bits will be  
degraded with higher value pull-down resistors.  
Data are strobed to the output on the rising edge of the ENCODE  
input, with the data from sample N appearing on the output  
following ENCODE rising edge N+3.  
USING THE AD9070  
ENCODE Input  
Analog Input  
Any high speed A/D converter is extremely sensitive to the quality  
of the sampling clock provided by the user. A Track/Hold circuit is  
essentially a mixer, and any noise, distortion or timing jitter on  
the clock will be combined with the desired signal at the A/D  
output. For that reason, considerable care has been taken in the  
design of the ENCODE input of the AD9070 and the user is  
advised to give commensurate thought to the clock source.  
The analog input to the AD9070 is a differential amplifier, but  
the design has been optimized for a single-ended input. The  
AIN input should be connected or bypassed to the ground  
reference of the input signal. For best dynamic performance,  
impedances at AIN and AIN should match.  
The circuit in Figure 18 illustrates a simple ac-coupled inter-  
face. The midscale input voltage and the AIN levels are both  
provided by the internal reference (VREF OUT).  
The ENCODE input is fully differential and may be operated in  
a differential or a single-ended mode. It has a common-mode  
range of –1 V to –3 V, and is easily driven by a differential ECL  
driver. Proper termination at the A/D is important.  
0.1F  
GND  
V
IN  
1Vp-p  
5V  
AIN  
AD9070  
500⍀  
R
AIN  
T
D9  
(MSB) D9  
500⍀  
510⍀  
V
GND  
EE  
(OR 100TO 2V)  
VREF OUT  
VREF IN  
0.1F  
AD9070  
5V  
0.1F  
CLK  
IN  
(1Vp-p)  
ENCODE  
(LSB) D0  
D0  
ENCODE  
ENCODE  
ENCODE  
510⍀  
(OR 100TO 2V)  
10k⍀  
1k⍀  
R
T
ENCODE  
REF  
EE BYPASS  
ENCODE  
V
COMP  
5V  
0.1F  
3k⍀  
5V  
0.1F  
0.1F  
Figure 17. Single-Ended ENCODE: AC Coupled  
5V  
In single-ended mode, the ENCODE input must be tied to an  
appropriate reference voltage, generally midway between the  
high and the low levels of the incoming logic signal. Many ECL  
circuits provide a VBB reference voltage intended for this  
purpose. If a reference voltage is produced by dividing the  
power supply voltage, any noise on the supply used will couple  
to the clock input and then to the output data. This is not  
Figure 18. AD9070 in 5 V (ECL) Environment  
REV. B  
9–  
AD9070  
Figure 19 shows typical connections for the analog inputs when  
using the AD9070 in a dc-coupled system with single-ended  
signals. The AD820 is used to offset the ground referenced  
input signal to the level required by the AD9070. A very high  
performance amplifier, such as the AD9631, is required to avoid  
degrading the analog signal presented to the ADC. A buffered  
ac interface is easily implemented, with even fewer components  
(Figure 20).  
The input is protected to one volt outside of the power supply  
rails. For nominal power (–5 V and ground), the analog input  
will not be damaged with signals ranging from –6.0 V to +1.0 V.  
Voltage Reference  
A stable and accurate –2.5 V voltage reference is built into the  
AD9070 (VREF OUT) in the SOIC (BR) package. In normal  
operation, the internal reference is used by strapping Pins 3  
and 4 of the AD9070 together. The internal reference can  
provide 100 µA of extra drive current that may be used for other  
circuits.  
5V  
350  
+5V  
Some applications may require greater accuracy, improved  
temperature performance or adjustment of the gain of the  
AD9070, which cannot be obtained by using the internal  
reference. For these applications, an external –2.5 V reference  
can be connected to VREF IN, which requires 5 µA of drive  
current (Figure 21).  
V
GND  
350⍀  
EE  
V
IN  
؎0.5V  
AIN  
R
T
AD9631  
5V  
AD9070  
0.1F  
1k⍀  
1k⍀  
5V  
AIN  
AD820  
5V  
0.1F  
1k⍀  
VREF OUT  
VREF IN  
GND  
V
EE  
VREF OUT  
NC  
0.1F  
+V  
IN  
AD9070  
AD780  
GND  
VREF IN  
V
OUT  
Figure 19. DC-Coupled Input  
0.1F  
1.25k⍀  
5V  
350⍀  
5V  
Figure 21. Using the AD780 Voltage Reference  
+5V  
V
EE GND  
V
350⍀  
0.1F  
IN  
0.1F  
1Vp-p  
The input range can be adjusted by varying the reference  
voltage applied to the AD9070. No appreciable degradation in  
performance occurs when the reference is adjusted 4%. The  
full-scale range of the ADC tracks reference voltage changes  
linearly.  
AIN  
R
T
AD9631  
500⍀  
500⍀  
5V  
AD9070  
AIN  
0.1F  
Timing  
VREF OUT  
VREF IN  
The performance of the AD9070 is insensitive to the duty cycle  
of the clock over a wide range of operating conditions: pulse  
width variations of as much as 20% will cause no degradation  
in performance (see Figure 15).  
0.1F  
Figure 20. AC-Coupled Input  
The AD9070 provides latched data outputs, with three pipeline  
Special care was taken in the design of the analog input section  
of the AD9070 to prevent damage and corruption of data when  
the input is overdriven. The nominal input range is –1.988 V to  
–3.012 V (1.024 V p–p centered at –2.5 V). Out-of-range  
comparators detect when the analog input signal is out of this  
range and set the OR output signal HIGH. The digital outputs  
are locked at plus or minus full scale (1FFh or 200h) for  
voltages that are out of range but between –1 V and –5 V. Input  
voltages outside of this range may result in invalid codes at the  
ADCs output.  
delays. Data outputs are available one propagation delay (tPD  
after the rising edge of the encode command (Figure 1). The  
length of the output data lines and loads placed on them should  
be minimized to reduce transients within the AD9070; these  
transients can detract from the converter’s dynamic performance.  
)
The minimum guaranteed conversion rate of the AD9070 is  
40 MSPS. At clock rates below 40 MSPS, dynamic performance  
may degrade. The AD9070 will operate in bursts, but the user  
must flush the internal pipeline each time the clock restarts.  
Valid data will be produced on the fourth rising edge of the  
ENCODE signal after the clock is restarted.  
When the analog input signal returns to the nominal range, the  
out-of-range comparators return the ADC to its active mode  
and the device recovers in approximately 3 ns.  
REV. B  
10–  
AD9070  
+5 V Operation  
Package Options  
The AD9070 may be operated above ground, with a single +5 V  
power supply. All power supply ground pins are connected to  
+5 V, and VEE pins are connected to ground (Figure 22). Care  
must be taken in connecting signals and determining bypass rails.  
The AD9070 is available in two packages. The BR package is a  
standard 28-lead Small Outline IC (SOIC). The DIP package is  
a ceramic Dual-in-Line Hybrid. The SOIC is offered in a commer-  
cial grade, and specified over the industrial (–40°C to +85°C)  
temperature range. The DIP is a full MIL-PRF-38534 QML  
version that operates from (–55°C to +125°C).  
The reference voltage (REF OUT) is still generated with respect  
to the positive rail, which is now +5 V. It is nominally +2.5 V,  
but its voltage with respect to ground will vary directly with  
changes in the power supply voltage (for example, if the power  
supply goes to +5.1 V, the reference becomes +2.6 V). The  
reference input is likewise processed with respect to +5 V. This  
dictates that these pins be bypassed to +5 V as well. However,  
the COMP and REF BYPASS pins must continue to be  
bypassed to the most negative supply, which is now ground. The  
AIN input must still be connected or bypassed to the ground  
reference of the input signal.  
The SOIC version includes the on-chip voltage reference,  
whereas the DIP does not. The DIP, however, provides the  
Overrange (OR) output, and includes reference and power  
supply bypassing, along with an internal compensation capacitor.  
Equivalent performance may be obtained with either part  
though, due to the internal bypassing, the DIP is not as sensitive  
to board layout and parasitics.  
+5V  
0.1F  
V
GND  
IN  
1Vp-p  
AIN  
R
500⍀  
T
AD9070  
AIN  
10H  
D9  
(MSB) D9  
VREF OUT  
VREF IN  
510⍀  
(OR 100TO +3V)  
0.1F  
0.1F  
+5V  
D0  
510⍀  
(OR 100TO +3V)  
(LSB) D0  
REF  
ENCODE  
ENCODE  
ENCODE  
ENCODE  
V
EE  
BYPASS  
COMP  
0.1F  
0.1F  
Figure 22. AD9070 in +5 V (PECL) Environment  
REV. B  
11–  
AD9070  
Data Out  
AD9070BR EVALUATION BOARD  
Data goes single-ended into the 10H116 flip flops but comes  
out differentially. The data coming out of the AD9070 is in twos  
complement format, but is changed to straight binary by  
inverting the MSB at the connector (on the schematic Bit 1 and  
Bit 1B are swapped).  
E1  
AD780 REFERENCE  
E2  
E3  
VREF OUT  
VREF IN  
1 OF 2  
10H176  
1k  
AIN  
TO CARD  
HEX D FF CONNECT  
COMP  
1k⍀  
5V  
Voltage Reference  
50⍀  
BYPASS  
The AD9070 can be operated using its internal bandgap  
reference (connect E2 to E3) or the on board AD780 external  
reference (connect E1 to E3). The board is shipped utilizing the  
internal voltage reference.  
AIN  
AD9070  
1 OF 4  
AIN  
10H116  
ENC ENC  
CLK  
J2  
J4  
10H176  
ECL  
Layout  
50⍀  
RECVR  
The AD9070 is not layout sensitive if some important guide-  
lines are met. The evaluation board layout provides an  
example where these guidelines have been followed to  
optimize performance.  
E4  
E6  
E5  
PIN 2  
E19  
E9  
CLKB  
BUFFERED  
AND  
LATCHED  
ON-CARD  
ENCODE  
E8  
CARD  
CONNECTOR  
50⍀  
• Provide a good ground plane connecting the analog and  
digital sections.  
E7  
• Excellent bypassing is essential. Chip caps with 0.1 µF values  
and 0603 dimensions are placed flush against the pins.  
Placing any of the caps on the bottom of the board can  
degrade performance. These techniques reduce the amount  
of parasitic inductance which can impact the bypassing ability  
of the caps.  
PIN 21  
Figure 23.  
The AD9070 evaluation board is a convenient and easy way to  
evaluate the performance of the AD9070 in the SOIC package.  
The board consists of an AD780 voltage reference (configured  
for –2.5 V), two 10H176 (hex D flip flop) for capturing data  
from the A/D converter and five 10H116 triple line receivers for  
buffering the encode signal and driving the data via the edge  
connector. Termination resistors (RP11, RP12, and RP14) are  
provided for the data leaving the board via the connector; (they  
can be removed if termination resistors are already provided by  
the user).  
• Separate power planes and supplies for the analog and digital  
sections are recommended.  
The AD9070 evaluation board is provided as a design example  
for customers of Analog Devices. ADI makes no warranties  
express, statutory, or implied regarding merchantability or  
fitness for a particular purpose.  
Analog Input  
The evaluation board requires a 1 V peak-to-peak signal  
centered at ground (J1). This signal is ac coupled and then dc  
shifted –2.5 V before it is input to the A/D converter.  
Encode  
The AD9070 encode inputs can be driven single ended  
(connect E9 to E19 and drive J2 with an ECL signal) or  
differentially (connect E8 to E19 and drive J2 and J4 with  
differential ECL signals). The board is shipped in single ended  
configuration. The differential encode signal leaving the board  
via the connector can be inverted by interchanging E4, E5, E6,  
and E7 (connect E4 to E7 and E5 to E6 or E4 to E6 and E7 to  
E5). This ensures that the user will be able to capture the data  
coming from the evaluation board.  
REV. B  
12–  
AD9070  
Figure 24. Evaluation Board Schematic  
REV. B  
13–  
AD9070  
Figure 25. Component Side  
Figure 27. Bottom Side Trace + Components  
Figure 28. Analog/Digital Split Power Plane  
Figure 26. Component Side Signal Traces  
REV. B  
14–  
AD9070  
Table II. Evaluation Board Bill of Materials  
DESCRIPTION  
ITEM QTY  
REFD  
1
2
3
5
2
4
U7–U11  
U5, U15  
RP11, RP12, RP14, RP15  
10H116 – TRIPLE DIFFERENTIAL LINE RECEIVER  
10H176 – 10KH HIGH SPEED ECL  
10PT-5.2 – 10P TER RES NTWK  
4
1
RP9  
6PB-5.2 – 6P BUSED RES NTWK  
5
6
2
3
TB1, TB2  
RP1, RP2, RP7  
8291Z2 – 2-PIN TERMINAL BLOCK  
8PB-5.2 – 8P BUSED RES NTWK  
7
8
1
1
U2  
U1  
AD780N – HIGH PREC VOLT REF  
AD9070R – AD9070 SOIC ECL ADC  
9
10  
10  
24  
C3, C4, C6, C7, C8, C32, C34, C35, C37, C52 BCAP0603 – CER CHIP CAP 0603, .1 µF  
C11, C12, C14–C18, C20, C22–C26, C28,  
BCAP0805 – CER CHIP CAP 0805, .1 µF  
C38–C44  
C29, C58  
J1, J2, J4  
R1  
R16  
R4, R6  
11  
12  
13  
14  
15  
16  
17  
18  
2
3
1
1
2
1
4
1
BCAPTAJD – CHIP TANT CAP, 10 µF  
BNC – BNC COAX CONN PCMT  
BRES1206 – SURF MT RES 1206, 1.25K  
BRES1206 – SURF MT RES 1206, 160  
BRES1206 – SURF MT RES 1206, 1K  
BRES1206 – SURF MT RES 1206, 260  
BRES1206 – SURF MT RES 1206, 50  
C37DRPF – 37P D CONN RT ANG PLASTIC PCMT  
FEMALE  
R15  
R2, R3, R5, R10  
CON1  
19  
20  
1
10  
C2  
T330A – TANT CAP, 1 µF  
W-HOLE – WIRE HOLE  
E1–E9, E19  
REV. B  
15–  
AD9070  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
28Lead SOIC  
(R28)  
0.7125 (18.10)  
0.6969 (17.70)  
28  
15  
1
14  
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
x 45°  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
28-Lead Hermetic Ceramic DIP  
(DH-28)  
28  
15  
0.595 0.010  
(15.11 0.25)  
1
14  
PIN 1 IDENTIFIERS  
0.050 0.010  
(1.27 0.25)  
1.400 0.014  
(35.56 0.35)  
0.225  
(5.72)  
MAX  
0.150  
(3.81)  
MIN  
0.010 0.002  
(0.25 0.05)  
0.600 (15.24)  
REF  
0.100 (2.54)  
TYP  
0.018 0.002  
(0.46 0.05)  
0.05 (1.27)  
TYP  
SEATING  
PLANE  
16–  
REV. B  

相关型号:

5962-9756401QXA

16-Bit, 100 kSPS/200 kSPS BiCMOS A/D Converters
ADI

5962-9757101Q2A

具有 TTL 兼容型 CMOS 输入的军用 4 通道、2 输入、4.5V 至 5.5V 或非门 | FK | 20 | -55 to 125
TI

5962-9757101QCA

具有 TTL 兼容型 CMOS 输入的军用 4 通道、2 输入、4.5V 至 5.5V 或非门 | J | 14 | -55 to 125
TI

5962-9757101QDA

具有 TTL 兼容型 CMOS 输入的军用 4 通道、2 输入、4.5V 至 5.5V 或非门 | W | 14 | -55 to 125
TI

5962-9757201Q2A

QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES
TI

5962-9757201QCA

QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES
TI

5962-9757301Q2A

OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS
TI

5962-9757301QRA

OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS
TI

5962-9757301QSA

OCTAL TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS
TI

5962-9757301QSX

LVC/LCX/Z SERIES, OCTAL 1-BIT DRIVER, TRUE OUTPUT, CDFP20, CERAMIC, FP-20
TI

5962-9757401Q2A

OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS
TI

5962-9757401QRA

OCTAL EDGE-TRIGGERED D-TYPE FLIP-FLOPS WITH 3-STATE OUTPUTS
TI