AD13280AF [ADI]

Dual Channel, 12-Bit, 80 MSPS A/D Converter with Analog Input Signal Conditioning; 双通道, 12位, 80 MSPS A / D转换器的模拟输入信号调理
AD13280AF
型号: AD13280AF
厂家: ADI    ADI
描述:

Dual Channel, 12-Bit, 80 MSPS A/D Converter with Analog Input Signal Conditioning
双通道, 12位, 80 MSPS A / D转换器的模拟输入信号调理

转换器 模数转换器
文件: 总20页 (文件大小:1352K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
aDual Channel, 12-Bit, 80 MSPS A/D Converter  
with Analog Input Signal Conditioning  
AD13280  
and performance while still maintaining excellent isolation,  
and providing for significant board area savings.  
FEATURES  
Dual, 80 MSPS Minimum Sample Rate  
Channel-to-Channel Matching, 1% Gain Error  
90 dB Channel-to-Channel Isolation  
DC-Coupled Signal Conditioning  
80 dB Spurious-Free Dynamic Range  
Selectable Bipolar Inputs (1 V and 0.5 V Ranges)  
Integral Single-Pole Low-Pass Nyquist Filter  
Two’s Complement Output Format  
3.3 V Compatible Outputs  
Multiple options are provided for driving the analog input,  
including single-ended, differential, and optional series filtering.  
The AD13280 also offers the user a choice of analog input  
signal ranges to further minimize additional external signal  
conditioning, while still remaining general purpose.  
The AD13280 operates with 5.0 V for the analog signal condi-  
tioning with a separate 5.0 V supply for the analog-to-digital  
conversion, and 3.3 V digital supply for the output stage. Each  
channel is completely independent allowing operation with  
independent encode and analog inputs, and maintaining mini-  
mal crosstalk and interference.  
1.85 W per Channel  
Industrial and Military Grade  
APPLICATIONS  
Radar Processing (Optimized for I/Q Baseband Operation)  
Phased Array Receivers  
Multichannel, Multimode Receivers  
GPS Antijamming Receivers  
Communications Receivers  
The AD13280 is packaged in a 68-lead ceramic gull wing package.  
Manufacturing is done on Analog Devices, Inc. MIL-38534  
Qualified Manufacturers Line (QML) and components are  
available up to Class-H (–40°C to +85°C). The components are  
manufactured using Analog Devices, Inc. high-speed comple-  
mentary bipolar process (XFCB).  
PRODUCT DESCRIPTION  
The AD13280 is a complete dual channel signal processing  
solution including on board amplifiers, references, ADCs, and  
output termination components to provide optimized system  
performance. The AD13280 has on-chip track-and-hold circuitry  
and utilizes an innovative multipass architecture to achieve 12-bit,  
80 MSPS performance. The AD13280 uses innovative high-  
density circuit design and laser-trimmed thin-film resistor networks  
to achieve exceptional channel matching, impedance control,  
PRODUCT HIGHLIGHTS  
1. Guaranteed sample rate of 80 MSPS.  
2. Input signal conditioning included; gain and impedance match.  
3. Single-ended, differential, or off-module filter options.  
4. Fully tested/characterized full channel performance.  
5. Compatible with 14-bit (up to) 65 MSPS family.  
FUNCTIONAL BLOCK DIAGRAM  
AMP-IN-B-2 AMP-IN-B-1  
AMP-IN-A-1  
AMP-IN-A-2  
AMP-OUT-B  
AMP-OUT-A  
A–IN  
B+IN  
B–IN  
A+IN  
AD13280  
DROUTA  
(LSB) D0A  
DROUTB  
D1A  
D2A  
D3A  
D4A  
D5A  
ENC  
TIMING  
ENC  
VREF  
VREF  
DROUT  
D11B (MSB)  
D10B  
DROUT  
12  
12  
9
5
100OUTPUTTERMINATORS  
D6A  
D7A  
D8A  
100OUTPUTTERMINATORS  
D9B  
D8B  
7
3
TIMING  
D7B  
ENC  
D0B  
(LSB)  
ENC  
D1B D2B D3B D4B D5B D6B  
D9A D10A D11A  
(MSB)  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2001  
(AVCC = +5 V, AVEE = –5 V, DVCC = +3.3 V; applies to each ADC with Front-End  
Amplifier unless otherwise noted.)  
AD13280–SPECIFICATIONS  
Test  
Mil  
Subgroup  
AD13280AZ/BZ  
Typ  
Parameter  
Temp  
Level  
Min  
Max  
Unit  
RESOLUTION  
12  
Bits  
DC ACCURACY1  
No Missing Codes  
Offset Error  
Full  
25°C  
Full  
Full  
25°C  
Full  
25°C  
Max  
Min  
IV  
I
VI  
VI  
I
VI  
I
12  
1
2, 3  
1, 2, 3  
1
2, 3  
1
2
Guaranteed  
1.0  
–2.2  
–2.2  
–1.0  
–3  
–5.0  
–1.5  
–3.0  
–5  
+2.2  
+2.2  
+1.0  
+1  
+5.0  
+1.5  
+3.0  
+5  
% FS  
% FS  
%
% FS  
% FS  
%
1.0  
0.1  
–1.0  
2.0  
0.5  
1.0  
1.0  
Offset Error Channel Match  
Gain Error2  
Gain Error Channel Match  
VI  
VI  
%
%
3
SINGLE-ENDED ANALOG INPUT  
Input Voltage Range  
AMP-IN-X-1  
Full  
Full  
V
V
0.5  
1.0  
V
V
AMP-IN-X-2  
Input Resistance  
AMP-IN-X-1  
AMP-IN-X-2  
Full  
Full  
25°C  
Full  
IV  
IV  
V
12  
12  
99  
198  
100  
200  
4.0  
101  
202  
7.0  
Capacitance  
pF  
MHz  
Analog Input Bandwidth3  
V
100  
DIFFERENTIAL ANALOG INPUT  
Analog Signal Input Range  
A+IN to A–IN and B+IN to B–IN4  
Input Impedance  
Full  
25°C  
Full  
V
V
V
1
618  
50  
V
MHz  
Analog Input Bandwidth  
ENCODE INPUT (ENC, ENC)1  
Differential Input Voltage  
Differential Input Resistance  
Differential Input Capacitance  
Full  
25°C  
25°C  
IV  
V
V
12  
0.4  
80  
V p-p  
kΩ  
10  
2.5  
pF  
SWITCHING PERFORMANCE  
Maximum Conversion Rate5  
Minimum Conversion Rate5  
Aperture Delay (tA)  
Aperture Delay Matching  
Aperture Uncertainty (Jitter)  
Full  
Full  
25°C  
25°C  
25°C  
VI  
IV  
V
IV  
V
IV  
IV  
V
4, 5, 6  
12  
MSPS  
MSPS  
ns  
ps  
ps rms  
ns  
ns  
ns  
ns  
20  
1.5  
250  
0.3  
6.25  
6.25  
5
12  
500  
ENCODE Pulsewidth High at Max Conversion Rate 25°C  
12  
12  
4.75  
4.75  
8
8
ENCODE Pulsewidth Low at Max Conversion Rate  
Output Delay (tOD  
Encode, Rising to Data Ready, Rising Delay  
25°C  
Full  
Full  
)
V
8.5  
SNR1, 6  
Analog Input @ 10 MHz  
Analog Input @ 21 MHz  
Analog Input @ 37 MHz  
25°C  
Min  
Max  
25°C  
Min  
Max  
25°C  
Min  
I
4
6
5
4
6
5
4
6
5
67.5  
64.5  
67.5  
67.5  
64  
67.5  
63.5  
61.5  
63.5  
70  
70  
65  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
II  
II  
I
II  
II  
I
II  
II  
Max  
SINAD1, 7  
Analog Input @ 10 MHz  
25°C  
Min  
Max  
25°C  
Min  
Max  
25°C  
Min  
I
4
6
5
4
6
5
4
6
5
67  
63.5  
67  
65  
63  
65  
54.5  
53  
54.5  
69  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
II  
II  
I
II  
II  
I
Analog Input @ 21 MHz  
Analog Input @ 37 MHz  
68.5  
59  
II  
II  
Max  
–2–  
REV. 0  
AD13280  
Test  
Level  
Mil  
Subgroup  
AD13280AZ/BZ  
Typ  
Parameter  
Temp  
Min  
Max  
Unit  
SPURIOUS-FREE DYNAMIC RANGE1, 8  
Analog Input @ 10 MHz  
25°C  
Min  
Max  
25°C  
Min  
Max  
25°C  
Min  
I
4
6
5
4
6
5
4
6
5
75  
70  
75  
68  
67  
68  
56  
55  
56  
80  
75  
62  
dBFS  
II  
II  
I
II  
II  
I
Analog Input @ 21 MHz  
Analog Input @ 37 MHz  
dBFS  
dBFS  
II  
II  
Max  
SINGLE-ENDED ANALOG INPUT  
Passband Ripple to 10 MHz  
Passband Ripple to 25 MHz  
25°C  
25°C  
V
V
0.05  
0.1  
dB  
dB  
DIFFERENTIAL ANALOG INPUT  
Passband Ripple to 10 MHz  
Passband Ripple to 25 MHz  
25°C  
25°C  
V
V
0.3  
0.82  
dB  
dB  
TWO-TONE IMD REJECTION9  
fIN = 9.1 MHz and 10.1 MHz  
f1 and f2 are –7 dB  
25°C  
Min  
Max  
25°C  
I
4
6
5
4
75  
71  
75  
80  
dBc  
II  
II  
V
f
IN = 19.1 MHz and 20.7 MHz  
77  
60  
dBc  
dBc  
f1 and f2 are –7 dB  
fIN = 36 MHz and 37 MHz  
f1 and f2 are –7 dB  
25°C  
V
4
CHANNEL-TO-CHANNEL ISOLATION10  
TRANSIENT RESPONSE  
25°C  
25°C  
IV  
V
12  
90  
dB  
ns  
25  
DIGITAL OUTPUTS11  
Logic Compatibility  
DVCC = 3.3 V  
CMOS  
Logic “1” Voltage  
Logic “0” Voltage  
DVCC = 5 V  
Full  
Full  
I
I
1, 2, 3  
1, 2, 3  
2.5  
DVCC – 0.2  
0.2  
V
V
0.5  
Logic “1” Voltage  
Logic “0” Voltage  
Output Coding  
Full  
Full  
V
V
DVCC – 0.3  
0.35  
Two’s Complement  
V
V
POWER SUPPLY  
AVCC Supply Voltage12  
I (AVCC) Current  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
IV  
I
IV  
I
IV  
I
I
4.85  
5.0  
5.25  
338  
–4.75  
49  
3.465  
46  
V
mA  
V
mA  
V
mA  
mA  
W
1, 2, 3  
1, 2, 3  
310  
–5.0  
38  
3.3  
34  
369  
3.72  
0.01  
AVEE Supply Voltage12  
I (AVEE) Current  
–5.25  
3.135  
DVCC Supply Voltage12  
I (DVCC) Current  
1, 2, 3  
1, 2, 3  
1, 2, 3  
I
CC (Total) Supply Current per Channel  
433  
4.05  
Power Dissipation (Total)  
Power Supply Rejection Ratio (PSRR)  
I
V
% FSR/% VS  
NOTES  
1 All ac specifications tested by driving ENCODE and ENCODE differentially. Single-ended input: AMP-IN-X-1 = 1 V p-p, AMP-IN-X-2 = GND.  
2 Gain tests are performed on AMP-IN-X-1 input voltage range.  
3 Full Power Bandwidth is the frequency at which the spectral power of the fundamental frequency (as determined by FFT analysis) is reduced by 3 dB.  
4 For differential input: +IN = 1 V p-p and –IN = 1 V p-p (signals are 180° out of phase). For single-ended input: +IN = 2 V p-p and = –IN = GND.  
5 Minimum and maximum conversion rates allow for variation in Encode Duty Cycle of 50% 5%.  
6 Analog Input signal power at –1 dBFS; signal-to-noise ratio (SNR) is the ratio of signal level to total noise (first five harmonics removed). Encode = 80 MSPS. SNR  
is reported in dBFS, related back to converter full scale.  
7 Analog Input signal power at –1 dBFS; signal-to-noise and distortion (SINAD) is the ratio of signal level to total noise + harmonics. Encode = 80 MSPS. SINAD is  
reported in dBFS, related back to converter full scale.  
8 Analog Input signal at –1 dBFS; SFDR is ratio of converter full scale to worst spur.  
9 Both input tones at –7 dBFS; two tone intermodulation distortion (IMD) rejection is the ratio of either tone to the worst third order intermod product.  
10Channel-to-channel isolation tested with A channel grounded and a full-scale signal applied to B Channel.  
11 Digital output logic levels: DVCC = 3.3 V, CLOAD = 10 pF. Capacitive loads > 10 pF will degrade performance.  
12 Supply voltage recommended operating range. AVCC may be varied from 4.85 V to 5.25 V. However, rated ac (harmonics) performance is valid only over the range  
AVCC = 5.0 V to 5.25 V.  
Specifications subject to change without notice.  
–3–  
REV. 0  
AD13280  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
68-Lead Ceramic Leaded Chip Carrier  
(ES-68C)  
ELECTRICAL1  
AVCC Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to 7 V  
AVEE Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . –7 V to 0 V  
DVCC Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to 7 V  
Analog Input Voltage . . . . . . . . . . . . . . . . . . . . . VEE to VCC  
Analog Input Current . . . . . . . . . . . . . . –10 mA to +10 mA  
Digital Input Voltage (ENCODE) . . . . . . . . . . . . . 0 to VCC  
ENCODE, ENCODE Differential Voltage . . . . . . . . 4 V max  
Digital Output Current . . . . . . . . . . . . . . –10 mA to +10 mA  
ENVIRONMENTAL2  
Operating Temperature (Case) . . . . . . . . . –40°C to +85°C  
Maximum Junction Temperature . . . . . . . . . . . . . . . . 175°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . . 300°C  
Storage Temperature Range (Ambient) . . –65°C to +150°C  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
10  
11  
12  
13  
14  
AGNDA  
PIN 1  
IDENTIFIER  
60  
59  
58  
57  
56  
55  
54  
53  
52  
AGNDB  
AV  
AV  
A
A
EE  
CC  
AV  
AV  
B
EE  
B
CC  
AGNDA  
AGNDB  
ENCODEB  
ENCODEB  
ENCODEA  
ENCODEA 15  
16  
AGNDA  
AGNDB  
DV  
A
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
CC  
AD13280  
TOP VIEW  
(Not to Scale)  
DV  
B
CC  
NOTES  
NC  
NC  
D11B(MSB)  
1Absolute maximum ratings are limiting values applied individually, and beyond  
which the serviceability of the circuit may be impaired. Functional operability is not  
necessarily implied. Exposure to absolute maximum rating conditions for an  
extended period of time may affect device reliability.  
51 D10B  
50 D9B  
D0A(LSB)  
D1A  
49  
48  
47  
46  
45  
44  
D8B  
D7B  
D6B  
D5B  
D2A  
2Typical thermal impedance for “ES” package: θJC 2.2°C/W; θJA 24.3°C/W.  
D3A  
D4A  
D5A  
D4B  
DGNDB  
DGNDA  
TEST LEVEL  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
I
100% Production Tested.  
II 100% Production Tested at 25°C, and sample tested at  
specified temperatures. AC testing done on sample basis.  
NC = NO CONNECT  
III Sample Tested only.  
IV Parameter is guaranteed by design and characterization  
testing.  
V
Parameter is a typical value only.  
VI 100% production tested with temperature at 25°C: sample  
tested at temperature extremes.  
ORDERING GUIDE  
Model  
Temperature Range (Case)  
Package Description  
Package Option  
AD13280AZ  
AD13280AF  
–25°C to +85°C  
–25°C to +85°C  
68-Lead Ceramic Leaded Chip Carrier  
68-Lead Ceramic Leaded Chip Carrier  
with Nonconductive Tie-Bar  
ES-68C  
ES-68C  
5962-0053001HXA  
AD13280/PCB  
–40°C to +85°C  
25°C  
68-Lead Ceramic Leaded Chip Carrier  
Evaluation Board with AD13280AZ  
ES-68C  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD13280 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–4–  
REV. 0  
AD13280  
PIN FUNCTION DESCRIPTIONS  
Pin No.  
Name  
Function  
1, 35  
2, 3, 9, 10, 13, 16  
SHIELD  
AGNDA  
Internal Ground Shield between Channels  
A Channel Analog Ground. A and B grounds should be connected as close to  
the device as possible.  
4
A–IN  
Inverting Differential Input (Gain = 1).  
5
6
7
8
11  
12  
14  
15  
A+IN  
Noninverting Differential Input (Gain = 1).  
Single-Ended Amplifier Output (Gain = 2).  
Analog Input for A Side ADC (Nominally 0.5 V).  
Analog Input for A Side ADC (Nominally 1.0 V).  
A Channel Analog Negative Supply Voltage (Nominally –5.0 V or –5.2 V).  
A Channel Analog Positive Supply Voltage (Nominally 5.0 V).  
Complement of Encode; Differential Input.  
Encode Input; Conversion Initiated on Rising Edge.  
A Channel Digital Positive Supply Voltage (Nominally 5.0 V/ 3.3 V).  
No Connect.  
AMP-OUT-A  
AMP-IN-A-1  
AMP-IN-A-2  
AVEEA  
AVCCA  
ENCODEA  
ENCODEA  
DVCCA  
17  
18, 19, 37, 38  
NC  
20–25, 28–33  
26, 27  
34  
36  
39–42, 45–52  
43, 44  
53  
D0A–D11A  
DGNDA  
DROUTA  
DROUTB  
D0B–D11B  
DGNDB  
DVCCB  
Digital Outputs for ADC A. D0 (LSB).  
A Channel Digital Ground.  
Data Ready A Output.  
Data Ready B Output.  
Digital Outputs for ADC B. D0 (LSB).  
B Channel Digital Ground.  
B Channel Digital Positive Supply Voltage (Nominally 5.0 V/ 3.3 V).  
54, 57, 60, 61, 67, 68  
AGNDB  
B Channel Analog Ground. A and B grounds should be connected as close to the  
device as possible.  
55  
56  
58  
59  
62  
63  
64  
65  
66  
ENCODEB  
ENCODEB  
AVCCB  
Encode Input; Conversion Initiated on Rising Edge.  
Complement of Encode; Differential Input.  
B Channel Analog Positive Supply Voltage (Nominally 5.0 V).  
B Channel Analog Negative Supply Voltage (Nominally –5.0 V or –5.2 V).  
Analog Input for B Side ADC (Nominally 1.0 V).  
Analog Input for B Side ADC (Nominally 0.5 V).  
Single-Ended Amplifier Output (Gain = 2).  
AVEEB  
AMP-IN-B-2  
AMP-IN-B-1  
AMP-OUT-B  
B+IN  
Noninverting Differential Input (Gain = 1).  
Inverting Differential Input (Gain = 1).  
B–IN  
REV. 0  
–5–  
Typical Performance Characteristics  
AD13280  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
ENCODE = 80MSPS  
= 10MHz (1dBFS)  
SNR = 69.19dBFS  
SFDR = 79.55dBc  
ENCODE = 80MSPS  
IN  
SNR = 69.4dBFS  
SFDR = 81.9dBc  
A
A
= 5MHz (1dBFS)  
IN  
70  
80  
70  
80  
3
5
3
2
5
2
4
90  
100  
110  
120  
130  
90  
100  
110  
120  
6
6
4
130  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 1. Single Tone @ 5 MHz  
TPC 4. Single Tone @ 10 MHz  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
ENCODE = 80MSPS  
= 18MHz (1dBFS)  
SNR = 69.79dBFS  
SFDR = 76.81dBc  
ENCODE = 80MSPS  
IN  
SNR = 68.38dBFS  
SFDR = 57.81dBc  
A
IN  
A
= 37MHz (1dBFS)  
2
3
70  
80  
70  
80  
5
6
90  
100  
110  
120  
90  
100  
110  
120  
130  
4
130  
0
0
5
10  
15  
20  
25  
30  
35  
40  
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 2. Single Tone @ 18 MHz  
TPC 5. Single Tone @ 37 MHz  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
ENCODE = 80MSPS  
= 9MHz AND  
10MHz (7dBFS)  
ENCODE = 80MSPS  
= 19MHz AND  
20MHz (7dBFS)  
A
IN  
A
IN  
SFDR = 82.77dBc  
SFDR = 74.41dBc  
70  
80  
70  
80  
90  
100  
110  
120  
90  
100  
110  
120  
130  
130  
0
0
5
10  
15  
20  
25  
30  
35  
40  
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 3. Two Tone @ 9 MHz/10 MHz  
TPC 6. Two Tone @ 19 MHz/20 MHz  
–6–  
REV. 0  
AD13280  
3.0  
3
ENCODE = 80MSPS  
DNL MAX = 0.688 CODES  
DNL MIN = 0.385 CODES  
ENCODE = 80MSPS  
INL MAX = 0.562 CODES  
INL MIN = 0.703 CODES  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2
1
0
1  
2  
3  
0.5  
1.0  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
0
512  
1024  
1536  
2048  
2560  
3072 3584  
4096  
TPC 7. Differential Nonlinearity  
TPC 9. Integral Nonlinearity  
0
1  
2  
3  
ENCODE = 80MSPS  
ROLL-OFF = 0.0459dB  
4  
5  
6  
7  
8  
9  
10  
1.0  
3.5  
6.0 8.5 11.0 13.5 16.0 18.5 21.0 23.5 26.0  
FREQUENCY MHz  
TPC 8. Passband Ripple to 25 MHz  
REV. 0  
–7–  
AD13280  
Minimum Conversion Rate  
The encode rate at which the SNR of the lowest analog signal  
frequency drops by no more than 3 dB below the guaranteed limit.  
DEFINITION OF SPECIFICATIONS  
Analog Bandwidth  
The analog input frequency at which the spectral power of the  
fundamental frequency (as determined by the FFT analysis) is  
reduced by 3 dB.  
Maximum Conversion Rate  
The encode rate at which parametric testing is performed.  
Aperture Delay  
Output Propagation Delay  
The delay between a differential crossing of ENCODE and  
ENCODE command and the instant at which the analog input  
is sampled.  
The delay between a differential crossing of ENCODE and  
ENCODE command and the time when all output data bits are  
within valid logic levels.  
Aperture Uncertainty (Jitter)  
The sample-to-sample variation in aperture delay.  
Overvoltage Recovery Time  
The amount of time required for the converter to recover to  
0.02% accuracy after an analog input signal of the specified  
percentage of full scale is reduced to midscale.  
Differential Analog Input Resistance, Differential Analog  
Input Capacitance, and Differential Analog Input Impedance  
The real and complex impedances measured at each analog  
input port. The resistance is measured statically and the capaci-  
tance and differential input impedances are measured with a  
network analyzer.  
Power Supply Rejection Ratio  
The ratio of a change in input offset voltage to a change in  
power supply voltage.  
Signal-to-Noise-and-Distortion (SINAD)  
Differential Analog Input Voltage Range  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, including harmonics but excluding dc. May be reported  
in dB (i.e., degrades as signal level is lowered) or in dBFS  
(always related back to converter full scale).  
The peak-to-peak differential voltage that must be applied to the  
converter to generate a full-scale response. Peak differential  
voltage is computed by observing the voltage from the other pin,  
which is 180 degrees out of phase. Peak-to-peak differential is  
computed by rotating the inputs phase 180 degrees and taking  
the peak measurement again. The difference is then computed  
between both peak measurements.  
Signal-to-Noise Ratio (without Harmonics)  
The ratio of the rms signal amplitude (set at 1 dB below full  
scale) to the rms value of the sum of all other spectral compo-  
nents, excluding the first five harmonics and dc. May be reported  
in dB (i.e., degrades as signal level is lowered) or in dBFS  
(always related back to converter full scale).  
Differential Nonlinearity  
The deviation of any code from an ideal 1 LSB step.  
Encode Pulsewidth/Duty Cycle  
Pulsewidth high is the minimum amount of time that the  
ENCODE pulse should be left in Logic “1” state to achieve  
rated performance; pulsewidth low is the minimum time  
ENCODE pulse should be left in low state. At a given clock  
rate, these specs define an acceptable Encode duty cycle.  
Spurious-Free Dynamic Range  
The ratio of the rms signal amplitude to the rms value of the  
peak spurious spectral component. The peak spurious compo-  
nent may or may not be a harmonic.  
Transient Response  
Harmonic Distortion  
The ratio of the rms signal amplitude to the rms value of the  
worst harmonic component.  
The time required for the converter to achieve 0.02% accuracy  
when a one-half full-scale step function is applied to the ana-  
log input.  
Integral Nonlinearity  
Two-Tone Intermodulation Distortion Rejection  
The ratio of the rms value of either input tone to the rms value  
of the worst third order intermodulation product; reported in dBc.  
The deviation of the transfer function from a reference line  
measured in fractions of 1 LSB using a “best straight line”  
determined by a least square curve fit.  
tA  
N+3  
N
A
IN  
N+1  
N+2  
N+4  
tENC  
tENCH  
N+1  
tENCL  
ENC, ENC  
N
N+2  
N+3  
N+4  
tE_DR  
tOD  
N3  
N2  
N1  
N
D[11:0]  
DRY  
Figure 1. Timing Diagram  
–8–  
REV. 0  
AD13280  
THEORY OF OPERATION  
AMP-IN-X-1  
AMP-IN-X-2  
100ꢁ  
100ꢁ  
The AD13280 is a high-dynamic range 12-bit, 80 MHz pipeline  
delay (three pipelines) analog-to-digital converter. The custom  
analog input section provides input ranges of 1 V and 2 V p-p  
and input impedance configurations of 50 , 100 , and 200 .  
TO AD8037  
Figure 2. Single-Ended Input Stage  
The AD13280 employs four monolithic ADI components per  
channel (AD8037, AD8138, AD8031, and a custom ADC IC),  
along with multiple passive resistor networks and decoupling  
capacitors to fully integrate a complete 12-bit analog-to-digital  
converter.  
LOADS  
AV  
AV  
AV  
AV  
CC  
CC  
CC  
CC  
10kꢁ  
10kꢁ  
In the single-ended input configuration the input signal is passed  
through a precision laser trimmed resistor divider allowing  
the user to externally select operation with a full-scale signal of  
0.5 V, or 1.0 V by choosing the proper input terminal for the  
application. The result of the resistor divider is to apply a full-  
scale input approximately 0.4 V to the noninverting input of the  
internal AD8037 amplifier.  
ENCODE  
ENCODE  
10kꢁ  
10kꢁ  
LOADS  
Figure 3. ENCODE Inputs  
The AD13280 analog input includes an AD8037 amplifier featur-  
ing an innovative architecture that maximizes the dynamic range  
capability on the amplifiers’ inputs and outputs. The AD8037  
amplifier provides a high input impedance and gain for driving  
the AD8138 in a single-ended to differential amplifier configura-  
tion. The AD8138 has a –3 dB bandwidth at 300 MHz and  
delivers a differential signal with the lowest harmonic distortion  
available in a differential amplifier. The AD8138 differential  
outputs help balance the differential inputs to the custom ADC  
maximizing the performance of the device.  
DV  
CC  
CURRENT MIRROR  
DV  
CC  
V
REF  
The AD8031 provides the buffer for the internal reference analog-  
to-digital converter. The internal reference voltage of the custom  
ADC is designed to track the offsets and drifts and is used to  
ensure matching over an extended temperature range of operation.  
The reference voltage is connected to the output common-mode  
input on the AD8138. This reference voltage sets the output  
common mode on the AD8138 at 2.4 V, which is the midsupply  
level for the ADC.  
DR OUT  
CURRENT MIRROR  
The custom ADC has complementary analog input pins, AIN  
and AIN. Each analog input is centered at 2.4 V and should  
swing 0.55 V around this reference. Since AIN and AIN are  
180 degrees out of phase, the differential analog input signal is  
2.2 V peak-to-peak. Both analog inputs are buffered prior to the  
first track-and-hold.  
Figure 4. Digital Output Stage  
DV  
CC  
The custom ADC digital outputs drive 100 series resistors (Fig-  
ure 5). The result is a 12-bit parallel digital CMOS-compatible  
word, coded as two’s complement.  
CURRENT MIRROR  
USING THE SINGLE-ENDED INPUT  
DV  
CC  
The AD13280 has been designed with the user’s ease of opera-  
tion in mind. Multiple input configurations have been included  
on-board to allow the user a choice of input signal levels and  
input impedance. The standard inputs are 0.5 V and 1.0 V.  
The user can select the input impedance of the AD13280 on any  
input by using the other inputs as alternate locations for the  
GND. The following chart summarizes the impedance options  
available at each input location.  
V
REF  
100ꢁ  
D0D11  
AMP-IN-X-1 = 100 when AMP-IN-X-2 is open.  
AMP-IN-X-1 = 50 when AMP-IN-X-2 is shorted to GND.  
AMP-IN-X-2 = 200 when AMP-IN-X-1 is open.  
CURRENT MIRROR  
Each channel has two analog inputs AMP-IN-A-1 and AMP-  
IN-A-2 or AMP-IN-B-1 and AMP-IN-B-2. Use AMP-IN-A-1  
Figure 5. Digital Output Stage  
REV. 0  
–9–  
AD13280  
or AMP-IN-B-1 when an input of 0.5 V full scale is desired. Use  
AMP-IN-A-2 or AMP-IN-B-2 when 1 V full scale is desired.  
Each channel has an AMP-OUT which must be tied to either a  
noninverting or inverting input of a differential amplifier with the  
remaining input grounded. For example, Side A, AMP-OUT-A  
(Pin 6) must be tied to A+IN (Pin 5) with A–IN (Pin 5) tied to  
ground for noninverting operation or AMP-OUT-A (Pin 6) tied  
to A–IN (Pin 4) with A+IN (Pin 5) tied to ground for inverting  
operation.  
If a low jitter ECL/PECL clock is available, another option is to  
ac-couple a differential ECL/PECL signal to the encode input  
pins as shown below. A device that offers excellent jitter perfor-  
mance is the MC100LVEL16 (or same family) from Motorola.  
VT  
0.1F  
ENCODE  
ECL/  
PECL  
AD13280  
0.1F  
ENCODE  
USING THE DIFFERENTIAL INPUT  
Each channel of the AD13280 was designed with two optional  
differential inputs, A+IN, A–IN and B+IN, B–IN. The inputs  
provide system designers with the ability to bypass the AD8037  
amplifier and drive the AD8138 directly. The AD8138 differen-  
tial ADC driver can be deployed in either a single-ended or  
differential input configuration. The differential analog inputs  
have a nominal input impedance of 620 and nominal full-  
scale input range of 1.2 V p-p. The AD8138 amplifier drives a  
differential filter and the custom analog-to-digital converter. The  
differential input configuration provides the lowest even-order  
harmonics and signal-to-noise (SNR) performance improvement  
of up to 3 dB (SNR = 73 dBFS). Exceptional care was taken in  
the layout of the differential input signal paths. The differential  
input transmission line characteristics are matched and balanced.  
Equal attention to system level signal paths must be provided in  
order to realize significant performance improvements.  
VT  
Figure 7. Differential ECL for Encode  
Jitter Consideration  
The signal-to-noise ratio (SNR) for any ADC can be predicted.  
When normalized to ADC codes, Equation 1 accurately predicts  
the SNR based on three terms. These are jitter, average DNL  
error, and thermal noise. Each of these terms contributes to the  
noise within the converter.  
2 1/2  
1+ ε  
(
)
VNOISE RMS  
SNR = 20 × log  
+(2 × π × f  
× tJ RMS )2 +  
ANALOG  
(1)  
2N  
2N  
   
fANALOG  
tJ RMS  
= analog input frequency  
= rms jitter of the encode (rms sum of encode  
source and internal encode circuitry)  
ε
= average DNL of the ADC (typically 0.50 LSB)  
= Number of bits in the ADC  
APPLYING THE AD13280  
Encoding the AD13280  
N
The AD13280 encode signal must be a high quality, extremely  
low phase noise source, to prevent degradation of performance.  
Maintaining 12-bit accuracy at 80 MSPS places a premium on  
encode clock phase noise. SNR performance can easily degrade  
3 dB to 4 dB with 37 MHz input signals when using a high-jitter  
clock source. See Analog Devices’ Application Note AN-501,  
“Aperture Uncertainty and ADC System Performance” for  
complete details. For optimum performance, the AD13280 must  
be clocked differentially. The encode signal is usually ac-coupled  
into the ENCODE and ENCODE pins via a transformer or  
capacitors. These pins are biased internally and require no addi-  
tional bias.  
VNOISE RMS = V rms noise referred to the analog input of the  
ADC (typically 5 LSB)  
For a 12-bit analog-to-digital converter like the AD13280, aper-  
ture jitter can greatly affect the SNR performance as the analog  
frequency is increased. The chart below shows a family of curves  
that demonstrates the expected SNR performance of the AD13280  
as jitter increases. The chart is derived from the above equation.  
For a complete discussion of aperture jitter, please consult Ana-  
log DevicesApplication Note AN-501, Aperture Uncertainty  
and ADC System Performance.”  
71  
Shown below is one preferred method for clocking the AD13280.  
The clock source (low jitter) is converted from single-ended to  
differential using an RF transformer. The back-to-back Schottky  
diodes across the transformer secondary limit clock excursions  
into the AD13280 to approximately 0.8 V p-p differential. This  
helps prevent the large voltage swings of the clock from feeding  
through to the other portions of the AD13280, and limits the  
noise presented to the ENCODE inputs. A crystal clock oscillator  
can also be used to drive the RF transformer if an appropriate  
limited resistor (typically 100 ) is placed in the series with  
the primary.  
A
= 5MHz  
IN  
70  
69  
68  
A
= 10MHz  
IN  
67  
66  
65  
64  
A
= 20MHz  
= 37MHz  
IN  
63  
62  
61  
60  
59  
58  
A
IN  
0.1F  
100  
T1-4T  
CLOCK  
SOURCE  
ENCODE  
AD13280  
ENCODE  
CLOCK JITTER ps  
HSMS2812  
DIODES  
Figure 8. SNR vs. Jitter  
Figure 6. Crystal Clock Oscillator—Differential Encode  
–10–  
REV. 0  
AD13280  
Power Supplies  
LAYOUT INFORMATION  
Care should be taken when selecting a power source. Linear sup-  
plies are strongly recommended. Switching supplies tend to have  
radiated components that may be receivedby the AD13280.  
Each of the power supply pins should be decoupled as closely as  
possible to the package, using 0.1 µF chip capacitors.  
The schematic of the evaluation board (Figure 10) represents a  
typical implementation of the AD13280. The pinout of the  
AD13280 is very straightforward and facilitates ease of use and  
the implementation of high-frequency/high-resolution design  
practices. It is recommended that high-quality ceramic chip  
capacitors be used to decouple each supply pin to ground directly  
at the device. All capacitors can be standard high-quality ceramic  
chip capacitors.  
The AD13280 has separate digital and analog power supply  
pins. The analog supplies are denoted AVCC and the digital  
supply pins are denoted DVCC. AVCC and DVCC should be  
separate power supplies because the fast digital output swings  
can couple switching current back into the analog supplies.  
Note that AVCC must be held within 5% of 5 V. The AD13280  
is specified for DVCC = 3.3 V as this is a common supply for  
digital ASICs.  
Care should be taken when placing the digital output runs.  
Because the digital outputs have such a high slew rate, the  
capacitive loading on the digital outputs should be minimized.  
Circuit traces for the digital outputs should be kept short and  
connect directly to the receiving gate. Internal circuitry buffers  
the outputs of the ADC through a resistor network to eliminate  
the need to externally isolate the device from the receiving gate.  
Output Loading  
Care must be taken when designing the data receivers for the  
AD13280. The digital outputs drive an internal series resistor  
(e.g., 100 ) followed by a gate like 75LCX574. To minimize  
capacitive loading, there should be only one gate on each output  
pin. An example of this is shown in the evaluation board sche-  
matic shown in Figure 9. The digital outputs of the AD13280  
have a constant output slew rate of 1 V/ns. A typical CMOS  
gate combined with a PCB trace will have a load of approxi-  
mately 10 pF. Therefore, as each bit switches, 10 mA (10 pF ×  
1 V ÷ 1 ns) of dynamic current per bit will flow in or out of the  
device. A full-scale transition can cause up to 120 mA (12 bits ×  
10 mA/bit) of transient current through the output stages.  
These switching currents are confined between ground and the  
DVCC pin. Standard TTL gates should be avoided since they  
can appreciably add to the dynamic switching currents of the  
AD13280. It should also be noted that extra capacitive loading  
will increase output timing and invalidate timing specifications.  
Digital output timing is guaranteed with 10 pF loads.  
EVALUATION BOARD  
The AD13280 evaluation board (Figure 9) is designed to  
provide optimal performance for evaluation of the AD13280  
analog-to-digital converter. The board encompasses everything  
needed to ensure the highest level of performance for evaluating  
the AD13280. The board requires an analog input signal, encode  
clock, and power supply inputs. The clock is buffered on-board  
to provide clocks for the latches. The digital outputs and out  
clocks are available at the standard 40-pin connectors J1 and J2.  
Power to the analog supply pins is connected via banana jacks.  
The analog supply powers the associated components and the  
analog section of the AD13280. The digital outputs of the  
AD13280 are powered via banana jacks with 3.3 V. Contact the  
factory if additional layout or applications assistance is required.  
Figure 9. Evaluation Board Mechanical Layout  
REV. 0  
–11–  
AD13280  
Bill of Materials List for Evaluation Board  
Qty. Component Name  
Ref/Des  
Value  
Description  
Manufacturing Part No.  
2
1
2
10  
2
74LCX16373MTD U7, U8  
Latch  
AD13280  
Regulator  
Banana Jacks  
0805 SM Resistor  
0805 SM Resistor  
0805 SM Capacitor  
74LCX16373MTD (Fairchild)  
AD13280AZ  
ADP3330ART-3.3RL7  
108-0740-001 (Johnson Components)  
ERJ-6GEYJ 240V  
AD13280AZ  
ADP3330  
BJACK  
U1  
U5, U6  
BJ1BJ10  
BRES0805  
BRES0805  
CAP2  
R41, R53  
25 Ω  
33 kΩ  
0.1 µF  
4
28  
R38, R39, R55, R56  
C1, C2, C5C10,  
C12, C16C18,  
C20C26, C28,  
C30C38  
ERJ-6GEYJ 333V  
GRM 40X7R104K025BL  
2
2
6
4
2
8
CAP2  
H40DM  
IND2  
MC10EL16  
MC100ELT23  
POLCAP2  
C13, C27  
J1, J2  
L1L6  
U2, U4, U9, U11  
U4, U10  
C3, C4, C11, C14,  
C15, C19, C29, C30  
R47R50  
R1, R2, R5, R7, R8, R54  
R3, R4, R6, R9, R12R15,  
R19R28, R31R36, R37,  
R42, R43, R44R46 R51, R52  
J3J14  
0.47 µF  
47 Ω  
0805 SM Capacitor  
2 × 20 40 Pin Male Connector  
SM Inductor  
Clock Drivers  
ECL/TTL Clock Drivers  
Tantalum Polar Caps  
VJ1206U474MFXMB  
TSW-120-08-G-D  
2743019447  
MC1016EP16D  
SY100ELT23L  
10 µF  
T491C106M016A57280  
4
6
36  
RES2  
RES2  
RES2  
0 Ω  
50 Ω  
100 Ω  
0805 SM Resistor  
0805 SM Resistor  
0805 SM Resistor  
ERJ-6GEY OR 00V  
ERJ-6GEYJ 510V  
ERJ-6GEYJ 101V  
12  
4
4
SMA  
SMA Connectors  
Standoff  
Screws (Standoff)  
AD13280 Eval Board (Rev. B)  
142-0701-201  
Standoff  
Screws  
PCB  
313-2477-016 (Johnson Components)  
MPMS 004 0005 PH (Building Fasteners)  
GS03361  
1
–12–  
REV. 0  
AD13280  
J13  
SMA  
J6  
E68  
AGNDA  
E67  
AGNDB  
E66  
LIDA  
SMA  
J9  
J8  
SMA  
SMA  
J3  
SMA  
J14  
SMA  
AGNDA  
AGNDB  
E50  
J4  
E53  
J7  
SMA  
SMA  
E51  
E54  
AGNDB  
AGNDA  
AGNDA  
E49  
E70  
E52  
E85  
E69  
AGNDA  
E86  
AGNDB  
AGNDB  
AGNDB  
AGNDA  
10  
5VAB  
C33  
0.1F  
5VAA  
60  
C9  
AGNDB  
AGNDA  
AGNDA  
AGNDB  
0.1F  
11  
12  
59  
58  
5VAA  
5.2VAB  
AGNDA  
AGNDB  
+5VAA  
C35  
0.1F  
+5VAA  
AGNDA  
ENCAB  
ENCA  
AGNDA  
+3VDA  
NC  
+5VAB  
+5VAB  
C38  
0.1F  
13  
14  
57  
56  
C34  
0.1F  
C17  
0.1F  
AGNDB  
ENCBB  
ENCB  
AGNDA  
ENCAB  
AGNDB  
ENCBB  
ENCB  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
ENCA  
AGNDA  
OUT 3.3VDA  
AGNDB  
OUT 3.3VDB  
AGNDB  
AGNDB  
AGNDA  
U1  
+3.3VDB  
C36  
0.1F  
C10  
0.1F  
C18  
0.1F  
C37  
0.1F  
AD13280  
D11B(MSB)  
D11B  
D10B  
D9B  
D8B  
D7B  
D6B  
D5B  
NC0A  
NC1A  
NC  
D10B  
D9B  
D0A(LSB)  
D1A  
D0A  
D1A  
DGNDA  
DGNDB  
D8B  
D2A  
D2A  
D7B  
D3A  
D3A  
D6B  
D4A  
D4A  
D5B  
D5A  
D5A  
D4B  
D4B  
DGNDA  
DGNDA  
DGNDB  
DGNDB  
NC = NO CONNECT  
DRAOUT  
DRBOUT  
E56  
E55  
LIDB  
E48  
E65  
E40  
DGNDB  
DGNDA  
+3VAA  
BJ6  
5VAA  
47ꢁ  
20%  
47ꢁ  
20% @100MHz  
47ꢁ  
+3VDA  
BJ10  
20%@100MHz  
BJ2  
@100MHz  
5VAA  
+5VAA  
1
C11  
10F  
1
C3  
10F  
L3  
U1  
C20  
L5  
U1  
C32  
DUT 3.3VDA  
1
L1  
U7  
C62  
C29  
10F  
0.1F  
0.1F  
0.1F  
AGNDA  
AGNDA  
AGNDA  
AGNDA  
DGNDA  
47ꢁ  
20%  
+5VAB  
BJ5  
47ꢁ  
5VAB  
BJ1  
47ꢁ  
20%@100MHz  
+3VDB  
BJ9  
20%@100MHz  
@100MHz  
+5VAB  
5VAB  
DUT 3.3VDB  
1
C4  
10F  
1
C19  
10F  
1
L4  
U1  
C21  
L6  
U1  
C31  
L2  
U8  
C16  
C30  
0.1F  
0.1F  
10F  
0.1F  
AGNDB  
AGNDB  
AGNDB  
AGNDB  
DGNDB  
Figure 10a. Evaluation Board  
REV. 0  
–13–  
AD13280  
U8  
R47  
H40DM  
J1  
DGNDA  
DGNDA  
LE2 OE2  
0ꢁ  
R18, DNI  
R17, DNI  
24  
23  
22  
21  
25  
26  
27  
28  
F0A  
F1A  
115  
114  
O15  
O14  
1
2
3
40  
39  
38  
3.3VDA  
R48  
0ꢁ  
MSB B11A  
B10A  
DGNDA  
GND GND  
R40, DNI  
R44, DNI  
C15  
10F  
F2A  
F3A  
NC0A  
NC1A  
113  
112  
O13  
O12  
4
5
37  
36  
20  
19  
18  
17  
16  
15  
14  
29  
30  
31  
32  
33  
34  
35  
B9A  
B8A  
B7A  
DGNDA  
6
35  
DUT 3.3VDA  
DUT 3.3VDA  
R45, 100ꢁ  
VCC VCC  
DGNDA  
7
8
9
34  
33  
32  
LSB D0A  
D1A  
B0A (LSB)  
B1A  
111  
110  
O11  
O10  
B6A  
B5A  
R46, 100ꢁ  
R15, 100ꢁ  
R14, 100ꢁ  
R13, 100ꢁ  
R15, 100ꢁ  
R5  
50ꢁ  
DGNDA  
DGNDA  
GND GND  
B4A  
E61  
10  
11  
31  
30  
D2A  
19  
O9  
B2A  
B3A  
B4A  
B5A  
E59  
E60  
D3A  
D4A  
12  
29  
18  
17  
16  
O8  
O7  
O6  
13  
12  
11  
B3A  
B2A  
B1A  
36  
37  
38  
39  
13  
14  
15  
16  
28  
27  
26  
25  
D5A  
GND GND  
DGNDA  
DGNDA  
LSB B0A  
F3A  
R24, 100ꢁ  
R23, 100ꢁ  
10  
9
D6A  
D7A  
B6A  
B7A  
15  
14  
O5  
O4  
17  
18  
24  
23  
40  
41  
42  
43  
F2A  
8
F1A  
F0A  
DGNDA  
DUT 3.3VDA  
D8A  
DUT 3.3VDA  
R22, 100ꢁ  
VCC VCC  
19  
20  
22  
21  
7
B8A  
B9A  
13  
12  
O3  
O2  
6
D9A  
DGNDA  
R21, 100ꢁ  
R20, 100ꢁ  
R19, 100ꢁ  
5
4
3
2
44  
45  
46  
47  
48  
DGNDA  
GND GND  
DGNDA  
B10A  
D10A  
11  
10  
O1  
O0  
MSB D11A  
B11A (MSB)  
DGNDA  
LE1 OE1  
R7  
50ꢁ  
1
LATCHA  
E58  
74LCX16374  
U7  
R49  
J2  
H40DN  
DGNDB  
DGNDB  
LE2 OE2  
0ꢁ  
R11, DNI  
R10, DNI  
24  
23  
22  
21  
25  
26  
F0B  
F1B  
115  
114  
O15  
O14  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
40  
3.3VDB  
R50  
0ꢁ  
27  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
DGNDB  
MSB B11B  
B10B  
B9B  
GND GND  
R30, DNI  
R29, DNI  
28  
C14  
10F  
F2B  
F3B  
NC0B  
113  
112  
O13  
O12  
20  
19  
18  
17  
16  
15  
14  
29  
DGNDB  
NC1B  
DUT 3.3VDB  
30  
B8B  
B7B  
DUT 3.3VDB  
R28, 100ꢁ  
VCC VCC  
31  
32  
33  
34  
35  
DGNDB  
B0B (LSB)  
B1B  
LSB D0B  
D1B  
111  
110  
O11  
O10  
B6B  
B5B  
B4B  
R27, 100ꢁ  
R26, 100ꢁ  
R12, 100ꢁ  
R9, 100ꢁ  
R25, 100ꢁ  
R2  
DGNDB  
DGNDB  
GND GND  
E64 50ꢁ  
D2B  
19  
O9  
B2B  
B3B  
B4B  
B5B  
E63  
E62  
D3B  
D4B  
18  
17  
16  
O8  
O7  
O6  
13  
12  
11  
36  
37  
38  
39  
B3B  
B2B  
B1B  
D5B  
GND GND  
DGNDB  
DGNDB  
R36, 100ꢁ  
R35, 100ꢁ  
LSB B0B  
F3B  
10  
9
D6B  
D7B  
B6B  
B7B  
15  
14  
O5  
O4  
40  
41  
42  
43  
F2B  
8
DUT 3.3VDB  
D8B  
DUT 3.3VDB  
R34, 100ꢁ  
VCC VCC  
F1B  
F0B  
7
B8B  
B9B  
13  
12  
O3  
O2  
6
DGNDB  
D9B  
DGNDB  
R33, 100ꢁ  
R32, 100ꢁ  
5
4
3
2
44  
45  
46  
47  
48  
DGNDB  
GND GND  
DGNDB  
D10B  
B10B  
11  
10  
O1  
O0  
R31, 100ꢁ  
MSB D11B  
B11B (MSB)  
DGNDB  
LE1 OE1  
R8  
50ꢁ  
1
LATCHB  
E57  
74LCX16374  
Figure 10b. Evaluation Board  
–14–  
REV. 0  
AD13280  
U5  
5
NR  
3
1
ERR  
OUT  
ADP3330  
IN  
2
5
+5VAA  
SD  
GND  
4
AGNDA  
AGNDA  
+3.3VA  
R42  
C13  
0.47F  
100ꢁ  
J5  
8
1
2
3
4
BJ3  
1
ENCODE  
SMA  
C7  
C1  
NC  
VCC  
AGNDB  
AGNDA  
0.1F  
0.1F  
7
6
5
ENCAB  
ENCA  
D
Q
QB  
U2  
BJ4  
1
DB  
R1  
50ꢁ  
C8  
0.1F  
AGNDA  
R43  
VBB  
VEE  
100ꢁ  
BJ7  
1
AGNDA  
AGNDA  
DGNDB  
DGNDA  
MC10EL16  
NC = NO CONNECT  
AGNDA  
DGNDB  
R56  
33kꢁ  
J12  
SMA  
C2  
0.1F  
DGNDA  
BJ8  
1
C6  
R55  
33kꢁ  
0.47F  
DGND  
C5  
0.47F  
R41  
25ꢁ  
DGNDA  
AGNDA  
1
8
R3  
100ꢁ  
+3.3VDA  
NC  
VCC  
Q
1
8
2
3
4
7
6
E15 E16  
+3.3VDA  
D
NC  
D
VCC  
U3  
LATCHA  
E23  
E7  
E12  
DGNDB  
E8  
AGNDA  
2
3
4
7
6
5
QB  
DB  
Q0  
Q1  
U4  
5
R4  
DGNDA  
DB  
E19  
BUFLATA  
VBB  
VEE  
100ꢁ  
DGNDA  
VBB  
VEE  
MC10EL16  
E11  
DGNDA  
NC = NO CONNECT  
E39 E47  
MC100EPT23  
NC = NO CONNECT  
DGNDA  
DGNDA  
DGNDB  
E17 E18  
E27 E28  
E25 E26  
E21 E20  
E32 E31  
E44 E43  
E42 E41  
5
NR  
3
1
OUT  
ERR  
ADP3330  
2
5
U6  
IN  
+5VAB  
SD  
E10  
E9  
GND  
E33 E34  
4
E6  
E5  
AGNDB  
AGNDB  
R52  
C27  
0.47F  
DGNDA  
AGNDA  
100ꢁ  
J10  
ENCODE  
SMA  
8
7
1
C24  
0.1F  
C22  
+3.3VB  
NC  
VCC  
0.1F  
E38 E37  
E29 E30  
2
3
U11  
ENCBB  
ENCB  
D
Q
QB  
6
5
E1  
E2  
DB  
R54  
50ꢁ  
4
E36 E35  
E14 E13  
E45 E46  
C28  
0.1F  
AGNDB  
R51  
100ꢁ  
VBB  
VEE  
AGNDB  
AGNDB  
MC10EL16  
NC = NO CONNECT  
E3  
E4  
AGNDB  
SO1 SO4  
AGNDA  
R38  
33kꢁ  
DGNDB  
DGNDB  
R39  
33kꢁ  
J11  
SMA  
C25  
0.47F  
C23  
0.1F  
DGNDB  
DGNDB  
SO5  
SO6  
SO2  
SO3  
C26  
0.1F  
1
8
R37  
+3.3VDB  
NC  
VCC  
Q
R53  
25ꢁ  
100ꢁ  
1
8
2
3
4
7
6
+3.3VDA  
D
NC  
D
VCC  
U9  
LATCHB  
E24  
2
3
4
7
6
QB  
DB  
Q0  
Q1  
U10  
5
R6  
AGNDB  
DB  
E22  
BUFLATB  
VBB  
VEE  
100ꢁ  
5
DGNDB  
VBB  
VEE  
MC10EL16  
NC = NO CONNECT  
DGNDB  
DGNDB  
MC100EPT23  
NC = NO CONNECT  
Figure 10c. Evaluation Board  
REV. 0  
–15–  
AD13280  
Figure 11a. Top Silk  
Figure 11b. Top Layer  
–16–  
REV. 0  
AD13280  
Figure 11c. GND1  
Figure 11d. GND2  
REV. 0  
–17–  
AD13280  
Figure 11e. Bottom Silk  
Figure 11f. Bottom Layer  
–18–  
REV. 0  
AD13280  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
68-Lead Ceramic Leaded Chip Carrier  
(ES-68C)  
0.235 (5.97)  
MAX  
0.960 (24.38)  
0.950 (24.13) SQ  
0.940 (23.88)  
0.010 (0.25)  
0.008 (0.20)  
0.007 (0.18)  
60  
44  
61  
43  
PIN 1  
1.190 (30.23)  
1.180 (29.97) SQ  
1.170 (29.72)  
1.070  
(27.18)  
MIN  
0.800  
(20.32)  
BSC  
TOP VIEW  
(PINS DOWN)  
9
27  
10  
26  
0.060 (1.52)  
0.050 (1.27)  
0.040 (1.02)  
DETAIL A  
0.055 (1.40)  
0.050 (1.27)  
0.045 (1.14)  
0.020 (0.508)  
0.017 (0.432)  
0.014 (0.356)  
0.175 (4.45)  
MAX  
REV. 0  
–19–  
AD13280  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
68-Lead Ceramic Leaded Chip Carrier With Non-Conductive Tie-Bar  
(ES-68C)  
0.960 (24.38)  
0.950 (24.13) SQ  
0.940 (23.88)  
0.350  
(8.89)  
TYP  
0.015 (0.3)  
45ꢃ  
3 PLS  
0.055 (1.40)  
0.050 (1.27)  
0.045 (1.14)  
PIN 1  
2.000  
(8.89)  
TYP  
TOP VIEW  
(PINS DOWN)  
0.020 (0.508)  
0.017 (0.432)  
0.014 (0.356)  
0.040 (1.02)  
45ꢃ  
0.040 (1.02) R  
TYP  
0.800 (20.32)  
BSC  
0.175 (4.45)  
MAX  
0.235 (5.97)  
MAX  
DETAIL A  
0.010 (0.25)  
0.008 (0.20)  
0.007 (0.18)  
0.010 (0.254)  
30ꢃ  
0.050 (1.27)  
0.020 (0.508)  
DETAIL A  
–20–  
REV. 0  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY