AD14060BF-4 [ADI]

Quad-SHARC DSP Multiprocessor Family; 四SHARC DSP多处理器家族
AD14060BF-4
型号: AD14060BF-4
厂家: ADI    ADI
描述:

Quad-SHARC DSP Multiprocessor Family
四SHARC DSP多处理器家族

微控制器和处理器 外围集成电路 数字信号处理器 时钟
文件: 总44页 (文件大小:746K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
Quad-SHARC  
a
DSP Multiprocessor Family  
AD14060/AD14060L  
FUNCTIO NAL BLO CK D IAGRAM  
PERFORMANCE FEATURES  
ADSP-21060 Core Processor (. . . 
؋
4)  
480 MFLOPS Peak, 320 MFLOPS Sustained  
25 ns Instruction Rate, Single-Cycle  
Instruction Execution–Each of Four Processors  
16 Mbit Shared SRAM (Internal to SHARCs)  
4 Gigaw ords Addressable Off-Module Mem ory  
Tw elve 40 Mbyte/ s Link Ports (Three per SHARC)  
Four 40 Mbit/ s Independent Serial Ports (One from  
Each SHARC)  
LINK 0  
LINK 2  
LINK 5  
TDO  
LINK 0  
LINK 2  
LINK 5  
TDI  
CPA  
SPORT 1  
CPA  
SPORT 1  
TDI  
SHARC_A  
(ID = 1)  
2-0  
SHARC_B  
(ID = 2)  
2-0  
One 40 Mbit/ s Com m on Serial Port  
5 V and 3.3 V Operation  
32-Bit Single Precision and 40-Bit Extended  
Precision IEEE Floating Point Data Form ats, or  
32-Bit Fixed Point Data Form at  
IEEE J TAG Standard 1149.1 Test Access Port and  
On-Chip Em ulation  
AD14060/  
AD14060L  
SHARC BUS (ADDR  
,
DATA  
MS  
, RD, WR, PAGE, ADRCLK, SW, ACK,  
31-0  
47-0  
,
3-0  
SBTS, HBR, HBG, REDY, BR , RPBA, DMAR , DMAG )  
1.2  
6-1  
1.2  
PACKAGING FEATURES  
308-Lead Ceram ic Quad Flatpack (CQFP)  
2.05" (52 m m ) Body Size  
Cavity Up or Dow n, Configurable  
Low Profile, 0.160" Height  
Herm etic  
SHARC_D  
SHARC_C  
(ID = 3)  
2-0  
CPA  
SPORT 1  
LINK 0  
LINK 2  
LINK 5  
TDO  
LINK 0  
LINK 2  
LINK 5  
TDI  
CPA  
SPORT 1  
(ID = 4)  
2-0  
25 Mil (0.65 m m ) Lead Pitch  
29 Gram s (typical)  
TDO  
= 0.36؇C/ W  
J C  
GENERAL D ESCRIP TIO N  
T he ADSP-21060 link ports are interconnected to provide  
direct communication among the four SHARCs as well as high  
speed off-module access. Internally, each SHARC has a direct  
link port connection. Externally, each SHARC has a total of  
120 Mbytes/s link port bandwidth.  
T he AD14060/AD14060L Quad-SHARC is the first in a family  
of high performance DSP multiprocessor modules. T he core of  
the multiprocessor is the ADSP-21060 DSP microcomputer.  
T he AD14060/AD14060L modules have the highest perfor-  
mance —density and lowest cost—performance ratios of any in  
their class. T hey are ideal for applications requiring higher levels  
of performance and/or functionality per unit area.  
Multiprocessor performance is enhanced with embedded power  
and ground planes, matched impedance interconnect, and opti-  
mized signal routing lengths and separation. T he fully tested  
and ready-to-insert multiprocessor also significantly reduces  
board space.  
T he AD14060/AD14060L takes advantage of the built-in multi-  
processing features of the ADSP-21060 to achieve 480 peak  
MFLOPS with a single chip type, in a single package. T he on-  
chip SRAM of the DSPs provides 16 Mbits of on-module  
shared SRAM. T he complete shared bus (48 data, 32 address)  
is also brought off-module for interfacing with expansion  
memory or other peripherals.  
SHARC is a registered trademark of Analog Devices, Inc.  
REV. A  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 781/ 329-4700  
Fax: 781/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1997  
AD14060/AD14060L  
D ETAILED D ESCRIP TIO N  
Ar chitectur al Featur es  
ADSP-21060 Cor e  
T he SHARCs contain 4 Mbits of on-chip SRAM each, orga-  
nized as two blocks of 2 Mbits, which can be configured for  
different combinations of code and data storage. T he memory  
can be configured as a maximum of 128K words of 32-bit data,  
256K words of 16-bit data, 80K words of 48-bit instructions (or  
40-bit data), or combinations of different word sizes up to  
4 megabits. A 16-bit floating-point storage format is supported  
which effectively doubles the amount of data that may be stored  
on chip. Conversion between the 32-bit floating point and 16-  
bit floating point formats is done in a single instruction. Each  
memory block is dual-ported for single-cycle, independent  
accesses by the core processor and I/O processor or DMA con-  
troller. T he dual-ported memory and separate on-chip buses  
allow two data transfers from the core and one from I/O, all in a  
single cycle.  
The AD14060/AD14060L is based on the powerful ADSP-21060  
(SHARC) DSP chip. T he ADSP-21060 SHARC combines a  
high performance floating-point DSP core with integrated, on-  
chip system features including a 4 Mbit SRAM memory, host  
processor interface, DMA controller, serial ports, and both link  
port and parallel bus connectivity for glueless DSP multiprocess-  
ing, (see Figure 1). It is fabricated in a high speed, low power  
CMOS process, and has a 25 ns instruction cycle time. The arith-  
metic/ logic unit (ALU), multiplier and shifter all perform single-  
cycle instructions, and the three units are arranged in parallel,  
maximizing computational throughput.  
T he SHARC features an enhanced Harvard architecture in  
which the data memory (DM) bus transfers data, and the pro-  
gram memory (PM) bus transfers both instructions and data.  
T here is also an on-chip instruction cache which selectively  
caches only those instructions whose fetches conflict with the  
PM bus data accesses. T his combines with the separate program  
and data memory buses to enable three-bus operation for fetch-  
ing an instruction and two operands, all in a single cycle. T he  
SHARC also contains a general purpose data register file, which  
is a 10-port, 32-register (16 primary, 16 secondary) file. Each  
SHARCs core also implements two data address generators  
(DAGs), implementing circular data buffers in hardware. T he  
DAGs contain sufficient registers to allow the creation of up to  
32 circular buffers. T he 48-bit instruction word accommodates a  
variety of parallel operations, for concise programming. For ex-  
ample, the ADSP-21060 can conditionally execute a multiply, an  
add, a subtract, and a branch, all in a single instruction.  
Shar ed Mem or y Multipr ocessing  
T he AD14060/AD14060L takes advantage of the powerful  
multiprocessing features built into the SHARC. The SHARCs are  
connected to maximize the performance of this cluster-of-four  
architecture, and still allow for off-module expansion. T he  
AD14060/AD14060L in itself is a complete shared memory  
multiprocessing system, as shown in Figure 3. T he unified ad-  
dress space of the SHARCs allows direct interprocessor ac-  
cesses of each SH ARCs’ internal memory. In other words, each  
SHARC can directly access the internal memory and IOP registers  
of each of the other SHARCs by simply reading or writing to the  
appropriate address in multiprocessor memory space (see Figure  
2)—this is called a direct read or direct write.  
DUAL-PORTED SRAM  
CORE PROCESSOR  
INSTRUCTION  
TIMER  
JTAG  
TWO INDEPENDENT  
DUAL-PORTED BLOCKS  
7
CACHE  
32 x 48-BIT  
TEST AND  
EMULATION  
PROCESSOR PORT  
ADDR DATA  
I/O PORT  
DATA ADDR  
DATA  
ADDR  
ADDR  
DATA  
DAG1  
8 x 4 x 32  
DAG2  
8 x 4 x 24  
PROGRAM  
SEQUENCER  
EXTERNAL  
PORT  
IOD  
48  
IOA  
17  
PM ADDRESS BUS  
24  
32  
32  
48  
ADDR BUS  
MUX  
DM ADDRESS BUS  
PM DATA BUS  
MULTIPROCESSOR  
INTERFACE  
48  
BUS  
CONNECT  
(PX)  
DATA BUS  
MUX  
DM DATA BUS 40/32  
HOST PORT  
4
6
DMA  
DATA  
REGISTER  
FILE  
IOP  
REGISTERS  
MEMORY MAPPED)  
CONTROLLER  
(
SERIAL PORTS  
(2)  
16 x 40-BIT  
BARREL  
SHIFTER  
6
MULTIPLIER  
ALU  
CONTROL,  
STATUS, AND  
DATA BUFFERS  
36  
LINK PORTS  
(6)  
I/O PROCESSOR  
Figure 1. ADSP-21060 Processor Block Diagram (Core of the AD14060)  
REV. A  
–2–  
AD14060/AD14060L  
0x0000 0000  
0x0002 0000  
0x0040 0000  
IOP REGISTERS  
INTERNAL  
MEMORY  
SPACE  
(INDIVIDUAL  
SHARCs)  
BANK 0  
MS  
0
NORMAL WORD ADDRESSING  
SHORT WORD ADDRESSING  
DRAM  
(OPTIONAL)  
0x0004 0000  
0x0008 0000  
INTERNAL MEMORY SPACE  
OF SHARC_A  
BANK 1  
BANK 2  
MS  
1
ID=001  
0x0010 0000  
0x0018 0000  
INTERNAL MEMORY SPACE  
OF SHARC_B  
ID=010  
INTERNAL  
TO AD14060  
MS  
INTERNAL MEMORY SPACE  
OF SHARC_C  
2
ID=011  
EXTERNAL  
MEMORY  
SPACE  
0x0020 0000  
0x0028 0000  
INTERNAL MEMORY SPACE  
OF SHARC_D  
MULTIPROCESSOR  
MEMORY SPACE  
ID=100  
MS  
BANK 3  
3
INTERNAL MEMORY SPACE  
OF ADSP-2106x  
WITH ID=101  
BANK SIZE IS  
SELECTED BY  
MSIZE BIT FIELD OF  
SYSCON  
EXTERNAL  
TO AD14060  
0x0030 0000  
0x0038 0000  
0x003F FFFF  
INTERNAL MEMORY SPACE  
OF ADSP-2106x  
WITH ID=110  
REGISTER.  
BROADCAST WRITE  
TO ALL  
NONBANKED  
ADSP-2106xs  
NORMAL WORD ADDRESSING: 32-BIT DATA WORDS  
48-BIT INSTRUCTION WORDS  
SHORT WORD ADDRESSING: 16-BIT DATA WORDS  
0xFFFF FFFF  
Figure 2. AD14060/AD14060L Mem ory Map  
SYSTEM EXPANSION  
SHARC_A  
SHARC_B  
ADDR  
DATA  
CLKIN  
1X CLOCK  
31-0  
LINKS 1, 3, & 4; LINKS 1, 3, & 4;  
IRQ IRQ  
;
;
2-0  
47-0  
RD  
2-0  
RESET  
FLAGS 2 & 0;  
TIMEXP,  
SPORT1  
FLAGS 2 & 0;  
TIMEXP,  
SPORT1  
RPBA  
WR  
CPA  
ACK  
BOOTSELECT A  
MS  
3-0  
PAGE  
BOOTSELECT BCD  
SBTS  
SW  
AD14060/AD14060L  
(QUAD PROCESSOR  
CLUSTER)  
DMAR1,2  
DMAG1,2  
ADRCLK  
CS  
HBR  
SHARC_D  
SHARC_C  
SPORT0  
FLAG1  
LINKS 1, 3, & 4; LINKS 1, 3, & 4;  
IRQ IRQ  
HBG  
;
;
2-0  
2-0  
REDY  
FLAGS 2 & 0;  
TIMEXP,  
SPORT1  
FLAGS 2 & 0;  
TIMEXP,  
SPORT1  
JTAG  
BR  
1-6  
Figure 3. Com plete Shared Mem ory Multiprocessing System  
REV. A  
–3–  
AD14060/AD14060L  
off-module memory and peripherals (see Figure 5). T his port  
consists of the complete external port bus of the SHARC, bused  
together in common among the four SHARCs.  
Bus arbitration is accomplished with the on-SHARC arbitration  
logic. Each SHARC has a unique ID, and drives the Bus-Request  
(BR) line corresponding to its ID, while monitoring all others.  
BR1–BR4 are used within the AD14060/AD14060L, while BR5  
and BR6 can be used for expansion. All bus requests (BR1–BR6)  
are included in the module I/O.  
T he 4-gigaword off-module address space is included in the  
ADSP-14060s unified address space. Addressing of external  
memory devices is facilitated by each SH ARC internally de-  
coding the high order address lines to generate memory bank  
select signals. Separate control lines are also generated for sim-  
plified addressing of page-mode DRAM. T he AD14060/  
AD14060L also supports programmable memory wait states and  
external memory acknowledge controls to allow interfacing to  
DRAM and peripherals with variable access, hold and disable  
time requirements.  
T wo different priority schemes, fixed and rotating, are available  
to resolve competing bus requests. The RPBA pin selects which  
scheme is used: when RPBA is high, rotating priority bus arbitra-  
tion is selected, and when RPBA is low, fixed priority is selected.  
Table I. Rotating P riority Arbitration Exam ple  
H ardware P rocessor ID s  
Cycle ID 1 ID 2  
ID 3  
ID 4 ID 5 ID 6  
Link P or t I/O  
Each individual SHARC features six 4-bit link ports that facili-  
tate SHARC-to-SHARC communication and external I/O inter-  
facing. Each link port can be configured for either 1× or 2×  
operation, allowing each to transfer either 4 or 8 bits per cycle.  
T he link ports can operate independently and simultaneously,  
with a maximum bandwidth of 40 MBytes/s each, or a total of  
240 MBytes/s per SHARC.  
1
2
3
4
5
M
4
4
5 BR  
1 BR  
1
2 BR  
3
1
1
2
4
4
2
2
3
5
5
3
3
Initial Priority Assignments  
Final Priority Assignments  
5 BR M-BR  
5 BR  
M
M
1
3
4 BR  
M
2
NOT ES  
1–5 = Assigned Priority.  
M = Bus Mastership (in that cycle).  
BR = Requesting Bus Mastership with BRx.  
T he AD14060/AD14060L optimizes the link port connections  
internally, and brings a total of twelve of the link ports off-mod-  
ule for user-defined system connections. Internally, each SHARC  
has a connection to the other three SHARCs with a dedicated  
link port interface. T hus, each SHARC can directly interface  
with its nearest and next-nearest neighbor. T he remaining three  
link ports from each SHARC are brought out independently  
from each SH ARC. A maximum of 480 MBytes/s link port  
bandwidth is then available off of the AD14060/AD14060L.  
T he link port connections are detailed in Figure 4.  
Bus mastership is passed from one SHARC to another during a  
bus transition cycle. A bus transition cycle only occurs when the  
current bus master deasserts its BR line and one of the slave  
SHARCs asserts its BR line. T he bus master can therefore re-  
tain bus mastership by keeping its BR line asserted. When the  
bus master deasserts its BR line, and no other BR line is as-  
serted, then the master will not lose any bus cycles. When more  
than one SHARC asserts its BR line, the SHARC with the  
highest priority request becomes bus master on the following  
cycle. Each SHARC observes all of the BR lines, and therefore  
tracks when a bus transition cycle has occurred, and which  
processor has become the new bus master. Master processor  
changeover incurs only one cycle of overhead. An example bus  
transition sequence is shown in T able I.  
1
3
4
1
3
4
5
2
5
2
SHARC_A  
SHARC_B  
Bus locking is possible, allowing indivisible read-modify-write  
sequences for semaphores. In either the fixed or rotating priority  
scheme, it is also possible to limit the number of cycles the  
master can control the bus. T he AD14060/AD14060L also  
provides the option of using the Core Priority Access (CPA)  
mode of the SHARC. Using the CPA signal allows external bus  
accesses by the core processor of a slave SHARC to take priority  
over ongoing DMA transfers. Also, each SHARC can broadcast  
write to all other SHARCs simultaneously, allowing the imple-  
mentation of reflective semaphores.  
0
0
0
0
1
3
4
1
3
4
2
5
2
5
SHARC_D  
SHARC_C  
T he bus master can communicate with slave SHARCs by writ-  
ing messages to their internal IOP registers. T he MSRG0–  
MSRG7 registers are general-purpose registers that can be used  
for convenient message passing, semaphores and resource shar-  
ing between the SHARCs. For message passing, the master  
communicates with a slave by writing and/or reading any of the  
eight message registers on the slave. For vector interrupts, the  
master can issue a vector interrupt to a slave by writing the  
address of an interrupt service routine to the slave’s VIRPT  
register. T his causes an immediate high priority interrupt on the  
slave which, when serviced, will cause it to branch to the speci-  
fied service routine.  
Figure 4. Link Port Connections  
Link port 4, the boot link port, is brought off independently  
from each SH ARC. Individual booting is then allowed, or  
chained link port booting is possible as described under “Link  
Port Booting.”  
Link port data is packed into 32-bit or 48-bit words, and can  
be directly read by the SH ARC core processor or DMA-  
transferred to on-SH ARC memory.  
Each link port has its own double-buffered input and output  
registers. Clock/acknowledge handshaking controls link port  
transfers. T ransfers are programmable as either transmit or  
O ff-Module Mem or y and P er ipher als Inter face  
The AD14060/AD14060Ls external port provides the interface to  
receive.  
REV. A  
–4–  
AD14060/AD14060L  
AD14060/  
AD14060L  
1x  
CLOCK  
CLKIN  
RESET  
RPBA  
ADDR  
ADDR  
DATA  
31–0  
GLOBAL  
MEMORY  
DATA  
47–0  
RESET  
AND  
PERIPHERALS  
(OPTIONAL)  
RD  
OE  
WE  
WR  
ACK  
ACK  
MS  
CS  
3–0  
CS  
BMS  
BOOT  
EPROM  
(OPTIONAL)  
PAGE  
ADDR  
DATA  
SBTS  
SW  
CONTROL  
ADRCLK  
CS  
HBR  
HOST  
PROCESSOR  
INTERFACE  
(OPTIONAL)  
HBG  
REDY  
ADDR  
DATA  
SERIALS  
LINKS  
CPA  
5
BR  
2–6  
DISCRETES  
BR  
1
ADSP-2106x #5  
(OPTIONAL)  
ADDR  
31–0  
47–0  
CLKIN  
DATA  
RESET  
RPBA  
3
101  
ID  
2–0  
CONTROL  
CPA  
5
BR  
1, 2, 3, 4, 6  
BR  
5
ADSP-2106x #6  
(OPTIONAL)  
ADDR  
DATA  
CLKIN  
31–0  
47–0  
RESET  
RPBA  
3
110  
ID  
2–0  
CONTROL  
CPA  
BR  
5
1–5  
BR  
6
Figure 5. Optional System Interconnections  
REV. A  
–5–  
AD14060/AD14060L  
Ser ial P or ts  
Multipr ocessor Link Por t Booting  
T he SHARC serial ports provide an inexpensive interface to a  
wide variety of digital and mixed-signal peripheral devices. Each  
SHARC has two serial ports. The AD14060/AD14060L provides  
direct access to Serial Port 1 of each SH ARC. Serial Port 0  
is bused together in common to each SH ARC, and brought  
off-module.  
Booting can also be accomplished from a single source through  
the link ports. Link Buffer 4 must always be used for booting.  
T o simultaneously boot all of the ADSP-21060s, a parallel  
common connection is available through Link Port 4 on each of  
the processors. Or, using the daisy chain connection that exists  
between the processors’ link ports, each ADSP-21060 can boot  
the next one in turn. In this case, the Link Assignment Register  
(LAR) must be programmed to configure the internal link ports  
with Link Buffer 4.  
T he serial ports can operate at the full clock rate of the module,  
providing each with a maximum data rate of 40 Mbit/s. Inde-  
pendent transmit and receive functions provide more flexible  
communications. Serial port data can be automatically trans-  
ferred to and from on-SHARC memory via DMA, and each of  
the serial ports offers time division multiplexed (T DM) multi-  
channel mode.  
Multipr ocessor Booting Fr om Exter na l Mem or y  
If external memory contains a program after reset, then  
SHARC_A should be set up for no boot mode; it will begin ex-  
ecuting from address 0x0040 0004 in external memory. When  
booting has completed, the other ADSP-21060s may be booted  
by SHARC_A if they are set up for host booting, or they can  
begin executing out of external memory if they are set up for no  
boot mode. Multiprocessor bus arbitration will allow this booting  
to occur in an orderly manner.  
T he serial ports can operate with little-endian or big-endian  
transmission formats, with word lengths selectable from 3 bits to  
32 bits. They offer selectable synchronization and transmit modes  
as well as optional µ-law or A-law companding. Serial port clocks  
and frame syncs can be internally or externally generated.  
H ost P r ocessor Inter face  
P r ogr am Booting  
T he AD14060/AD14060Ls host interface allows for easy con-  
nection to standard microprocessor buses, both 16-bit and 32-  
bit, with little additional hardware required. Asynchronous  
transfers at speeds up to the full clock rate of the module are  
supported. T he host interface is accessed through the AD14060/  
AD14060L external port and is memory-mapped into the uni-  
fied address space. Four channels of DMA are available for the  
host interface; code and data transfers are accomplished with  
low software overhead.  
T he AD14060/AD14060L supports automatic downloading of  
programs following power-up or a software reset. T he SHARC  
offers four options for program booting: 1) from an 8-bit  
EPROM; 2) from a host processor; 3) through the link ports;  
and 4) no-boot. In no-boot mode, the SHARC starts executing  
instructions from address 0x0040 0004 in external memory.  
T he boot mode is selected by the state of the following signals:  
BMS, EBOOT , and LBOOT .  
On the AD14060/AD14060L, SHARC_As boot mode is sepa-  
rately controlled, while SHARCs B, C, and D are controlled as  
a group. With this flexibility, the AD14060/AD14060L can be  
configured to boot in any of the following methods.  
T he host processor requests the AD14060/AD14060L’s external  
bus with the host bus request (HBR), host bus grant (HBG),  
and ready (REDY) signals. T he host can directly read and write  
the internal memory of the SHARCs, and can access the DMA  
channel setup and mailbox registers. Vector interrupt support is  
provided for efficient execution of host commands.  
Multipr ocessor Host Booting  
T o boot multiple ADSP-21060 processors from a host, each  
ADSP-21060 must have its EBOOT , LBOOT and BMS pins  
configured for host booting: EBOOT = 0, LBOOT = 0, and  
BMS = 1. After system power-up, each ADSP-21060 will be in  
the idle state and the BRx bus request lines will be deasserted.  
T he host must assert the HBR input and boot each ADSP-21060  
by asserting its CS pin and downloading instructions.  
D ir ect Mem or y Access (D MA) Contr oller  
T he SHARCs on-chip DMA control logic allows zero-overhead  
data transfers without processor intervention. T he DMA con-  
troller operates independently and invisibly to each SHARCs  
processor core, allowing DMA operations to occur while the core  
is simultaneously executing its program instructions.  
Multipr ocessor EPROM Booting  
DMA transfers can occur between SH ARC internal memory  
and either external memory, external peripherals, or a host  
processor. DMA transfers can also occur between the SHARCs  
internal memory and its serial ports or link ports. DMA trans-  
fers between external memory and external peripheral devices are  
another option. External bus packing to 16-, 32- or 48-bit words  
is performed during DMA transfers.  
T here are two methods of booting the multiprocessor system  
from an EPROM.  
SHARC_A Is Booted, Which Then Boots the Other s. T he  
EBOOT pin on the SHARC_A must be set high for EPROM  
booting. All other ADSP-21060s should be configured for host  
booting (EBOOT = 0, LBOOT = 0, and BMS = 1), which  
leaves them in the idle state at start-up and allows SHARC_A  
to become bus master and boot itself. Only the BMS pin of  
SH ARC_A is connected to the chip select of the EPROM.  
When SH ARC_A has finished booting, it can boot the re-  
maining ADSP-21060s by writing to their external port DMA  
buffer 0 (EPB0) via multiprocessor memory space.  
T en channels of DMA are available on the SHARCs—two via  
the link ports, four via the serial ports, and four via the processor’s  
external port (for either host processor, other SHARCs, memory,  
or I/O transfers). Four additional link port DMA channels are  
shared with serial port 1 and the external port. Programs can be  
downloaded to the SHARCs using DMA transfers. Asynchronous  
off-module peripherals can control two DMA channels using  
DMA Request/Grant lines (DMAR1-2, DMAG1-2). Other  
DMA features include interrupt generation upon completion of  
DMA transfers and DMA chaining for automatic linked DMA  
transfers.  
All ADSP-21060s Boot in Tur n Fr om a Single EPROM.  
T he BMS signals from each ADSP-21060 may be wire-ORed  
together to drive the chip select pin of the EPROM. Each  
ADSP-21060 can boot in turn, according to its priority. When  
the last one has finished booting, it must inform the others  
(which may be in the idle state) that program execution can begin.  
REV. A  
–6–  
AD14060/AD14060L  
D evelopm ent Tools  
In addition to the software and hardware development tools  
available from Analog Devices, third parties provide a wide  
range of tools supporting the SHARC processor family. Hard-  
ware tools include SHARC PC plug-in cards, multiprocessor  
SHARC VME boards, and daughter card modules with multiple  
SHARCs and additional memory. T hese modules are based on  
the SHARCPAC module specification. T hird party software  
tools include an Ada compiler, DSP libraries, operating systems  
and block diagram design tools.  
T he ADSP-14060 is supported with a complete set of software  
and hardware development tools, including an EZ-LAB® In-  
Circuit Emulator, and development software.  
Analog Devices’ ADSP-21000 Family Development Software  
includes an easy to use Assembler based on an algebraic syntax,  
an Assembly Library/Librarian, a Linker, an Instruction-Level  
Simulator, an ANSI C optimizing Compiler, the CBug™ C  
Source-Level Debugger, and a C Runtime Library including  
DSP and mathematical functions. T he Optimizing Compiler  
includes Numerical C extensions based on the work of the ANSI  
Numerical C Extensions Group. Numerical C provides exten-  
sions to the C language for array selection, vector math op-  
erations, complex data types, circular pointers and variably  
dimensioned arrays. T he ADSP-21000 Family Development  
Software is available for both the PC and Sun platforms.  
Q uad-SH ARC D evelopm ent Boar d  
T he BlackT ip-MCM, AD14060 development board and soft-  
ware, is available from Bittware Research Systems, Inc. This  
board has one AD14060 BIT SI interface, PROM and SRAM  
expansion options on an ISA card. It is supported by Bittware’s  
SHARC software development package. Bittware can be con-  
tacted at 1-800-848-0436.  
T he SHARC EZ-KIT combines the ADSP-21000 Family De-  
velopment Software for the PC and the EZ-LAB Development  
Board in one package.  
T he ADSP-2106x EZ-ICE® Emulator uses the IEEE 1149.1  
JT AG test access port of the ADSP-2106x processor to monitor  
and control the target board processor during emulation. T he  
EZ-ICE provides full-speed emulation, allowing inspection and  
modification of memory, registers and processor stacks.  
O ther P ackage D etails  
T he AD14060/AD14060L contains 16 on-module 0.018 micro-  
farad bypass capacitors. It is recommended that in the target  
system at least four additional capacitors, of 0.018 microfarad  
value, be placed around the module—one near each of the four  
corners.  
T he top surface, lid, of the AD14060/AD14060L is electrically  
connected to GND on the industrial and military grade parts.  
Nonintrusive in-circuit emulation is assured by the use of the  
processor’s JT AG interface—the emulator does not affect target  
system loading or timing.  
Additional Infor m ation  
T his data sheet provides a general overview of the AD14060/  
AD14060L architecture and functionality. For detailed infor-  
mation on the ADSP-2106x SH ARC and the ADSP-21000  
Family core architecture and instruction set, refer to the ADSP-  
2106x SHARC User’s Manual.  
Further details and ordering information are available in the  
ADSP-21000 Family Hardware & Software Development Tools  
data sheet (ADDS-2100xx-T OOLS). T his data sheet can be  
requested from any Analog Devices sales office or distributor,  
or from the Literature Center.  
EZ-ICE and EZ-LAB are registered trademarks of Analog Devices, Inc.  
CBug is a trademark of Analog Devices, Inc.  
REV. A  
–7–  
AD14060/AD14060L  
P IN FUNCTIO N D ESCRIP TIO NS  
T CLKx, RCLKx, LxDAT3-0, LxCLK, LxACK, T MS and  
T DI)—these pins can be left floating. T hese pins have a logic-  
level hold circuit that prevents the input from floating internally.  
AD14060/AD14060L pin definitions are listed below. Inputs  
identified as synchronous (S) must meet timing requirements  
with respect to CLKIN (or with respect to T CK for T MS,  
T DI). Inputs identified as asynchronous (A) can be asserted  
asynchronously to CLKIN (or to T CK for TRST).  
I = Input  
P = Power Supply (A/D) = Active Drive  
O = Output  
G = Ground  
S = Synchronous  
A = Asynchronous  
(O/D) = Open Drain  
Unused inputs should be tied or pulled to VDD or GND, except  
for ADDR31-0, DAT A47-0, FLAG2-0, SW, and inputs that have  
internal pull-up or pull-down resistors (CPA, ACK, DT x, DRx,  
T = Three-State (when SBTS is asserted, or when the AD14060/  
AD14060L is a bus slave)  
P in  
Type  
Function  
ADDR31-0  
I/O/T  
Exter nal Bus Addr ess. (Common to all SHARCs) T he AD14060/AD14060L outputs addresses for  
external memory and peripherals on these pins. In a multiprocessor system, the bus master outputs  
addresses for read/writes on the internal memory or IOP registers of slave ADSP-2106xs. The AD14060/  
AD14060L inputs addresses when a host processor or multiprocessing bus master is reading or writing  
the internal memory or IOP registers of internal ADSP-21060s.  
DAT A47-0  
I/O/T  
O/T  
Exter nal Bus D ata. (Common to all SHARCs) T he AD14060/AD14060L inputs and outputs data and  
instructions on these pins. 32-bit single-precision floating-point data and 32-bit fixed-point data is trans-  
ferred over bits 47-16 of the bus. 40-bit extended-precision floating-point data is transferred over bits 47-  
8 of the bus. 16-bit short word data is transferred over bits 31-16 of the bus. In PROM boot mode, 8-bit  
data is transferred over bits 23-16. Pull-up resistors on unused DAT A pins are not necessary.  
MS3-0  
Mem or y Select Lines. (Common to all SHARCs) T hese lines are asserted (low) as chip selects for the  
corresponding banks of external memory. Memory bank size must be defined in the individual ADSP-  
21060s system control registers (SYSCON). T he MS3-0 lines are decoded memory address lines that  
change at the same time as the other address lines. When no external memory access is occurring the MS3-0  
lines are inactive; they are active, however, when a conditional memory access instruction is executed, whether  
or not the condition is true. MS0 can be used with the PAGE signal to implement a bank of DRAM memory  
(Bank 0). In a multiprocessing system, the MS3-0 lines are output by the bus master.  
RD  
I/O/T  
I/O/T  
O/T  
Mem or y Read Str obe. (Common to all SH ARCs) T his pin is asserted (low) when the AD14060/  
AD14060L reads from external devices or when the internal memory of internal ADSP-2106xs is being  
accessed. External devices (including other ADSP-2106xs) must assert RD to read from the AD14060/  
AD14060Ls internal memory. In a multiprocessing system, RD is output by the bus master and is input  
by all other ADSP-2106xs.  
WR  
Mem or y Wr ite Str obe. (Common to all SH ARCs) T his pin is asserted (low) when the AD14060/  
AD14060L writes to external devices or when the internal memory of internal ADSP-2106xs is being ac-  
cessed. External devices (including other ADSP-2106xs) must assert WR to write to the AD14060/  
AD14060Ls internal memory. In a multiprocessing system WR is output by the bus master and is input by  
all other ADSP-2106xs.  
PAGE  
D RAM P age Boundar y. (Common to all SHARCs) T he AD14060/AD14060L asserts this pin to signal  
that an external DRAM page boundary has been crossed. DRAM page size must be defined in the indi-  
vidual ADSP-21060s memory control register (WAIT ). DRAM can only be implemented in external  
memory Bank 0; the PAGE signal can only be activated for Bank 0 accesses. In a multiprocessing system,  
PAGE is output by the bus master.  
ADRCLK  
O/T  
Clock O utput Refer ence. (Common to all SHARCs) In a multiprocessing system, ADRCLK is output  
by the bus master.  
SW  
I/O/T  
Synchr onous Wr ite Select. (Common to all SHARCs) T his signal is used to interface the AD14060/  
AD14060L to synchronous memory devices (including other ADSP-2106xs). T he AD14060/AD14060L  
asserts SW (low) to provide an early indication of an impending write cycle, which can be aborted if WR  
is not later asserted (e.g., in a conditional write instruction). In a multiprocessing system, SW is output  
by the bus master and is input by all other ADSP-2106xs to determine if the multiprocessor memory  
access is a read or write. SW is asserted at the same time as the address output. A host processor using  
synchronous writes must assert this pin when writing to the AD14060/AD14060L.  
ACK  
I/O/S  
Mem or y Acknowledge. (Common to all SHARCs) External devices can deassert ACK (low) to add  
wait states to an external memory access. ACK is used by I/O devices, memory controllers, or other pe-  
ripherals to hold off completion of an external memory access. T he AD14060/AD14060L deasserts  
ACK, as an output, to add wait states to a synchronous access of its internal memory. In a multiprocess-  
ing system, a slave ADSP-2106x deasserts the bus master’s ACK input to add wait state(s) to an access  
of its internal memory. T he bus master has a keeper latch on its ACK pin that maintains the input at the  
level it was last driven to.  
REV. A  
–8–  
AD14060/AD14060L  
P in  
Type  
Function  
SBTS  
I/S  
Su spen d Bu s T h r ee- State. (Common to all SHARCs) External devices can assert SBTS (low) to  
place the external bus address, data, selects, and strobes in a high impedance state for the following cycle.  
If the AD14060/AD14060L attempts to access external memory while SBTS is asserted, the processor  
will halt and the memory access will not be completed until SBTS is deasserted. SBTS should only be  
used to recover from host processor/AD14060/AD14060L deadlock, or used with a DRAM controller.  
HBR  
HBG  
I/A  
I/O  
H ost Bus Request. (Common to all SHARCs) Must be asserted by a host processor to request control  
of the AD14060/AD14060Ls external bus. When HBR is asserted in a multiprocessing system, the  
ADSP-2106x that is bus master will relinquish the bus and assert HBG. T o relinquish the bus, the  
ADSP-2106x places the address, data, select, and strobe lines in a high impedance state. HBR has priority  
over all ADSP-2106x bus requests (BR6-1) in a multiprocessing system.  
H ost Bus Gr ant. (Common to all SHARCs) Acknowledges an HBR bus request, indicating that the  
host processor may take control of the external bus. HBG is asserted (held low) by the AD14060/AD14060L  
until HBR is released. In a multiprocessing system, HBG is output by the ADSP-2106x bus master and is  
monitored by all others.  
CSA  
I/A  
I/A  
I/A  
I/A  
O
Chip Select. Asserted by host processor to select SHARC_A.  
Chip Select. Asserted by host processor to select SHARC_B.  
Chip Select. Asserted by host processor to select SHARC_C.  
Chip Select. Asserted by host processor to select SHARC_D.  
CSB  
CSC  
CSD  
REDY (O/D)  
H ost Bus Acknowledge. (Common to all SHARCs) T he AD14060/AD14060L deasserts REDY (low)  
to add wait states to an asynchronous access of its internal memory or IOP registers by a host. Open drain  
output (O/D) by default; can be programmed in ADREDY bit of SYSCON register of individual ADSP-  
21060s to be active drive (A/D). REDY will only be output if the CS and HBR inputs are asserted.  
BR6-1  
I/O/S  
I/S  
Multipr ocessing Bus Requests. (Common to all SHARCs) Used by multiprocessing ADSP-2106xs to  
arbitrate for bus mastership. An ADSP-2106x only drives its own BRx line (corresponding to the value of  
its ID2-0 inputs) and monitors all others. In a multiprocessor system with less than six ADSP-2106xs, the  
unused BRx pins should be pulled high; BR4-1 must not be pulled high or low because they are outputs.  
RPBA  
Rotating P r ior ity Bus Ar bitr ation Select. (Common to all SHARCs) When RPBA is high, rotating  
priority for multiprocessor bus arbitration is selected. When RPBA is low, fixed priority is selected. This  
signal is a system configuration selection that must be set to the same value on every ADSP-2106x. If the  
value of RPBA is changed during system operation, it must be changed in the same CLKIN cycle on  
every ADSP-2106x.  
CPAy (O/D)  
I/O  
Cor e P r ior ity Access. (y = SHARC_A, B, C, D) Asserting its CPA pin allows the core processor of an  
ADSP-2106x bus slave to interrupt background DMA transfers and gain access to the external bus.  
CPA is an open drain output that is connected to all ADSP-2106x in the system if this function is  
required. T he CPA pin of each internal ADSP-21060 is brought out individually. T he CPA pin has  
an internal 5 kpull-up resistor. If core access priority is not required in a system, the CPA pin  
should be left unconnected.  
DT 0  
O/T  
I
D ata Tr ansm it (Common Serial Ports 0 to all SHARCs, T DM). DT pin has a 50 kinternal pull-up  
resistor.  
DR0  
D ata Receive (Common Serial Ports 0 to all SHARCs, T DM). DR pin has a 50 kinternal pull-up  
resistor.  
T CLK0  
RCLK0  
I/O  
I/O  
Tr an sm it C lock (Common Serial Ports 0 to all SH ARCs, T DM). T CLK pin has a 50 kinternal  
pull-up resistor.  
Receive Clock (Common Serial Ports 0 to all SHARCs, T DM). RCLK pin has a 50 kinternal pull-up  
resistor.  
T FS0  
RFS0  
DT y1  
I/O  
I/O  
O/T  
Tr ansm it Fr am e Sync (Common Serial Ports 0 to all SHARCs, T DM).  
Receive Fr am e Sync (Common Serial Ports 0 to all SHARCs, T DM).  
D ata Tr ansm it (Serial Port 1 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D) DT pin  
has a 50 kinternal pull-up resistor.  
DRy1  
I
D ata Receive (Serial Port 1 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D) DR pin  
has a 50 kinternal pull-up resistor.  
REV. A  
–9–  
AD14060/AD14060L  
P in  
Type  
Function  
T CLKy1  
I/O  
Transm it Clock (Serial Port 1 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D) T CLK  
pin has a 50 kinternal pull-up resistor.  
RCLKy1  
I/O  
Receive Clock (Serial Port 1 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D) RCLK  
pin has a 50 kinternal pull-up resistor.  
T FSy1  
RFSy1  
I/O  
Transm it Fram e Sync (Serial Port 1 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D)  
Receive Fram e Sync (Serial Port 1 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D)  
I/O  
FLAGy0  
I/O/A  
Flag P ins. (FLAG0 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D) Each is config-  
ured via control bits as either an input or output. As an input, it can be tested as a condition. As an out-  
put, it can be used to signal external peripherals.  
FLAG1  
FLAGy2  
IRQy2-0  
I/O/A  
I/O/A  
I/A  
Flag P ins. (FLAG1 common to all SHARCs) Configured via control bits internal to individual ADSP-  
21060s as either an input or output. As an input, it can be tested as a condition. As an output, it can be  
used to signal external peripherals.  
Flag P ins. (FLAG2 individual from SHARC_A, SHARC_B, SHARC_C, SHARC_D) Each is config-  
ured via control bits as either an input or output. As an input, it can be tested as a condition. As an out-  
put, it can be used to signal external peripherals.  
Interrupt Request Lines. (Individual IRQ2-0 from y = SHARC_A, SHARC_B, SHARC_C, SHARC_D)  
May be either edge-triggered or level-sensitive.  
DMAR1  
DMAR2  
DMAG1  
DMAG2  
LyxCLK  
I/A  
I/A  
O/T  
O/T  
I/O  
DMA Request 1 (DMA Channel 7). Common to SHARC_A, SHARC_B, SHARC_C, SHARC_D.  
DMA Request 2 (DMA Channel 8). Common to SHARC_A, SHARC_B, SHARC_C, SHARC_D.  
DMA Grant 1 (DMA Channel 7). Common to SHARC_A, SHARC_B, SHARC_C, SHARC_D.  
DMA Grant 2 (DMA Channel 8). Common to SHARC_A, SHARC_B, SHARC_C, SHARC_D.  
Link P or t Clock (y = SHARC_A, B, C, D; x = Link Ports 1, 3, 4)1. Each LyxCLK pin has a 50 kΩ  
internal pull-down resistor which is enabled or disabled by the LPDRD bit of the LCOM register, of the  
ADSP-20160.  
LyxDAT 3-0  
LyxACK  
I/O  
I/O  
I
Lin k P or t D ata (y = SH ARC_A, B, C, D; x = Link Ports 1, 3, 4)1. Each LyxDAT pin has a  
50 kinternal pull-down resistor which is enabled or disabled by the LPDRD bit of the LCOM register,  
of the ADSP-21060.  
Link P or t Acknowledge (y = SHARC_A, B, C, D; x = Link Ports 1, 3, 4)1. Each LyxACK pin has a  
50 kinternal pull-down resistor which is enabled or disabled by the LPDRD bit of the LCOM register,  
of the ADSP-21060.  
EBOOT A  
EP RO M Boot Select. (SHARC_A) When EBOOT A is high, SHARC_A is configured for booting from  
an 8-bit EPROM. When EBOOT A is low, the LBOOT A and BMSA inputs determine booting mode  
for SH ARC_A. See the following table. T his signal is a system configuration selection which should  
be hardwired.  
LBOOT A  
I
Link Boot. When LBOOT A is high, SHARC_A is configured for link port booting. When LBOOT A is  
low, SHARC_A is configured for host processor booting or no booting. See the following table. T his  
signal is a system configuration selection which should be hardwired.  
BMSA  
I/O/T2  
Boot Mem or y Select. Output: Used as chip select for boot EPROM devices (when EBOOT A = 1,  
LBOOT A = 0). In a multiprocessor system, BMS is output by the bus master. Input: When low, indicates  
that no booting will occur and that SHARC_A will begin executing instructions from external memory.  
See the following table. T his input is a system configuration selection which should be hardwired.  
EBOOT BCD  
LBOOT BCD  
I
I
EP RO M Boot Select. (Common to SHARC_B, SHARC_C, SHARC_D) When EBOOT BCD is high,  
SHARC_B, C, D are configured for booting from an 8-bit EPROM. When EBOOT BCD is low, the  
LBOOT BCD and BMSBCD inputs determine booting mode for SHARC_B, C and D. See the following  
table. T his signal is a system configuration selection which should be hardwired.  
LINK Boot. (Common to SHARC_B, SHARC_C, SHARC_D) When LBOOTBCD is high, SHARC_B, C,  
D are configured for link port booting. When LBOOT BCD is low, SHARC_B, C, D are configured for  
host processor booting or no booting. See the following table. T his signal is a system configuration selec-  
tion which should be hardwired.  
REV. A  
–10–  
AD14060/AD14060L  
P in  
Type  
Function  
BMSBCD  
I/O/T2  
Boot Mem or y Select. Output: Used as chip select for boot EPROM devices (when EBOOT BCD = 1,  
LBOOT BCD = 0). In a multiprocessor system, BMS is output by the bus master. Input: When low,  
indicates that no booting will occur and that SHARC_B, C, D will begin executing instructions from  
external memory. See table below. T his input is a system configuration selection which should be  
hardwired.  
EBOOT  
LBOOT  
BMS  
Booting Mode  
1
0
0
0
0
1
0
0
1
0
1
1
Output  
1 (Input) Host Processor  
1 (Input) Link Port  
0 (Input) No Booting. Processor executes from external memory.  
0 (Input) Reserved  
EPROM (Connect BMS to EPROM chip select)  
x (Input) Reserved  
T IMEXPy  
CLKIN  
O
I
Tim er Expired. (Individual TIMEXP from y = SHARC_A, SHARC_B, SHARC_C, SHARC_D) Asserted  
for four cycles when the timer is enabled and T COUNT decrements to zero.  
Clock In. (Common to all SHARCs) External clock input to the AD14060/AD14060L. T he instruction  
cycle rate is equal to CLKIN. CLKIN may not be halted, changed, or operated below the minimum specified  
frequency.  
RESET  
T CK  
T MS  
T DI  
I/A  
I
Module Reset. (Common to all SHARCs) Resets the AD14060/AD14060L to a known state. T his input  
must be asserted (low) at power-up.  
Test Clock (JTAG). (Common to all SHARCs) Provides an asynchronous clock for JT AG boundary  
scan.  
I/S  
I/S  
Test Mode Select (JTAG). (Common to all SHARCs) Used to control the test state machine. T MS has  
a 20 kinternal pull-up resistor.  
Test D ata Input (JTAG). Provides serial data for the boundary scan logic chain starting at SHARC_A.  
T DI has a 20 kinternal pull-up resistor.  
T DO  
O
Test D ata O utput (JTAG). Serial scan output of the boundary scan chain path, from SHARC_D.  
TRST  
I/A  
Test Reset (JTAG). (Common to all SHARCs) Resets the test state machine. TRST must be asserted  
(pulsed low) after power-up or held low for proper operation of the AD14060/AD14060L. TRST has a  
20 kinternal pull-up resistor.  
EMU (O/D)  
O
Em ulation Status. (Common to all SHARCs) Must be connected to the ADSP-2106x EZ-ICE target  
board connector only.  
VDD  
P
P ower Supply. Nominally +5.0 V dc for 5 V devices or +3.3 V dc for 3.3 V devices (26 pins).  
P ower Supply Retur n. (28 pins).  
GND  
G
NOT ES  
FLAG3 is connected internally, common to SHARC_A, B, C, and D.  
ID pins are hardwired internally as depicted in the block diagram.  
1LINK PORT S 0, 2 and 5 are connected internally as described earlier in Link Port I/O.  
2T hree-statable only in EPROM boot mode (when BMS is an output).  
REV. A  
–11–  
AD14060/AD14060L  
T he 14-pin, 2-row pin strip header is keyed at the Pin 3 location;  
Pin 3 must be removed from the header. T he pins must be  
0.025 inch square and at least 0.20 inch in length. Pin spacing  
should be 0.1 × 0.1 inches. Pin strip headers are available from  
vendors such as 3M, McKenzie and Samtec.  
TARGET BO ARD CO NNECTO R FO R EZ-ICE P RO BE  
The ADSP-2106x EZ-ICE Emulator uses the IEEE 1149.1 JTAG  
test access port of the ADSP-2106x to monitor and control the  
target board processor during emulation. T he EZ-ICE probe  
requires that the AD14060/AD14060L’s CLKIN (optional),  
T MS, T CK, TRST, T DI, T DO, EMU and GND signals be  
made accessible on the target system via a 14-pin connector (a  
pin strip header) such as that shown in Figure 6. T he EZ-ICE  
probe plugs directly onto this connector for chip-on-board emu-  
lation. You must add this connector to your target board design  
if you intend to use the ADSP-2106x EZ-ICE. T he length of  
the traces between the connector and the AD14060/  
T he BT MS, BT CK, BTRST and BT DI signals are provided so  
that the test access port can also be used for board-level testing.  
When the connector is not being used for emulation, place  
jumpers between the Bxxx pins and the xxx pins as shown in  
Figure 6. If you are not going to use the test access port for  
board testing, tie BTRST to GND and tie or pull up BTCK to  
VDD. The TRST pin must be asserted after power-up (through  
AD14060Ls JT AG pins should be as short as possible.  
BTRST on the connector) or held low for proper operation of  
the AD14060/AD14060L. None of the Bxxx pins (Pins 5, 7, 9,  
11) are connected on the EZ-ICE probe.  
1
3
5
2
4
6
EMU  
GND  
The JTAG signals are terminated on the EZ-ICE probe as follows:  
KEY (NO PIN)  
CLKIN (OPTIONAL)  
TMS  
Signal  
Term ination  
T MS  
T CK  
Driven through 22 Resistor (16 µA–3.2 µA Driver)  
Driven at 10 MHz through 22 Resistor (16 µA–  
3.2 µA Driver)  
BTMS  
7
9
8
TCK  
BTCK  
TRST  
Driven by Open-Drain Driver* (Pulled Up by On-Chip  
20 kresistor)  
10  
12  
BTRST  
TRST  
T DI  
Driven by 16 µA–3.2 µA Driver  
11  
T DO  
One T T L Load, No T ermination  
BTDI  
GND  
TDI  
CLKIN One T T L Load, No T ermination (Optional Signal)  
EMU  
4.7 kPull-Up Resistor, One TTL Load (Open-Drain  
13  
14  
TDO  
Output from ADSP-2106x)  
*TRST is driven low until the EZ-ICE probe is turned on by the EZ-ICE  
TOP VIEW  
software (after the invocation command).  
Figure 6. Target Board Connector for ADSP-2106x EZ-ICE  
Em ulator (J um pers in Place)  
Figure 7 shows JT AG scan path connections for the multi-  
processor system.  
Connecting CLKIN to Pin 4 of the EZ-ICE header is optional.  
T he emulator only uses CLKIN when directed to perform  
JTAG DEVICE  
(OPTIONAL)  
ADSP-2106x  
#n  
SHARC_A  
SHARC_B  
SHARC_C  
SHARC_D  
TDI  
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
EZ-ICE  
JTAG  
CONNECTOR  
OTHER  
JTAG  
CONTROLLER  
TCK  
TMS  
EMU  
TRST  
TDO  
CLKIN  
OPTIONAL  
Figure 7. J TAG Scan Path Connections for the AD14060/AD14060L  
REV. A  
–12–  
AD14060/AD14060L  
operations such as starting, stopping and single-stepping mul-  
tiple ADSP-2106xs in a synchronous manner. If you do not  
need these operations to occur synchronously on the multiple  
processors, simply tie Pin 4 of the EZ-ICE header to ground.  
as possible on your board. If T CK, T MS and CLKIN are driv-  
ing a large number of ADSP-2106xs (more than eight) in your  
system, then treat them as a “clock tree” using multiple drivers  
to minimize skew. (See Figure 8 JT AG Clock T ree and Clock  
Distribution in the “High Frequency Design Considerations”  
section of the ADSP-2106x User’s Manual).  
If synchronous multiprocessor operations are needed and CLKIN  
is connected, clock skew between the AD14060/AD14060L and  
the CLKIN pin on the EZ-ICE header must be minimal. If the  
skew is too large, synchronous operations may be off by one  
cycle between processors. For synchronous multiprocessor  
operation T CK, T MS, CLKIN and EMU should be treated as  
critical signals in terms of skew, and should be laid out as short  
If synchronous multiprocessor operations are not needed (i.e.,  
CLKIN is not connected), just use appropriate parallel termina-  
tion on T CK and T MS. T DI, T DO, EMU and TRST are not  
critical signals in terms of skew.  
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
5k  
*
TDI  
TDO  
TDI  
TDO  
TDI  
TDO  
TDI  
5k⍀  
*
EMU  
TCK  
TMS  
TRST  
TDO  
SYSTEM  
CLKIN  
CLKIN  
EMU  
*
OPEN DRAIN DRIVER OR EQUIVALENT, i.e.,  
Figure 8. J TAG Clocktree for Multiple ADSP-2106x System s  
REV. A  
–13–  
AD14060/AD14060LSPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
B Grade  
Min  
K Grade  
P ar am eter  
Max  
Min  
Max  
Units  
VDD  
Supply Voltage (5 V)  
Supply Voltage (3.3 V)  
Case Operating T emperature  
4.75  
3.15  
–40  
5.25  
3.6  
+100  
4.75  
3.15  
0
5.25  
3.6  
+85  
V
V
°C  
T CASE  
ELECTRICAL CHARACTERISTICS (3.3 V, 5 V SUPPLY)  
Case  
Test  
5 V  
3.3 V  
Min Typ Max  
P ar am eter  
Tem p Level Test Condition  
Min Typ Max  
Units  
VIH1  
VIH2  
VIL  
VOH  
VOL  
IIH  
High Level Input Voltage1  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
@ VDD = max  
@ VDD = max  
@ VDD = min  
2.0  
2.2  
VDD + 0.5 2.0  
VDD + 0.5 2.2  
0.8  
2.4  
0.4  
10  
VDD + 0.5  
VDD + 0.5  
0.8  
V
V
V
V
High Level Input Voltage2  
Low Level Input Voltage1, 2  
High Level Output Voltage3, 4  
Low Level Output Voltage3, 4  
High Level Input Current5, 6, 7  
Low Level Input Current5  
@ VDD = min, IOH = –2.0 mA4  
@ VDD = min, IOL = 4.0 mA4  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = VDD max  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 1.5 V (5 V),  
2 V (3.3 V)  
4.1  
0.4  
10  
10  
150  
600  
10  
10  
350  
1.5  
V
µA  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
IIL  
IILP  
10  
Low Level Input Current6  
150  
600  
10  
10  
350  
1.5  
IILPX4  
IOZH  
IOZL  
IOZHP  
IOZLC  
IOZLA  
Low Level Input Current7  
T hree-State Leakage Current8, 9, 10, 14  
T hree-State Leakage Current8, 11  
T hree-State Leakage Current11  
T hree-State Leakage Current12  
T hree-State Leakage Current13  
350  
4.2  
150  
600  
350  
4.2  
150  
600  
µA  
mA  
µA  
µA  
A
mA  
pF  
IOZLAR  
IOZLS  
T hree-State Leakage Current10  
T hree-State Leakage Current9  
Full  
Full  
Full  
Full  
Full  
+25°C  
I
I
I
IV  
I
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
@ VDD = max, VIN = 0 V  
tCK = 25 ns, VDD = max  
VDD = max  
IOZLSX4 T hree-State Leakage Current14  
IDDIN  
IDDIDLE Supply Current (Idle)16  
CIN  
Input Capacitance17, 18  
Supply Current (Internal)15  
1.4 3.4  
800  
1.0 2.2  
760  
V
15  
15  
EXP LANATIO N O F TEST LEVELS  
Test Level  
I
100% Production T ested19  
.
II  
100% Production T ested at +25°C, and Sample T ested at Specified T emperatures.  
III  
IV  
V
Sample T ested Only.  
Parameter is guaranteed by design and analysis, and characterization testing on discrete SHARCs.  
Parameter is typical value only.  
VI  
All devices are 100% production tested at +25°C; sample tested at temperature extremes.  
NOT ES  
1 Applies to input and bidirectional pins: DAT A47-0, ADDR31-0, RD, WR, SW, ACK, SBTS, IRQy2-0, FLAGy0, FLAG1, FLAGy2, HBG, CSy, DMAR1, DMAR2,  
BR6-1, RPBA, CPAy, T FS0, T FSy1, RFS0, RFSy1, LyxDAT 3-0, LyxCLK, LyxACK, EBOOT A, LBOOT A, EBOOT BCD, LBOOT BCD, BMSA, BMSBCD, T MS,  
T DI, T CK, HBR, DR0, DRy1, T CLK0, T CLKy1, RCLK0, RCLKy1.  
2 Applies to input pins: CLKIN, RESET, TRST.  
3 Applies to output and bidirectional pins: DAT A47-0, ADDR31-0, MS3-0 RD, WR, PAGE, ADRCLK, SW, ACK, FLAGy0, FLAG1, FLAGy2, T IMEXPy, HBG,  
REDY, DMAG1, DMAG2, BR6-1, CPAy, DT O, DT y1, T CLK0, T CLKy1, RCLK0, RCLKy1, T FS0, T FSy1, RFS0, RFSy1 LyxDAT 3-0, LyxCLK, LyxACK,  
BMSA, BMSBCD, T DO, EMU.  
4 See Output Drive Currents for typical drive current capabilities.  
5 Applies to input pins: SBTS, IRQy2-0, HBR, CSy, DMAR1, DMAR2, RPBA, EBOOT A, LBOOT A, EBOOT BCD, LBOOT BCD, CLKIN, RESET, T CK.  
6 Applies to input pins with internal pull-ups: DR0, DRy1, T DI.  
7Applies to bussed input pins with internal pull-ups: TRST, T MS.  
8 Applies to three-statable pins: DAT A47-0, ADDR31-0, MS3-0, RD, WR, PAGE, ADRCLK, SW, ACK, FLAGy0, FLAG1, FLAGy2, REDY, HBG, DMAG1, DMAG2,  
BMSA, BMSBCD, T DO, EMU. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID 2-0 = 001 and another ADSP-  
2106x is not requesting bus mastership. HBG AND EMU are not tested for leakage current.)  
9 Applies to three-statable pins with internal pull-ups: DT y1, T CLKy1, RCLKy1.  
10 Applies to ACK pin when pulled up. (Note that ACK is pulled up internally with 2 kduring reset in a multiprocessor system, when ID 2-0 = 001 and another  
ADSP-2106x is not requesting bus mastership.)  
11 Applies to three-statable pins with internal pull-downs: LyxDAT 3-0, LyxCLK, LyxACK.  
12 Applies to CPAy pin.  
13 Applies to ACK pin when keeper latch enabled.  
14 Applies to bused three-statable pins with internal pull-ups: DT 0, T CLK0, RCLK0.  
15 Applies to VDD pins. Conditions of operation: each processor executing radix-2 FFT butterfly with instruction in cache, one data operand fetched from each internal  
memory block, and one DMA transfer occurring from/to internal memory at t CK = 25 ns.  
16 Applies to VDD pins. Idle denotes AD14060/AD14060L state during execution of IDLE instruction.  
17 Applies to all signal pins.  
18 Guaranteed but not tested.  
19 Link and Serial Ports: All are 100% tested at die level prior to assembly. All are 100% ac tested at module level; Link-4 and Serial-0 are also dc tested at the module  
level. See T iming Specifications.  
Specifications subject to change without notice.  
REV. A  
–14–  
AD14060/AD14060L  
ABSO LUTE MAXIMUM RATINGS*  
Supply Voltage (5 V) . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Supply Voltage (3.3 V) . . . . . . . . . . . . . . . . –0.3 V to +4.6 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Output Voltage Swing . . . . . . . . . . . . . –0.5 V to VDD + 0.5 V  
Load Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 pF  
Junction T emperature Under Bias . . . . . . . . . . . . . . . . 130°C  
Storage T emperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (5 seconds) . . . . . . . . . . . . . . . . . +280°C  
*Stresses greater than those listed above may cause permanent damage to the  
device. T hese are stress ratings only; functional operation of the device at these  
or any other conditions greater than those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
ESD SENSITIVITY  
T he AD14060/AD14060L modules are ESD (electrostatic discharge) sensitive devices. Electro-  
static charges readily accumulate on the human body and equipment and can discharge without  
detection. Permanent damage may occur to devices subjected to high energy electrostatic  
discharges.  
WARNING!  
T he ADSP-21060 processors include proprietary ESD protection circuitry to dissipate high  
energy discharges. Per method 3015 of MIL-ST D-883, the ADSP-21060 processors have been  
classified as a Class 2 device.  
ESD SENSITIVE DEVICE  
Proper ESD precautions are recommended to avoid performance degradation or loss of function-  
ality. Unused devices must be stored in conductive foam or shunts, and the foam should be  
discharged to the destination socket before devices are removed.  
an individual device, the values given in this data sheet reflect  
statistical variations and worst cases. Consequently, you cannot  
meaningfully add parameters to derive longer times.  
TIMING SPECIFICATIONS  
GENERAL NO TES  
T his data sheet represents production released specifications for  
the AD14060 (5 V), and for the AD14060L (3.3 V). T he  
ADSP-21060 die components are 100% tested, and the assembled  
AD14060/AD14060L units are again extensively tested at-  
speed, and across-temperature. Parametric limits were estab-  
lished from the ADSP-21060 characterization followed by  
further design/analysis of the AD14060/AD14060L package  
characteristics. T he specifications shown are based on a CLKIN  
frequency of 40 MHz (tCK = 25 ns). T he DT derating allows  
specifications at other CLKIN frequencies (within the min-max  
range of the tCK specification; see “Clock Input” below). DT is the  
difference between the actual CLKIN period and a CLKIN period  
of 25 ns:  
Switching Characteristics specify how the processor changes its  
signals. You have no control over this timing—circuitry external  
to the processor must be designed for compatibility with these  
signal characteristics. Switching characteristics tell you what the  
processor will do in a given circumstance. You can also use  
switching characteristics to ensure that any timing requirement  
of a device connected to the processor (such as memory) is  
satisfied.  
Timing Requirements apply to signals that are controlled by cir-  
cuitry external to the processor, such as the data input for a read  
operation. T iming requirements guarantee that the processor  
operates correctly with other devices.  
DT = tCK – 25 ns  
(O/D) = Open Drain  
(A/D) = Active Drain  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results for  
REV. A  
–15–  
AD14060/AD14060L  
40 MH z5 V  
Max  
40 MH z3.3 V  
P aram eter  
Min  
Min  
Max  
Units  
Clock Input  
Timing Requirements:  
tCK  
CLKIN Period  
25  
7
5
100  
3
25  
8.75  
5
100  
3
ns  
ns  
ns  
ns  
tCKL  
tCKH  
tCKRF  
CLKIN Width Low  
CLKIN Width High  
CLKIN Rise/Fall (0.4 V–2.0 V)  
tCK  
CLKIN  
tCKH  
tCKL  
Figure 9. Clock Input  
5 V  
3.3 V  
P aram eter  
Reset  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tWRST  
tSRST  
RESET Pulsewidth Low1  
4tCK  
4tCK  
14 + DT /2  
ns  
ns  
RESET Setup Before CLKIN High2 14 + DT /2  
tCK  
tCK  
NOT ES  
1Applies after the power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 2000 CLKIN cycles while RESET is  
low, assuming stable VDD and CLKIN (not including start-up time of external clock oscillator).  
2Only required if multiple ADSP-2106xs must come out of reset synchronous to CLKIN with program counters (PC) equal (i.e., for a SIMD system). Not required  
for multiple ADSP-2106xs communicating over the shared bus (through the external port), because the bus arbitration logic automatically synchronizes itself after reset.  
CLKIN  
tSRST  
tWRST  
RESET  
Figure 10. Reset  
5 V  
3.3 V  
P aram eter  
Min  
Max  
Min  
Max  
Units  
Inter r upts  
Timing Requirements:  
tSIR  
tHIR  
tIPW  
IRQ2-0 Setup Before CLKIN High1  
18 + 3DT /4  
2 + tCK  
18 + 3DT /4  
2 + tCK  
ns  
ns  
ns  
IRQ2-0 Hold Before CLKIN High1  
IRQ2-0 Pulsewidth2  
11.5 + 3DT /4  
11.5 + 3DT /4  
NOT ES  
1Only required for IRQx recognition in the following cycle.  
2Applies only if tSIR and tHIR requirements are not met.  
CLKIN  
tSIR  
tHIR  
IRQ2-0  
tIPW  
Figure 11. Interrupts  
–16–  
REV. A  
AD14060/AD14060L  
5 V  
3.3 V  
P aram eter  
Min  
Max  
Min  
Max  
Units  
Tim er  
Switching Characteristic:  
tDT EX  
CLKIN High to T IMEXP  
16  
16  
ns  
CLKIN  
tDTEX  
tDTEX  
TIMEXP  
Figure 12. Tim er  
5 V  
3.3 V  
P aram eter  
Flags  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tSFI  
tHFI  
tDWRFI  
tHFIWR  
FLAG2-0IN Setup Before CLKIN High1  
FLAG2-0IN Hold After CLKIN High1  
FLAG2-0IN Delay After RD/WR Low1  
FLAG2-0IN Hold After RD/WR Deasserted1  
8 + 5DT /16  
0.5 – 5DT /16  
8 + 5DT /16  
0.5 – 5DT /16  
ns  
ns  
ns  
ns  
4.5 + 7DT /16  
4.5 + 7DT /16  
0.5  
0.5  
Switching Characteristics:  
tDFO  
tHFO  
tDFOE  
tDFOD  
FLAG2-0OUT Delay After CLKIN High  
17  
15  
17  
15  
ns  
ns  
ns  
ns  
FLAG2-0OUT Hold After CLKIN High  
CLKIN High to FLAG2-0OUT Enable  
CLKIN High to FLAG2-0OUT Disable  
4
3
4
3
NOT E  
1Flag inputs meeting these setup and hold times will affect conditional instructions in the following instruction cycle.  
CLKIN  
tDFOE  
tDFO  
tDFO  
tDFOD  
tHFO  
FLAG2–0  
OUT  
FLAG OUTPUT  
CLKIN  
tHFI  
tSFI  
FLAG2–0  
IN  
tHFIWR  
tDWRFI  
RD, WR  
FLAG INPUT  
Figure 13. Flags  
REV. A  
–17–  
AD14060/AD14060L  
Mem or y ReadBus Master  
These switching characteristics also apply for bus master syn-  
chronous read/write timing (see Synchronous Read/Write – Bus  
Master below). If these timing requirements are met, the syn-  
chronous read/write timing can be ignored (and vice versa).  
Use these specifications for asynchronous interfacing to memo-  
ries (and memory-mapped peripherals) without reference to  
CLKIN. T hese specifications apply when the AD14060/  
AD14060L is the bus master accessing external memory space.  
5 V  
3.3 V  
P aram eter  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tDAD  
tDRLD  
tHDA  
tHDRH  
tDAAK  
tDSAK  
Address, Delay to Data Valid1, 4  
17.5 + DT + W  
11.5 + 5DT/8 + W  
17.5 + DT + W  
11.5 + 5DT/8 + W ns  
ns  
RD Low to Data Valid1  
Data Hold from Address2  
Data Hold from RD High2  
ACK Delay from Address3, 4  
ACK Delay from RD Low3  
1
2.5  
1
2.5  
ns  
ns  
13.5 + 7DT/8 + W  
7.5 + DT /2 + W  
13.5 + 7DT/8 + W ns  
7.5 + DT/2 + W  
ns  
Switching Characteristics:  
tDRHA  
tDARL  
tRW  
Address Hold After RD High  
–0.5 + H  
1.5 + 3DT /8  
12.5 + 5DT/8 + W  
8 + 3DT /8 + HI  
–0.5 + H  
ns  
ns  
ns  
ns  
ns  
Address to RD Low4  
1.5 + 3DT /8  
12.5 + 5DT/8 + W  
8 + 3DT /8 + HI  
–0.5 + DT /4  
RD Pulsewidth  
RD High to WR, RD, DMAGx Low  
tRWR  
tSADADC Address Setup Before ADRCLK High4 –0.5 + DT /4  
W = (number of wait states specified in WAIT register) × tCK.  
HI = tCK (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).  
H = tCK (if an address hold cycle occurs as specified in WAIT register; otherwise H = 0).  
NOT ES  
1Data Delay/Setup: User must meet tDAD or tDRLD or synchronous spec tSSDAT I  
.
2Data Hold: User must meet tHDA or tHDRH or synchronous spec tHDAT I. See System Hold T ime Calculation under T est Conditions for the calculation of hold times  
given capacitive and dc loads.  
3ACK Delay/Setup: User must meet tDSAK or tDAAK or synchronous specification tSACKC  
.
4For MSx, SW, BMS, the falling edge is referenced.  
ADDRESS  
MSx, SW  
BMS  
tDRHA  
tDARL  
tRW  
RD  
tHDA  
tHDRH  
tDRLD  
tDAD  
DATA  
tDSAK  
tRWR  
tDAAK  
ACK  
WR, DMAG  
tSADADC  
ADRCLK  
(OUT)  
Figure 14. Mem ory Read—Bus Master  
REV. A  
–18–  
AD14060/AD14060L  
Mem or y Wr ite—Bus Master  
These switching characteristics also apply for bus master syn-  
chronous read/write timing (see Synchronous Read/Write–Bus  
Master). If these timing requirements are met, the synchronous  
read/write timing can be ignored (and vice versa).  
Use these specifications for asynchronous interfacing to memo-  
ries (and memory-mapped peripherals) without reference to  
CLKIN. T hese specifications apply when the AD14060/  
AD14060L is the bus master accessing external memory space.  
5 V  
3.3 V  
P aram eter  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tDAAK  
tDSAK  
ACK Delay from Address, Selects1, 2  
13.5 + 7DT/8 + W  
7.5 + DT /2 + W  
13.5 + 7DT/8 + W ns  
ACK Delay from WR Low1  
7.5 + DT /2 + W  
ns  
Switching Characteristics:  
tDAWH  
tDAWL  
tWW  
tDDWH  
tDWHA  
Address, Selects to WR Deasserted2  
16.5 + 15DT/16 + W  
2.5 + 3DT /8  
16.5 + 15DT/16 + W  
2.5 + 3DT /8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address, Selects to WR Low2  
WR Pulsewidth  
12 + 9DT/16 + W  
6.5 + DT /2 + W  
–1 + DT/16 + H  
0.5 + DT/16 + H  
7.5 + 7DT/16 + H  
4.5 + 3DT /8 + I  
–1.5 + DT /16  
12 + 9DT/16 + W  
6.5 + DT /2 + W  
–1 + DT/16 + H  
0.5 + DT/16 + H  
7.5 + 7DT/16 + H  
4.5 + 3DT /8 + I  
–1.5 + DT /16  
Data Setup before WR High  
Address Hold after WR Deasserted  
tDAT RWH Data Disable after WR Deasserted3  
tWWR  
tDDWR  
tWDE  
tSADADC  
6.5 + DT/16 + H  
6.5 + DT/16 + H  
WR High to WR, RD, DMAGx Low  
Data Disable before WR or RD Low  
WR Low to Data Enabled  
Address, Selects to ADRCLK High2  
–0.5 + DT /4  
–0.5 + DT /4  
W = (number of wait states specified in WAIT register) × tCK  
.
H = tCK (if an address hold cycle occurs, as specified in WAIT register; otherwise H = 0).  
I = tCK (if a bus idle cycle occurs, as specified in WAIT register; otherwise I = 0).  
NOT ES  
1ACK Delay/Setup: User must meet tDAAK or tDSAK or synchronous specification tSACKC  
2For MSx, SW, BMS, the falling edge is referenced.  
.
3See System Hold T ime Calculation under T est Conditions for calculation of hold times given capacitive and dc loads.  
ADDRESS  
MSx , SW  
BMS  
tDWHA  
tDAWH  
tWW  
tDAWL  
WR  
tWWR  
tDDWR  
tDDWH  
tWDE  
tDATRWH  
DATA  
tDSAK  
tDAAK  
ACK  
RD , DMAG  
tSADADC  
ADRCLK  
(OUT)  
Figure 15. Mem ory Write—Bus Master  
REV. A  
–19–  
AD14060/AD14060L  
Synchr onous Read/Wr ite—Bus Master  
When accessing a slave ADSP-2106x, these switching character-  
istics must meet the slave’s timing requirements for synchronous  
read/writes (see Synchronous Read/Write—Bus Slave). T he  
slave ADSP-2106x must also meet these (bus master) timing  
requirements for data and acknowledge setup and hold times.  
Use these specifications for interfacing to external memory  
systems that require CLKIN—relative timing or for accessing a  
slave ADSP-2106x (in multiprocessor memory space). T hese  
synchronous switching characteristics are also valid during asyn-  
chronous memory reads and writes (see Memory Read—Bus  
Master and Memory Write—Bus Master).  
5 V  
Max  
3.3 V  
Max  
P aram eter  
Min  
Min  
Units  
Timing Requirements:  
tSSDAT I  
tHSDAT I  
tDAAK  
tSACKC  
tHACKC  
Data Setup Before CLKIN  
Data Hold After CLKIN  
3 + DT /8  
4 – DT /8  
3 + DT /8  
4 – DT /8  
ns  
ns  
ACK Delay After Address, MSx, SW, BMS1, 2  
ACK Setup Before CLKIN2  
ACK Hold After CLKIN  
13.5 + 7 DT/8 + W  
13.5 + 7 DT/8 + W ns  
6.5 + DT /4  
–0.5 – DT /4  
6.5 + DT /4  
–0.5 – DT /4  
ns  
ns  
Switching Characteristics:  
tDADRO  
tHADRO  
tDPGC  
tDRDO  
tDWRO  
Address, MSx, BMS, SW Delay After CLKIN1  
8 – DT /8  
8 – DT /8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address, MSx, BMS, SW Hold After CLKIN  
PAGE Delay After CLKIN  
RD High Delay After CLKIN  
WR High Delay After CLKIN  
RD/WR Low Delay After CLKIN  
Data Delay After CLKIN  
–1 – DT /8  
9 + DT /8  
–2 – DT /8  
–1 – DT /8  
9 + DT /8  
–2 – DT /8  
17 + DT /8  
5 – DT /8  
–3 – 3DT /16 5 – 3DT /16  
17 + DT /8  
5 – DT /8  
–3 – 3DT /16 5 – 3DT /16  
tDRWL  
8 + DT /4  
13.5 + DT /4  
20 + 5DT /16  
8 – DT /8  
8 + DT /4  
13.5 + DT /4  
20 + 5DT /16  
8 – DT /8  
tSDDAT O  
tDAT T R  
tDADCCK  
tADRCK  
tADRCKH  
tADRCKL  
Data Disable After CLKIN 3  
ADRCLK Delay After CLKIN  
ADRCLK Period  
ADRCLK Width High  
ADRCLK Width Low  
0 – DT /8  
4 + DT /8  
tCK  
(tCK/2 – 2)  
(tCK/2 – 2)  
0 – DT /8  
4 + DT /8  
tCK  
(tCK/2 – 2)  
(tCK/2 – 2)  
11 + DT /8  
11 + DT /8  
W = (number of Wait states specified in WAIT register) × tCK  
.
NOT ES  
1For MSx, SW, BMS, the falling edge is referenced.  
2ACK Delay/Setup: User must meet tDAAK or tDSAK or synchronous specification tSACKC  
.
3See System Hold T ime Calculation under T est Conditions for calculation of hold times given capacitive and dc loads.  
REV. A  
–20–  
AD14060/AD14060L  
CLKIN  
tADRCK  
tADRCKL  
tADRCKH  
tDADCCK  
ADRCLK  
tHADRO  
tDAAK  
tDADRO  
ADDRESS  
SW  
tDPGC  
PAGE  
tHACKC  
tSACKC  
ACK  
(IN)  
READ CYCLE  
tDRWL  
tDRDO  
RD  
tHSDATI  
tSSDATI  
DATA  
(IN)  
WRITE CYCLE  
tDWRO  
tDRWL  
WR  
tDATTR  
tSDDATO  
DATA  
(OUT)  
Figure 16. Synchronous Read/Write—Bus Master  
REV. A  
–21–  
AD14060/AD14060L  
Synchr onous Read/Wr ite —Bus Slave  
T he bus master must meet these (bus slave) timing requirements.  
Use these specifications for bus master accesses of a slave’s IOP  
registers or internal memory (in multiprocessor memory space).  
5 V  
3.3 V  
P aram eter  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tSADRI  
tHADRI  
tSRWLI  
tHRWLI  
tRWHPI  
tSDAT WH  
tHDAT WH  
Address, SW Setup Before CLKIN  
15.5 + DT /2  
9.5 + 5DT /16  
–3.5 – 5DT /16 8 + 7DT /16  
3
15.5 + DT /2  
9.5 + 5DT /16  
–3.5 – 5DT /16 8 + 7DT /16  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address, SW Hold Before CLKIN  
RD/WR Low Setup Before CLKIN1  
RD/WR Low Hold After CLKIN  
RD/WR Pulse High  
Data Setup Before WR High  
Data Hold After WR High  
4.5 + DT /2  
4.5 + DT /2  
5.5  
1.5  
5.5  
1.5  
Switching Characteristics:  
tSDDAT O  
tDAT T R  
tDACKAD  
tACKT R  
Data Delay After CLKIN  
20 + 5DT /16  
8 – DT /8  
10  
20 + 5DT /16  
8 – DT /8  
10  
ns  
ns  
ns  
ns  
Data Disable After CLKIN2  
ACK Delay After Address, SW3  
ACK Disable After CLKIN3  
0 – DT /8  
0 – DT /8  
–1 – DT /8  
7 – DT /8  
–1 – DT /8  
7 – DT /8  
NOT ES  
1tSRWLI (min) = 9.5 + 5DT /16 when Multiprocessor Memory Space Wait State (MMSWS bit in WAIT register) is disabled; when MMSWS is enabled,  
tSRWLI (min) = 4 + DT /8.  
2See System Hold T ime Calculation under T est Conditions for calculation of hold times given capacitive and dc loads.  
3tDACKAD is true only if the address and SW inputs have setup times (before CLKIN) greater than 10.5 + DT/8 and less than 18.5 + 3DT/4. If the address and SW inputs have  
setup times greater than 19 + 3DT /4, then ACK is valid 15 + DT /4 (max) after CLKIN. A slave that sees an address with an M field match will respond with ACK  
regardless of the state of MMSWS or strobes. A slave will three-state ACK every cycle with t ACKT R  
.
CLKIN  
tSADRI  
tHADRI  
ADDRESS  
SW  
tDACKAD  
tACKTR  
ACK  
READ ACCESS  
tSRWLI  
tHRWLI  
tRWHPI  
RD  
tSDDATO  
tDATTR  
DATA  
(OUT)  
WRITE ACCESS  
tRWHPI  
tSRWLI  
tHRWLI  
WR  
tHDATWH  
tSDATWH  
DATA  
(IN)  
Figure 17. Synchronous Read/Write —Bus Slave  
REV. A  
–22–  
AD14060/AD14060L  
Multipr ocessor Bus Request and H ost Bus Request  
Use these specifications for passing of bus mastership between  
multiprocessing ADSP-2106x’s (BRx) or a host processor  
(HBR, HBG).  
5 V  
3.3 V  
P aram eter  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tHBGRCSV HBG Low to RD/WR/CS Valid1  
19.5 + 5DT/4  
13.5 + 3DT/4  
5.5 + DT/2  
19.5 + 5DT/4 ns  
tSHBRI  
tHHBRI  
tSHBGI  
tHHBGI  
tSBRI  
HBR Setup Before CLKIN2  
20 + 3DT/4  
13 + DT/2  
13 + DT/2  
20 + 3DT/4  
20 + 3DT/4  
13 + DT/2  
13 + DT/2  
20 + 3DT/4  
ns  
13.5 + 3DT/4 ns  
ns  
HBR Hold Before CLKIN2  
HBG Setup Before CLKIN  
HBG Hold Before CLKIN High  
BRx, CPA Setup Before CLKIN3  
BRx, CPA Hold Before CLKIN High  
RPBA Setup Before CLKIN  
RPBA Hold Before CLKIN  
5.5 + DT/2  
ns  
ns  
ns  
ns  
tHBRI  
5.5 + DT/2  
5.5 + DT/2  
tSRPBAI  
tHRPBAI  
11.5 + 3DT/4  
11.5 + 3DT/4 ns  
Switching Characteristics:  
tDHBGO  
tHHBGO  
tDBRO  
HBG Delay After CLKIN  
HBG Hold After CLKIN  
BRx Delay After CLKIN  
BRx Hold After CLKIN  
CPA Low Delay After CLKIN  
CPA Disable After CLKIN  
8 – DT/8  
8 – DT/8  
8 – DT/8  
8 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
–2 – DT/8  
–2 – DT/8  
tHBRO  
–2 – DT/8  
–2 – DT/8  
tDCPAO  
tTRCPA  
tDRDYCS  
tTRDYHG  
tARDYTR  
9 – DT/8  
5.5 – DT/8  
9.5  
9 – DT/8  
5.5 – DT/8  
10.25  
–2 – DT/8  
–2 – DT/8  
REDY (O/D) or (A/D) Low from CS and HBR Low4  
REDY (O/D) Disable or REDY (A/D) High from HBG4  
REDY (A/D) Disable from CS or HBR High4  
44 + 27DT/16  
44 + 27DT/16  
11  
11  
NOT ES  
1For first asynchronous access after HBR and CS asserted, ADDR31–0 must be a non-MMS value 1/2 tCK before RD or WR goes low or by tHBGRCSV after HBG goes  
low. T his is easily accomplished by driving an upper address signal high when HBG is asserted.  
2Only required for recognition in the current cycle.  
3CPA assertion must meet the setup to CLKIN; deassertion does not need to meet the setup to CLKIN.  
4(O/D) = open drain, (A/D) = active drive.  
REV. A  
–23–  
AD14060/AD14060L  
CLKIN  
tSHBRI  
tHHBRI  
HBR  
tDHBGO  
tHHBGO  
HBG  
(OUT)  
tDBRO  
tHBRO  
BRx  
(OUT)  
tDCPAO  
tTRCPA  
CPA (OUT)  
(O/D)  
tSHBGI  
tHHBGI  
HBG (IN)  
tSBRI  
tHBRI  
BRx (IN)  
CPA (IN) (O/D)  
HBR  
CS  
tTRDYHG  
tDRDYCS  
REDY (O/D)  
REDY (A/D)  
HBG (OUT)  
tARDYTR  
tHBGRCSV  
RD  
WR  
CS  
tSRPBAI  
tHRPBAI  
RPBA  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
HBG WILL BE DELAYED BY n CLOCK CYCLES WHEN WAIT STATES OR BUS LOCK ARE IN EFFECT.  
Figure 18. Multiprocessor Bus Request and Host Bus Request  
REV. A  
–24–  
AD14060/AD14060L  
Asynchr onous Read/Wr ite—H ost to AD 14060/AD 14060L  
Use these specifications for asynchronous host processor accesses  
of an AD14060/AD14060L, after the host has asserted CS and  
HBR (low). After HBG is returned by the AD14060/  
AD14060L, the host can drive the RD and WR pins to access  
the AD14060/AD14060Ls internal memory or IOP registers.  
HBR and HBG are assumed low for this timing.  
5 V  
3.3 V  
P aram eter  
Min  
Max  
Min  
Max  
Units  
Read Cycle  
Timing Requirements:  
tSADRDL  
tHADRDH  
tWRWH  
tDRDHRDY  
tDRDHRDY  
Address Setup/CS Low Before RD Low1  
Address Hold/CS Hold Low After RD  
RD/WR High Width  
RD High Delay After REDY (O/D) Disable  
RD High Delay After REDY (A/D) Disable  
0.5  
0.5  
6
0.5  
0.5  
0.5  
0.5  
6
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
Switching Characteristics:  
tSDATRDY  
tDRDYRDL  
tRDYPRD  
Data Valid Before REDY Disable from Low  
1.5  
1.5  
ns  
ns  
ns  
ns  
REDY (O/D) or (A/D) Low Delay After RD Low  
REDY (O/D) or (A/D) Low Pulsewidth for Read  
Data Disable After RD High  
11  
9
11.5  
9.5  
45 + DT  
1.5  
45 + DT  
1.5  
tHDARWH  
Write Cycle  
Timing Requirements:  
tSCSWRL  
tHCSWRH  
tSADWRH  
tHADWRH  
tWWRL  
CS Low Setup Before WR Low  
0.5  
0.5  
5.5  
2.5  
7
0.5  
0.5  
5.5  
2.5  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS Low Hold After WR High  
Address Setup Before WR High  
Address Hold After WR High  
WR Low Width  
tWRWH  
RD/WR High Width  
6
6
tDWRHRDY  
tSDATWH  
tHDATWH  
WR High Delay After REDY (O/D) or (A/D) Disable  
Data Setup Before WR High  
Data Hold After WR High  
0.5  
5.5  
1.5  
0.5  
5.5  
1.5  
Switching Characteristics:  
tDRDYWRL  
tRDYPWR  
tSRDYCK  
REDY (O/D) or (A/D) Low Delay After WR/CS Low  
REDY (O/D) or (A/D) Low Pulsewidth for Write  
REDY (O/D) or (A/D) Disable to CLKIN  
11  
11.5  
ns  
ns  
ns  
15  
15  
1 + 7DT/16  
9 + 7DT/16  
0 + 7DT/16  
8 + 7DT/16  
NOT E  
1Not required if RD and address are valid tHBGRCSV after HBG goes low. For first access after HBR asserted, ADDR31–0 must be a non-MMS value 1/2 tCLK before RD  
or WR goes low or by tHBGRCSV after HBG goes low. T his is easily accomplished by driving an upper address signal high when HBG is asserted. For address bits to be  
driven during asynchronous host accesses, see T able 8.2 of the ADSP-2106x SHARC User’s Manual.  
CLKIN  
tSRDYCK  
REDY (O/D)  
REDY (A/D)  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
Figure 19a. Synchronous REDY Tim ing  
REV. A  
–25–  
AD14060/AD14060L  
READ CYCLE  
ADDRESS/CS  
tHADRDH  
tSADRDL  
tWRWH  
RD  
tHDARWH  
DATA (OUT)  
tDRDHRDY  
tSDATRDY  
tRDYPRD  
tDRDYRDL  
REDY (O/D)  
REDY (A/D)  
WRITE CYCLE  
ADDRESS  
tHADWRH  
tSADWRH  
tHCSWRH  
tSCSWRL  
CS  
tWWRL  
tWRWH  
WR  
tHDATWH  
tSDATWH  
DATA (IN)  
tDWRHRDY  
tRDYPWR  
tDRDYWRL  
REDY (O/D)  
REDY (A/D)  
O/D = OPEN DRAIN, A/D = ACTIVE DRIVE  
Figure 19b. Asynchronous Read/Write—Host to ADSP-2106x  
REV. A  
–26–  
AD14060/AD14060L  
Thr ee-State Tim ingBus Master , Bus Slave,  
,
T hese specifications show how the memory interface is disabled  
(stops driving) or enabled (resumes driving) relative to CLKIN  
and the SBTS pin. T his timing is applicable to bus master tran-  
sition cycles (BT C) and host transition cycles (HT C) as well as  
the SBTS pin.  
5 V  
3.3 V  
P aram eter  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tST SCK  
tHT SCK  
SBTS Setup Before CLKIN  
SBTS Hold Before CLKIN  
12 + DT /2  
12 + DT /2  
ns  
ns  
5.5 + DT /2  
5.5 + DT /2  
Switching Characteristics:  
tMIENA  
tMIENS  
Address/Select Enable After CLKIN  
–1.5 – DT /8  
–1.5 – DT /8  
–1.5 – DT /8  
–1.25 – DT /8  
–1.5 – DT /8  
–1.5 – DT /8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Strobes Enable After CLKIN1  
HBG Enable After CLKIN  
tMIENHG  
tMIT RA  
tMIT RS  
Address/Select Disable After CLKIN  
Strobes Disable After CLKIN1  
HBG Disable After CLKIN  
1 – DT /4  
2.5 – DT /4  
3 – DT /4  
1 – DT /4  
2.5 – DT /4  
3 – DT /4  
tMIT RHG  
tDAT EN  
tDAT T R  
tACKEN  
tACKT R  
tADCEN  
tADCT R  
tMT RHBG  
tMENHBG  
Data Enable After CLKIN2  
9 + 5DT /16  
0 – DT /8  
7.5 + DT /4  
–1 – DT /8  
–2 – DT /8  
9 + 5DT /16  
0 – DT /8  
7.5 + DT /4  
–1 – DT /8  
–2 – DT /8  
Data Disable After CLKIN2  
8 – DT /8  
7 – DT /8  
9 – DT /4  
8 – DT /8  
7 – DT /8  
9 – DT /4  
ACK Enable After CLKIN2  
ACK Disable After CLKIN2  
ADRCLK Enable After CLKIN  
ADRCLK Disable After CLKIN  
Memory Interface Disable Before HBG Low3  
Memory Interface Enable After HBG High3  
–1 + DT /8  
18.5 + DT  
–1 + DT /8  
18.5 + DT  
NOT ES  
1Strobes = RD, WR, SW, PAGE, DMAG.  
2In addition to bus master transition cycles, these specs also apply to bus master and bus slave synchronous read/write.  
3Memory Interface = Address, RD, WR, MSx, SW, HBG, PAGE, DMAGx, BMS (in EPROM boot mode).  
CLKIN  
tSTSCK  
tHTSCK  
SBTS  
tMITRA, tMITRS, tMITRHG  
tMIENA, tMIENS, tMIENHG  
MEMORY  
INTERFACE  
tDATTR  
tDATEN  
DATA  
tACKTR  
tACKEN  
ACK  
ADRCLK  
HBG  
tADCEN  
tADCTR  
tMTRHBG  
tMENHBG  
MEMORY  
INTERFACE  
MEMORY INTERFACE = ADDRESS, RD, WR, MSx, SW, HBG, PAGE, DMAGx. BMS (IN EPROM BOOT MODE)  
Figure 20. Three-State Tim ing  
REV. A  
–27–  
AD14060/AD14060L  
D MA H andshake  
transfer is controlled by ADDR31-0, RD, WR, MS3-0, and ACK  
(not DMAG). For Paced Master mode, the “Memory Read–Bus  
Master”, “Memory Write–Bus Master”, and “Synchronous  
T hese specifications describe the three DMA handshake modes.  
In all three modes DMAR is used to initiate transfers. For hand-  
shake mode, DMAG controls the latching or enabling of data  
externally. For external handshake mode, the data transfer is  
Read/Write–Bus Master” timing specifications for ADDR31-0  
,
RD, WR, MS3-0, SW, PAGE, DAT A47-0, and ACK also apply.  
controlled by the ADDR31-0, RD, WR, SW, PAGE, MS3-0  
,
ACK, and DMAG signals. For Paced Master mode, the data  
5 V  
3.3 V  
P aram eter  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tSDRLC  
tSDRHC  
tWDR  
tSDAT DGL  
tHDAT IDG  
tDAT DRH  
tDMARLL  
tDMARH  
DMARx Low Setup Before CLKIN 1  
5
5
6
5
5
6
ns  
ns  
ns  
ns  
ns  
DMARx High Setup Before CLKIN 1  
DMARx Width Low (Nonsynchronous)  
Data Setup After DMAGx Low2  
Data Hold After DMAGx High  
Data Valid After DMAGx High2  
DMAGx Low Edge to Low Edge  
DMAGx Width High  
9.5 + 5DT /8  
15.5 + 7DT /8  
9.5 + 5DT /8  
2.5  
2.5  
15.5 + 7DT /8 ns  
23 + 7DT /8  
6
23 + 7DT /8  
6
ns  
ns  
Switching Characteristics:  
tDDGL  
tWDGH  
tWDGL  
tHDGC  
tVDAT DGH  
tDAT RDGH  
tDGWRL  
tDGWRH  
tDGWRR  
tDGRDL  
tDRDGH  
tDGRDR  
tDGWR  
DMAGx Low Delay After CLKIN  
DMAGx High Width  
DMAGx Low Width  
9 + DT /4  
16 + DT/4  
7 – DT/8  
9 + DT /4  
6 + 3DT /8  
12 + 5DT /8  
–2 – DT /8  
7.5 + 9DT /16  
–0.5  
16 + DT/4  
7 – DT/8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6 + 3DT /8  
12 + 5DT /8  
–2 – DT /8  
7.5 + 9DT /16  
–0.5  
DMAGx High Delay After CLKIN  
Data Valid Before DMAGx High3  
Data Disable After DMAGx High4  
WR Low Before DMAGx Low  
DMAGx Low Before WR High  
WR High Before DMAGx High  
RD Low Before DMAGx Low  
RD Low Before DMAGx High  
RD High Before DMAGx High  
DMAGx High to WR, RD, DMAGx Low  
Address/Select Valid to DMAGx High  
Address/Select Hold after DMAGx High  
8
2.5  
8
2.5  
–0.5  
–0.5  
9.5 + 5DT/8 + W  
0.5 + DT /16  
–0.5  
10.5 + 9DT/16 + W  
–0.5  
4.5 + 3DT/8 + HI  
16 + DT  
–1  
9.5 + 5DT/8 + W  
0.5 + DT /16  
–0.5  
10.5 + 9DT/16 + W  
–0.5  
4.5 + 3DT/8 + HI  
16 + DT  
–1  
3.5 + DT/16  
2
3.5 + DT/16  
2
3.5  
3.5  
tDADGH  
tDDGHA  
W = (number of wait states specified in WAIT register) × tCK  
.
HI = tCK (if an address hold cycle or bus idle cycle occurs, as specified in WAIT register; otherwise HI = 0).  
NOT ES  
1Only required for recognition in the current cycle.  
2tSDAT DGL is the data setup requirement if DMARx is not being used to hold off completion of a write. Otherwise, if DMARx low holds off completion of the write, the  
data can be driven tDAT DRH after DMARx is brought high.  
3tVDAT DGH is valid if DMARx is not being used to hold off completion of a read. If DMARx is used to prolong the read, then tVDAT DGH = 7.5 + 9DT /16 + (n × tCK  
where n equals the number of extra cycles that the access is prolonged.  
)
4See System Hold T ime Calculation under T est Conditions for calculation of hold times given capacitive and dc loads.  
REV. A  
–28–  
AD14060/AD14060L  
CLKIN  
tSDRLC  
tDMARLL  
tSDRHC  
tWDR  
tDMARH  
DMARx  
DMAGx  
tHDGC  
tDDGL  
tWDGL  
tWDGH  
TRANSFERS BETWEEN ADSP-2106x INTERNAL MEMORY AND EXTERNAL DEVICE  
tDATRDGH  
tVDATDGH  
DATA (FROM  
ADSP-2106x TO  
EXTERNAL DRIVE)  
tDATDRH  
tHDATIDG  
tSDATDGL  
DATA (FROM  
EXTERNAL DRIVE  
TO ADSP-2106x)  
TRANSFERS BETWEEN EXTERNAL DEVICE AND EXTERNAL MEMORY* (EXTERNAL HANDSHAKE MODE)  
tDGWRL  
WR  
tDGWRH  
tDGWRR  
(EXTERNAL DEVICE  
TO EXTERNAL  
MEMORY)  
tDGRDR  
tDGRDL  
RD  
(EXTERNAL  
MEMORY TO  
EXTERNAL DEVICE)  
tDRDGH  
tDADGH  
tDDGHA  
ADDRESS  
MS , SW  
X
*
“MEMORY READ – BUS MASTER,” “MEMORY WRITE – BUS MASTER,” AND “SYNCHRONOUS READ/WRITE – BUS MASTER”  
TIMING SPECIFICATIONS FOR ADDR  
, RD, WR, SW, MS AND ACK ALSO APPLY HERE.  
31–0  
3-0  
Figure 21. DMA Handshake Tim ing  
REV. A  
–29–  
AD14060/AD14060L  
Link P or ts: 1 × CLK Speed O per ation  
P aram eter  
5 V  
3.3 V  
Min  
Max  
Min  
Max  
Units  
Receive  
Timing Requirements:  
tSLDCL  
tHLDCL  
tLCLKIW  
tLCLKRWL  
tLCLKRWH  
Data Setup Before LCLK Low  
Data Hold After LCLK Low  
LCLK Period (1 × Operation)  
LCLK Width Low  
3.5  
3
tCK  
6
3
3
tCK  
6
5
ns  
ns  
ns  
ns  
ns  
LCLK Width High  
5
Switching Characteristics:  
tDLAHC  
tDLALC  
tENDLK  
tT DLK  
LACK High Delay After CLKIN High  
18 + DT /2  
–3  
5 + DT /2  
29.5 + DT /2  
13.5  
18 + DT /2  
–3  
5 + DT /2  
29.5 + DT /2  
13.5  
ns  
ns  
ns  
ns  
LACK Low Delay After LCLK High1  
LACK Enable from CLKIN  
LACK Disable from CLKIN  
21 + DT /2  
21 + DT /2  
Tr ansm it  
Timing Requirements:  
tSLACH LACK Setup Before LCLK High  
tHLACH LACK Hold After LCLK High  
18  
–7  
20  
–7  
ns  
ns  
Switching Characteristics:  
tDLCLK  
LCLK Delay After CLKIN (1 × Operation)  
16.5  
3.5  
17.5  
3
ns  
ns  
ns  
ns  
ns  
tDLDCH  
tHLDCH  
tLCLKT WL  
tLCLKT WH  
tDLACLK  
tENDLK  
tT DLK  
Data Delay After LCLK High  
Data Hold After LCLK High  
LCLK Width Low  
–3  
–3  
(tCK/2) – 2  
(tCK/2) – 2  
(tCK/2) + 8.5  
5 + DT /2  
(tCK/2) + 2  
(tCK/2) + 2  
(3 × tCK/2) + 17.5 (tCK/2) + 8  
5 + DT /2  
(tCK/2) – 1  
(tCK/2) + 1.25  
(tCK/2) – 1.25 (tCK/2) + 1  
LCLK Width High  
LCLK Low Delay After LACK High  
LDAT , LCLK Enable After CLKIN  
LDAT , LCLK Disable After CLKIN  
(3 × tCK/2) + 18 ns  
ns  
ns  
21 + DT /2  
21 + DT /2  
Link P or t Ser vice Request Inter r upts:  
1 × and 2 × Speed O per ations  
Timing Requirements:  
tSLCK  
tHLCK  
LACK/LCLK Setup Before CLKIN Low2  
10  
2.5  
10  
2.5  
ns  
ns  
LACK/LCLK Hold After CLKIN Low2  
NOT ES  
1LACK will go low with tDLALC relative to rising edge of LCLK after first nibble is received. LACK will not go low if the receiver’s link buffer is not about to fill.  
2Only required for interrupt recognition in the current cycle.  
REV. A  
–30–  
AD14060/AD14060L  
Link P or ts: 2 × CLK Speed O per ation  
5 V  
3.3 V  
P aram eter  
Min  
Max  
Min  
Max  
Units  
R
eceive  
Timing Requirements:  
tSLDCL  
tHLDCL  
tLCLKIW  
tLCLKRWL  
tLCLKRWH  
Data Setup Before LCLK Low  
2.5  
2.25  
2.25  
tCK/2  
5
ns  
ns  
ns  
ns  
ns  
Data Hold After LCLK Low  
LCLK Period (2 × Operation)  
LCLK Width Low  
2.25  
tCK/2  
4.5  
LCLK Width High  
4.25  
4
Switching Characteristics:  
tDLAHC LACK High Delay After CLKIN High  
tDLALC  
LACK Low Delay After LCLK High1  
18 + DT /2  
6
29.5 + DT /2  
16.5  
18 + DT /2  
6
30.5 + DT /2  
18.5  
ns  
ns  
Tr ansm it  
Timing Requirements:  
tSLACH LACK Setup Before LCLK High  
tHLACH LACK Hold After LCLK High  
19  
–6.75  
19  
–6.5  
ns  
ns  
Switching Characteristics:  
tDLCLK  
tDLDCH  
tHLDCH  
tLCLKT WL  
tLCLKT WH  
tDLACLK  
LCLK Delay After CLKIN  
9
3
9
2.75  
ns  
ns  
ns  
ns  
ns  
ns  
Data Delay After LCLK High  
Data Hold After LCLK High  
LCLK Width Low  
LCLK Width High  
LCLK Low Delay After LACK High  
–2  
–2  
(tCK/4) – 1  
(tCK/4) – 1  
(tCK/4) + 9  
(tCK/4) + 1  
(tCK/4) + 1  
(3 × tCL/4) + 17  
(tCK/4) – 0.75 (tCK/4) + 1.5  
(tCK/4) – 1.5  
(tCK/4) + 9  
(tCK/4) + 1  
(3 × tCL/4) + 17  
NOT E  
1LACK will go low with tDLALC relative to rising edge of LCLK after first nibble is received. LACK will not go low if the receiver’s link buffer is not about to fill.  
REV. A  
–31–  
AD14060/AD14060L  
TRANSMIT  
CLKIN  
tDLCLK  
tLCLKTWL  
tLCLKTWH  
LAST NIBBLE  
TRANSMITTED  
FIRST NIBBLE  
TRANSMITTED  
LCLK INACTIVE  
(HIGH)  
LCLK 1x  
OR  
LCLK 2x  
tDLDCH  
tHLDCH  
LDAT(3:0)  
LACK (IN)  
OUT  
tDLACLK  
tSLACH  
tHLACH  
THE tSLACH REQUIREMENT APPLIES TO THE RISING EDGE OF LCLK ONLY FOR THE FIRST NIBBLE TRANSMITTED.  
RECEIVE  
CLKIN  
tLCLKIW  
tLCLKRWH  
tLCLKRWL  
LCLK 1x  
OR  
LCLK 2x  
tHLDCL  
tSLDCL  
LDAT(3:0)  
IN  
tDLALC  
tDLAHC  
LACK (OUT)  
LACK GOES LOW ONLY AFFTER THE SECOND NIBBLE IS RECEIVED.  
LINK PORT ENABLE/THREE-STATE DELAY FROM INSTRUCTION  
CLKIN  
tENDLK  
tTDLK  
LCLK  
LDAT(3:0)  
LACK  
LINK PORT ENABLE OR THREE-STATE TAKES EFFECT 2 CYCLES AFTER A WRITE TO A LINK PORT CONTROL REGISTER.  
LINK PORT INTERRUPT SETUP TIME  
CLKIN  
tHLCK  
tSLCK  
LCLK  
LACK  
Figure 22. Link Ports  
REV. A  
–32–  
AD14060/AD14060L  
Ser ial P or ts  
P aram eter  
5 V  
3.3 V  
Min  
Max  
Min  
Max  
Units  
External Clock  
Timing Requirements:  
tSFSE  
TFS/RFS Setup Before TCLK/RCLK1  
4
4.5  
2
4.5  
9.5  
tCK  
4
4.5  
2
4.5  
9
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
tHFSE  
tSDRE  
tHDRE  
tSCLKW  
tSCLK  
TFS/RFS Hold After TCLK/RCLK1, 2  
Receive Data Setup Before RCLK1  
Receive Data Hold After RCLK1  
TCLK/RCLK Width  
TCLK/RCLK Period  
Internal Clock  
Timing Requirements:  
tSFSI  
TFS Setup Before TCLK1; RFS Setup Before RCLK1  
9
1
4
3
9
1
4
3
ns  
ns  
ns  
ns  
tHFSI  
tSDRI  
tHDRI  
TFS/RFS Hold After TCLK/RCLK1, 2  
Receive Data Setup Before RCLK1  
Receive Data Hold After RCLK1  
External or Internal Clock  
Switching Characteristics:  
tDFSE  
tHFSE  
RFS Delay After RCLK (Internally Generated RFS)3  
14  
14  
ns  
ns  
RFS Hold After RCLK (Internally Generated RFS)3  
3
3
External Clock  
Switching Characteristics:  
tDFSE  
tHFSE  
tDDTE  
tHDTE  
TFS Delay After TCLK (Internally Generated TFS)3  
14  
17  
14  
17  
ns  
ns  
ns  
ns  
TFS Hold After TCLK (Internally Generated TFS)3  
Transmit Data Delay After TCLK3  
3
5
3
5
Transmit Data Hold After TCLK3  
Internal Clock  
Switching Characteristics:  
tDFSI  
tHFSI  
tDDTI  
tHDTI  
tSCLKIW  
TFS Delay After TCLK (Internally Generated TFS)3  
5
5
8
ns  
ns  
ns  
ns  
TFS Hold After TCLK (Internally Generated TFS)3  
Transmit Data Delay After TCLK3  
Transmit Data Hold After TCLK3  
TCLK/RCLK Width  
–1.5  
0
–1.5  
0
8
(SCLK/2) – 2  
(SCLK/2) + 2  
(SCLK/2) – 2.5 (SCLK/2) + 2.5 ns  
Enable and Three-State  
Switching Characteristics:  
tDDTEN  
tDDTTE  
tDDTIN  
tDDTTI  
tDCLK  
Data Enable from External TCLK3  
3.5  
0
4
0
ns  
ns  
ns  
ns  
ns  
ns  
Data Disable from External TCLK3  
Data Enable from Internal TCLK3  
Data Disable from Internal TCLK3  
TCLK/RCLK Delay from CLKIN  
SPORT Disable After CLKIN  
11.5  
11.5  
3
3
23 + 3DT/8  
18  
23 + 3DT/8  
18  
tDPTR  
External Late Fram e Sync  
Switching Characteristics:  
tDDTLFSE Data Delay from Late External TFS or  
External RFS with MCE = 1, MFD = 04  
tDDTENFS Data Enable from late FS or MCE = 1, MFD = 04  
13  
13.8  
ns  
ns  
3.0  
3.5  
T o determine whether communication is possible between two devices at clock speed n, the following specifications must be confirmed: 1) frame sync delay and frame  
sync setup and hold, 2) data delay and data setup and hold, and 3) SCLK width.  
NOT ES  
1Referenced to sample edge.  
2RFS hold after RCK when MCE = 1, MFD = 0 is 0.5 ns minimum from drive edge. T FS hold after T CK for late external T FS is 0.5 ns minimum from drive edge.  
3Referenced to drive edge.  
4MCE = 1, T FS enable and T FS valid follow tDDT LFSE and tDDT ENFS  
.
REV. A  
–33–  
AD14060/AD14060L  
EXTERNAL RFS with MCE = 1, MFD = 0  
DRIVE  
DRIVE  
SAMPLE  
RCLK  
RFS  
tHFSE/I  
(SEE NOTE 2)  
tSFSE/I  
tDDTE/I  
tDDTENFS  
tHDTE/I  
1ST BIT  
DT  
2ND BIT  
tDDTLFSE  
LATE EXTERNAL TFS  
DRIVE  
DRIVE  
SAMPLE  
TCLK  
tHFSE/I  
(SEE NOTE 2)  
tSFSE/I  
TFS  
DT  
tDDTE/I  
tDDTENFS  
tHDTE/I  
1ST BIT  
2ND BIT  
tDDTLFSE  
Figure 23. External Late Fram e Sync  
REV. A  
–34–  
AD14060/AD14060L  
DATA RECEIVE– INTERNAL CLOCK  
DATA RECEIVE– EXTERNAL CLOCK  
SAMPLE  
EDGE  
DRIVE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKW  
RCLK  
RCLK  
tDFSE  
tHFSE  
tDFSE  
tHFSE  
tHFSE  
tSFSI  
tHFSI  
tSFSE  
RFS  
DR  
RFS  
DR  
tSDRE  
tHDRE  
tSDRI  
tHDRI  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DATA TRANSMIT– INTERNAL CLOCK  
DATA TRANSMIT– EXTERNAL CLOCK  
SAMPLE  
EDGE  
DRIVE  
EDGE  
DRIVE  
EDGE  
SAMPLE  
EDGE  
tSCLKIW  
tSCLKW  
TCLK  
TCLK  
tDFSI  
tDFSE  
tHFSE  
tHFSI  
tSFSI  
tHFSI  
tHFSE  
tSFSE  
TFS  
TFS  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
DT  
DT  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK, TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DRIVE  
EDGE  
DRIVE  
EDGE  
TCLK / RCLK  
TCLK (EXT)  
DT  
tDDTEN  
tDDTTE  
DRIVE  
EDGE  
DRIVE  
EDGE  
TCLK (INT)  
TCLK / RCLK  
tDDTIN  
tDDTTI  
DT  
CLKIN  
CLKIN  
tHTFSCK  
tDPTR  
tSTFSCK  
SPORT ENABLE AND  
THREE-STATE  
LATENCY  
TCLK, RCLK  
SPORT DISABLE DELAY  
FROM INSTRUCTION  
TFS (EXT)  
TFS, RFS, DT  
IS TWO CYCLES  
tDCLK  
NOTE: APPLIES ONLY TO GATED SERIAL CLOCK MODE WITH  
EXTERNAL TFS, AS USED IN THE SERIAL PORT SYSTEM I/O FOR  
MESH MULTIPROCESSING.  
TCLK (INT)  
RCLK (INT)  
LOW TO HIGH ONLY  
Figure 24. Serial Ports  
REV. A  
–35–  
AD14060/AD14060L  
JTAG Test Access P or t and Em ulation  
5 V  
3.3 V  
P aram eter  
Min  
Max  
Min  
Max  
Units  
Timing Requirements:  
tT CK  
T CK Period  
tCK  
5
6
8
18.5  
4tCK  
tCK  
5
6
8
19  
4tCK  
ns  
ns  
ns  
ns  
ns  
ns  
tST AP  
tHT AP  
tSSYS  
tHSYS  
tT RST W  
T DI, T MS Setup Before T CK High  
T DI, T MS Hold After T CK High  
System Inputs Setup Before T CK Low1  
System Inputs Hold After T CK Low1  
TRST Pulsewidth  
Switching Characteristics:  
tDT DO T DO Delay from T CK Low  
tDSYS  
System Outputs Delay After T CK Low 2  
13  
20  
13  
20  
ns  
ns  
NOT ES  
1System Inputs = DAT A47-0, ADDR31-0, RD, WR, ACK, SBTS, SW, HBR, HBG, CS, DMAR1, DMAR2, BR6-1, RPBA, IRQ2-0, FLAG2-0, DR0, DR1, T CLK0,  
T CLK1, RCLK0, RCLK1, T FS0, T FS1, RFS0, RFS1, LxDAT 3-0, LxCLK, LxACK, EBOOT , LBOOT , BMS, CLKIN, RESET.  
2System Outputs = DAT A47-0, ADDR31-0, MS3-0, RD, WR, ACK, PAGE, ADRCLK, SW, HBG, REDY, DMAG1, DMAG2, BR6-1, CPA, FLAG2-0, T IMEXP, DT 0,  
DT 1, T CLK0, T CLK1, RCLK0, RCLK1, T FS0, T FS1, RFS0, RFS1, LxDAT 3-0, LxCLK, LxACK, BMS.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 25. IEEE 11499.1 J TAG Test Access Port  
REV. A  
–36–  
AD14060/AD14060L  
O UTP UT D RIVE CURRENTS  
T he PEXT equation is calculated for each class of pins that can  
drive:  
Figure 26 shows typical I-V characteristics for the output drivers  
of the ADSP-2106x. T he curves represent the current drive  
capability of the output drivers as a function of output voltage.  
P in  
# of  
%
2
Type  
P ins  
Switching 
؋
 C  
؋
 f  
؋
 VDD = P EXT  
120  
100  
Address  
MS0  
WR  
Data  
ADRCLK  
15  
1
1
32  
1
50  
0
50  
× 55 pF  
× 55 pF  
× 55 pF  
× 25 pF  
× 15 pF  
× 20 MHz × 25 V = 0.206 W  
× 20 MHz × 25 V = 0.00 W  
× 40 MHz × 25 V = 0.055 W  
× 20 MHz × 25 V = 0.200 W  
HIGH LEVEL DRIVE  
80  
(P DEVICE)  
60  
40 MHz  
× 25 V = 0.015 W  
40  
20  
PEXT (5 V) = 0.476 W  
PEXT (3.3 V) = 0.207 W  
0
–20  
–40  
–60  
–80  
A typical power consumption can now be calculated for these  
conditions by adding a typical internal power dissipation:  
LOW LEVEL DRIVE  
P
TOTAL = PEXT + (IDDIN2 × 5.0 V )  
–100  
(N DEVICE)  
–120  
–140  
–160  
Note that the conditions causing a worst-case PEXT are different  
from those causing a worst-case PINT . Maximum PINT cannot  
occur while 100% of the output pins are switching from all ones  
to all zeros. Also note that it is not common for an application to  
have 100% or even 50% of the outputs switching simultaneously.  
0
1
2
3
4
5
SOURCE VOLTAGE – V  
Figure 26. ADSP-2106x Typical Drive Currents (VDD = 5 V)  
TEST CO ND ITIO NS  
O utput D isable Tim e  
P O WER D ISSIP ATIO N  
T otal power dissipation has two components, one due to inter-  
nal circuitry and one due to the switching of external output  
drivers. Internal power dissipation is dependent on the instruc-  
tion execution sequence and the data operands involved. Inter-  
nal power dissipation is calculated in the following way:  
Output pins are considered to be disabled when they stop driv-  
ing, go into a high impedance state, and start to decay from  
their output high or low voltage. T he time for the voltage on the  
bus to decay by V is dependent on the capacitive load, CL, and  
the load current, IL. T his decay time can be approximated by  
the following equation:  
PINT = IDDIN × VDD  
T he external component of total power dissipation is caused by  
the switching of output pins. Its magnitude depends on:  
CL V  
tDECAY  
=
IL  
– the number of output pins that switch during each cycle (O)  
– the maximum frequency at which they can switch (f)  
– their load capacitance (C)  
The output disable time, tDIS, is the difference between tMEASURED  
and tDECAY as shown in Figure 27. T he time tMEASURED is the  
interval from when the reference signal switches to when the  
output voltage decays V from the measured output high or  
output low voltage. tDECAY is calculated with test loads CL and  
IL, and with V equal to 0.5 V.  
– their voltage swing (VDD  
)
and is calculated by:  
2
PEXT = O × C × VDD × f  
T he load capacitance should include the processor’s package  
capacitance (CIN). T he switching frequency includes driving the  
load high and then back low. Address and data pins can drive  
high and low at a maximum rate of 1/(2tCK). T he write strobe  
can switch every cycle at a frequency of 1/tCK. Select pins switch  
at 1/(2tCK), but selects can switch on each cycle.  
O utput Enable Tim e  
Output pins are considered to be enabled when they have made  
a transition from a high impedance state to when they start  
driving. T he output enable time, tENA, is the interval from when  
a reference signal reaches a high or low voltage level to when the  
output has reached a specified high or low trip point, as shown  
in the Output Enable/Disable diagram (Figure 27). If multiple  
pins (such as the data bus) are enabled, the measurement value  
is that of the first pin to start driving.  
Example:  
Estimate PEXT with the following assumptions:  
–A system with one bank of external data memory RAM (32-bit)  
Four 128K × 8 RAM chips are used, each with a load of 10 pF  
–External data memory writes occur every other cycle, a rate  
of 1/(4tCK), with 50% of the pins switching  
The instruction cycle rate is 40 MH z (tCK = 25 ns) and  
VDD = 5.0 V.  
Exam ple System H old Tim e Calculation  
T o determine the data output hold time in a particular system,  
first calculate tDECAY using the equation given above. Choose  
V to be the difference between the ADSP-2106x’s output  
voltage and the input threshold for the device requiring the hold  
time. A typical V will be 0.4 V. CL is the total bus capacitance  
(per data line), and IL is the total leakage or three-state current  
REV. A  
–37–  
AD14060/AD14060L  
16.0  
14.0  
12.0  
10.0  
8.0  
(per data line). T he hold time will be tDECAY plus the minimum  
disable time (i.e., tHDWD for the write cycle).  
14.7  
REFERENCE  
SIGNAL  
RISE TIME  
tMEASURED  
7.4  
tENA  
tDIS  
FALL TIME  
6.0  
V
OH (MEASURED)  
V
OH (MEASURED)  
V
V  
+ V  
2.0V  
1.0V  
OH (MEASURED)  
4.0  
3.7  
V
OL (MEASURED)  
V
V
OL (MEASURED)  
OL (MEASURED)  
2.0  
1.1  
tDECAY  
0
0
20  
40  
60  
80  
100 120 140 160 180 200  
OUTPUT STARTS  
DRIVING  
OUTPUT STOPS  
DRIVING  
LOAD CAPACITANCE – pF  
HIGH-IMPEDANCE STATE.  
TEST CONDITIONS CAUSE  
THIS VOLTAGE TO BE  
Figure 30. Typical Output Rise Tim e (10%–90% VDD  
vs. Load Capacitance (VDD = 5 V)  
)
APPROXIMATELY 1.5V  
Figure 27. Output Enable/Disable  
3.5  
3.0  
I
OL  
2.9  
1.6  
2.5  
RISE TIME  
2.0  
TO  
OUTPUT  
PIN  
+1.5V  
1.5  
50pF  
FALL TIME  
1.0  
0.6  
0.5  
I
OH  
0
0
20  
40  
60  
80 100 120 140 160 180 200  
Figure 28. Equivalent Device Loading for AC Measure-  
m ents (Includes All Fixtures)  
LOAD CAPACITANCE – pF  
Figure 31. Typical Output Rise Tim e (0.8 V –2.0 V)  
vs. Load Capacitance (VDD = 5 V)  
INPUT OR  
OUTPUT  
1.5V  
1.5V  
Figure 29. Voltage Reference Levels for AC Measure-  
m ents (Except Output Enable/Disable)  
5
4
3
2
1
4.5  
Capacitive Loading  
Output delays and holds are based on standard capacitive loads:  
50 pF on all pins (see Figure 28). T he delay and hold specifica-  
tions given should be derated by a factor of 1.5 ns/50 pF for  
loads other than the nominal value of 50 pF. Figures 30 and 31  
show how output rise time varies with capacitance. Figure 32  
graphically shows how output delays and holds vary with load  
capacitance. (Note that this graph or derating does not apply to  
output disable delays; see the previous section Output Disable  
T ime under T est Conditions.) T he graphs of Figures 30, 31 and  
32 may not be linear outside the ranges shown.  
NOMINAL  
–0.7  
–1  
25  
50  
75  
100  
125  
150  
175  
200  
LOAD CAPACITANCE – pF  
Figure 32. Typical Output Delay or Hold vs. Load  
Capacitance (at Maxim um Case Tem perature) (VDD = 5 V)  
REV. A  
–38–  
AD14060/AD14060L  
18  
16  
14  
12  
10  
8
AD 14060/AD 14060L ASSEMBLY  
RECO MMEND ATIO NS  
SO CKET INFO RMATIO N  
Standard sockets and carriers are available for the AD14060/  
AD14060L, if needed. Socket part number IC53-3084-262 and  
carrier part number ICC-308-1 are available from Yamaichi  
Electronics.  
Y = 0.0796X + 1.17  
RISE TIME  
Tr im and For m  
6
Y = 0.0467X + 0.55  
T he AD14060/AD14060L will be shipped as shown on the final  
page of the data sheet with untrimmed and unformed leads and  
with the nonconductive tie bar in place. This avoids disturbance of  
lead spacing and coplanarity prior to assembly. Optimally, the  
leads should be trimmed, formed and solder-dipped just prior to  
placement on the board.  
4
FALL TIME  
2
0
0
20  
40  
60  
80 100 120 140 160 180 200  
LOAD CAPACITANCE – pF  
T rim/Form can be accomplished with a Universal T rim/Form,  
Customer-Designed T rim/Form, or with the Analog Devices’  
Developed T ooling described below.  
Figure 33. Typical Output Rise Tim e (10%–90% VDD) vs.  
Load Capacitance (VDD = 3.3 V)  
9
8
7
A trim/form tool specific to the AD14060/AD14060L has been  
developed and is available for use by all parties at:  
T intronics Industries  
2122-A Metro Circle  
Huntsville, AL 35801  
205-650-0220  
Y = 0.0391X + 0.36  
6
5
4
Contact Person: T om Rice  
RISE TIME  
Y = 0.0305X + 0.24  
T he package outline and dimensions resulting from this tool are  
shown below. (Alternatively, the package can also be trimmed/  
formed for cavity-down placement.)  
3
2
1
0
FALL TIME  
0
20  
40  
60  
80 100 120 140 160 180 200  
0.170  
(4.318)  
LOAD CAPACITANCE – pF  
2.110 (53.59)  
2.210 ±0.010 (56.134 ±0.254)  
Figure 34. Typical Output Rise Tim e (0.8 V –2.0 V) vs.  
Load Capacitance (VDD = 3.3 V)  
5
4.5  
4
3
2
1
Y = 0.0329X - 1.65  
0.016 MIN  
0° TO 8°  
NOMINAL  
0 TO 10 MILS  
–0.7  
–1  
25  
50  
75  
100  
125  
150  
175  
200  
LOAD CAPACITANCE – pF  
DETAIL "A"  
Figure 35. Typical Output Delay or Hold vs. Load Capaci-  
tance (at Maxim um Case Tem perature) (VDD = 3.3 V)  
REV. A  
–39–  
AD14060/AD14060L  
P CB LAYO UT GUID ELINES  
NOT E: T hese drawings are recommended PCB layout guide-  
lines only, and they assume that the trim/form tooling described  
above is used.  
The drawing below assumes that the trim/form tooling described  
above is used. T hese recommendations are provided for user  
convenience and are recommendations only, based on stan-  
dard practice. PCB pad footprint geometries and placement  
are illustrated.  
2.260 (57.404) 4 PLACES  
2.060 (52.324) 4 PLACES  
1.9000 (48.26) 4 PLACES  
0.015  
(0.381)  
THIS IS A PC BOARD COMPONENT  
FOOTPRINT, NOT THE PACKAGE  
OUTLINE.  
0.025  
(0.635)  
0.025 (0.635) MIN  
0.025 (0.635) MIN  
REV. A  
–40–  
AD14060/AD14060L  
Ther m al Char acter istics  
Therm al Conductivity  
T he AD14060/AD14060L is packaged in a 308-lead ceramic  
quad flatpack (CQFP). T he package is optimized for thermal  
conduction through the core (base of the package) down to the  
mounting surface. T he AD14060/AD14060L is specified for a  
case temperature (TCASE). Design of the mounting surface and  
attachment material should be such that TCASE is not exceeded.  
Therm al Conductivity  
W/cm ؇C  
Material  
Ceramic  
Kovar  
T ungsten  
T hermoplastic  
Silicon  
0.18  
0.14  
1.78  
0.03  
1.45  
θJC = 0.36°C/W  
Ther m al Cr oss-Section  
T he data below, together with the detailed mechanical drawings  
at the end of the data sheet, allows for constructing simple ther-  
mal models for further analysis within targeted systems. T he top  
layer of the package, where the die are mounted, is a metal VDD  
layer. T he approximate metal area coverage from the metal  
planes and routing layers is estimated below.  
Metal Coverage P er Layer  
P ercent Metal  
(1 Mil Thick)  
Layer  
VDD  
88  
16  
14  
91  
15  
13  
95  
SIG2  
SIG3  
GND  
SIG4  
SIG5  
BASE  
KOVAR LID  
0.015 MILS  
KOVAR SEAL RING  
HEIGHT = 50 MILS  
SURFACE  
SILICON DIE  
19 MILS  
CERAMIC LAYER 28 MILS  
THERMOPLASTIC  
THICKNESS 5 MILS  
CERAMIC LAYER 6 MILS  
CERAMIC LAYER 6 MILS  
V
DD  
CERAMIC LAYER 10 MILS  
CERAMIC LAYER 4 MILS  
CERAMIC LAYER 10 MILS  
SIG2  
SIG3  
GND  
CERAMIC LAYER 10 MILS  
CERAMIC LAYER 4 MILS  
CERAMIC LAYER 10 MILS  
CERAMIC LAYER 4 MILS  
SIG4  
SIG5  
BASE  
REV. A  
–41–  
AD14060/AD14060L  
MECH ANICAL CH ARACTERISTICS  
Lid D eflection Analysis  
External P ressure Reduction  
0.670  
4X  
D elta P ressure  
D eflection  
0.653  
4X  
12 psi  
15 psi  
10.0 mil  
11.9 mil  
0.302  
2.050 SQ.  
Mechanical Model  
T he data below, together with the detailed mechanical drawings  
at the end of the data sheet, allows for construction of simple  
mechanical models for further analysis within targeted systems.  
0.616  
0.633  
Mechanical P roperties  
0.260  
Material  
Modulus of Elasticity  
Ceramic  
Kovar  
T ungsten  
T hermoplastic  
Silicon  
26 × 103 kg/mm2  
14.1 × 103 kg/mm2  
35 × 103 kg/mm2  
279 kg/mm2  
0.250  
0.345  
1.890  
±
0.005  
0.005  
0.018  
1.810  
1.780  
±
±
11 × 103 kg/mm2  
0.012 REF  
4X  
0.040 ±0.002  
308-LEAD CQ FP P IN CO NFIGURATIO N  
308  
232  
231  
1
AD14060/AD14060L  
TOP VIEW  
155  
154  
77  
78  
REV. A  
–42–  
AD14060/AD14060L  
P IN CO NFIGURATIO NS  
P in P in  
No. Nam e  
P in P in  
No. Nam e  
P in P in  
No. Nam e  
P in P in  
No. Nam e  
P in P in  
No. Nam e  
P in P in  
No. Nam e  
P in P in  
No. Nam e  
1
2
3
4
5
6
7
8
9
WR  
RD  
45 GND  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
ADDR13  
133 IRQB0  
134 IRQB1  
135 IRQB2  
136 GND  
137 IRQC0  
138 IRQC1  
139 IRQC2  
140 IRQD0  
141 IRQD1  
142 IRQD2  
143 VDD  
177 LC4DAT 2 221 GND  
178 LC4DAT 3 222 LA3ACK  
265 GND  
46 RFSD1  
47 RCLKD1  
48 DRD1  
49 T FSD1  
50 T CLKD1  
51 DT D1  
52 VDD  
ADDR12  
ADDR11  
GND  
ADDR10  
ADDR9  
ADDR8  
VDD  
ADDR7  
ADDR6  
ADDR5  
266 DAT A24  
267 DAT A25  
268 DAT A26  
269 DAT A27  
270 VDD  
271 DAT A28  
272 DAT A29  
273 DAT A30  
274 DAT A31  
275 GND  
276 DAT A32  
277 DAT A33  
278 DAT A34  
279 DAT A35  
280 VDD  
281 DAT A36  
282 DAT A37  
283 DAT A38  
284 DAT A39  
285 GND  
286 DAT A40  
287 DAT A41  
288 CLKIN  
289 GND  
290 DAT A42  
291 DAT A43  
292 VDD  
293 DAT A44  
294 DAT A45  
295 DAT A46  
296 DAT A47  
297 GND  
GND  
CSA  
CSB  
CSC  
CSD  
GND  
HBG  
179 GND  
180 LC3ACK  
181 LC3CLK  
223 LA3CLK  
224 LA3DAT 0  
225 LA3DAT 1  
182 LC3DAT 0 226 LA3DAT 2  
183 LC3DAT 1 227 LA3DAT 3  
184 LC3DAT 2 228 VDD  
53 HBR  
54 DMAR1  
185 LC3DAT 3 229 LA1ACK  
10 REDY  
11 ADRCLK 55 DMAR2  
12 VDD  
13 RFS0  
14 RCLK0  
15 DR0  
16 T FS0  
17 T CLK0  
18 DT 0  
186 VDD  
187 LC1ACK  
188 LC1CLK  
230 LA1CLK  
231 LA1DAT 0  
232 LA1DAT 1  
56 SBTS  
100 GND  
144 EBOOT A  
145 LBOOT A  
146 EBOOT BCD 190 LC1DAT 1 234 LA1DAT 3  
147 LBOOT BCD 191 LC1DAT 2 235 GND  
148 GND  
149 RESET  
150 RPBA  
57 BMSA  
58 BMSBCD  
59 SW  
60 GND  
61 MS0  
62 MS1  
63 MS2  
64 MS3  
65 VDD  
66 ADDR31  
67 ADDR30  
68 ADDR29  
69 GND  
70 ADDR28  
71 ADDR27  
72 ADDR26  
73 VDD  
74 ADDR25  
75 ADDR24  
76 ADDR23  
77 ADDR22  
78 ADDR21  
79 ADDR20  
80 VDD  
81 ADDR19  
82 ADDR18  
83 ADDR17  
84 GND  
101 ADDR4  
102 ADDR3  
103 ADDR2  
104 VDD  
105 ADDR1  
106 ADDR0  
107 FLAGA0  
108 GND  
109 FLAGA2  
110 FLAGB0  
111 FLAGB2  
112 FLAGC0  
113 FLAGC2  
114 FLAGD0  
115 FLAGD2  
116 VDD  
117 FLAG1  
118 EMU  
119 T IMEXPA 163 LD3DAT 2  
120 T IMEXPB  
121 T IMEXPC  
122 T IMEXPD 166 LD1ACK  
123 GND  
124 T DO  
125 TRST  
126 T DI  
127 T MS  
128 T CK  
129 VDD  
130 IRQA0  
131 IRQA1  
132 IRQA2  
189 LC1DAT 0 233 LA1DAT 2  
192 LC1DAT 3 236 DAT A0  
193 GND  
194 LB4ACK  
195 LB4CLK  
237 DAT A1  
238 DAT A2  
239 DAT A3  
19 GND  
151 GND  
20 CPAA  
21 CPAB  
22 CPAC  
23 CPAD  
24 VDD  
25 RFSA1  
26 RCLKA1  
27 DRA1  
28 T FSA1  
29 T CLKA1  
30 DT A1  
31 GND  
32 RFSB1  
33 RCLKB1  
34 DRB1  
35 T FSB1  
36 T CLKB1  
37 DT B1  
38 VDD  
39 RFSC1  
40 RCLKC1  
41 DRC1  
42 T FSC1  
43 T CLKC1  
44 DT C1  
152 LD4ACK  
153 LD4CLK  
154 LD4DAT 0  
155 LD4DAT 1  
156 LD4DAT 2  
157 LD4DAT 3  
158 VDD  
159 LD3ACK  
160 LD3CLK  
161 LD3DAT 0  
162 LD3DAT 1  
196 LB4DAT 0 240 VDD  
197 LB4DAT 1 241 DAT A4  
198 LB4DAT 2 242 DAT A5  
199 LB4DAT 3 243 DAT A6  
200 VDD  
201 LB3ACK  
202 LB3CLK  
244 DAT A7  
245 GND  
246 DAT A8  
203 LB3DAT 0 247 DAT A9  
204 LB3DAT 1 248 DAT A10  
205 LB3DAT 2 249 DAT A11  
206 LB3DAT 3 250 VDD  
207 GND  
208 LB1ACK  
209 LB1CLK  
251 DAT A12  
252 DAT A13  
253 DAT A14  
164 LD3DAT 3  
165 GND  
210 LB1DAT 0 254 DAT A15  
211 LB1DAT 1 255 GND  
212 LB1DAT 2 256 DAT A16  
213 LB1DAT 3 257 DAT A17  
298 BR1  
299 BR2  
300 BR3  
301 BR4  
302 BR5  
303 BR6  
304 PAGE  
305 VDD  
306 DMAG1  
307 DMAG2  
308 ACK  
167 LD1CLK  
168 LD1DAT 0  
169 LD1DAT 1  
170 LD1DAT 2  
171 LD1DAT 3  
172 VDD  
173 LC4ACK  
174 LC4CLK  
175 LC4DAT 0  
176 LC4DAT 1  
214 VDD  
215 LA4ACK  
216 LA4CLK  
258 DAT A18  
259 DAT A19  
260 VDD  
85 ADDR16  
86 ADDR15  
87 ADDR14  
88 VDD  
217 LA4DAT 0 261 DAT A20  
218 LA4DAT 1 262 DAT A21  
219 LA4DAT 2 263 DAT A22  
220 LA4DAT 3 264 DAT A23  
REV. A  
–43–  
AD14060/AD14060L  
O RD ERING GUID E  
SMD  
P art Num ber  
Case Tem perature Range  
Instruction Rate  
O perating Voltage  
AD14060BF-4  
AD14060LBF-4  
5962-9750601HXC  
5962-9750701HXC*  
–40°C to +100°C  
–40°C to +100°C  
–40°C to +100°C  
–40°C to +100°C  
N/A  
N/A  
QML-H  
QML-H  
40 MHz  
40 MHz  
40 MHz  
40 MHz  
5 V  
3.3 V  
5 V  
3.3 V  
*Part numbers marked with an * are shipping as x-grade (preproduction) material at the time of this printing. T hese parts are packaged in a 308-lead Ceramic Quad  
Flatpack Package (CQFP). MIL-SMD parts, in the same package, are in development.  
P ACKAGE D IMENSIO NS  
D imensions shown in inches and (mm).  
308-Lead Ceram ic Quad Flatpack (CQFP )  
(QS-308)  
3.050 (77.47) MAX  
3.000 ؎0.010 (76.2 ؎0.254)  
2.730 ؎0.015 (69.34 ؎0.381)  
0.340 ؎0.010  
(8.636 ؎0.254)  
4x  
2.050 ؎0.012 (52.07 ؎0.305)  
0.015 (0.381) x 45°  
3 PLACES  
231  
232  
155  
154  
0.008 ؎0.002  
(0.203 ؎0.051)  
2.300 ؎0.030  
(58.42 ؎0.762)  
TOP VIEW  
0.025 (0.635) TYP  
308  
78  
1
77  
0.040 (1.016) x 45°  
0.035  
(0.889)  
MAX  
0.005 +0.0015 –0.001  
(0.127 +0.0381 –0.025)  
1.890 ؎0.005  
(48.006 ؎0.127)  
0.160  
0.092 ؎0.009  
(2.337 ؎0.229)  
(4.064)  
MAX  
REV. A  
–44–  

相关型号:

AD14060L

Quad-SHARC DSP Multiprocessor Family
ADI

AD14060LBF-4

Quad-SHARC DSP Multiprocessor Family
ADI

AD14060L_15

DSP Multiprocessor Family
ADI

AD14060_15

DSP Multiprocessor Family
ADI

AD1408-7D

IC PARALLEL, 8 BITS INPUT LOADING, 0.25 us SETTLING TIME, 8-BIT DAC, CDIP16, HERMETIC, CERAMIC, DIP-16, Digital to Analog Converter
ADI

AD1408-8D

IC PARALLEL, 8 BITS INPUT LOADING, 0.25 us SETTLING TIME, 8-BIT DAC, CDIP16, HERMETIC, CERAMIC, DIP-16, Digital to Analog Converter
ADI

AD1408-9D

IC PARALLEL, 8 BITS INPUT LOADING, 0.25 us SETTLING TIME, 8-BIT DAC, CDIP16, HERMETIC, CERAMIC, DIP-16, Digital to Analog Converter
ADI

AD14160

Quad-SHARC DSP Multiprocessor Family
ADI

AD14160BB-4

Quad-SHARC DSP Multiprocessor Family
ADI

AD14160KB-4

Quad-SHARC DSP Multiprocessor Family
ADI

AD14160L

Quad-SHARC DSP Multiprocessor Family
ADI

AD14160LBB-4

Quad-SHARC DSP Multiprocessor Family
ADI