AD215BY [ADI]

120 kHz Bandwidth, Low Distortion, Isolation Amplifier; 120 kHz带宽,低失真,隔离放大器
AD215BY
型号: AD215BY
厂家: ADI    ADI
描述:

120 kHz Bandwidth, Low Distortion, Isolation Amplifier
120 kHz带宽,低失真,隔离放大器

隔离放大器 放大器电路 分离技术 隔离技术 局域网
文件: 总12页 (文件大小:237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
120 kHz Bandwidth, Low Distortion,  
Isolation Amplifier  
a
AD215  
FEATURES  
FUNCTIO NAL BLO CK D IAGRAM  
Isolation Voltage Rating: 1,500 V rm s  
Wide Bandw idth: 120 kHz, Full Pow er (–3 dB)  
Rapid Slew Rate: 6 V/ s  
Fast Settling Tim e: 9 s  
Low Harm onic Distortion: 80 dB @ 1 kHz  
Low Nonlinearity: ؎0.005%  
FB  
4
AD215  
UNCOMMITTED  
INPUT OP AMP  
SIGNAL  
R
R
3
1
IN–  
IN+  
38 OUT HI  
LOW-PASS  
FILTER  
150kHz  
MODULATOR  
DEMODULATOR  
2
IN COM  
OUTPUT  
T1  
BUFFER  
Wide Output Range: ؎10 V, m in (Buffered)  
Built-in Isolated Pow er Supply: ؎15 V dc @ ؎10 m A  
Perform ance Rated over –40؇C to +85؇C  
36  
TRIM  
33kΩ  
0.01µF  
37 OUT LO  
POWER  
T2  
+15VIN  
+VISO  
–VISO  
6
5
42  
44 –15VIN  
43  
APPLICATIONS INCLUDE  
430kHz  
POWER  
OSCILLATOR  
ISOLATED  
DC  
SUPPLY  
High Speed Data Acquisition System s  
Pow er Line and Transient Monitors  
Multichannel Muxed Input Isolation  
Waveform Recording Instrum entation  
Pow er Supply Controls  
PWR RTN  
Vibration Analysis  
Flexible Input and Buffer ed O utput Stages: An uncommit-  
ted op amp is provided on the input stage of the AD215 to  
allow for input buffering or amplification and signal condition-  
ing. T he AD215 also features a buffered output stage to drive  
low impedance loads and an output voltage trim for zeroing the  
output offset where needed.  
GENERAL D ESCRIP TIO N  
T he AD215 is a high speed input isolation amplifier designed to  
isolate and amplify wide bandwidth analog signals. T he innova-  
tive circuit and transformer design of the AD215 ensures wide-  
band dynamic characteristics while preserving key dc performance  
specifications.  
H igh Accur acy: T he AD215 has a typical nonlinearity of  
±0.005% (B grade) of full-scale range and the total harmonic  
distortion is typically –80 dB at 1 kHz. T he AD215 provides  
designers with complete isolation of the desired signal without  
loss of signal integrity or quality.  
T he AD215 provides complete galvanic isolation between the  
input and output of the device including the user-available  
front-end isolated power supplies. T he functionally complete  
design, powered by a ±15 V dc supply, eliminates the need for a  
user supplied isolated dc/dc converter. This permits the designer  
to minimize circuit overhead and reduce overall system design  
complexity and component costs.  
Excellent Com m on-Mode P er for m ance: T he AD215BY  
(AD215AY) provides 1,500 V rms (750 V rms) common-mode  
voltage protection from its input to output. Both grades feature  
a low common-mode capacitance of 4.5 pF inclusive of the  
dc/dc power isolation. T his results in a typical common-mode  
rejection specification of 105 dB and a low leakage current of  
2.0 µA rms max (240 V rms, 60 Hz).  
T he design of the AD215 emphasizes maximum flexibility and  
ease of use in a broad range of applications where fast analog  
signals must be measured under high common-mode voltage  
(CMV) conditions. T he AD215 has a ±10 V input/output  
range, a specified gain range of 1 V/V to 10 V/V, a buffered out-  
put with offset trim and a user-available isolated front-end  
power supply which produces ±15 V dc at ±10 mA.  
Isolated P ower : An unregulated isolated power supply of  
±15 V dc @ ±10 mA is available at the isolated input port of  
the AD215. T his permits the use of ancillary isolated front-end  
amplifiers or signal conditioning components without the need  
for a separate dc/dc supply. Even the excitation of transducers  
can be accomplished in most applications.  
P RO D UCT H IGH LIGH TS  
H igh Speed D ynam ic Char acter istics: T he AD215 features  
a typical full-power bandwidth of 120 kHz (100 kHz min), rise  
time of 3 µs and settling time of 9 µs. T he high speed perfor-  
mance of the AD215 allows for unsurpassed galvanic isolation  
of virtually any wideband dynamic signal.  
Rated P er for m ance over the –40؇C to +85؇C Tem per atur e  
Range: With an extended industrial temperature range rating,  
the AD215 is an ideal isolation solution for use in many indus-  
trial environments.  
REV. 0  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
© Analog Devices, Inc., 1996  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
(Typical @ +25؇C, V = ؎15 V dc, 2 koutput load, unless otherwise noted.)  
S
AD215–SPECIFICATIONS  
AD 215AY/BY  
P aram eter  
Conditions  
Min  
Typ  
Max  
Units  
GAIN  
Range1  
Error  
1
10  
±2  
V/V  
%
ppm/°C  
ppm/°C  
ppm/V  
ppm/mA  
G = 1 V/V, No Load on VISO  
0°C to +85°C  
–40°C to 0°C  
±0.5  
+15  
+50  
+100  
+20  
vs. T emperature  
vs. Supply Voltage  
vs. Isolated Supply Load2  
Nonlinearity3  
±(14.5 V dc to 16.5 V dc)  
AD215BY Grade  
±10 V Output Swing, G = 1 V/V  
±10 V Output Swing, G = 10 V/V  
±10 V Output Swing, G = 1 V/V  
±10 V Output Swing, G = 10 V/V  
±0.005  
±0.01  
±0.01  
±0.015  
± 0.025  
%
%
%
%
AD215AY Grade  
±0.025  
INPUT VOLT AGE RAT INGS  
Input Voltage Rating  
G = 1 V/V  
±10  
V
Maximum Safe Differential Range  
CMRR of Input Op Amp  
Isolation Voltage Rating4  
AD215BY Grade  
IN+ or IN–, to IN COM  
±15  
100  
V
dB  
Input to Output, AC, 60 Hz  
100% T ested4  
1500  
750  
V rms  
V rms  
dB  
dB  
dB  
dB  
dB  
dB  
µA rms  
AD215AY Grade  
100% T ested4  
IMRR (Isolation Mode Rejection Ratio) RS 100 (IN+ & IN–), G = 1 V/V, 60 Hz  
RS 100 (IN+ & IN–), G = 1 V/V, 1 kHz  
120  
100  
80  
105  
85  
RS 100 (IN+ & IN–), G = 1 V/V, 10 kHz  
RS 1 k(IN+ & IN–), G = 1 V/V, 60 Hz  
RS 1 k(IN+ & IN–), G = 1 V/V, 1 kHz  
RS 1 k(IN+ & IN–), G = 1 V/V, 10 kHz  
240 V rms, 60 Hz  
65  
Leakage Current, Input to Output  
2
INPUT IMPEDANCE  
Differential  
G = 1 V/V  
16  
MΩ  
Common Mode  
2ʈ4.5  
GʈpF  
INPUT OFFSET VOLT AGE  
Initial  
vs. T emperature  
@ +25°C  
0°C to +85°C  
–40°C to 0°C  
±0.4  
±2  
±20  
±2.0  
mV  
µV/°C  
µV/°C  
OUT PUT OFFSET VOLT AGE  
Initial  
vs. T emperature  
@ +25°C, T rimmable to Zero  
0°C to +85°C  
–40°C to 0°C  
0
–35  
–80  
mV  
±30  
±80  
±350  
–35  
µV/°C  
µV/°C  
µV/V  
µV/mA  
vs. Supply Voltage  
vs. Isolated Supply Load2  
INPUT BIAS CURRENT  
Initial  
vs. T emperature  
@ +25°C  
–40°C to +85°C  
300  
±400  
nA  
nA  
INPUT DIFFERENCE CURRENT  
Initial  
vs. T emperature  
@ +25°C  
–40°C to +85°C  
±3  
±40  
nA  
nA  
INPUT VOLT AGE NOISE  
Input Voltage Noise  
Frequency > 10 Hz  
20  
nV/Hz  
DYNAMIC RESPONSE (2 kLoad)  
Full Signal Bandwidth (–3 dB)  
T ransport Delay6  
Slew Rate  
Rise T ime  
G = 1 V/V, 20 V pk-pk Signal  
100  
120  
2.2  
6
kHz  
µs  
V/µs  
µs  
±10 V Output Swing  
10% to 90%, ±10 V Output Swing  
3
–2–  
REV. 0  
AD215  
AD 215AY/BY  
Typ  
P aram eter  
Conditions  
Min  
Max  
Units  
DYNAMIC RESPONSE (2 kLoad) Cont.  
Settling T ime  
to ±0.10%, ±10 V Output Swing  
9
µs  
Overshoot  
1
%
Harmonic Distortion Components  
@ 1 kHz  
@ 10 kHz  
G = 1 V/V, ±15 V Drive  
G > 5  
–80  
–65  
5
dB  
dB  
µs  
Overload Recovery T ime  
Output Overload Recovery T ime  
10  
µs  
RAT ED OUT PUT  
Voltage  
Current  
Out HI to Out LO  
2 kLoad  
±10  
±5  
V
mA  
Max Capacitive Load  
Output Resistance  
Output Ripple and Noise7  
500  
1
10  
2.5  
pF  
mV pk-pk  
mV pk-pk  
1 MHz Bandwidth  
50 kHz Bandwidth  
ISOLAT ED POWER OUT PUT8  
Voltage  
No Load  
±14.25 ±15  
±17.25  
V
vs. T emperature  
0°C to +85°C  
–40°C to 0°C  
+20  
+25  
±10  
–90  
290  
50  
mV/°C  
mV/°C  
mA  
mV/V  
mV/V  
mV rms  
Current at Rated Supply Voltage2, 9  
Regulation  
Line Regulation  
Ripple  
No Load to Full Load  
1 MHz Bandwidth, No Load2  
POWER SUPPLY  
Supply Voltage  
Rated Performance  
±14.5 ±15  
±14.25  
±16.5  
±17  
V dc  
V dc  
mA  
Operating10  
Current  
Operating (+15 V dc/–15 V dc Supplies)  
+40/–18  
T EMPERAT URE RANGE  
Rated Performance  
Storage  
–40  
–40  
+85  
+85  
°C  
°C  
NOT ES  
11T he gain range of the AD215 is specified from 1 to 10 V/V. T he AD215 can also be used with gains of up to 100 V/V. With a gain of 100 V/V a 20% reduction in the  
–3 dB bandwidth specification occurs and the nonlinearity degrades to ±0.02% typical.  
12When the isolated supply load exceeds ±1 mA, external filter capacitors are required in order to ensure that the gain, offset, and nonlinearity specifications are pre-  
served and to maintain the isolated supply full load ripple below the specified 50 mV rms. A value of 6.8 µF is recommended.  
13Nonlinearity is specified as a percent (of full-scale range) deviation from a best straight line.  
14T he isolation barrier (and rating) of every AD215 is 100% tested in production using a 5 second partial discharge test with a failure detection threshold of 150 pC. All  
“B” grade devices are tested with a minimum voltage of 1,800 V rms. All “A” grade devices are tested with a minimum voltage of 850 V rms.  
15T he AD215 should be allowed to warm up for approximately 10 minutes before any gain and/or offset adjustments are made.  
16Equivalent to a 0.8 degrees phase shift.  
17With the ±15 V dc power supply pins bypassed by 2.2 µF capacitors at the AD215 pins.  
18Caution: T he AD215 design does not provide short circuit protection of its isolated power supply. A current limiting resistor may be placed in series with the isolated  
power terminals and the load in order to protect the supply against inadvertent shorts.  
19With an input power supply voltage greater than or equal ±15 V dc, the AD215 may supply up to ±15 mA from the isolated power supplies.  
10Voltages less than 14.25 V dc may cause the AD215 to cease operating properly. Voltages greater than ±17.5 V dc may damage the internal components of the  
AD215 and consequently should not be used.  
Specifications subject to change without notice.  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD215 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–3–  
REV. 0  
AD215  
4
FB  
AD215  
UNCOMMITTED  
INPUT OP AMP  
SIGNAL  
R
R
IN–  
IN+  
3
1
38  
OUT HI  
LOW-PASS  
FILTER  
150kHz  
MODULATOR  
DEMODULATOR  
2
IN COM  
OUTPUT  
BUFFER  
T1  
36  
37  
TRIM  
33kΩ  
0.01µF  
OUT LO  
POWER  
42  
44  
43  
+V  
+15V  
IN  
6
5
ISO  
430kHz  
POWER  
OSCILLATOR  
ISOLATED  
DC  
SUPPLY  
–15V  
IN  
–V  
PWR RTN  
ISO  
T2  
Figure 1. Functional Block Diagram  
INSID E TH E AD 215  
P IN CO NFIGURATIO NS  
T he AD215 is a fully self-contained analog signal and power  
isolation solution. It employs a double-balanced amplitude  
modulation technique to perform transformer coupling of sig-  
nals ranging in frequency from true dc values to those having  
frequencies of 120 kHz or less.  
1
37  
3
43  
44  
5
BOTTOM VIEW OF  
FOOTPRINT  
4
2
36 38  
6
42  
T o generate the power supplies used for the isolated front-end  
circuitry, an internal clock oscillator drives the primary winding  
of the integral dc/dc power supply’s transformer, T 2. T he  
resultant voltage developed across the secondary winding is  
then rectified and filtered for use as the isolated power supply.  
AD 215 P IN D ESIGNATIO NS  
P in  
D esignation  
IN+  
IN COM  
IN–  
Function  
1
2
3
4
5
6
36  
37  
38  
42  
43  
44  
Noninverting Input  
Input Common  
Inverting Input  
T his built-in isolated dc/dc converter provides sufficient power  
for both the internal isolated circuit elements of the AD215 as  
well as any ancillary components supplied by the user. It saves  
onboard space and component cost where additional amplifica-  
tion or signal conditioning is required.  
FB  
Amplifier Feedback  
–VISO OUT  
+VISO OUT  
T RIM  
OUT LO  
OUT HI  
+15 VIN  
PWR RT N  
–15 VIN  
Isolated –15 V dc Power Supply  
Isolated +15 V dc Power Supply  
Output Offset T rim Adjust  
Output Low  
Output High  
+15 V dc Power  
After an input signal is amplified by the uncommitted op amp,  
it is modulated at a carrier frequency of approximately 430 kHz  
and applied across the primary winding of the signal isolation  
transformer T 1.  
±15 V dc Power Supply Common  
–15 V dc Power  
T he resultant signal induced on the secondary winding of the  
transformer is then demodulated and filtered using a low-pass  
Bessel response filter set at a frequency of 150 kHz. T he func-  
tion of the filter reconstructs the original signal as it appears on  
the input.  
O RD ERING GUID E  
Tem perature Range VCMV  
Model  
Nonlinearity*  
T he signal transformer design and construction allow non-  
linearity to be independent of both the specified temperature  
and gain ranges.  
AD215AY –40°C to +85°C  
AD215BY –40°C to +85°C  
750  
1500  
0.01%  
0.005%  
After complete reconstruction, the signal is subjected to an off-  
set trim stage and final output buffer. T he trim circuit allows  
the designer flexibility to adjust for any offset as desired.  
*T ypical @ +25°C, G = 1 V/V.  
–4–  
REV. 0  
Performance Characteristics–AD215  
150  
140  
130  
0.10  
0.05  
R
100Ω  
S
0
120  
110  
100  
90  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
R
1kΩ  
S
80  
70  
60  
10  
100  
1k  
FREQUENCY – Hz  
10k  
100k  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE – °C  
Figure 4. Typical Com m on-Mode Rejection vs. Frequency  
Figure 2. Gain Error vs. Tem perature  
1
0
–1  
–2  
–3  
–4  
–5  
–6  
1mV  
100  
90  
+0.004  
–0.004  
+1  
0
–7  
–1  
G = 1  
–8  
10  
0%  
–9  
G = 10  
–10  
–11  
G = 100  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–12  
0.1  
OUTPUT VOLTAGE – Volts  
1.0  
10  
100  
1000  
INPUT SIGNAL FREQUENCY – kHz  
Figure 5. Norm alized Gain as a Function of Signal  
Frequency  
Figure 3. Gain Nonlinearity vs. Output Voltage (G = 1 V/V)  
G = 100  
G =10  
G = 1  
3
2
1
0
0
45  
90  
G = 1  
G =10  
130  
G = 100  
10 20 30 40 50 60 70 80 90 100 110 120  
FREQUENCY – kHz  
Figure 6. Phase Shift and Transport Delay vs. Frequency  
–5–  
REV. 0  
AD215–Performance Characteristics  
60  
56  
52  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
100  
0.33µF BYPASS CAPS  
OUTPUT  
90  
100mV  
INPUT  
(+10V STEP)  
5V  
1.0µF BYPASS CAPS  
10  
0%  
5µs  
3.3µF BYPASS CAPS  
OVERSHOOT  
10µF BYPASS CAPS  
4
0
0
1
2
3
4
5
6
7
8
9
10  
Figure 7a. Overshoot to a Full-Scale Step Input  
(G = 1 V/V)  
V
LOAD – mA  
ISO  
Figure 9. ±VISO Supply Ripple vs. Load  
16.2  
100  
90  
16.0  
15.8  
15.6  
5V  
INPUT  
(–10V STEP)  
V
= ±15V dc  
S
100mV  
10  
OUTPUT  
15.4  
15.2  
0%  
NOTE:  
THE GAIN AND  
OFFSET ERRORS  
WILL INCREASE  
WHEN THE  
5µs  
UNDERSHOOT  
15.0  
14.8  
ISOLATED  
POWER SUPPLY  
LOAD EXCEEDS  
±10mA  
Figure 7b. Undershoot to a Full-Scale Input  
(G = 1 V/V)  
5
10  
15  
V
LOAD – ±mA  
ISO  
Figure 10. ±VISO Supply Voltage vs. Load  
10µs  
5V  
100  
90  
10  
0%  
±10V, 15kHz STEP OUTPUT RESPONSE (G=1)  
Figure 8. Output Response to Full-Scale Step Input  
(G = 1 V/V)  
–6–  
REV. 0  
AD215  
P O WERING TH E AD 215  
Noninver ting Configur ation for Gain Gr eater Than Unity  
Figure 13 shows how to achieve a gain greater than one while  
continuing to preserve a very high input impedance. A recom-  
mended PC board layout for multichannel applications is shown  
in Figure 20b.  
T he AD215 is powered by a bipolar ±15 V dc power supply  
connected as shown in Figure 11. External bypass capacitors  
should be provided in bused applications. Note that a small  
signal-related current (50 mA/VOUT ) will flow out of the OUT  
LO pin (Pin 37). T herefore, the OUT LO terminals should be  
bused together and referenced at a single “Analog Star Ground”  
to the ±15 V dc supply common as illustrated Figure 11.  
R
= 2kΩ  
IN  
IN+  
IN–  
1
3
OUT HI  
38  
OUTPUT  
FILTER,  
BUFFER  
AND  
TRIM  
CIRCUITRY  
C
F
AD215  
R
F
AD215  
1
V
N
SIGNAL  
47pF  
FB  
ANALOG STAR GROUND  
OUT LO  
4
2
R
G
OUT LO  
OUT LO  
1
IN COM  
N
37  
42  
43  
37  
37  
42  
43  
44  
SIG COM  
TRIM  
36  
43  
+V  
IN  
+15V dc  
AD215  
COM  
2.2µF  
2.2µF  
PWR  
RTN  
PWR RTN  
IN  
COM  
–V  
–15V dc  
44  
Figure 13. Noninverting Input Configuration for  
Gain > 1 V/V  
TH  
ST  
CHANNEL  
N
CHANNEL  
1
In this circuit, the gain equation is as follows:  
VO = (1 + RF/RG) × VSIG  
where:  
Figure 11. Typical Power Supply Connections  
P ower Supply Voltage Consider ations  
VO = Output Voltage (V)  
VSIG = Input Signal Voltage (V)  
T he rated performance of the AD215 remains unaffected for  
power supply voltages in the ±14.5 V dc to ±16.5 V dc range.  
Voltages below ±14.25 V dc may cause the AD215 to cease op-  
erating properly.  
RF  
= Feedback Resistor Value ()  
RG = Gain Resistor Value ()  
T he values for resistors RF and RG are subject to the following  
constraints:  
Note: Power supply voltages greater than ±17.5 V dc may damage  
the internal components and consequently should not be used.  
• T he total impedance of the gain network should be less than  
10 k.  
USING TH E AD 215  
Unity Gain Input Configur ation  
T he basic unity gain configuration for input signals of up to  
±10 V is shown in Figure 12.  
• T he current drawn in RF is less than 1 mA at ±10 V. Note that  
for each mA drawn by the feedback resistor, the isolated  
power supply drive capability decreases by 1 mA.  
• Amplifier gain is set by the feedback (RF) and gain resistor  
(RG).  
R
= 2kΩ  
IN  
IN+  
1
3
4
2
OUT HI  
38  
IN–  
OUTPUT FILTER,  
BUFFER AND  
TRIM CIRCUITRY  
V
It is recommended that RF is bypassed with a 47 pF capacitor as  
shown.  
SIGNAL  
FB  
OUT LO  
IN COM  
37  
36  
43  
TRIM  
Note: T he 2 kinput resistor (RIN) in series with the input  
signal source and the IN+ terminal in Figures 12 and 13 is rec-  
ommended to limit the current at the input terminals of the to  
5.0 mA when the AD215 is not powered.  
AD215  
COM  
PWR  
RTN  
Figure 12. Basic Unity Gain  
–7–  
REV. 0  
AD215  
Com pensating the Uncom m itted Input O p Am p  
GAIN AND O FFSET AD JUSTMENTS  
T he open-loop gain and phase versus frequency for the uncom-  
mitted input op amp are given in Figure 14. T hese curves can  
be used to determine appropriate values for the feedback resis-  
tor (RF) and compensation capacitor (CF) to ensure frequency  
stability when reactive or nonlinear components are used.  
Gener al Com m ents  
T he AD215 features an output stage T RIM pin useful for zero-  
ing the output offset voltage through use of user supplied circuitry.  
When gain and offset adjustments are required, the actual com-  
pensation circuit ultimately used depends on the following:  
25  
20  
15  
10  
5
80  
• T he input configuration mode of the isolation amplifier (non-  
inverting or inverting).  
100  
120  
140  
160  
180  
200  
220  
240  
260  
280  
• T he placement of any adjusting potentiometer (on the  
isolator’s input or output side).  
PHASE  
As a general rule:  
GAIN  
Gain adjustments should be accomplished at the gain-setting  
resistor network at the isolator’s input.  
0
–5  
–10  
–15  
• T o ensure stability in the gain adjustment, potentiometers  
should be located as close as possible to the isolator’s input  
and its impedance should be kept low. Adjustment ranges  
should also be kept to a minimum since their resolution and  
stability is dependent upon the actual potentiometers used.  
–20  
–25  
100k  
1M  
10M  
FREQUENCY – Hz  
100M  
Output adjustments may be necessary where adjusting poten-  
tiometers placed near the input would present a hazard to the  
user due to the presence of high common-mode voltages dur-  
ing the adjustment procedure.  
Figure 14. Open-Loop Gain and Frequency Response  
Inver ting, Sum m ing or Cur r ent Input Configur ation  
Figure 14 shows how the AD215 can measure currents or sum  
currents or voltages.  
• It is recommended that input offset adjustments are made  
prior to gain adjustments.  
• T he AD215 should be allowed to warm up for approximately  
10 minutes before gain or offset adjustments are made.  
FB  
4
C
47pF  
F
R
F
Input Gain Adjustm ents for Noninver ting Mode  
IN–  
IN+  
3
1
OUT HI  
Figure 16 shows a suggested noninverting gain adjustment cir-  
cuit. Note that the gain adjustment potentiometer RP is incorpo-  
rated into the gain-setting resistor network.  
38  
OUTPUT  
FILTER,  
BUFFER  
AND  
TRIM  
CIRCUITRY  
R
R
S1  
S2  
I
S
V
V
S1  
S2  
OUT LO  
IN COM  
2
37  
TRIM  
R
= 2kΩ  
IN  
IN+  
IN–  
36  
43  
1
3
OUT HI  
AD215  
COM  
38  
R
OUTPUT  
FILTER,  
BUFFER  
AND  
PWR  
RTN  
P
C
F
0.47pF  
R
C
FB  
V
4
2
SIGNAL  
TRIM  
R
F
R
CIRCUITRY  
Figure 15. Noninverting Sum m ing/Current Configuration  
G
OUT LO  
IN COM  
37  
For this circuit, the output voltage equation is:  
TRIM  
36  
43  
AD215  
COM  
VO = –RF × (IS + VS1/RS1 + VS2/RS2 + . . .)  
PWR  
RTN  
where:  
V
= Output Voltage (V)  
VS1 = Input Voltage Signal 1 (V)  
VS2 = Input Voltage Signal 2 (V)  
Figure 16. Gain Adjustm ent for Noninverting Configuration  
For a ±1% trim range:  
IS  
= Input Current Source (A)  
RF  
= Feedback Resistor () (10 k, typ)  
RG × RF  
(RP 1k), RC 0.02 ×  
RG + RF  
RS1 = Input Signal 1 Source Resistance ()  
RS2 = Input Signal 2 Source Resistance ()  
T he circuit of Figure 15 can also be used when the input signal  
is larger than the ±10 V input range of the isolator. For example,  
in Figure 15, if only VS1, RS1 and RF were connected as shown  
with the solid lines, the input voltage span of VS1 could accom-  
modate up to ±50 V when RF = 10 kand RS1 = 50 k.  
–8–  
REV. 0  
AD215  
USING ISO LATED P O WER  
Input Gain Adjustm ents for the Inver ting Mode  
Figure 17 shows a suggested inverting gain adjustment circuit.  
In this circuit, gain adjustment is made using a potentiometer  
(RP) in the feedback loop. T he adjustments are effective for all  
gains in the 1 to 10 V/V range.  
Each AD215 provides an unregulated, isolated bipolar power  
source of ±15 V dc @ ±10 mA, referred to the input common.  
T his source may be used to power various ancillary components  
such as signal conditioning and/or adjustment circuitry, refer-  
ences, op amps or remote transducers. Figure 19 shows typical  
connections.  
R
R
R
F
IN  
C
FB  
4
C
F
47pF  
AD215  
IN–  
R
1kΩ  
IN–  
IN+  
F
3
OUT HI  
3
1
OUT HI  
OUTPUT  
FILTER,  
BUFFER  
AND  
TRIM  
CIRCUITRY  
38  
IN+  
38  
37  
OUTPUT  
FILTER,  
BUFFER  
AND  
TRIM  
CIRCUITRY  
1
FB  
4
2
V
SIGNAL  
IN COM  
OUT LO  
37  
36  
42  
OUT LO  
IN COM  
2
TRIM  
TRIM  
LOAD  
1.5kΩ  
1.5kΩ  
36  
43  
+V  
ISO  
+V  
S
6
5
+15V dc  
COM  
AD215  
COM  
C1  
6.8µF  
PWR  
RTN  
430kHz  
2.2µF  
2.2µF  
PWR  
RTN  
ISOLATED  
DC  
SUPPLY  
POWER  
OSCIL-  
LATOR  
43  
44  
C2  
6.8µF  
–V  
–V  
S
ISO  
–15V dc  
Figure 17. Gain Adjustm ent for Inverting Configuration  
For an approximate ±1% gain trim range,  
Figure 19. Using the Isolated Power Supplies  
RIN × RF  
RX  
=
RIN + RF  
P CB LAYO UT FO R MULTICH ANNEL AP P LICATIO NS  
T he pin out of the AD215 has been designed to easily facilitate  
multichannel applications. Figure 20a shows a recommended  
circuit board layout for a unity gain configuration.  
and select  
while  
RC = 0.02 × RIN  
PWR  
RTN  
RF < 10 kΩ  
CF = 47 pF  
–15V dc  
2.2µF  
+15V dc  
SUPPLY BYPASS  
CAPACITORS FOR  
EVERY FOUR  
AD215s  
Note: RF and RIN should have matched temperature coefficient  
drift characteristics.  
2.2µF  
42  
38  
38  
OUT HI  
0
36  
36  
O utput O ffset Adjustm ents  
44  
44  
44  
TRIM  
0
Figure 18 illustrates one method of adjusting the output offset  
voltage. Since the AD215 exhibits a nominal output offset of  
–35 mV, the circuit shown was chosen to yield an offset correc-  
tion of 0 mV to +73 mV. T his results in a total output offset  
range of approximately –35 mV to +38 mV.  
37  
37  
43  
43  
OUT HI  
1
42  
TRIM  
1
38  
38  
OUT HI  
2
36  
36  
42  
42  
TRIM  
ANALOG  
STAR  
2
37  
37  
IN–  
3
1
43  
43  
OUT HI  
GROUND  
38  
36  
IN+  
FB  
OUT HI  
3
LOW-PASS  
FILTER,  
(150k)  
44  
OUTPUT  
BUFFER  
R
T
1MΩ  
TRIM  
3
4
2
R
TRIM  
P2  
10kΩ  
IN COM  
R
S
2.2µF  
33kΩ  
0.01µF  
100kΩ  
2.2µF  
OUT LO  
37  
+15V  
IN  
42  
43  
44  
+15V dc  
COM  
–15V dc  
Figure 20a. PCB Layout for Unity Gain  
CAUTIO N  
2.2µF  
2.2µF  
AD215  
PWR RTN  
–15V  
IN  
T he AD215 design does not provide short-circuit protection of  
its isolated power supply. A current limiting resistor should be  
placed in series with the supply terminals and the load in order  
to protect against inadvertent shorts.  
Figure 18. Output Offset Adjustm ent Circuit  
O utput Gain Adjustm ents  
Since the output amplifier stage of the AD215 is fixed at unity  
gain, any adjustments can be made only in a subsequent stage.  
–9–  
REV. 0  
AD215  
When gain setting resistors are used, 0.325" channel centers can  
still be achieved as shown in Figure 20b.  
AC Tr ansducer Applications  
In applications such as vibration analysis, where the user must  
acquire and process the spectral content of a sensor’s signal  
rather than its “dc” level, the wideband characteristics of the  
AD215 prove most useful. Key specifications for ac transducer  
applications include bandwidth, slew rate and harmonic distor-  
tion. Since the transducer may be mechanically bonded or  
welded to the object under test, isolation is typically required to  
eliminate ground loops as well as protect the electronics used in  
the data acquisition system. Figure 23 shows an isolated strain  
gage circuit employing the AD215 and a high speed operational  
amplifier (AD744).  
RF  
CF  
2
6
4
IN  
IN COM  
+VISO  
RG  
1
5
3
–V SO  
I
C2  
CF  
C1  
RF  
2
6
4
IN  
IN COM  
RG  
1
5
3
+VISO  
–V SO  
I
C1, C2 ARE VISO FILTER CAPACITORS.  
RF, RG ARE FEEDBACK, GAIN RESISTORS.  
CF IS A FEEDBACK BYPASS CAPACITOR.  
C2  
C1  
T o alleviate the need for an instrumentation amplifier, the  
bridge is powered by a bipolar excitation source. Under this ap-  
proach the common-mode voltage is ±VSPAN which is typically  
only a few millivolts, rather than the VEXC Ϭ 2 that would be  
achieved with a unipolar excitation source and Wheatstone  
bridge configuration.  
Figure 20b. PCB Layout for Gain Greater than Unity  
AP P LICATIO NS EXAMP LES  
Motor Contr ol  
Using two strain gages with a gage factor of 3 mV/V and a  
±1.2 V excitation signal, a ±6.6 mV output signal will result. A  
gain setting of 454 will scale this low level signal to ±3 V, which  
can then be digitized by a high speed, 100 kHz sampling ADC  
such as the AD7870.  
Figure 21 shows an AD215 used in a dc motor control applica-  
tion. Its excellent phase characteristics and wide bandwidth are  
ideal for this type of application.  
ENCODER FEEDBACK  
AD215  
ISOLATED  
MOTOR  
G = 1  
4
T he low voltage excitation is used to permit the front-end cir-  
cuitry to be powered from the isolated power supplies of the  
AD215, which can supply up to ±10 mA of isolated power at  
±15 V. T he bridge draws only 3.5 mA, leaving sufficient cur-  
rent to power the micropower dual BiFET (400 µA quiescent  
current) and the high speed AD744 BiFET amplifier (4 mA  
quiescent current).  
I
MOTOR  
COMMAND  
MOTOR  
COMMAND  
OPTICAL  
RESOLVER  
OR  
3
1
SHAFT  
38  
MOTOR  
CONTROL  
UNIT  
V
±10V  
C
MOTOR  
TACHOMETER  
ENCODER  
±10 VOLTS  
37  
θ
OUT LO  
2
COM  
Figure 21. Motor Control Application  
Multichannel D ata Acquisition  
T he current drive capabilities of the AD215’s bipolar ±15 V dc  
isolated power supply is more than adequate to meet the modest  
±800 µA supply current requirements for the AD7502 multi-  
plexer. Digital isolation techniques should be employed to iso-  
late the Enable (EN), A0 and A1 logic control signals.  
EN  
A1  
A0  
AD7502  
(–15V)  
DTL/TTL TO CMOS LEVEL  
TRANSLATOR  
GND  
DECODER/DRIVER  
(+15V)  
AD215  
G = 1  
FB  
4
3
1
IN–  
IN+  
OUT HI  
38  
37  
S5 – S8  
S1 – S4  
OUT LO  
IN COM  
2
+V  
ISO  
6
2
42 +15V  
6.8µF  
6.8µF  
COM  
–15V  
44  
43  
–V  
ISO  
PWR  
RTN  
5
Figure 22. Multichannel Data Acquisition Application  
–10–  
REV. 0  
AD215  
+V  
ISO  
+V  
ISO  
220Ω  
Q1  
–V  
ISO  
2N3904  
1/2  
AD648  
1MΩ  
+1.2V  
FB  
4
3
1
350Ω  
38 OUT HI  
IN–  
IN+  
OUTPUT  
FILTER  
AND  
2MΩ  
+ε  
AD744  
MOD  
DEMOD  
+V  
350Ω  
ISO  
BUFFER  
ε  
OUT LO  
TRIM  
37  
36  
10kΩ  
2.2pF  
6.8kΩ  
–1.2V  
Q2  
5009.76kΩ  
AD215  
220Ω  
2N3906  
+V  
453kΩ  
1/2  
AD648  
ISO  
6
+15V  
AD589  
42  
1kΩ  
–V  
ISO  
–V  
ISO  
C1  
C2  
6.8µF  
6.8µF  
ISOLATED  
DC  
SUPPLY  
430kHz  
POWER  
OSC  
COM  
44 –15V  
2
5
–V  
ISO  
43 PWR  
RTN  
Figure 23. Strain Gage Signal Conditioning Application  
–11–  
REV. 0  
AD215  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
AD 215 SIP P ACKAGE  
0.325 (8.3)  
MAX  
2.480 (63.0) MAX  
0.840  
(21.4)  
MAX  
0.815  
(20.7)  
0.020 (0.5)  
0.015 (0.4)  
0.12 (3.0) TYP  
°
30 TYP  
0.094 (2.4)  
0.165 (4.2)  
0.135 (3.4)  
0.16 (4.1)  
0.16 (4.1)  
0.010  
(0.25)  
2.15 (54.6)  
0.2  
(5.1)  
0.250  
(6.4)  
0.1 (2.5)  
0.1 (2.5)  
1.50 (38.1)  
0.05 (1.3)  
0.11 (2.8)  
43  
37  
0.325  
(8.3)  
MAX  
1
2
5
0.1  
(2.5)  
BOTTOM VIEW OF  
FOOTPRINT  
3
4
6
42 44  
36 38  
0.11 (2.8)  
0.712 (18.2)  
0.712 (18.2)  
0.022 (0.56)  
C
L
NOTE: PINS MEASURE 0.022 (0.56) x 0.010 (0.25) PRIOR TO TINNING.  
TINNING MAY ADD UP TO 3 mils (0.003") TO THESE DIMENSIONS.  
–12–  
REV. 0  

相关型号:

AD220-25

Analog Attenuator
ETC

AD22001

5-Channel Monolithic Comparator for Lamp Monitoring
ADI

AD22001*

5-Channel Monolithic Comparator for Lamp Monitoring
ADI

AD22001N

5-Channel Monolithic Comparator for Lamp Monitoring
ADI

AD22002

Analog IC
ETC

AD220032D-I-AB

SAMA5D2 System in Package (SIP) MPU with up to 1 Gbit DDR2 SDRAM or 2 Gbit LPDDR2 SDRAM
MICROCHIP

AD220032D-I-ED

SAMA5D2 System in Package (SIP) MPU with up to 1 Gbit DDR2 SDRAM or 2 Gbit LPDDR2 SDRAM
MICROCHIP

AD220032D-I-PC

SAMA5D2 System in Package (SIP) MPU with up to 1 Gbit DDR2 SDRAM or 2 Gbit LPDDR2 SDRAM
MICROCHIP

AD22030

Analog IC
ETC

AD22035Z

Precision 1.7g, -1.7g, 5g, -5g, 18g, -18g Single-/ Dual-Axis iMEMS Accelerometer
ADI

AD22035Z-RL

Precision 1.7g, -1.7g, 5g, -5g, 18g, -18g Single-/ Dual-Axis iMEMS Accelerometer
ADI

AD22035Z-RL7

Precision 1.7g, -1.7g, 5g, -5g, 18g, -18g Single-/ Dual-Axis iMEMS Accelerometer
ADI