AD22035Z-RL [ADI]

Precision 1.7g, -1.7g, 5g, -5g, 18g, -18g Single-/ Dual-Axis iMEMS Accelerometer; 精密1.7克, -1.7g ,5G , -5g ,18G , -18g单/双轴加速度计的iMEMS
AD22035Z-RL
型号: AD22035Z-RL
厂家: ADI    ADI
描述:

Precision 1.7g, -1.7g, 5g, -5g, 18g, -18g Single-/ Dual-Axis iMEMS Accelerometer
精密1.7克, -1.7g ,5G , -5g ,18G , -18g单/双轴加速度计的iMEMS

文件: 总16页 (文件大小:618K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision ± ±1. g, ± ꢀ g, ± ±ꢁ g Single-/  
Dual-Axis iMEMS® Accelerometer  
Data Sheet  
ADXL±03/ADXL203  
FEATURES  
GENERAL DESCRIPTION  
High performance, single-/dual-axis accelerometer on  
a single IC chip  
5 mm × 5 mm × 2 mm LCC package  
1 mg resolution at 60 Hz  
Low power: 700 μA at VS = 5 V (typical)  
High zero g bias stability  
High sensitivity accuracy  
The ADXL103/ADXL203 are high precision, low power, complete  
single- and dual-axis accelerometers with signal conditioned  
voltage outputs, all on a single, monolithic IC. The ADXL103/  
ADXL203 measure acceleration with a full-scale range of ±1.7 g,  
±± g, or ±1g. The ADXL103/ADXL203 can measure both  
dynamic acceleration (for example, vibration) and static  
acceleration (for example, gravity).  
−40°C to +125°C temperature range  
X and Y axes aligned to within 0.1° (typical)  
Bandwidth adjustment with a single capacitor  
Single-supply operation  
3500 g shock survival  
RoHS compliant  
The typical noise floor is 110 μg/√Hz, allowing signals below 1 mg  
(0.06° of inclination) to be resolved in tilt sensing applications  
using narrow bandwidths (<60 Hz).  
The user selects the bandwidth of the accelerometer using  
Capacitor CX and Capacitor CY at the XOUT and YOUT pins.  
Bandwidths of 0.± Hz to 2.± kHz can be selected to suit the  
application.  
Compatible with Sn/Pb- and Pb-free solder processes  
Qualified for automotive applications  
The ADXL103 and ADXL203 are available in a ± mm × ± mm ×  
2 mm, ꢀ-terminal ceramic LCC package.  
APPLICATIONS  
Vehicle dynamic controls  
Electronic chassis controls  
Platform stabilization/leveling  
Navigation  
Alarms and motion detectors  
High accuracy, 2-axis tilt sensing  
Vibration monitoring and compensation  
Abuse event detection  
FUNCTIONAL BLOCK DIAGRAMS  
+5V  
+5V  
V
S
V
S
ADXL203  
ADXL103  
C
C
AC  
AMP  
OUTPUT  
AMP  
OUTPUT  
AMP  
AC  
AMP  
OUTPUT  
AMP  
DC  
DC  
DEMOD  
DEMOD  
SENSOR  
COM  
SENSOR  
COM  
R
32k  
R
32kΩ  
R
FILT  
32kΩ  
FILT  
FILT  
ST  
X
OUT  
ST  
Y
X
OUT  
OUT  
C
C
C
X
X
Y
Figure 1.  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2004–2011 Analog Devices, Inc. All rights reserved.  
 
ADXL±03/ADXL203  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configurations and Function Descriptions ........................... ±  
Typical Performance Characteristics ............................................. 6  
ADXL103 and ADXL203............................................................. 6  
AD22293........................................................................................ 9  
AD2203± and AD22037 ............................................................ 10  
All Models ................................................................................... 12  
Theory of Operation ...................................................................... 13  
Performance................................................................................ 13  
Applications Information.............................................................. 14  
Power Supply Decoupling ......................................................... 14  
Setting the Bandwidth Using CX and CY ................................. 14  
Self Test........................................................................................ 14  
Design Trade-Offs for Selecting Filter Characteristics: The  
Noise/Bandwidth Trade-Off..................................................... 14  
Using the ADXL103/ADXL203 with Operating Voltages  
Other than ± V............................................................................ 1±  
Using the ADXL203 as a Dual-Axis Tilt Sensor ........................ 1±  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
Automotive Products................................................................. 16  
REVISION HISTORY  
9/11—Rev. C to Rev. D  
4/10—Rev. A to Rev. B  
Added AD22293, AD2203±, and AD22037............... Throughout  
Changes to Application Section and General Description  
Section................................................................................................ 1  
Changes to Table 1............................................................................ 3  
Deleted Figure 13 and Figure 14: Renumbered Sequentially ..... 7  
Deleted Figure 17 and Figure 22..................................................... ꢀ  
Added Figure 19 to Figure 24; Renumbered Sequentially .......... 9  
Added Figure 2± to Figure 34........................................................ 10  
Added All Models Section, Figure 3± to Figure 3ꢀ .................... 12  
Changes to Figure 39...................................................................... 13  
Changes to Ordering Guide .......................................................... 16  
Changes to Automotive Products Section................................... 16  
Changes to Features Section ............................................................1  
Updated Outline Dimensions....................................................... 12  
Changes to Ordering Guide.......................................................... 12  
2/06—Rev. 0 to Rev. A  
Changes to Features ..........................................................................1  
Changes to Table 1.............................................................................3  
Changes to Figure 2...........................................................................4  
Changes to Figure 3 and Figure 4....................................................±  
Changes to the Performance Section..............................................9  
4/04—Revision 0: Initial Version  
5/10—Rev. B to Rev. C  
Changes to Figure 24 Caption....................................................... 12  
Added Automotive Products Section .......................................... 12  
Rev. D | Page 2 of 16  
Data Sheet  
ADXL±03/ADXL203  
SPECIFICATIONS  
TA = −40°C to +12±°C, VS = ± V, CX = CY = 0.1 μF, acceleration = 0 g, unless otherwise noted. All minimum and maximum specifications  
are guaranteed. All typical specifications are not guaranteed.  
Table 1.  
ADXL103/ADXL203  
AD22293  
Typ Max  
AD22035/AD22037  
Parameter  
Test Conditions Min  
Each axis  
Typ  
Max  
Min  
Min  
Typ  
Max  
Unit  
SENSOR  
Measurement Range1  
±1.ꢀ  
±±  
±6  
±1ꢁ  
g
Nonlinearity  
% of full scale  
±ꢂ.2 ±1.2±  
±1  
±ꢂ.1  
±ꢂ.2 ±1.2±  
±1  
±ꢂ.1  
±ꢂ.2  
±1  
±ꢂ.1  
±1.±  
±1.2±  
%
Package Alignment Error  
Alignment Error (ADXL2ꢂ3)  
Cross-Axis Sensitivity  
SENSITIVITY (RATIOMETRIC)2  
Sensitivity at XOUT, YOUT  
Degrees  
Degrees  
%
X to Y sensor  
±1.± ±3  
±1.± ±3  
±3  
Each axis  
VS = ± V  
VS = ± V  
96ꢂ  
2.4  
1ꢂꢂꢂ 1ꢂ4ꢂ  
±ꢂ.3  
293  
2.4  
312  
331  
94  
1ꢂꢂ  
±ꢂ.3  
1ꢂ6  
mV/g  
%
Sensitivity Change Due to  
Temperature3  
±ꢂ.3  
ZERO g BIAS LEVEL (RATIOMETRIC) Each axis  
g Voltage at XOUT, YOUT  
Initial ꢂ g Output Deviation  
From Ideal  
VS = ± V  
VS = ± V, 2±°C  
2.±  
2.6  
2.±  
2.6  
2.4  
2.±  
±12±  
2.6  
2
V
mg  
±2±  
±±ꢂ  
g Offset vs. Temperature  
±ꢂ.1 ±ꢂ.ꢁ  
±ꢂ.3 ±1.ꢁ  
±1  
mg/°C  
NOISE  
Output Noise  
Noise Density  
<4 kHz, VS = ± V  
1
3
1
3
mV rms  
μg/√Hz  
11ꢂ  
2ꢂꢂ  
13ꢂ  
rms  
FREQUENCY RESPONSE4  
CX, CY Range±  
RFILT Tolerance  
Sensor Resonant Frequency  
SELF TEST6  
ꢂ.ꢂꢂ2  
24  
1ꢂ  
4ꢂ  
ꢂ.ꢂꢂ2  
24  
1ꢂ  
4ꢂ  
ꢂ.ꢂꢂ2  
24  
1ꢂ  
4ꢂ  
μF  
kΩ  
kHz  
32  
±.±  
32  
±.±  
32  
±.±  
Logic Input Low  
1
1
1
V
Logic Input High  
4
4
4
V
ST Input Resistance to GND  
Output Change at XOUT, YOUT  
OUTPUT AMPLIFIER  
Output Swing Low  
Output Swing High  
3ꢂ  
4±ꢂ  
±ꢂ  
ꢀ±ꢂ  
3ꢂ  
12±  
±ꢂ  
2±ꢂ  
3ꢂ  
6ꢂ  
±ꢂ  
ꢁꢂ  
kΩ  
mV  
ST ꢂ to ST 1  
11ꢂꢂ  
4.ꢁ  
3ꢀ±  
4.ꢁ  
1ꢂꢂ  
4.ꢁ  
No load  
No load  
ꢂ.ꢂ±  
3
ꢂ.2  
4.±  
ꢂ.ꢂ±  
3
ꢂ.2  
4.±  
ꢂ.ꢂ±  
3
ꢂ.2  
4.±  
V
V
POWER SUPPLY (VDD  
)
Operating Voltage Range  
Quiescent Supply Current  
Turn-On Timeꢀ  
6
1.1  
6
1.1  
6
1.1  
V
mA  
ms  
ꢂ.ꢀ  
2ꢂ  
ꢂ.ꢀ  
2ꢂ  
ꢂ.ꢀ  
2ꢂ  
1 Guaranteed by measurement of initial offset and sensitivity.  
2 Sensitivity is essentially ratiometric to VS. For VS = 4.ꢀ± V to ±.2± V, sensitivity is 1ꢁ6 mV/V/g to 21± mV/V/g.  
3 Defined as the output change from ambient-to-maximum temperature or ambient-to-minimum temperature.  
4 Actual frequency response controlled by user-supplied external capacitor (CX, CY).  
± Bandwidth = 1/(2 × π × 32 kΩ × C). For CX, CY = ꢂ.ꢂꢂ2 μF, bandwidth = 2±ꢂꢂ Hz. For CX, CY = 1ꢂ μF, bandwidth = ꢂ.± Hz. Minimum/maximum values are not tested.  
6 Self-test response changes cubically with VS.  
Larger values of CX, CY increase turn-on time. Turn-on time is approximately 16ꢂ × CX or CY + 4 ms, where CX, CY are in μF.  
Rev. D | Page 3 of 16  
 
 
ADXL±03/ADXL203  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Rating  
Table 3. Package Characteristics  
Package Type θJA  
ꢁ-Terminal Ceramic LCC 12ꢂ°C/W 2ꢂ°C/W <1.ꢂ gram  
Acceleration (Any Axis, Unpowered)  
Acceleration (Any Axis, Powered)  
Drop Test (Concrete Surface)  
VS  
3±ꢂꢂ g  
3±ꢂꢂ g  
1.2 m  
−ꢂ.3 V to +ꢀ.ꢂ V  
θJC  
Device Weight  
ESD CAUTION  
All Other Pins  
(COM − ꢂ.3 V) to  
(VS + ꢂ.3 V)  
Output Short-Circuit Duration  
(Any Pin to Common)  
Indefinite  
Temperature Range (Powered)  
Temperature Range (Storage)  
−±±°C to +12±°C  
−6±°C to +1±ꢂ°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress rating  
only; functional operation of the device at these or any other  
conditions above those indicated in the operational section of  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
CRITICAL ZONE  
T
TO T  
tP  
L
P
T
P
RAMP-UP  
T
L
tL  
T
SMAX  
T
SMIN  
tS  
RAMP-DOWN  
PREHEAT  
t
25°C TO PEAK  
TIME  
Figure 2. Recommended Soldering Profile  
Table 4. Solder Profile Parameters  
Test Condition  
Profile Feature  
Sn63/Pb37  
Pb-Free  
Average Ramp Rate (TL to TP)  
Preheat  
3°C/second maximum  
3°C/second maximum  
Minimum Temperature (TSMIN  
)
1ꢂꢂ°C  
1±ꢂ°C  
1±ꢂ°C  
2ꢂꢂ°C  
Maximum Temperature (TSMAX  
Time (TSMIN to TSMAX) (tS)  
TSMAX to TL  
)
6ꢂ seconds to 12ꢂ seconds  
6ꢂ seconds to 1±ꢂ seconds  
Ramp-Up Rate  
3°C/second  
3°C/second  
Time Maintained above Liquidous (TL)  
Liquidous Temperature (TL)  
Time (tL)  
1ꢁ3°C  
21ꢀ°C  
6ꢂ seconds to 1±ꢂ seconds  
24ꢂ°C + ꢂ°C/−±°C  
6ꢂ seconds to 1±ꢂ seconds  
26ꢂ°C + ꢂ°C/−±°C  
Peak Temperature (TP)  
Time Within ±°C of Actual Peak Temperature (tP)  
Ramp-Down Rate  
1ꢂ seconds to 3ꢂ seconds  
6°C/second maximum  
6 minutes maximum  
2ꢂ seconds to 4ꢂ seconds  
6°C/second maximum  
ꢁ minutes maximum  
Time 2±°C to Peak Temperature  
Rev. D | Page 4 of 16  
 
Data Sheet  
ADXL±03/ADXL203  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
ADXL103  
ADXL203  
TOP VIEW  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
V
S
V
S
8
8
ST  
NC  
1
2
3
7
6
5
X
1
7
ST  
NC  
X
Y
OUT  
OUT  
OUT  
+Y  
+X  
NC  
NC  
2
3
6
5
+X  
4
COM  
COM  
NC  
4
NC  
NC  
NOTES  
NOTES  
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
Figure 3. ADXL103 Pin Configuration  
Figure 4. ADXL203 Pin Configuration  
Table 6. ADXL203 Pin Function Descriptions  
Table 5. ADXL103 Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
Pin No.  
Mnemonic  
Description  
1
2
3
4
±
6
ST  
NC  
COM  
NC  
NC  
YOUT  
XOUT  
VS  
Self Test  
Do Not Connect  
Common  
Do Not Connect  
Do Not Connect  
Y Channel Output  
X Channel Output  
3 V to 6 V  
1
2
3
4
±
6
ST  
Self Test  
Do Not Connect  
Common  
Do Not Connect  
Do Not Connect  
Do Not Connect  
X Channel Output  
3 V to 6 V  
NC  
COM  
NC  
NC  
NC  
XOUT  
VS  
Rev. D | Page ± of 16  
 
ADXL±03/ADXL203  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
ADXL103 AND ADXL203  
VS = ± V for all graphs, unless otherwise noted.  
25  
30  
25  
20  
15  
20  
15  
10  
5
10  
5
0
0
ZERO g BIAS (V)  
ZERO g BIAS (V)  
Figure 5. X-Axis Zero g Bias Deviation from Ideal at 25°C  
Figure 8. Y-Axis Zero g Bias Deviation from Ideal at 25°C  
30  
25  
20  
15  
10  
25  
20  
15  
10  
5
0
5
0
TEMPERATURE COEFFICIENT (mg/°C)  
TEMPERATURE COEFFICIENT (mg/°C)  
Figure 6. X-Axis Zero g Bias Temperature Coefficient  
Figure 9. Y-Axis Zero g Bias Temperature Coefficient  
40  
35  
30  
25  
20  
40  
35  
30  
25  
20  
15  
10  
15  
10  
5
0
5
0
SENSITIVITY (V/g)  
SENSITIVITY (V/g)  
Figure 7. X-Axis Sensitivity at 25°C  
Figure 10. Y-Axis Sensitivity at 25°C  
Rev. D | Page 6 of 16  
 
Data Sheet  
ADXL±03/ADXL203  
2.60  
1.03  
1.02  
1.01  
1.00  
0.99  
2.58  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
0.98  
0.97  
2.42  
2.40  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Zero g Bias vs. Temperature; Parts Soldered to PCB  
Figure 13. Sensitivity vs. Temperature; Parts Soldered to PCB  
50  
45  
40  
50  
45  
40  
35  
30  
25  
20  
15  
35  
30  
25  
20  
15  
10  
10  
5
0
5
0
60  
70  
80  
90  
100 110 120 130 140 150  
60  
70  
80  
90  
100 110 120 130 140 150  
X AXIS NOISE DENSITY (mg/Hz)  
Y AXIS NOISE DENSITY (mg/Hz)  
Figure 12. X-Axis Noise Density at 25°C  
Figure 14. Y-Axis Noise Density at 25°C  
Rev. D | Page ꢀ of 16  
 
ADXL±03/ADXL203  
Data Sheet  
45  
45  
40  
35  
30  
25  
20  
40  
35  
30  
25  
20  
15  
15  
10  
5
10  
5
0
0
SELF-TEST OUTPUT (V)  
SELF-TEST OUTPUT (V)  
Figure 15. X-Axis Self-Test Response at 25°C  
Figure 17. Y-Axis Self-Test Response at 25°C  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
100  
90  
5V  
80  
3V  
70  
60  
50  
40  
30  
20  
0.60  
0.55  
0.50  
10  
0
TEMPERATURE (°C)  
CURRENT (µA)  
Figure 18. Supply Current at 25°C  
Figure 16. Self-Test Response vs. Temperature  
Rev. D | Page ꢁ of 16  
Data Sheet  
ADXL±03/ADXL203  
AD22293  
60  
70  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
ZERO g BIAS (V)  
ZERO g BIAS (V)  
Figure 22. Y-Axis Zero g Bias at 25°C  
Figure 19. X-Axis Zero g Bias at 25°C  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
TEMPERATURE COEFFICIENT (mg/°C)  
TEMPERATURE COEFFICIENT (mg/°C)  
Figure 23. Y-Axis Zero g Bias Temperature Coefficient  
Figure 20. X-Axis Zero g Bias Temperature Coefficient  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
SENSITIVITY (V/g)  
SENSITIVITY (V/g)  
Figure 24. Y-Axis Sensitivity at 25°C  
Figure 21. X-Axis Sensitivity at 25°C  
Rev. D | Page 9 of 16  
 
ADXL±03/ADXL203  
Data Sheet  
AD22035 AND AD22037  
60  
60  
50  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
ZERO g BIAS (mV)  
ZERO g BIAS (mV)  
Figure 25. X-Axis Zero g Bias Deviation from Ideal at 25°C  
Figure 28. Y-Axis Zero g Bias Deviation from Ideal at 25°C  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
0
0
TEMPERATURE COEFFICIENT (mg/°C)  
TEMPERATURE COEFFICIENT (mg/°C)  
Figure 26. X-Axis Zero g Bias Temperature Coefficient  
Figure 29. Y-Axis Zero g Bias Temperature Coefficient  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
SENSITIVITY (mV/g)  
SENSITIVITY (mV/g)  
Figure 30. Y-Axis Sensitivity at 25°C  
Figure 27. X-Axis Sensitivity at 25°C  
Rev. D | Page 1ꢂ of 16  
 
Data Sheet  
ADXL±03/ADXL203  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
SELF-TEST OUTPUT (V)  
SELF-TEST OUTPUT (V)  
Figure 31. X-Axis Self Test Response at 25°C  
Figure 33. Y-Axis Self Test Response at 25°C  
101.0  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
25°C  
105°C  
100.5  
100.0  
99.5  
99.0  
98.5  
98.0  
97.5  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
CURRENT (µA)  
Figure 34. Supply Current vs. Temperature  
Figure 32. Sensitivity vs. Temperature; Parts Soldered to PCB  
Rev. D | Page 11 of 16  
ADXL±03/ADXL203  
Data Sheet  
ALL MODELS  
40  
40  
35  
30  
25  
20  
15  
35  
30  
25  
20  
15  
10  
5
10  
5
0
0
PERCENT SENSITIVITY (%)  
PERCENT SENSITIVITY (%)  
Figure 35. Z vs. X Cross-Axis Sensitivity  
Figure 37. Z vs. Y Cross-Axis Sensitivity  
0.9  
0.8  
0.7  
0.6  
V
= 5V  
S
0.5  
V
= 3V  
S
0.4  
0.3  
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
TIME  
Figure 36. Supply Current vs. Temperature  
Figure 38. Turn-On Time; CX, CY = 0.1 μF, Time Scale = 2 ms/DIV  
Rev. D | Page 12 of 16  
 
Data Sheet  
ADXL±03/ADXL203  
THEORY OF OPERATION  
The ADXL103/ADXL203 are complete acceleration measurement  
systems on a single, monolithic IC. The ADXL103 is a single-  
axis accelerometer, and the ADXL203 is a dual-axis accelerometer.  
Both parts contain a polysilicon surface-micro-machined sensor  
and signal conditioning circuitry to implement an open-loop  
acceleration measurement architecture. The output signals are  
analog voltages that are proportional to acceleration. The  
ADXL103/ADXL203 are capable of measuring both positive  
and negative accelerations from ±1.7 g to at least ±1g. The  
accelerometer can measure static acceleration forces, such  
as gravity, allowing it to be used as a tilt sensor.  
The output of the demodulator is amplified and brought off-chip  
through a 32 kΩ resistor. At this point, the user can set the signal  
bandwidth of the device by adding a capacitor. This filtering  
improves measurement resolution and helps prevent aliasing.  
PERFORMANCE  
Rather than using additional temperature compensation circuitry,  
innovative design techniques have been used to ensure that  
high performance is built in. As a result, there is essentially no  
quantization error or nonmonotonic behavior, and temperature  
hysteresis is very low (typically less than 10 mg over the −40°C  
to +12±°C temperature range).  
The sensor is a surface-micromachined polysilicon structure  
built on top of the silicon wafer. Polysilicon springs suspend the  
structure over the surface of the wafer and provide a resistance  
against acceleration forces. Deflection of the structure is measured  
using a differential capacitor that consists of independent fixed  
plates and plates attached to the moving mass. The fixed plates  
are driven by 1ꢀ0° out-of-phase square waves. Acceleration deflects  
the beam and unbalances the differential capacitor, resulting in an  
output square wave whose amplitude is proportional to acceleration.  
Phase-sensitive demodulation techniques are then used to rectify  
the signal and determine the direction of the acceleration.  
Figure 11 shows the 0 g output performance of eight parts  
(x and y axes) over a −40°C to +12±°C temperature range.  
Figure 13 demonstrates the typical sensitivity shift over  
temperature for VS = ± V. Sensitivity stability is optimized for  
VS = ± V but is still very good over the specified range; it is  
typically better than ±1ꢁ over temperature at VS = 3 V.  
PIN 8  
X
Y
= –1g  
= 0g  
OUT  
OUT  
PIN 8  
PIN 8  
TOP VIEW  
(Not to Scale)  
X
Y
= 0g  
= –1g  
X
= 0g  
OUT  
OUT  
OUT  
Y
= +1g  
OUT  
X
Y
= 0g  
= 0g  
OUT  
OUT  
PIN 8  
X
Y
= +1g  
= 0g  
OUT  
OUT  
EARTH’S SURFACE  
Figure 39. Output Response vs. Orientation  
Rev. D | Page 13 of 16  
 
ADXL±03/ADXL203  
Data Sheet  
APPLICATIONS INFORMATION  
DESIGN TRADE-OFFS FOR SELECTING FILTER  
CHARACTERISTICS: THE NOISE/BANDWIDTH  
TRADE-OFF  
POWER SUPPLY DECOUPLING  
For most applications, a single 0.1 μF capacitor, CDC, adequately  
decouples the accelerometer from noise on the power supply.  
However, in some cases, particularly where noise is present at  
the 140 kHz internal clock frequency (or any harmonic thereof),  
noise on the supply can cause interference on the ADXL103/  
ADXL203 output. If additional decoupling is needed, a 100 Ω  
(or smaller) resistor or ferrite beads can be inserted in the supply  
line of the ADXL103/ADXL203. Additionally, a larger bulk  
bypass capacitor (in the 1 μF to 22 μF range) can be added in  
The accelerometer bandwidth selected ultimately determines  
the measurement resolution (smallest detectable acceleration).  
Filtering can be used to lower the noise floor, improving the  
resolution of the accelerometer. Resolution is dependent on  
the analog filter bandwidth at XOUT and YOUT  
.
The output of the ADXL103/ADXL203 has a typical bandwidth  
of 2.± kHz. The user must filter the signal at this point to limit  
aliasing errors. The analog bandwidth must be no more than  
half the analog-to-digital sampling frequency to minimize  
aliasing. The analog bandwidth can be further decreased to  
reduce noise and improve resolution.  
parallel to CDC  
.
SETTING THE BANDWIDTH USING CX AND CY  
The ADXL103/ADXL203 has provisions for band limiting the  
XOUT and YOUT pins. Capacitors must be added at these pins to  
The ADXL103/ADXL203 noise has the characteristics of white  
Gaussian noise, which contributes equally at all frequencies and is  
described in terms of μg/√Hz (that is, the noise is proportional to  
the square root of the accelerometer bandwidth). Limit bandwidth  
to the lowest frequency needed by the application to maximize the  
resolution and dynamic range of the accelerometer.  
implement low-pass filtering for antialiasing and noise reduction.  
The equation for the 3 dB bandwidth is  
f
–3 dB = 1/(2π(32 kΩ) × C(X, Y)  
or more simply,  
–3 dB = ± μF/C(X, Y)  
)
f
With the single-pole roll-off characteristic, the typical noise of  
the ADXL103/ADXL203 is determined by  
The tolerance of the internal resistor (RFILT) can vary typically as  
much as ±2±ꢁ of its nominal value (32 kΩ); thus, the bandwidth  
varies accordingly. A minimum capacitance of 2000 pF for CX and  
CY is required in all cases.  
rmsNoise = (110 μg/√Hz) × ( BW ×1.6 )  
At 100 Hz, the noise is  
Table 7. Filter Capacitor Selection, CX and CY  
rmsNoise = (110 μg/√Hz) × ( 100×1.6 ) = 1.4 mg  
Bandwidth (Hz)  
Capacitor (μF)  
Often, the peak value of the noise is desired. Peak-to-peak noise  
can only be estimated by statistical methods. Table ꢀ is useful  
for estimating the probabilities of exceeding various peak values,  
given the rms value.  
1
1ꢂ  
±ꢂ  
1ꢂꢂ  
2ꢂꢂ  
±ꢂꢂ  
4.ꢀ  
ꢂ.4ꢀ  
ꢂ.1ꢂ  
ꢂ.ꢂ±  
ꢂ.ꢂ2ꢀ  
ꢂ.ꢂ1  
Table 8. Estimation of Peak-to-Peak Noise  
% of Time That Noise Exceeds  
Peak-to-Peak Value  
2 × rms  
Nominal Peak-to-Peak Value  
SELF TEST  
32  
The ST pin controls the self test feature. When this pin is set to VS,  
an electrostatic force is exerted on the beam of the accelerometer.  
The resulting movement of the beam allows the user to test if  
the accelerometer is functional. The typical change in output is  
7±0 mg (corresponding to 7±0 mV). This pin can be left open-  
circuit or connected to common in normal use.  
4 × rms  
6 × rms  
ꢁ × rms  
4.6  
ꢂ.2ꢀ  
ꢂ.ꢂꢂ6  
Peak-to-peak noise values give the best estimate of the uncertainty  
in a single measurement; peak-to-peak noise is estimated by  
6 × rms. Table 9 gives the typical noise output of the ADXL103/  
ADXL203 for various CX and CY values.  
Never expose the ST pin to voltages greater than VS + 0.3 V. If  
the system design is such that this condition cannot be guaranteed  
(that is, multiple supply voltages are present), a low VF clamping  
diode between ST and VS is recommended.  
Table 9. Filter Capacitor Selection (CX, CY)  
CX, CY RMS Noise Peak-to-Peak Noise  
Bandwidth (Hz) (μF)  
(mg)  
Estimate (mg)  
1ꢂ  
±ꢂ  
ꢂ.4ꢀ  
ꢂ.1  
ꢂ.4  
1.ꢂ  
2.6  
6
1ꢂꢂ  
±ꢂꢂ  
ꢂ.ꢂ4ꢀ 1.4  
ꢂ.ꢂ1 3.1  
ꢁ.4  
1ꢁ.ꢀ  
Rev. D | Page 14 of 16  
 
 
 
Data Sheet  
ADXL±03/ADXL203  
USING THE ADXL103/ADXL203 WITH OPERATING  
VOLTAGES OTHER THAN 5 V  
USING THE ADXL203 AS A DUAL-AXIS TILT SENSOR  
One of the most popular applications of the ADXL203 is tilt  
measurement. An accelerometer uses the force of gravity as an  
input vector to determine the orientation of an object in space.  
The ADXL103/ADXL203 is tested and specified at VS = ± V;  
however, it can be powered with VS as low as 3 V or as high  
as 6 V. Some performance parameters change as the supply  
voltage is varied.  
An accelerometer is most sensitive to tilt when its sensitive axis  
is perpendicular to the force of gravity, that is, parallel to the  
earth’s surface. At this orientation, its sensitivity to changes in  
tilt is highest. When the accelerometer is oriented on axis to  
gravity, that is, near its +1 g or –1 g reading, the change in  
output acceleration per degree of tilt is negligible. When the  
accelerometer is perpendicular to gravity, its output changes  
nearly 17.± mg per degree of tilt. At 4±°, its output changes at  
only 12.2 mg per degree, and resolution declines.  
The ADXL103/ADXL203 output is ratiometric, so the output  
sensitivity (or scale factor) varies proportionally to the supply  
voltage. At VS = 3 V, the output sensitivity is typically ±60 mV/g.  
The zero g bias output is also ratiometric, so the zero g output is  
nominally equal to VS/2 at all supply voltages.  
The output noise is not ratiometric but is absolute in volts;  
therefore, the noise density decreases as the supply voltage  
increases. This is because the scale factor (mV/g) increases  
while the noise voltage remains constant. At VS = 3 V, the  
noise density is typically 190 μg/√Hz.  
Dual-Axis Tilt Sensor: Converting Acceleration to Tilt  
When the accelerometer is oriented so both its x-axis and y-axis  
are parallel to the earth’s surface, it can be used as a 2-axis tilt sensor  
with a roll axis and a pitch axis. Once the output signal from the  
accelerometer has been converted to an acceleration that varies  
between –1 g and +1 g, the output tilt in degrees is calculated as  
Self test response in g is roughly proportional to the square of  
the supply voltage. However, when ratiometricity of sensitivity  
is factored in with supply voltage, self test response in volts is  
roughly proportional to the cube of the supply voltage. So at  
VS = 3 V, the self test response is approximately equivalent to  
1±0 mV or equivalent to 270 mg (typical).  
PITCH = ASIN(AX/1 g)  
ROLL = ASIN(AY/1 g)  
Be sure to account for overranges. It is possible for the  
accelerometers to output a signal greater than ±1 g due to  
vibration, shock, or other accelerations.  
The supply current decreases as the supply voltage decreases.  
Typical current consumption at VDD = 3 V is 4±0 μA.  
Rev. D | Page 1± of 16  
 
ADXL±03/ADXL203  
Data Sheet  
OUTLINE DIMENSIONS  
0.030  
0.025  
0.020  
(PLATING OPTION 1,  
SEE DETAIL A  
FOR OPTION 2)  
0.087  
0.078  
0.069  
0.028  
0.020 DIA  
0.012  
0.203  
0.197 SQ  
0.193  
0.054  
0.050  
0.046  
0.020  
0.015  
0.010  
(R 4 PLCS)  
1
3
7
5
0.180  
0.177 SQ  
0.174  
0.106  
0.100  
0.094  
0.075 REF  
R 0.008  
(8 PLCS)  
0.008  
0.006  
0.004  
TOP VIEW  
BOTTOM VIEW  
R 0.008  
(4 PLCS)  
0.077  
0.070  
0.063  
0.019 SQ  
DETAIL A  
(OPTION 2)  
Figure 40. 8-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-8-1)  
Dimensions shown in inches  
ORDERING GUIDE  
Device  
Axes Generic  
Specified  
Voltage (V)  
Package  
Model1, 2  
g-Range  
±1.ꢀ  
±1.ꢀ  
±1.ꢀ  
±1ꢁ  
±1ꢁ  
±1ꢁ  
±1ꢁ  
±1ꢁ  
Temperature Range  
−4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
–4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
Package Description  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
Evaluation Board  
Option  
E-ꢁ-1  
E-ꢁ-1  
E-ꢁ-1  
E-ꢁ-1  
E-ꢁ-1  
E-ꢁ-1  
E-ꢁ-1  
E-ꢁ-1  
E-ꢁ-1  
E-ꢁ-1  
E-ꢁ-1  
E-ꢁ-1  
ADXL1ꢂ3CE  
1
1
1
1
1
1
1
1
1
2
2
2
ADXL1ꢂ3  
ADXL1ꢂ3  
ADXL1ꢂ3  
ADXL1ꢂ3  
ADXL1ꢂ3  
ADXL1ꢂ3  
ADXL1ꢂ3  
ADXL1ꢂ3  
ADXL1ꢂ3  
ADXL2ꢂ3  
ADXL2ꢂ3  
ADXL2ꢂ3  
±
±
±
±
±
±
±
±
±
±
±
±
ADXL1ꢂ3CE–REEL  
ADXL1ꢂ3WCEZB-REEL  
AD22ꢂ3±Z  
AD22ꢂ3±Z-RL  
AD22ꢂ3±Z-RLꢀ  
ADW22ꢂ3±Z  
ADW22ꢂ3±Z-RL  
ADW22ꢂ3±Z-RLꢀ  
ADXL2ꢂ3CE  
ADXL2ꢂ3CE-REEL  
ADXL2ꢂ3WCEZB-REEL  
ADXL2ꢂ3EB  
±1ꢁ  
±1.ꢀ  
±1.ꢀ  
±1.ꢀ  
AD22293ZA  
ADW22293ZA  
AD22ꢂ3ꢀZ  
AD22ꢂ3ꢀZ-RL  
AD22ꢂ3ꢀZ-RLꢀ  
ADW22ꢂ3ꢀZ  
ADW22ꢂ3ꢀZ-RL  
ADW22ꢂ3ꢀZ-RLꢀ  
2
2
2
2
2
2
2
2
ADXL2ꢂ3  
ADXL2ꢂ3  
ADXL2ꢂ3  
ADXL2ꢂ3  
ADXL2ꢂ3  
ADXL2ꢂ3  
ADXL2ꢂ3  
ADXL2ꢂ3  
±±  
±±  
±
±
±
±
±
±
±
±
−4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
−4ꢂ°C to +12±°C  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
ꢁ-Terminal Ceramic LCC  
E-ꢁ-1  
E-ꢁ-1  
E-ꢁ-1  
E-ꢁ-1  
E-ꢁ-1  
E-ꢁ-1  
E-ꢁ-1  
E-ꢁ-1  
±1ꢁ  
±1ꢁ  
±1ꢁ  
±1ꢁ  
±1ꢁ  
±1ꢁ  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The ADXL103W, ADW2203±, ADXL203W, ADW22293, and ADW22037 models are available with controlled manufacturing to support  
the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ  
from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade  
products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific  
product ordering information and to obtain the specific Automotive Reliability reports for these models.  
©2004–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03757-0-9/11(D)  
Rev. D | Page 16 of 16  
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY