AD2S44UM10B [ADI]

IC SYNCHRO OR RESOLVER TO DIGITAL CONVERTER, MDIP32, 1.750 X 1.050 INCH, 0.225 INCH HEIGHT, DIP-32, Position Converter;
AD2S44UM10B
型号: AD2S44UM10B
厂家: ADI    ADI
描述:

IC SYNCHRO OR RESOLVER TO DIGITAL CONVERTER, MDIP32, 1.750 X 1.050 INCH, 0.225 INCH HEIGHT, DIP-32, Position Converter

输入元件 转换器
文件: 总12页 (文件大小:301K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, 14-Bit, Dual Channel  
Synchro/Resolver-to-Digital Converter  
Data Sheet  
AD2S44  
The core of each conversion is performed by state-of-the-art mono-  
lithic, integrated circuits manufactured by the Analog Devices, Inc.,  
proprietary BiMOS II process, which combines the advantages of  
low power CMOS digital logic with bipolar linear circuits. The  
use of these ICs keeps the internal component count low and  
ensures high reliability.  
FEATURES  
Low per-channel cost  
32-lead DIL hybrid package  
2.6 arc minute accuracy  
14-bit resolution  
Built-in test  
Independent reference inputs  
High tracking rate  
BIT  
The built-in test (  
) facility can be used in failsafe systems to  
provide an indication of whether the converter is tracking  
accurately.  
APPLICATIONS  
Gimbal/gyro control systems  
Robotics  
Engine controllers  
Coordinate conversion  
Military servo control systems  
Fire control systems  
Avionic systems  
Each channel incorporates a high accuracy differential condi-  
tioning circuit for signal inputs providing more than 74 dB of  
common-mode rejection. Options are available for both synchro  
and resolver format inputs. The converter output is via a three-state  
transparent latch allowing data to be read without interruption  
B
OE  
of the converter operation. The A/ and  
control lines select  
the channel and present the digital position to the common  
data outputs.  
Antenna monitoring  
CNC machine tooling  
The AD2S44 also features independent reference inputs where  
different reference frequencies can be used for each channel.  
GENERAL DESCRIPTION  
The AD2S44 is a 14-bit dual channel, continuous tracking synchro/  
resolver-to-digital converter. It has been designed specifically  
for applications where space, weight, and cost are at a premium.  
Each 32-lead hybrid device contains two independent Type II servo  
loop tracking converters. The ratiometric conversion technique  
employed provides excellent noise immunity and tolerance of  
long lead lengths.  
All components are 100% tested at −55°C, +25°C, and +125°C.  
Devices are processed to high reliability screening standards  
and receive further levels of testing and screening to ensure  
high levels of reliability.  
FUNCTIONAL BLOCK DIAGRAM  
R
(A)  
(A)  
HI  
REFERENCE  
CONDITIONER  
R
LO  
+V  
S
S1 (A)  
S2 (A)  
HIGH  
SPEED  
SIN/COS  
MULTIPLIER  
PHASE-  
SENSITIVE  
DETECTOR  
GND  
SYNCHRO/  
RESOLVER  
CONDITIONER  
UP-DOWN  
COUNTER  
ERROR  
AMP  
INTEGRATOR  
VCO  
–V  
S
S3 (A)  
S4 (A)  
BIT  
BUILT-IN  
TEST  
DETECTION  
A/B  
OE  
THREE-  
STATE  
AD2S44  
DB1 (MSB)  
TO  
OUTPUT  
LATCHES  
DB14 (LSB)  
S1 (B)  
S2 (B)  
HIGH  
SPEED  
SIN/COS  
MULTIPLIER  
SYNCHRO/  
RESOLVER  
CONDITIONER  
PHASE-  
SENSITIVE  
DETECTOR  
UP-DOWN  
COUNTER  
ERROR  
AMP  
VCO  
INTEGRATOR  
S3 (B)  
S4 (B)  
R
(B)  
(B)  
HI  
REFERENCE  
CONDITIONER  
R
LO  
Figure 1.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©1989–2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD2S44  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
OE  
Output Enable ( )......................................................................8  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Table of Contents.............................................................................. 2  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Theory of Operation ........................................................................ 7  
Connecting the Converter........................................................... 7  
BIT  
Built-In Test (  
).........................................................................8  
Scaling for Nonstandard Signals .................................................9  
Dynamic Performance..................................................................9  
Acceleration Error.........................................................................9  
Reliability..................................................................................... 10  
Processing for High Reliability (B Suffix)............................... 10  
Other Products ........................................................................... 10  
Outline Dimensions....................................................................... 11  
Ordering Guide .......................................................................... 11  
Ordering Information................................................................ 11  
B
Channel Select (A/ ) ................................................................... 7  
REVISION HISTORY  
Changes to Processing for High Reliability Section and  
10/11—Rev. A to Rev. B  
Other Products Section ................................................................. 10  
Updated Outline Dimensions....................................................... 11  
Changes to Ordering Guide.......................................................... 11  
Changes to Ordering Information ............................................... 11  
Changes to Figure 1.......................................................................... 1  
Changes to Figure 3.......................................................................... 7  
08/08—Rev. 0 to Rev. A  
Updated Format................................................................ Universal  
Changes to Specifications Section.................................................. 3  
Changes to Absolute Maximum Ratings Section......................... 5  
Deleted Standard Processing Section............................................. 7  
10/89—Revision 0: Initial Version  
Rev. B | Page 2 of 12  
 
 
Data Sheet  
AD2S44  
SPECIFICATIONS  
VS = 15 V at TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
PERFORMANCE  
Accuracy1  
Min Typ  
Max  
Unit  
Test Conditions/Comments  
AD2S44-UMB2  
−4.0  
−2.6  
−4.0  
20  
+4.0  
+2.6  
+4.0  
Arc minutes  
Arc minutes  
Arc minutes  
Rev/sec  
Bits  
−55°C to +125°C  
−25°C to +85°C  
−55°C to +125°C  
AD2S44-TMB2  
Tracking Rate  
Resolution (1 LSB = 1.3 Arc Minutes)  
Repeatability  
Signal/Reference Frequency  
Bandwidth  
14  
1
Output coding parallel natural binary  
LSB  
400  
100  
2600 Hz  
Hz  
SIGNAL INPUTS  
Signal Voltage  
Input Impedance  
90 V Signal  
11.8 or 90  
V rms  
See the Ordering Information section  
Resistive tolerance 2%  
200  
26  
kΩ  
kΩ  
dB  
11.8 V Signal  
Common-Mode Rejection  
Common-Mode Range  
90 V Signal  
74  
250  
60  
V dc  
V dc  
11.8 V Signal  
REFERENCE INPUTS  
Reference Voltage  
Input Impedance  
115 V  
26 or 115  
V rms  
See the Ordering Information section  
Resistive tolerance 5%  
270  
270  
kΩ  
kΩ  
26 V  
Common-Mode Range  
115 V  
26 V  
210  
210  
V dc  
V dc  
sec–2  
ACCELERATION CONSTANT  
STEP RESPONSE  
Large Step1, 2  
62,000  
63  
25  
75  
30  
ms  
ms  
179° to 1 LSB of error  
2° to 1 LSB of error  
Small Step1, 2  
POWER LINES  
+VS = +15 V1, 2  
–VS = −15 V1, 2  
Power Dissipation  
DIGITAL INPUTS  
OE  
75  
40  
1.7  
80  
45  
1.9  
mA  
mA  
W
Quiescent condition  
Quiescent condition  
Quiescent condition  
VIL  
VIH  
A/B  
0.7  
0.7  
0.4  
3
V dc  
V dc  
IIL = 5 µA  
IIH = 5 µA  
2.0  
2.0  
2.4  
VIL  
VIH  
V dc  
V dc  
IIL = 1.2 mA  
IIH = –60 µA  
DIGITAL OUTPUTS (DB1 to DB14)  
1, 2  
VOL  
V dc  
V dc  
µA  
IIL = 1.2 mA  
IOH = 60 µA  
1, 2  
VOH  
Three-State Leakage Current  
Drive Capability  
40  
LSTTL loads  
Rev. B | Page 3 of 12  
 
 
AD2S44  
Data Sheet  
Parameter  
Min Typ  
Max  
640  
200  
Unit  
Test Conditions/Comments  
DATA TRANSFER  
Time to Data Stable (After Negative Edge of OE  
or Change of Level of A/B)  
See Figure 6  
tS  
ns  
ns  
ns  
Time to Data in High Impedance State  
(After Positive Edge of OE)  
tR  
tP  
Time for Repetitive Strobing of Selected Channel 200  
BUILT-IN TEST OUTPUT (BIT)  
Sense  
VOL  
Active low  
Low = error condition  
IOL = 3.2 mA  
0.4  
V dc  
VOH  
2.4  
45  
V dc  
LSTTL loads  
LSB  
IOH = −160 µA  
Drive Capability  
Error Condition Set  
Error Condition Cleared  
8
55  
LSB  
1 Specified overtemperature range, −55°C to +125°C, and for: (a) 10% signal and reference amplitude variation; (b) 10% signal and reference harmonic distortion; (c)  
5% power supply variation; and (d) 10% variation in reference frequency.  
2 These parameters are 100% tested at nominal values of power supplies, input signal voltages, and operating frequency. All other parameters are guaranteed by  
design, not tested.  
Rev. B | Page 4 of 12  
Data Sheet  
AD2S44  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
+VS to GND  
+17.25 V dc  
–VS to GND  
−17.25 V dc  
Any Logic Input to GND  
Any Logic Input to GND  
Maximum Junction Temperature  
S1, S2, S3, S4 Pins (Line-to-Line)1  
90 V Option  
+6.0 V dc (maximum)  
−0.4 V dc (minimum)  
150°C  
ESD CAUTION  
600 V dc  
80 V dc  
11.8 V Option  
S1, S2, S3, S4 Pins to GND  
90 V Option  
11.8 V Option  
600 V dc  
80 V dc  
RHI Pins to RLO Pins  
26 V, 115 V Options  
RHI Pins to RLO Pins to GND  
26 V, 115 V Options  
Storage Temperature Range  
Operating Temperature Range  
600 V dc  
600 V dc  
−65°C to +150°C  
−55°C to +125°C  
1 On synchro input options, line-to-line voltage refers to the differential voltages  
of S2 (A)/S2 (B) to S1 (A)/S1 (B), S1 (A)/S1 (B) to S3 (A)/S3 (B), and S3 (A)/S3 (B)  
to S2 (A)/S2 (B). On resolver input options, line-to-line levels refer to the S1 (A)/  
S1 (B) to S3 (A)/S3 (B) and S2 (A)/S2 (B) to S4 (A)/S4 (B) voltages.  
Rev. B | Page 5 of 12  
 
 
 
AD2S44  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
DB8  
DB9  
DB7  
DB6  
3
DB10  
DB5  
4
DB11  
DB4  
5
DB12  
DB3  
6
DB13  
DB2  
7
DB14 (LSB)  
OE  
DB1 (MSB)  
AD2S44  
TOP VIEW  
(Not to Scale)  
8
+V  
–V  
S
9
A/B  
S
10  
11  
12  
13  
14  
BIT  
GND  
R
(A)  
(A)  
R
R
(B)  
(B)  
LO  
LO  
R
HI  
HI  
S4 (A)  
S3 (A)  
S4 (B)  
S3 (B)  
S2 (A) 15  
16  
18 S2 (B)  
17  
S1 (A)  
S1 (B)  
Figure 2. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No.  
1 to 7  
8
Mnemonic  
Description  
DB8 to DB14 (LSB)  
OE  
Parallel Output Data Bits.  
Output Enable Input.  
9
A/B  
Channel A or Channel B Select Input.  
Built-In Test Error Output.  
10  
BIT  
11  
12  
13 to 16  
17 to 20  
21  
22  
23  
24  
RLO (A)  
RHI (A)  
S4 (A) to S1 (A)  
S1 (B) to S4 (B)  
RHI (B)  
RLO (B)  
GND  
–VS  
Input Pin for Channel A Reference Low.  
Input Pin for Channel A Reference High.  
Channel A Input Signal.  
Channel B Input Signal.  
Input Pin for Channel B Reference High.  
Input Pin for Channel B Reference Low.  
Power Supply Ground. This pin is electrically connected to the case.  
Negative Power Supply.  
25  
+VS  
Positive Power Supply.  
26 to 32  
DB1 (MSB) to DB7  
Parallel Output Data Bits.  
Rev. B | Page 6 of 12  
 
Data Sheet  
AD2S44  
THEORY OF OPERATION  
The AD2S44 operates on a tracking principle. The output digital  
word continually tracks the position of the synchro/resolver  
shaft without the need for external convert commands and  
status wait loops. As the transducer moves through a position  
equivalent to the least significant bit weighting, the output  
digital word is updated.  
A phase sensitive detector, integrator, and voltage-controlled  
oscillator (VCO) form a closed-loop system that seeks to null sin  
(θ − ϕ). When this is accomplished, the word state of the up-down  
counter (ϕ) equals the synchro/resolver shaft angle (θ), to within  
the rated accuracy of the converter.  
CONNECTING THE CONVERTER  
Each channel is identical in operation, sharing power supply  
and output pins. Both channels operate continuously and  
independently of each other. The digital output from either  
channel is available after switching the channel select and  
output enable inputs.  
The power supply voltages connected to −VS and +VS are to be  
15 V and cannot be reversed.  
It is suggested that a parallel combination of a ceramic 100 nF  
capacitor and a tantalum 6.8 µF capacitor be placed from each  
of the supply pins to GND.  
If the device is a synchro-to-digital converter, the 3-wire synchro  
output is connected to the S1, S2, and S3 pins on the unit, and  
a solid-state Scott T input conditioner converts these signals into  
resolver format given by  
The pin marked GND is connected electrically to the case and  
is to be taken to 0 V potential in the system.  
The digital output is taken from Pin 26 to Pin 32 and from Pin 1  
to Pin 7. Pin 26 is the MSB, and Pin 7 is the LSB.  
V1 = K E0 sin ωt sin θ  
V2 = K E0 sin ωt cos θ  
The reference connections are made to the RHI pins and the RLO  
pins. In the case of a synchro, the signals are connected to the  
S1, S2, and S3 pins, according to the following convention:  
where:  
θ is the angle of the synchro shaft.  
E0 sin ωt is the reference signal.  
K is the transformation ratio of the input signal conditioner.  
E
E
E
S1−S3 = ERLO−RHI sin ωt sin θ  
S3−S2 = ERLO−RHI sin ωt sin (θ − 120°)  
S2−S1 = ERLO−RHI sin ωt sin (θ – 240°)  
If the unit is a resolver-to-digital converter, the 4-wire resolver  
output is connected directly to the S1, S2, S3, and S4 pins on  
the unit.  
For a resolver, the signals are connected to the S1, S2, S3, and S4  
pins, according to the following convention:  
To understand the conversion process, assume that the current  
word state of the up-down counter is ϕ. V1 is multiplied by cos ϕ,  
and V2 is multiplied by sin ϕ to give the following:  
E
S1−S3 = ERLO−RHI sin ωt sin θ  
S2−S4 = ERLO−RHI sin ωt cos θ  
E
CHANNEL SELECT (A/B)  
K E0 sin ωt sin θ cos ϕ  
K E0 sin ωt cos θ sin ϕ  
B
A/ is the channel select input. A Logic 1 selects Channel A, and  
B
a Logic 0 selects Channel B. Data becomes valid 640 ns after A/  
is toggled. Timing information is shown in Figure 4 and Figure 5.  
These signals are subtracted by the error amplifier to give  
K E0 sin ωt (sin θ cos ϕ − cos θ sin ϕ)  
or  
K E0 sin ωt sin (θ ϕ)  
R
HI (A)  
REFERENCE  
CONDITIONER  
RLO (A)  
+VS  
V1  
S1 (A)  
S2 (A)  
HIGH  
SPEED  
SIN/COS  
MULTIPLIER  
PHASE-  
SENSITIVE  
DETECTOR  
GND  
SYNCHRO/  
RESOLVER  
CONDITIONER  
UP-DOWN  
COUNTER  
ERROR  
AMP  
INTEGRATOR  
VCO  
–VS  
BIT  
S3 (A)  
S4 (A)  
V2  
BUILT-IN  
TEST  
DETECTION  
A/B  
OE  
THREE-  
STATE  
OUTPUT  
LATCHES  
AD2S44  
DB1 (MSB)  
TO  
DB14 (LSB)  
S1 (B)  
S2 (B)  
HIGH  
SYNCHRO/  
RESOLVER  
CONDITIONER  
PHASE-  
SENSITIVE  
DETECTOR  
SPEED  
SIN/COS  
UP-DOWN  
COUNTER  
ERROR  
AMP  
VCO  
INTEGRATOR  
S3 (B)  
S4 (B)  
MULTIPLIER  
R
HI (B)  
REFERENCE  
CONDITIONER  
RLO (B)  
Figure 3. Functional Block Diagram  
Rev. B | Page 7 of 12  
 
 
 
AD2S44  
Data Sheet  
OUTPUT ENABLE (OE)  
BUILT-IN TEST (BIT)  
OE  
is the output enable input; the signal is active low. When set  
BIT  
The  
is the built-in test error output, which provides an over-  
OE  
to Logic 1, DB1 to DB14 are in high impedance state. When  
is set to Logic 0, DB1 to DB14 represent the angle of the transducer  
shaft to within the stated accuracy of the converter (see bit weights  
in Table 4). Data becomes valid 640 ns after the  
Timing information is shown in Figure 4 and Figure 5 and  
detailed in Table 1.  
B
velocity or fault indication signal for the channel selected via A/ .  
The error voltage of each channel is continuously monitored. When  
the error exceeds 50 bits for the currently selected channel, the  
OE  
is switched.  
BIT  
output goes low, indicating that an error greater than approx-  
imately one angular degree exists, and the data is, therefore, invalid.  
BIT  
The  
set the  
BIT  
signal has a built-in hysteresis; that is, the error required to  
is greater than the error required for it to be cleared.  
is set when the error exceeds 55 LSBs and is cleared when  
BIT  
Table 4. Bit Weight  
Bit No.  
1 (MSB)  
2
3
4
5
6
The  
Weight (Degrees)  
180.0000  
90.0000  
45.0000  
22.5000  
11.2500  
5.6250  
the error goes below 45 LSBs. This mode of operation guarantees  
BIT  
that the  
BIT  
does not flicker when the error threshold is crossed.  
is valid for the selected channel approximately 50 ns after  
The  
the change in the state of A/ . In most instances, the error condi-  
BIT  
B
tion that sets the  
must persist for at least one period of the  
BIT  
reference signal prior to the  
responding to the condition.  
7
2.8125  
8
9
10  
11  
1.4063  
0.7031  
0.3516  
0.1758  
BIT  
Table 5.  
Condition  
Power-Up Transient The BIT returns to a logic high state after  
Output Faults  
Description  
Response  
the AD2S44 position output synchronizes  
with the angle input to within 1°.  
12  
0.0879  
Normally, the BIT is low at power-up for  
a period less than or equal to the large  
signal step response settling time of the  
AD2S44 after the VS supplies have  
13  
14 ( LSB)  
0.0439  
0.0220  
stabilized to within 5% of their final values.  
OE  
Step Input > 1°  
The BIT returns to a logic high state after  
the selected channel of the AD2S44 has  
settled to within 1° of the input angle  
resulting from an instantaneous step.  
A/B  
Excessive Velocity  
Signal Failure  
The BIT is driven to a logic low if the  
maximum tracking rate of the AD2S44 is  
exceeded (20 rps typical).  
tS  
tS  
tR  
The BIT may be driven to a logic low state if  
all signal voltages to the selected channel  
are lost.  
DATA  
BITS  
(1 TO 14)  
CHANNEL B  
VALID*  
CHANNEL A  
VALID*  
Converter/System  
Failure  
Any failure that causes the AD2S44 to fail  
to track the input synchro/resolver angles  
drives the BIT to a logic low. This may  
include, but is not limited to, acceleration  
conditions, poor supply voltage regulation,  
or excessive noise on the signal connections.  
*CONVERTER DATA OUTPUT IS INHIBITED FROM UPDATES  
DURING CHANNEL VALID.  
Figure 4. Repetitive Reading of One Channel  
OE  
tP  
A/B  
tR  
tS  
DATA  
BITS  
(1 TO 14)  
DATA  
VALID*  
DATA  
VALID*  
*CONVERTER DATA OUTPUT IS INHIBITED FROM UPDATES  
DURING CHANNEL VALID.  
Figure 5. Alternative Reading of Each Channel  
Rev. B | Page 8 of 12  
 
 
 
 
 
Data Sheet  
AD2S44  
The gain and phase diagrams are shown in Figure 7 and Figure 8.  
SCALING FOR NONSTANDARD SIGNALS  
6
A feature of these converters is that the signal and reference inputs  
can be resistively scaled to accommodate nonstandard input signal  
and reference voltages that are outside the nominal 10% limits of  
the converter. Using this technique, it is possible to use a standard  
converter with a personality card in systems where a wide range  
of input and reference voltages are encountered.  
3
0
–3  
–6  
–9  
The accuracy of the converter is affected by the matching accu-  
racies of resistors used for external scaling. For resolver format  
options, it is critical that the value of the resistors on the S1 (A)/  
S1 (B) to S3 (A)/S3 (B) signal input pair be precisely matched to  
the S4 (A)/S4 (B) to S2 (A)/S2 (B) input pair. For synchro options,  
the three resistors on the S1, S2, and S3 pins must be matched. In  
general, a 0.1% mismatch between resistor values contributes an  
additional 1.7 arc minutes of error to the conversion. In addition,  
imbalances in resistor values can greatly reduce the common-  
mode rejection ratio of the signal inputs.  
–12  
–15  
10  
100  
FREQUENCY (Hz)  
Figure 7. Gain Plot  
180  
135  
90  
To calculate the values of the external scaling resistors, add  
2.222 kΩ for each volt of signal in series with the S1, S2, S3, and  
S4 pins (no resistor is required on the S4 pins for synchro options)  
and add 3 kΩ extra per volt of reference in series with the RLO  
pins and the RHI pins.  
45  
0
–45  
–90  
DYNAMIC PERFORMANCE  
K
1 + sT  
1 + sT  
a
1
2
θ
θ
OUT  
IN  
2
S
–135  
–180  
Figure 6. Transfer Function of AD2S44  
10  
100  
The transfer function of the converter is as follows:  
Open-loop transfer function  
FREQUENCY (Hz)  
Figure 8. Phase Plot  
1 + sT  
θOUT  
θIN  
ACCELERATION ERROR  
Ka  
1
=
×
s2 1 + sT2  
A tracking converter employing a Type II servo loop does not  
suffer any velocity lag. However, there is an additional error  
due to acceleration. This error is defined using the acceleration  
constant (Ka) of the converter  
Closed-loop transfer function  
1 + sT  
θOUT  
θIN  
1
=
1 + sT + s2 Ka + s3 T2 Ka  
Ka = Input Acceleration/Error in Output Angle  
1
The numerator and denominator must have consistent angular  
units. For example, if Ka is expressed in sec–2, the input accelera-  
tion is to be specified in degrees/sec2 and the output angle error is  
to be specified in degrees. Alternatively, the angular unit of measure  
can also be in units such as radians, arc minutes, or LSBs.  
where:  
Ka = 62000 sec–2.  
T1 = 0.0061 sec.  
T2 = 0.001 sec.  
Rev. B | Page 9 of 12  
 
 
 
 
 
 
AD2S44  
Data Sheet  
Ka does not define maximum acceleration; it defines only the  
error due to acceleration. The maximum acceleration of which  
the AD2S44 keeps track is approximate to 5 × Ka = 310,000°/sec2  
or about 800 revolutions/sec2.  
PROCESSING FOR HIGH RELIABILITY (B SUFFIX)  
As a part of the high reliability manufacturing procedure, all  
converters receive the processing shown in Table 6.  
Table 6.  
Ka can be used to predict the output position error due to input  
acceleration. For example, an acceleration of 50 revolutions/sec2  
with Ka = 62,000 is calculated using the following equation:  
Process1  
Conditions  
Precap Visual Inspection  
Temperature Cycling  
Constant Acceleration  
Interim Electrical Tests  
Operating Burn In  
MIL-STD-883, Method 2017  
10 cycles, –65°C to +150°C  
5000 Gs, Y1 plane  
LSB  
Input Acceleration  
@ 25°C  
2
sec  
160 hours @ 125°C  
MIL-STD-883, Method 1014  
Performed at TMIN, TAMB, TMAX  
Errors in LSBs =  
=
Ka  
[
sec2  
]
Seal Test, Fine and Gross  
Final Electrical Test  
rev  
LSB  
rev  
External Visual Inspection MIL-STD-883, Method 2009  
50  
× 214  
1 Test and screening data supplied by request.  
2
sec  
=13.2 LSBs  
sec2  
]
OTHER PRODUCTS  
62,000  
[
Analog Devices manufactures many other products concerned  
with the conversion of synchro/resolver data, such as the  
SDC/RDC1740 series and the AD2S80A series.  
RELIABILITY  
The reliability of these products is very high due to the extensive  
use of custom chip circuits that decrease the active component  
count. Calculations of the MTBF figure under various environ-  
mental conditions are available upon request from Analog  
Devices.  
Hybrid  
The SDC/RDC1740 is a hybrid synchro/resolver-to-digital  
converter with internal isolating micro transformers.  
Monolithic  
Figure 9 shows the MTBF in years vs. case temperature for  
Naval Sheltered conditions calculated in accordance with the  
Mil-Hdbk-217E.  
The AD2S80A series are ICs performing resolver-to-digital  
conversion with accuracies up to 2 arc minutes and 16-bit  
resolution.  
100  
10  
1
25  
45  
65  
85  
105  
125  
TEMPERATURE (°C)  
Figure 9. MTBF vs. Temperature  
Rev. B | Page 10 of 12  
 
 
 
 
 
 
Data Sheet  
AD2S44  
OUTLINE DIMENSIONS  
1.728 (43.89) MAX  
32  
17  
1.102 (27.99)  
1.079 (27.41)  
16  
1
PIN 1  
INDICATOR  
(NOTE 1)  
0.025 (0.64)  
0.015 (0.38)  
0.225 (5.72)  
MAX  
0.192 (4.88)  
0.152 (3.86)  
0.206 (5.23)  
0.186 (4.72)  
0.015 (0.38)  
0.008 (0.20)  
0.910 (23.11)  
0.890 (22.61)  
0.120 (3.05)  
MAX  
0.025 (0.64)  
MIN  
0.100 (2.54)  
BSC  
0.023 (0.58)  
0.014 (0.36)  
0.070 (1.78)  
0.030 (0.76)  
NOTES:  
1. INDEX AREA IS INDICATED BY A NOTCH OR LEAD ONE  
IDENTIFICATION MARK LOCATED ADJACENT TO LEAD ONE.  
2. CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 10. 32-Lead Bottom-Brazed Ceramic DIP for Hybrid [BBDIP_H]  
(DH-32E)  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model  
Temperature Range  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
Package Description  
Package Option  
AD2S44–TM11B  
AD2S44–TM12B  
AD2S44–TM18B  
AD2S44–UM18B  
32-Lead Bottom-Brazed Ceramic DIP for Hybrid [BBDIP_H]  
32-Lead Bottom-Brazed Ceramic DIP for Hybrid [BBDIP_H]  
32-Lead Bottom-Brazed Ceramic DIP for Hybrid [BBDIP_H]  
32-Lead Bottom-Brazed Ceramic DIP for Hybrid [BBDIP_H]  
DH-32E  
DH-32E  
DH-32E  
DH-32E  
ORDERING INFORMATION  
AD2S44- XM  
Y
Z
B
When ordering, the converter part numbers are to be suffixed by  
a two-letter code defining the accuracy grade, and a two digit  
numeric code defining the signal/reference voltage and frequency.  
All the standard options, and their option codes, are shown in  
Figure 11. For nonstandard configurations, contact Analog  
Devices.  
HIGH-REL PROCESSING  
Z = 0* SIGNAL, 2V REFERENCE, 2V RESOLVER  
Z = 1  
Z = 2  
Z = 3* SIGNAL, 11.8V REFERENCE, 11.8V RESOLVER  
Z = 4* SIGNAL, 26V REFERENCE, 26V RESOLVER  
BASE PART  
SIGNAL, 11.8V REFERENCE, 26V SYNCHRO  
SIGNAL, 90V REFERENCE, 115V SYNCHRO  
BASE PART  
NUMBER  
Z = 8  
SIGNAL, 11.8V REFERENCE, 26V RESOLVER  
For example, the AD2S44–TM12B is the correct part number  
for a component that operates with 90 V signal, 115 V reference  
synchro format inputs and yields a 4.0 arc minutes accuracy  
over the −55°C to +125°C temperature range processed to high  
reliability standards.  
Y = 1  
400Hz TO 2.6kHz REFERENCE FREQUENCY  
X = U –55°C TO +125°C OPERATING TEMPERATURE  
RANGE  
±4.0 ARC MIN ACCURACY  
±2.6 ARC MIN ACCURACY (–25°C TO +85°C)  
X = T  
–55°C TO +125°C OPERATING TEMPERATURE  
RANGE±4.0 ARC MIN ACCURACY  
X = S* –55°C TO +125°C OPERATING TEMPERATURE  
RANGE±5.2 ARC MIN ACCURACY  
*MODEL IS OBSOLETE AND NO LONGER AVAILABLE.  
Figure 11.  
Rev. B | Page 11 of 12  
 
 
 
 
AD2S44  
NOTES  
Data Sheet  
©1989–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02947-0-10/11(B)  
Rev. B | Page 12 of 12  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY