AD4311-1 [ADI]

Low Cost, Dual, High Current Output Line Driver with Shutdown; 低成本,双通道,具有关断功能的高电流输出线路驱动器
AD4311-1
型号: AD4311-1
厂家: ADI    ADI
描述:

Low Cost, Dual, High Current Output Line Driver with Shutdown
低成本,双通道,具有关断功能的高电流输出线路驱动器

驱动器
文件: 总16页 (文件大小:343K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, Dual, High Current Output  
Line Driver with Shutdown  
ADA4311-1  
FEATURES  
PIN CONFIGURATION  
ADA4311-1  
High speed  
+V  
1
2
3
4
5
10 OUT B  
S
−3 dB bandwidth: 310 MHz, G = +5, RLOAD = 50 Ω  
Slew rate: 1050 V/μs, RLOAD = 50 Ω  
Wide output swing  
20.6 V p-p differential, RLOAD of 100 Ω from 12 V supply  
High output current  
NC  
OUT A  
–IN A  
9
8
7
6
–IN B  
+IN B  
PD1  
+IN A  
PD0  
NC = NO CONNECT  
Low distortion  
Figure 1. Thermally Enhanced, 10-Lead MINI_SO_EP  
−98 dBc typical at 1 MHz, VOUT = 2 V p-p, G = +5, RLOAD = 100 Ω  
−72 dBc typical at 10 MHz, VOUT = 2 V p-p, G = +5, RLOAD = 100 Ω  
Power management and shutdown  
Control inputs CMOS level compatible  
Shutdown quiescent current: 1 mA/amplifier  
Selectable quiescent current: 1 mA to 11.8 mA/amplifier  
TYPICAL APPLICATION  
1/2  
ADA4311-1  
V
*
MID  
APPLICATIONS  
1/2  
Home networking line drivers  
Twisted pair line drivers  
Power line communications (PLC)  
Video line drivers  
ADA4311-1  
V
GND  
CC  
=
*V  
MID  
2
Figure 2. Typical PLC Driver Application  
ARB line drivers  
I/Q channel amplifiers  
GENERAL DESCRIPTION  
The ADA4311-1 is comprised of two high speed, current  
feedback operational amplifiers. The high output current, high  
bandwidth, and fast slew rate make it an excellent choice for  
broadband applications requiring high linearity performance  
while driving low impedance loads.  
The ADA4311-1 is available in a thermally enhanced, 10-lead  
MSOP with an exposed paddle for improved thermal conduction.  
The ADA4311-1 is rated to work in the extended industrial  
temperature range of −40°C to +85°C.  
The ADA4311-1 incorporates a power management function  
that provides shutdown capabilities and the ability to optimize  
the quiescent current of the amplifiers. The CMOS-compatible,  
power-down control pins (PD1 and PD0) enable the ADA4311-1  
to operate in four different modes: full power, medium power,  
low power, and complete power-down. In power-down mode, the  
quiescent current drops to only 1.0 mA/amplifier, while the outputs  
go to a high impedance state.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
ADA4311-1  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 10  
Application Information................................................................ 11  
Feedback Resistor Selection...................................................... 11  
Power Control Modes of Operation ........................................ 11  
Exposed Thermal Pad Connections ........................................ 11  
Powerline Application ............................................................... 11  
Board Layout............................................................................... 12  
Power Supply Bypassing............................................................ 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
Typical Application........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
REVISION HISTORY  
8/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
ADA4311-1  
SPECIFICATIONS  
VS = 12 V, RF = 499 Ω (@ TA = 25°C, G = +5, RL = 100 Ω to VS/2), unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
VOUT = 0.1 V p-p, PD1 = 0, PD0 = 0, RLOAD = 50 Ω  
VOUT = 0.1 V p-p, PD1 = 0, PD0 = 1, RLOAD = 50 Ω  
VOUT = 0.1 V p-p, PD1 = 1, PD0 = 0, RLOAD = 50 Ω  
VOUT = 10.2 V p-p, PD1 = 0, PD0 = 0, RLOAD = 50 Ω  
VOUT = 2 V p-p, PD1 = 0, PD0 = 0  
310  
220  
140  
12.9  
1050  
1050  
1000  
MHz  
MHz  
MHz  
MHz  
V/μs  
V/μs  
V/μs  
Full Power Bandwidth  
Slew Rate  
VOUT = 2 V p-p, PD1 = 0, PD0 = 1  
VOUT = 2 V p-p, PD1 = 1, PD0 = 0  
NOISE/DISTORTION PERFORMANCE  
Differential Distortion (Worst  
Harmonic)  
fC = 1 MHz, VOUT = 2 V p-p  
PD1 = 0, PD0 = 0  
PD1 = 0, PD0 = 1  
PD1 = 1, PD0 = 0  
fC = 10 MHz, VOUT = 2 V p-p  
PD1 = 0, PD0 = 0  
PD1 = 0, PD0 = 1  
PD1 = 1, PD0 = 0  
fC = 20 MHz, VOUT = 2 V p-p  
PD1 = 0, PD0 = 0  
PD1 = 0, PD0 = 1  
PD1 = 1, PD0 = 0  
f = 100 kHz  
−98  
−95  
−86  
dBc  
dBc  
dBc  
−72  
−63  
−52  
dBc  
dBc  
dBc  
−56  
−49  
−43  
2.4  
dBc  
dBc  
dBc  
nV/√Hz  
pA/√Hz  
Input Voltage Noise  
Input Current Noise  
DC PERFORMANCE  
Input Offset Voltage  
Input Bias Current  
f = 100 kHz  
17  
−3  
+1  
+3  
mV  
Noninverting Input  
Inverting Input  
Open-Loop Transimpedance  
−9  
−4  
4
15  
57  
−2  
+4.5  
14  
35  
62  
+3  
+16  
μA  
μA  
MΩ  
MΩ  
dB  
RLOAD = 50 Ω  
RLOAD = 100 Ω  
Common-Mode Rejection  
INPUT CHARACTERISTICS  
Input Resistance  
+IN, f < 100 kHz  
500  
kΩ  
OUTPUT CHARACTERISTICS  
Single-Ended, +Swing  
Single-Ended, −Swing  
Single-Ended, +Swing  
Single-Ended, −Swing  
Differential Swing  
RLOAD = 50 Ω  
RLOAD = 50 Ω  
RLOAD = 100 Ω  
RLOAD = 100 Ω  
RLOAD = 100 Ω  
11  
11.1  
0.9  
11.1  
0.8  
VP  
VP  
VP  
VP  
1
11  
0.9  
20.2  
20.6  
V p-p  
POWER SUPPLY  
Single Supply  
12  
V
Supply Current  
PD1 = 0, PD0 = 0  
PD1 = 0, PD0 = 1  
PD1 = 1, PD0 = 0  
PD1 = 1, PD0 = 1  
10.5  
7
4.3  
11.8  
7.9  
5.2  
0.9  
13  
9
6.3  
1.3  
mA/amp  
mA/amp  
mA/amp  
mA/amp  
Rev. 0 | Page 3 of 16  
 
ADA4311-1  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
POWER-DOWN PINS  
PD1, PD0 Threshold  
Referenced to GND  
1.5  
V
High Level Input Voltage, VIH  
Low Level Input Voltage, VIL  
PD1, PD0 = 0 Pin Bias Current  
PD1, PD0 = 1 Pin Bias Current  
Enable/Disable Time  
2
0
−1.5  
40  
5
V
V
μA  
μA  
ns  
dB  
0.8  
+1.5  
80  
PD1 or PD0 = 0 V  
PD1 or PD0 = 3 V  
−0.2  
63  
130/116  
−70  
Power Supply Rejection Ratio  
−63  
Rev. 0 | Page 4 of 16  
ADA4311-1  
ABSOLUTE MAXIMUM RATINGS  
Maximum Power Dissipation  
Table 2.  
The maximum safe power dissipation for the ADA4311-1 is  
limited by the associated rise in junction temperature (TJ) on  
the die. At approximately 150°C, which is the glass transition  
temperature, the plastic changes its properties. Even temporarily  
exceeding this temperature limit can change the stresses that the  
package exerts on the die, permanently shifting the parametric  
performance of the amplifiers. Exceeding a junction temperature of  
150°C for an extended period can result in changes in silicon  
devices, potentially causing degradation or loss of functionality.  
Parameter  
Rating  
Supply Voltage  
Power Dissipation  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering 10 sec)  
Junction Temperature  
13.6 V  
(TJMAX − TA)/θJA  
−65°C to +125°C  
−40°C to +85°C  
300°C  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress rating  
only; functional operation of the device at these or any other  
conditions above those indicated in the operational section of  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
Figure 3 shows the maximum safe power dissipation in  
the package vs. the ambient temperature for the 10-lead  
MINI_SO_EP (44°C/W) on a JEDEC standard 4-layer board.  
θJA values are approximations.  
5.0  
THERMAL RESISTANCE  
4.5  
4.0  
3.5  
Thermal resistance (θJA) is specified for the worst-case conditions,  
that is, θJA is specified for device soldered in circuit board for  
surface-mount packages.  
MINI_SO_EP-10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Table 3.  
Package Type  
θJA  
Unit  
10-Lead MINI_SO_EP  
44  
°C/W  
–35  
–15  
5
25  
45  
65  
85  
AMBIENT TEMPERATURE (°C)  
Figure 3. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
ESD CAUTION  
Rev. 0 | Page 5 of 16  
 
 
ADA4311-1  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADA4311-1  
+V  
1
2
3
4
5
10 OUT B  
S
NC  
OUT A  
–IN A  
9
8
7
6
–IN B  
+IN B  
PD1  
+IN A  
PD0  
NC = NO CONNECT  
Figure 4. Pin Configuration  
Table 4. Pin Function Description  
Pin No.  
Mnemonic  
Description  
1
+VS  
Positive Power Supply Input.  
2
NC  
No Connection.  
3
4
5
6
7
8
9
10  
OUT A  
−IN A  
+IN A  
PD0  
Amplifier A Output.  
Amplifier A Inverting Input.  
Amplifier A Noninverting Input.  
Power Dissipation Control.  
Power Dissipation Control.  
Amplifier B Noninverting Input.  
Amplifier B Inverting Input.  
Amplifier B Output.  
PD1  
+IN B  
−IN B  
OUT B  
GND  
11 (Exposed Paddle)  
Ground (Electrical Connection Required).  
Rev. 0 | Page 6 of 16  
 
ADA4311-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
9
–40  
–50  
V
R
= 100mV p-p  
= 50  
HD2  
HD3  
V
R
= 2V p-p  
OUT  
OUT  
= 100  
L
L
6
3
PD1, PD0 = 0, 0  
G = +5  
G = +5  
–60  
PD1, PD0 = 1, 0  
0
–70  
PD1, PD0 = 0, 1  
PD1, PD0 = 0, 0  
–3  
–80  
G = +10  
–6  
–90  
–9  
–100  
–110  
–120  
–130  
G = +20  
–12  
–15  
–18  
0.1  
1
10  
100  
1000  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 5. Small Signal Frequency Response for Various Closed-Loop Gains  
Figure 8. Differential Harmonic Distortion vs. Frequency  
9
–60  
–70  
V
R
= 100mV p-p  
f = 5MHz  
OUT  
= 50  
6
3
R = 100  
L
L
PD1, PD0 = 0, 0  
G = +5  
G = +5  
0
HD2  
HD3  
–80  
–3  
PD1, PD0 = 0, 1  
PD1, PD0 = 1, 0  
–6  
–90  
–9  
–12  
–15  
–18  
–21  
–24  
–100  
–110  
–120  
1
10  
100  
1000  
0.1  
1
10  
FREQUENCY (MHz)  
OUTPUT VOLTAGE (V p-p)  
Figure 6. Small Signal Frequency Response for Various Modes  
Figure 9. Differential Harmonic Distortion vs. Output Voltage  
–40  
0.20  
G = +5  
V
= 2V p-p  
OUT  
R
= 50  
f = 5MHz  
G = +5  
L
0.15  
0.10  
0.05  
0
10ns/DIV  
–50  
–60  
–70  
HD2  
HD3  
–80  
–0.05  
–0.10  
–0.15  
–0.20  
–90  
–100  
–110  
10  
100  
LOAD RESISTANCE ()  
1000  
Figure 7. Small Signal Transient Response  
Figure 10. Differential Harmonic Distortion vs. Load Resistance  
Rev. 0 | Page 7 of 16  
 
ADA4311-1  
1000  
100  
10  
100M  
10M  
1M  
0
R
= 100  
PD1, PD0 = 0, 0  
L
–45  
–90  
–135  
–180  
–225  
–270  
PHASE  
100k  
10k  
1k  
1
MAGNITUDE  
0.1  
0.01  
0.01  
100  
100  
0.1  
1
10  
100  
1000  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 11. Open-Loop Transimpedance and Phase vs. Frequency  
Figure 14. Closed-Loop Output Impedance vs. Frequency  
0
1M  
PD1, PD0 = 0, 0  
PD1, PD0 = 1, 1  
R
= 100  
L
–10  
–20  
–30  
–40  
–50  
–60  
–70  
100k  
10k  
1k  
100  
10  
1
0.01  
0.01  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 12. Common-Mode Rejection vs. Frequency  
Figure 15. Output Impedance vs. Frequency (Disabled)  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
100  
10  
1
PD1, PD0 = 0, 0  
L
R
= 100ꢀ  
+PSR  
0.01  
0.1  
1
10  
100  
1000  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 13. Power Supply Rejection vs. Frequency  
Figure 16. Voltage Noise vs. Frequency  
Rev. 0 | Page 8 of 16  
ADA4311-1  
–20  
–40  
0
–20  
PD1, PD0 = 1, 1  
–40  
–60  
–60  
–80  
–80  
–100  
–100  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 17. Feedthrough vs. Frequency  
Figure 19. Crosstalk vs. Frequency  
8
12  
11  
10  
9
7
6
5
4
3
2
1
0
V
OUT  
8
V
, V  
PD0  
PD1  
7
6
30  
100  
1000  
0
1
2
3
TIME (1μs/DIV)  
4
5
6
LOAD ()  
Figure 18. Power-Down Turn On/Turn Off  
Figure 20. Single-Ended Output Swing vs. Load  
Rev. 0 | Page 9 of 16  
ADA4311-1  
THEORY OF OPERATION  
The ADA4311-1 is a dual-current feedback amplifier with high  
output current capability. With a current feedback amplifier, the  
current into the inverting input is the feedback signal, and the  
open-loop behavior is that of a transimpedance, dVO/dIIN or TZ.  
Because G × RIN << RF for low gains, a current feedback amplifier  
has relatively constant bandwidth vs. gain, the 3 dB point being  
set when |TZ| = RF.  
For a real amplifier, there are additional poles that contribute  
excess phase, and there is a value for RF below which the amplifier  
is unstable. Tolerance for peaking and desired flatness determines  
the optimum RF in each application.  
The open-loop transimpedance is analogous to the open-loop  
voltage gain of a voltage feedback amplifier. Figure 21 shows a  
simplified model of a current feedback amplifier. Because RIN is  
proportional to 1/gm, the equivalent voltage gain is TZ × gm,  
where gm is the transconductance of the input stage. Basic  
analysis of the follower with gain circuit yields  
R
F
R
G
R
IN  
VOUT  
VIN  
TZ  
s
( )  
T
Z
V
= G ×  
OUT  
I
IN  
TZ s + G × RIN + RF  
( )  
R
N
where:  
V
IN  
RF  
RG  
G =1+  
Figure 21. Simplified Block Diagram  
1
gm  
RIN  
=
50 ꢀ  
Rev. 0 | Page 10 of 16  
 
 
ADA4311-1  
APPLICATION INFORMATION  
FEEDBACK RESISTOR SELECTION  
Table 6. Power Modes  
Total Supply  
Current (mA)  
Output  
Impedance  
The feedback resistor has a direct impact on the closed-loop  
bandwidth and stability of the current feedback op amp.  
Reducing the resistance below the recommended value can  
make the amplifier response peak and even become unstable.  
Increasing the size of the feedback resistor beyond the recom-  
mended value reduces the closed-loop bandwidth. Table 5  
provides a convenient reference for quickly determining the  
feedback and gain resistor values, and the corresponding  
bandwidth, for common gain configurations. The recommended  
feedback resistor value for the ADA4311-1 is 499 Ω.  
PD1  
Low  
Low  
PD0  
Power Mode  
Low  
Full Power  
23.6  
15.8  
10.4  
1.8  
Low  
Low  
Low  
High  
High ¾ Power  
½ Power  
High High Power-Down  
High Low  
EXPOSED THERMAL PAD CONNECTIONS  
The exposed thermal pad on the 10-lead MSOP is both the  
reference for the PD pins and the only electrical connection for  
the negative supply voltage. Therefore, in the 10-lead MSOP,  
the ADA4311-1 can only be used on a single supply. The exposed  
thermal pad must be connected to ground. Failure to do so  
renders the part inoperable.  
Table 5. Recommended Values and Frequency Performance1  
Gain  
RF (Ω)  
499  
1 k  
499  
499  
RG (Ω)  
−3 dB SS BW (MHz)  
+5  
+5  
+10  
+20  
124  
250  
55.4  
26.1  
310  
220  
175  
84  
A requirement for this package is that the thermal pad be  
connected to a solid plane with low thermal resistance, ensuring  
adequate heat transfer away from the die and into the board.  
1 Conditions: VS = 12 V, TA = 25°C, RL = 50 Ω, PD1, PD0 = 0, 0.  
POWERLINE APPLICATION  
POWER CONTROL MODES OF OPERATION  
Applications (that is, powerline AV modems) requiring greater  
than 10 dBm peak power should consider using an external  
line driver, such as the ADA4311-1. Figure 22 shows an example  
interface between the TxDAC® output and the ADA4311-1 biased  
for single-supply operation. The peak-to-peak differential  
output voltage swing of the TxDAC should be limited to  
2 V p-p, with the gain of the ADA4311-1 configured to realize  
the additional voltage gain required by the application. A low-  
pass filter should be considered to filter the DAC images  
inherent in the signal reconstruction process. In addition, dc  
blocking capacitors are required to level-shift the output signal  
of the TxDAC to the common-mode level of the ADA4311-1  
(that is, VMID = VCC − GND/2).  
The ADA4311-1 features four power modes: full power, ¾  
power, ½ power, and shutdown. The power modes are controlled  
by two logic pins, PD0 and PD1. The power-down control pins  
are compatible with standard 3 V and 5 V CMOS logic. Table 6  
shows the various power modes and associated logic states. In  
the power-down mode, the output of the amplifier goes into a  
high impedance state.  
0.1µF  
R
SET  
1/2  
OPTIONAL  
LCLPF  
ADA4311-1  
IOUTP+  
IOUTP–  
V
MID  
TxDAC  
0dB TO –7.5dB  
1/2  
ADA4311-1  
Figure 22. TxDAC Output Directly via Center-Tap Transformer  
Rev. 0 | Page 11 of 16  
 
 
 
 
ADA4311-1  
BOARD LAYOUT  
POWER SUPPLY BYPASSING  
As is the case with all high speed applications, careful attention  
to printed circuit board (PCB) layout details prevents associated  
board parasitics from becoming problematic. Proper RF design  
technique is mandatory. The PCB should have a ground plane  
covering all unused portions of the component side of the  
board to provide a low impedance return path. Removing the  
ground plane on all layers from the area near the input and  
output pins reduces stray capacitance, particularly in the area of  
the inverting inputs. Signal lines connecting the feedback and  
gain resistors should be as short as possible to minimize the  
inductance and stray capacitance associated with these traces.  
Termination resistors and loads should be located as close as  
possible to their respective inputs and outputs. Input and  
output traces should be kept as far apart as possible to minimize  
coupling (crosstalk) though the board. Wherever there are  
complementary signals, a symmetrical layout should be provided  
to the extent possible to maximize balanced performance.  
When running differential signals over a long distance, the  
traces on the PCB should be close. Doing this reduces the  
radiated energy and makes the circuit less susceptible to RF  
interference. Adherence to stripline design techniques for long  
signal traces (greater than about 1 inch) is recommended.  
The ADA4311-1 operates on supplies from 6 V to 12 V. The  
ADA4311-1 circuit should be powered with a well-regulated  
power supply. Careful attention must be paid to decoupling the  
power supply. High quality capacitors with low equivalent series  
resistance (ESR), such as multilayer ceramic capacitors (MLCCs),  
should be used to minimize supply voltage ripple and power  
dissipation. In addition, 0.1 μF MLCC decoupling capacitors  
should be located no more than ⅛-inch away from each of the  
power supply pins. A large, usually tantalum, 10 μF capacitor is  
required to provide good decoupling for lower frequency signals  
and to supply current for fast, large signal changes at the  
ADA4311-1 outputs. Bypassing capacitors should be laid out  
in such a manner as to keep return currents away from the  
inputs of the amplifiers, which minimizes any voltage drops that  
can develop due to ground currents flowing through the ground  
plane. A large ground plane also provides a low impedance path  
for the return currents.  
For more information on high speed board layout, see A  
Practical Guide to High-Speed Printed-Circuit-Board Layout.  
Rev. 0 | Page 12 of 16  
 
ADA4311-1  
OUTLINE DIMENSIONS  
*
2.27  
2.17  
2.07  
3.10  
3.00  
2.90  
10  
1
6
5.05  
4.90  
4.75  
*
1.83  
1.73  
1.63  
3.10  
3.00  
2.90  
TOP  
VIEW  
5
EXPOSED  
PAD  
PIN 1  
INDICATOR  
BOTTOM VIEW  
0.50 BSC  
1.10 MAX  
0.50 BSC  
0.94  
0.86  
0.78  
0.23  
0.18  
0.13  
0.70  
0.55  
0.40  
0.15  
0.10  
0.05  
SEATING  
PLANE  
8°  
0°  
0.30  
0.23  
0.15  
COPLANARITY  
0.10  
*
COMPLIANT TO JEDEC STANDARDS MO-187-BA-T  
EXCEPT FOR EXPOSED PAD DIMENSIONS.  
Figure 23. 10-Lead Mini Small Outline Package with Exposed Pad [MINI_SO_EP]  
(RH-10-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Option  
Model  
ADA4311-1ARHZ1  
ADA4311-1ARHZ-RL1 −40°C to +85°C  
ADA4311-1ARHZ-R71 −40°C to +85°C  
Temperature Range  
−40°C to +85°C  
Package Description  
Branding  
10-Lead Mini Small Outline Package with Exposed Pad [MINI_SO_EP] RH-10-1  
10-Lead Mini Small Outline Package with Exposed Pad [MINI_SO_EP] RH-10-1  
10-Lead Mini Small Outline Package with Exposed Pad [MINI_SO_EP] RH-10-1  
1A  
1A  
1A  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 13 of 16  
 
 
ADA4311-1  
NOTES  
Rev. 0 | Page 14 of 16  
ADA4311-1  
NOTES  
Rev. 0 | Page 15 of 16  
ADA4311-1  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06940-0-8/07(0)  
Rev. 0 | Page 16 of 16  

相关型号:

AD4348

2.5 V to 5.5 V, Parallel Interface Octal Voltage Output 8-/10-/12-Bit DACs
ADI

AD44

ADAPTER DIL FUER IC IN SMD 40POL
ETC

AD45

ADAPTER DIL FUER IC IN SMD 40POL
ETC

AD45030-REEL

IC,PHASE/FREQUENCY DETECTOR,LLCC,8PIN,PLASTIC
ADI

AD45030Z-REEL

IC,PHASE/FREQUENCY DETECTOR,LLCC,8PIN,PLASTIC
ADI

AD45030Z-RL7

IC,PHASE/FREQUENCY DETECTOR,LLCC,8PIN,PLASTIC
ADI

AD45048

Rail-to-Rail Upstream ADSL Line Driver
ADI

AD45048AR

Rail-to-Rail Upstream ADSL Line Driver
ADI

AD45048AR-REEL

Rail-to-Rail Upstream ADSL Line Driver
ADI

AD45048AR-REEL7

Rail-to-Rail Upstream ADSL Line Driver
ADI

AD45048ARZ

Rail-to-Rail Upstream ADSL Line Driver
ADI

AD45048ARZ-REEL

Rail-to-Rail Upstream ADSL Line Driver
ADI