AD4682BCPZ-RL7 [ADI]

Pseudo Differential Input, 1 MSPS/500 kSPS, Dual, Simultaneous Sampling, 16-Bit, SAR ADCs;
AD4682BCPZ-RL7
型号: AD4682BCPZ-RL7
厂家: ADI    ADI
描述:

Pseudo Differential Input, 1 MSPS/500 kSPS, Dual, Simultaneous Sampling, 16-Bit, SAR ADCs

文件: 总30页 (文件大小:656K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Pseudo Differential Input, 1 MSPS/500 kSPS,  
Dual, Simultaneous Sampling, 16-Bit, SAR ADCs  
Data Sheet  
AD4682/AD4683  
FEATURES  
GENERAL DESCRIPTION  
Dual 16-bit ADC family  
The AD4682 and the AD4683 are a 16-bit, pin-compatible family  
of dual, simultaneous sampling, high speed, low power, successive  
approximation register (SAR), analog-to-digital converters (ADCs)  
that operate from a 3.0 V to 3.6 V power supply and feature  
throughput rates up to 1 MSPS for the AD4682 and 500 kSPS  
for the AD4683. The analog input type is pseudo differential  
Dual simultaneous sampling  
Pseudo differential analog inputs  
Throughput conversion rate  
1 MSPS for the AD4682  
500 kSPS for the AD4683  
SNR (typical)  
CS  
and is sampled and converted on the falling edge of  
.
87.5 dB, VREF = 3.3 V external  
93.4 dB with RES = 1 and OSR = ×8  
On-chip oversampling function  
Alert function  
Resolution boost function  
INL error (maximum): 2.5 LSBs  
2.5 V internal reference  
High speed serial interface  
−40°C to +125°C operation  
3 mm × 3 mm, 16-lead LFCSP  
Integrated on-chip oversampling blocks improve dynamic range  
and reduce noise at lower bandwidths. A buffered internal 2.5 V  
reference is included. Alternatively, an external reference up to  
3.3 V can be used.  
The conversion process and data acquisition use standard control  
inputs that allow simple interfacing to microprocessors or digital  
signal processors (DSPs). The devices are compatible with  
1.8 V, 2.5 V, and 3.3 V interfaces, using a separate logic supply.  
COMPANION PARTS  
APPLICATIONS  
ADC Drivers: ADA4896-2, ADA4940-2, ADA4807-2, LTC6227  
Voltage References: ADR4533 (3.3 V), ADR4525 (2.5 V)  
Low Dropout Regulators: ADP166, ADP7104, ADP7182  
Additional companion products on the AD4682 and AD4683  
product pages  
Motor control position feedback  
Motor control current sense  
Sonar  
Power quality  
Data acquisition systems  
Erbium doped fiber amplifier (EDFA) applications  
Inphase (I) and quadrature (Q) demodulation  
Table 1. Related Devices in the Family  
Input Type  
16-Bit  
14-Bit  
12-Bit  
Differential  
Pseudo Differential  
Single-Ended  
AD7380  
AD7383  
AD7386  
AD7381  
AD7384  
AD7387  
AD7388  
FUNCTIONAL BLOCK DIAGRAM  
3.3V  
3.3V  
1µF  
1µF  
(
A A+)  
IN  
V
V
LOGIC  
CC  
VREF  
C1  
A
A
A+  
R
IN  
0V  
OVER-  
SAMPLING  
ADC A  
SDOA  
A–  
IN  
VREF/2  
REFIO  
OSC  
REFCAP  
GND  
SCLK  
SDI  
REF  
LDO  
DIGITAL  
CONTROLLER  
CONTROL  
LOGIC  
(
A B+)  
IN  
REGCAP  
CS  
VREF  
0V  
R
C1  
A
B+  
IN  
OVER-  
SAMPLING  
ADC B  
SDOB/ALERT  
A
B–  
IN  
VREF/2  
AD4682/AD4683  
GND  
Figure 1.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use,norfor any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice.  
No license is granted by implication or otherwise under any patent or patent rights of Analog  
Devices. Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
AD4682/AD4683  
Data Sheet  
TABLE OF CONTENTS  
Features.............................................................................................. 1  
Oversampling ............................................................................. 18  
Resolution Boost ........................................................................ 18  
Alert.............................................................................................. 19  
Power Modes .............................................................................. 19  
Internal and External Reference .............................................. 20  
Software Reset............................................................................. 20  
Diagnostic Self Test.................................................................... 20  
Interface........................................................................................... 21  
Reading Conversion Results..................................................... 21  
Low Latency Readback.............................................................. 22  
Reading from Device Registers ................................................ 23  
Writing to Device Registers...................................................... 23  
CRC.............................................................................................. 24  
Registers........................................................................................... 26  
Addressing Registers.................................................................. 26  
CONFIGURATION1 Register................................................. 27  
CONFIGURATION2 Register................................................. 28  
Applications ...................................................................................... 1  
General Description......................................................................... 1  
Companion Parts.............................................................................. 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications .................................................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings ........................................................... 7  
Thermal Resistance...................................................................... 7  
Electrostatic Discharge (ESD) Ratings...................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions ............................ 8  
Typical Performance Characteristics............................................. 9  
Terminology.................................................................................... 13  
Theory of Operation ...................................................................... 14  
Circuit Information ................................................................... 14  
Converter Operation.................................................................. 14  
Analog Input Structure.............................................................. 14  
ADC Transfer Function ............................................................ 15  
Applications Information.............................................................. 16  
Power Supply .............................................................................. 16  
Modes of Operation ....................................................................... 18  
ALERT  
Register.......................................................................... 28  
ALERT_LOW_THRESHOLD Register.................................. 29  
ALERT_HIGH_THRESHOLD Register ................................ 29  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 30  
REVISION HISTORY  
10/2020—Revision 0: Initial Version  
Rev. 0 | Page 2 of 30  
 
Data Sheet  
AD4682/AD4683  
SPECIFICATIONS  
VCC = 3.0 V to 3.6 V, VLOGIC = 1.65 V to 3.6 V, reference voltage (VREF) = 2.5 V internal, sampling frequency (fSAMPLE) = 1 MSPS for the  
AD4682, fSAMPLE = 500 kSPS for the AD4683, TA = −40°C to +125°C, and no oversampling enabled, unless otherwise noted. FS is full scale.  
Multifunction pin names may be referenced by their relevant function only.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
RESOLUTION  
16  
Bits  
THROUGHPUT CONVERSION RATE  
AD4682  
AD4683  
1
500  
MSPS  
kSPS  
DC ACCURACY  
No Missing Codes  
Differential Nonlinearity (DNL) Error  
Integral Nonlinearity (INL) Error  
Gain Error  
Gain Error Temperature Drift  
Gain Error Match  
Offset Error  
Offset Temperature Drift  
Offset Error Match  
AC ACCURACY  
16  
Bits  
LSB  
LSB  
% FS  
ppm/°C  
% FS  
mV  
µV/°C  
mV  
−1.0  
−2.5  
−0.06  
−3  
0.5  
1
0.02  
+1.0  
+2.5  
+0.06  
+3  
+0.07  
+0.5  
+5  
−40°C to +125°C  
1
0.025  
0.05  
1
−0.5  
−5  
−40°C to +125°C  
0.05  
+0.5  
Input frequency (fIN) = 1 kHz  
VREF = 3.3 V external  
Dynamic Range  
88  
86  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Oversampled Dynamic Range  
Signal-to-Noise Ratio (SNR)  
Oversampling ratio (OSR) = ×4  
VREF = 3.3 V external  
91.8  
87.5  
86  
93.4  
85.3  
101  
−100  
−97  
87  
85  
84  
OS_MODE = 1, OSR = ×8, RES = 1  
fIN = 100 kHz  
Spurious-Free Dynamic Range (SFDR)  
Total Harmonic Distortion (THD)  
fIN = 100 kHz  
VREF = 3.3 V external  
Signal-to-Noise-and-Distortion (SINAD)  
84.5  
83.5  
85.5  
−110  
Channel to Channel Isolation  
ANALOG INPUT  
Voltage Range  
(AINx+) to (AINx−)  
AINx+  
AINx−  
−VREF/2  
−0.1  
+VREF/2  
VREF + 0.1  
V
V
V
dB  
µA  
pF  
pF  
Absolute Input Voltage Range  
Common-Mode Input Range  
Common-Mode Rejection Ratio (CMRR)  
DC Leakage Current  
VREF/2 0.075  
fIN = 500 kHz  
−70  
0.1  
18  
5
1
Input Capacitance  
When in track mode  
When in hold mode  
SAMPLING DYNAMICS  
Input Bandwidth  
At −0.1 dB  
At −3 dB  
6
25  
2
MHz  
MHz  
ns  
Aperture Delay  
Aperture Delay Match  
Aperture Jitter  
26  
20  
100  
ps  
ps  
Rev. 0 | Page 3 of 30  
 
AD4682/AD4683  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
REFERENCE INPUT AND OUTPUT  
VREF Input  
Voltage Range  
Current  
AD4682  
External reference  
External reference  
1 MSPS  
500 kSPS  
−40°C to +125°C  
2.49  
3.4  
V
0.26  
0.23  
2.5  
5
0.29  
0.26  
2.505  
10  
mA  
mA  
V
ppm/°C  
µV rms  
AD4683  
VREF Output Voltage  
VREF Temperature Coefficient  
VREF Noise  
2.495  
7
DIGITAL INPUTS (SCLK, SDI, AND CS)  
Logic Levels  
Input Voltage  
Low (VIL)  
High (VIH)  
0.2 × VLOGIC  
V
V
0.8 × VLOGIC  
Input Current  
Low (IIL)  
High (IIH)  
−1  
−1  
+1  
+1  
µA  
µA  
DIGITAL OUTPUTS (SDOA AND SDOB/ALERT)  
Output Coding  
Output Voltage  
Twos complement  
Bits  
Low (VOL  
High (VOH  
)
Sink current (ISINK) = 300 µA  
Source current (ISOURCE) = −300 µA  
0.4  
1
V
V
)
VLOGIC − 0.3  
Floating State  
Leakage Current  
Output Capacitance  
POWER SUPPLIES  
VCC  
µA  
pF  
10  
3.0  
3.2  
1.65  
3.3  
3.3  
3.6  
3.6  
3.6  
V
V
V
External reference = 3.3 V  
VLOGIC  
VCC Current (IVCC  
)
Normal Mode (Operational)  
AD4682, 1 MSPS  
AD4683, 500 kSPS  
7.28  
4.76  
2.3  
8.4  
5.6  
2.8  
200  
mA  
mA  
mA  
µA  
Normal Mode (Static)  
Shutdown Mode  
101  
VLOGIC Current (IVLOGIC  
Normal Mode (Operational)  
)
SDOA and SDOB at 0x1FFF  
AD4682, 1 MSPS  
884  
438  
10  
950  
470  
200  
200  
µA  
µA  
nA  
nA  
AD4683, 500 kSPS  
Normal Mode (Static)  
Shutdown Mode  
10  
Power Dissipation  
Total Power (PTOTAL) (Operational)  
VCC Power (PVCC  
83  
107  
mW  
)
Normal Mode (Operational)  
AD4682, 1 MSPS  
AD4683, 500 kSPS  
26.2  
17.2  
8
30.3  
20.2  
11  
mW  
mW  
mW  
µW  
Normal Mode (Static)  
Shutdown Mode  
365  
720  
VLOGIC Power (PVLOGIC  
Normal Mode (Operational)  
)
SDOA and SDOB at 0x1FFF  
AD4682, 1 MSPS  
3.2  
1.6  
36  
3.5  
1.7  
720  
720  
mW  
mW  
nW  
AD4683, 500 kSPS  
Normal Mode (Static)  
Shutdown Mode  
36  
nW  
Rev. 0 | Page 4 of 30  
Data Sheet  
AD4682/AD4683  
TIMING SPECIFICATIONS  
VCC = 3.0 V to 3.6 V, VLOGIC = 1.65 V to 3.6 V, VREF = 2.5 V internal, and TA = −40°C to +125°C, unless otherwise noted. See Figure 2 to Figure 5,  
Figure 37, Figure 38, and Figure 39 for the timing diagrams. Multifunction pin names may be referenced by their relevant function only.  
Table 3.  
Parameter Min  
Typ Max  
Unit Description  
Time between conversions  
AD4682  
tCYC  
1
2
µs  
µs  
ns  
ns  
ns  
ns  
ns  
AD4683  
tSCLKED  
tSCLK  
tSCLKH  
tSCLKL  
tCSH  
190  
25  
10  
10  
10  
CS falling edge to first SCLK falling edge  
SCLK period  
SCLK high time  
SCLK low time  
CS pulse width  
tQUIET  
Interface quiet time prior to conversion  
AD4682  
AD4683  
500  
1500  
ns  
ns  
tSDOEN  
CS low to SDOA and SDOB/ALERT enabled  
VLOGIC ≥ 2.25 V  
1.65 V ≤ VLOGIC < 2.3 V  
SCLK rising edge to SDOA and SDOB/ALERT hold time  
SCLK rising edge to SDOA and SDOB/ALERT setup time  
VLOGIC ≥ 2.25 V  
6
8
ns  
ns  
ns  
tSDOH  
tSDOS  
3
6
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.65 V ≤ VLOGIC < 2.3 V  
tSDOT  
CS rising edge to SDOA and SDOB/ALERT high impedance  
SDI setup time prior to SCLK falling edge  
SDI hold time after SCLK falling edge  
SCLK rising edge to CS rising edge  
Conversion time  
Acquire time  
AD4682  
AD4683  
tSDIS  
tSDIH  
tSCLKCS  
tCONVERT  
tACQUIRE  
1
1
0
190  
810  
1810  
tRESET  
Valid time to start conversion after software reset  
Valid time to start conversion after soft reset  
Valid time to start conversion after hard reset  
Supply active to conversion  
First conversion allowed  
Settled to within 1% with internal reference  
Settled to within 1% with external reference  
Supply active to register read write access allowed  
Exiting shutdown mode to conversion  
Settled to within 1% with internal reference  
Settled to within 1% with external reference  
Time from CS to ALERT indication  
Time from CS to ALERT clear  
250  
800  
ns  
ns  
tPOWERUP  
5
11  
5
ms  
ms  
ms  
ms  
tREGWRITE  
tSTARTUP  
5
11  
10  
220  
12  
ms  
µs  
ns  
ns  
tALERTS  
tALERTC  
Rev. 0 | Page 5 of 30  
 
AD4682/AD4683  
Data Sheet  
Timing Diagrams  
tCYC  
tSCLKED  
tSCLK  
tSCLKH  
tSCLKL  
tCSH  
tQUIET  
tSCLKCS  
CS  
SCLK  
SDOA  
SDOB  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
TRISTATE  
TRISTATE  
TRISTATE  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
15  
15  
14  
14  
13  
13  
12  
12  
11  
11  
10  
10  
9
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
TRISTATE  
tSDOT  
DB  
tSDOEN  
DB  
tSDOH  
DB  
tSDOS  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
0
SDI  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
tSDIS  
tSDIH  
Figure 2. Serial Interface Timing Diagram  
tCONVERT  
CS  
CONVERSION  
ACQUIRE  
CONVERSION  
ACQUIRE  
tACQUIRE  
Figure 3. Internal Conversion Acquire Timing  
tPOWERUP  
V
CC  
CS  
TIME TO ACCURATE CONVERSION  
Figure 4. Power-Up Time to Conversion  
tREGWRITE  
V
CC  
CS  
REG  
WRITE  
SDI  
Figure 5. Power-Up Time to Register Read Write Access  
Rev. 0 | Page 6 of 30  
 
 
Data Sheet  
AD4682/AD4683  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 4.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
VCC to GND  
−0.3 V to +4 V  
−0.3 V to +4 V  
VLOGIC to GND  
Input Voltage  
Analog to GND  
θJA is the natural convection, junction to ambient thermal  
−0.3 V to VREF + 0.3 V, VCC + 0.3 V,  
or +4 V (whichever is smaller)  
−0.3 V to VLOGIC + 0.3 V, or +4 V  
(whichever is smaller)  
−0.3 V to VLOGIC + 0.3 V, or +4 V  
(whichever is smaller)  
−0.3 V to VCC + 0.3 V  
10 mA  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
Digital to GND  
Table 5. Thermal Resistance  
Digital Output Voltage to  
GND  
REFIO Input to GND  
Input Current to Any Pin  
Except Supplies  
Package Type  
θJA  
θJC  
Unit  
CP-16-451  
55.4  
12.7  
°C/W  
1 Test Condition 1: thermal impedance simulated values are based on  
JEDEC 2S2P thermal test board four thermal vias. See JEDEC JESDS-51.  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
Temperature  
Operating Range  
Storage Range  
Junction  
−40°C to +125°C  
−65°C to +150°C  
150°C  
The following ESD information is provided for handling of  
ESD-sensitive devices in an ESD protected area only.  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
Pb-Free Soldering Reflow  
260°C  
Field induced charge device model (FICDM) per ANSI/ESDA/  
JEDEC JS-002.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the  
operational section of this specification is not implied.  
Operation beyond the maximum operating conditions for  
extended periods may affect product reliability.  
ESD Ratings for AD4682 and AD4683  
Table 6. AD4682 and AD4683, 16-Lead LFCSP  
ESD Model  
Withstand Threshold (V)  
Class  
3A  
C3  
HBM  
FICDM  
4000  
1250  
ESD CAUTION  
Rev. 0 | Page 7 of 30  
 
 
 
 
AD4682/AD4683  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
GND  
1
2
3
4
12 CS  
AD4682/  
V
11 REFIO  
LOGIC  
AD4683  
TOP VIEW  
(Not to Scale)  
GND  
REGCAP  
10  
9
V
REFCAP  
CC  
NOTES  
1. EXPOSED PAD. FOR PROPER OPERATION OF THE DEVICE,  
CONNECT THE EXPOSED PAD TO GROUND.  
Figure 6. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No. Mnemonic Description  
1, 10  
2
3
GND  
VLOGIC  
REGCAP  
Ground Reference Points. The GND pins are the ground reference points for all circuitry on the device.  
Logic Interface Supply Voltage, 1.65 V to 3.6 V. Decouple VLOGIC to GND with a 1 µF capacitor.  
Decoupling Capacitor Pin for Voltage Output from the Internal Regulator. Decouple REGCAP to GND with a 1 µF  
capacitor. The voltage at REGCAP is 1.9 V typical.  
4
VCC  
Power Supply Input Voltage, 3.0 V to 3.6 V. Decouple VCC to GND using a 1 µF capacitor.  
5, 6  
AINB−, AINB+  
Analog Inputs of ADC B. The AINB− and AINB+ analog inputs form a pseudo differential pair. AINB− is typically  
connected to VREF/2, and the AINB+ voltage range is from 0 V to VREF  
AINA−, AINA+ Analog Inputs of ADC A. The AINA− and AINA+ analog inputs form a pseudo differential pair. AINA− is typically  
connected to VREF/2, and the AINA+ voltage range is from 0 V to VREF  
.
7, 8  
9
.
REFCAP  
Decoupling Capacitor Pin for Band Gap Reference. Decouple REFCAP to GND with a 0.1 µF capacitor. The voltage  
at REFCAP is 2.5 V typical.  
11  
REFIO  
Reference Input and Output. The on-chip reference of 2.5 V is available as an output on REFIO for external use if  
the device is configured accordingly. Alternatively, an external reference of 2.5 V to 3.3 V can be input to REFIO.  
Set the REFSEL bit in the CONFIGURATION1 register to 1 when using the external reference, and apply the  
REFSEL bit after VCC and VLOGIC. Decoupling is required on REFIO for both the internal and external reference  
options. Apply a 1 µF capacitor from REFIO to GND.  
12  
13  
14  
CS  
Chip Select Input. Active low, logic input. CS provides the dual function of initiating conversions on the AD4682  
and the AD4683 and framing the serial data transfer.  
Serial Data Output A. SDOA functions as a serial data output pin to access the ADC A or ADC B conversion results  
or data from any of the on-chip registers.  
SDOA  
SDOB/ALERT Serial Data Output B/Alert Indication Output. The SDOB/ALERT pin can operate as a serial data output pin or an  
alert indication output.  
SDOB functions as a serial data output pin to access the ADC B conversion results.  
ALERT operates as an alert pin going low to indicate that a conversion result exceeded a configured threshold.  
When using ALERT, set the SDO bit in the CONFIGURATION2 register to 1, and set the ALERT_EN bit to 1 in the  
CONFIGURATION1 register.  
15  
16  
SDI  
SCLK  
EPAD  
Serial Data Input. SDI provides the data written to the on-chip control registers.  
Serial Clock Input. SCLK is for data transfers to and from the ADC.  
Exposed Pad. For proper operation of the device, connect the exposed pad to ground.  
Rev. 0 | Page 8 of 30  
 
Data Sheet  
AD4682/AD4683  
TYPICAL PERFORMANCE CHARACTERISTICS  
0
0
–20  
–40  
–60  
–80  
SNR = 87.7dB  
SNR = 85.7dB  
THD = –102.82dB  
SINAD = 85.6dB  
fIN = 1kHz  
THD = –102.82dB  
–20  
SINAD = 85.6dB  
fIN = 1kHz  
REF  
–40  
V
= 3.3V (EXTERNAL)  
V
= 2.5V (INTERNAL)  
REF  
–60  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
–160  
–180  
–160  
–180  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 7. AD4682 Fast Fourier Transform (FFT), VREF = 3.3 V External  
Figure 10. AD4682 FFT, VREF = 2.5 V Internal  
0
0
–20  
–40  
–60  
–80  
SNR = 87.28dB  
THD = –99.1dB  
SINAD = 87dB  
SNR = 85.68dB  
THD = –102.6dB  
SINAD = 85.6dB  
fIN = 1kHz  
–20  
fIN = 1kHz  
–40  
V
= 3.3V (EXTERNAL)  
V
= 2.5V (EXTERNAL)  
REF  
REF  
–60  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
–160  
–180  
–160  
–180  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 8. AD4683 FFT, VREF = 3.3 V External  
Figure 11. AD4683 FFT, VREF = 2.5 V External  
0
–20  
–40  
–60  
–80  
120000  
100000  
80000  
SNR = 95.1dB  
THD = –99.1dB  
SINAD = 93.6dB  
fIN = 1kHz  
REF  
RES = 1, OSR = 8  
95992  
V
= 3.3V (EXTERNAL)  
85602  
60000  
40000  
–100  
–120  
–140  
40438  
29563  
20000  
0
6450  
4157  
–160  
–180  
370  
210  
4
11  
6
5
–6 –5 –4 –3 –2 –1  
0
1
2
3
6
7
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
CODE  
Figure 9. AD4682 FFT, Rolling Average Oversampling  
Figure 12. DC Histogram at Code Center  
Rev. 0 | Page 9 of 30  
 
AD4682/AD4683  
Data Sheet  
1.5  
1.0  
0.5  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–32000 –24000 –16000 –8000  
0
8000 16000 24000 32000  
–32000 –24000 –16000 –8000  
0
8000 16000 24000 32000  
CODE  
CODE  
Figure 13. Typical INL Error  
Figure 16. Typical DNL Error  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
1
10  
100  
FREQUENCY (kHz)  
1000  
1
10  
100  
FREQUENCY (kHz)  
1000  
Figure 14. AD4682 SNR vs. Frequency  
Figure 17. AD4682 SINAD vs. Frequency  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
–50  
–60  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
–70  
–80  
–90  
–100  
–110  
–120  
1
10  
100  
FREQUENCY (kHz)  
1000  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 15. AD4682 THD vs. Frequency  
Figure 18. AD4683 SNR vs. Frequency  
Rev. 0 | Page 10 of 30  
Data Sheet  
AD4682/AD4683  
–50  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
1
10  
100  
FREQUENCY (kHz)  
1000  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 19. AD4683 THD vs. Frequency  
Figure 22. AD4683 SINAD vs. Frequency  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
–50  
–60  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
–70  
–80  
–90  
–100  
–110  
–120  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 23. AD4682 THD vs. Temperature  
Figure 20. AD4682 SNR vs. Temperature  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
–50  
–60  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
EXTERNAL REFERENCE = 3.3V  
INTERNAL REFERENCE = 2.5V  
–70  
–80  
–90  
–100  
–110  
–120  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. AD4683 SNR vs. Temperature  
Figure 24. AD4683 THD vs. Temperature  
Rev. 0 | Page 11 of 30  
AD4682/AD4683  
Data Sheet  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
I
I
VCC  
VLOGIC  
fIN = 1kHz SINE WAVE  
0
0
200  
400  
600  
800  
1000  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
THROUGHPUT RATE (kSPS)  
Figure 28. IVCC Shutdown Current vs. Temperature  
Figure 25. Dynamic Current vs. Throughput Rate  
99  
97  
95  
12  
10  
8
I
I
VCC  
VLOGIC  
fIN = 1kHz SINEWAVE  
93  
91  
89  
87  
85  
83  
81  
79  
6
4
2
EXTERNAL REFERENCE = 3.3V, RES = 1, OS_MODE = 1  
INTERNAL REFERENCE = 2.5V, RES = 1, OS_MODE = 1  
EXTERNAL REFERENCE = 3.3V, RES = 1, OS_MODE = 1  
INTERNAL REFERENCE = 2.5V, RES = 1, OS_MODE = 1  
0
0
2
4
8
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
OVERSAMPLING RATIO  
TEMPERATURE (°C)  
Figure 29. AD4682 SNR vs. Oversampling Ratio, Rolling Average Oversampling  
Figure 26. Dynamic Current vs. Temperature  
98  
96  
94  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
92  
90  
88  
86  
84  
82  
EXTERNAL REFERENCE = 3.3V, RES = 0  
EXTERNAL REFERENCE = 3.3V, RES = 1  
80  
INTERNAL REFERENCE = 2.5V, RES = 0  
INTERNAL REFERENCE = 2.5V, RES = 1  
78  
0
2
4
8
0.0001  
0.001  
0.01  
0.1  
1
OVERSAMPLING RATIO (OSR)  
RIPPLE FREQUENCY (MHz)  
Figure 30. AD4683 SNR vs. Oversampling Ratio, Rolling Average Oversampling  
Figure 27. Power Supply Rejection Ratio (PSRR) vs. Ripple Frequency  
Rev. 0 | Page 12 of 30  
Data Sheet  
AD4682/AD4683  
TERMINOLOGY  
Differential Nonlinearity (DNL)  
Signal-to-Noise Ratio (SNR)  
In an ideal ADC, code transitions are 1 LSB apart. DNL is the  
maximum deviation from this ideal value. DNL is often specified  
in terms of resolution for which no missing codes are guaranteed.  
SNR is the ratio of the rms value of the actual input signal to the  
rms sum of all other spectral components below the Nyquist  
frequency, excluding harmonics and dc. The value for SNR is  
expressed in dB.  
Integral Nonlinearity (INL)  
INL is the deviation of each individual code from a line drawn  
from negative full scale through positive full scale. The point  
used as negative full scale occurs ½ LSB before the first code  
transition. Positive full scale is defined as a level 1½ LSB beyond  
the last code transition. The deviation is measured from the  
middle of each code to the true straight line.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the difference, in dB, between the rms amplitude of the  
input signal and the peak spurious signal.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of the first five harmonic  
components to the rms value of a full-scale input signal and is  
expressed in dB.  
Gain Error  
The first transition (from 100 … 000 to 100 … 001) occurs at a  
level ½ LSB above nominal negative full scale. The last transition  
(from 011 … 110 to 011 … 111) occurs for an analog voltage  
1½ LSB below the nominal full scale. The gain error is the  
deviation of the difference between the actual level of the last  
transition and the actual level of the first transition from the  
difference between the ideal levels.  
Signal-to-Noise-and-Distortion (SINAD)  
SINAD is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components that are less than  
the Nyquist frequency, including harmonics but excluding dc.  
The value for SINAD is expressed in dB.  
Common-Mode Rejection Ratio (CMRR)  
CMRR is the ratio of the power in the ADC output at the  
frequency, f, to the power of a 200 mV p-p sine wave applied to  
the common-mode voltage of AINx+ and AINx− of frequency, f.  
The value for CMRR is expressed in dB.  
Gain Error Temperature Drift  
Gain error temperature drift is the gain error change due to a  
temperature change of 1°C.  
Gain Error Match  
CMRR = 10log(PADC_IN/PADC_OUT  
where:  
ADC_IN is the common-mode power at the frequency, f, applied  
to the AINx+ and AINx− inputs.  
ADC_OUT is the power at the frequency, f, in the ADC output.  
)
Gain error matching is the difference in negative full-scale error  
between the input channels and the difference in positive full-scale  
error between the input channels.  
P
Offset Error  
P
Offset error is the difference between the ideal midscale voltage,  
0 V, and the actual voltage producing the midscale output code,  
0 LSB.  
Aperture Delay  
Aperture delay is the measure of the acquisition performance  
and is the time between the falling edge of the  
input and  
CS  
Offset Temperature Drift  
Offset temperature drift is the zero error change due to a  
temperature change of 1°C.  
when the input signal is held for a conversion.  
Aperture Delay Match  
Aperture delay match is the difference of the aperture delay  
between ADC A and ADC B.  
Offset Error Match  
Offset error match is the difference in zero error between the  
input channels.  
Aperture Jitter  
Aperture jitter is the variation in aperture delay.  
Rev. 0 | Page 13 of 30  
 
AD4682/AD4683  
Data Sheet  
THEORY OF OPERATION  
from the sampling capacitor arrays to bring the comparator  
back into a balanced condition. When the comparator is  
rebalanced, the conversion completes. The control logic generates  
the ADC output code. The output impedances of the sources  
driving the AINx+ and AINx− pins must be matched. Otherwise,  
the two inputs have different settling times, which results in errors.  
CIRCUIT INFORMATION  
The AD4682 and the AD4683 are high speed, dual, simultaneous  
sampling, pseudo differential, 16-bit, SAR ADCs. The AD4682  
and the AD4683 operate from a 3.0 V to 3.6 V power supply and  
feature throughput rates of 1 MSPS and 500 kSPS, respectively.  
The AD4682 and the AD4682 contain two SAR ADCs and a  
serial peripheral interface (SPI) with two separate data output  
pins. The devices are housed in a 16-lead LFCSP, offering the  
user considerable space-saving advantages over alternative  
solutions.  
CAPACITIVE  
DAC  
COMPARATOR  
B
A
C
C
S
A
A
x+  
IN  
SW1  
SW2  
CONTROL  
LOGIC  
SW3  
S
Data is accessed from the devices via the SPI. The SPI can  
operate with one or two serial outputs. The AD4682 and the  
AD4682 have an on-chip 2.5 V internal reference, VREF. If an  
external reference is required, disable the internal reference,  
supply a reference value that ranges from 2.5 V to 3.3 V, and set  
the REFSEL bit in the CONFIGURATION1 register to 1. If the  
internal reference is used elsewhere in the system, buffer the  
reference output. The pseudo differential analog input range  
for the AD4682 and the AD4683 is the common-mode voltage  
A
B
x–  
IN  
V
REF  
CAPACITIVE  
DAC  
Figure 32. ADC Conversion Phase  
ANALOG INPUT STRUCTURE  
Figure 33 shows the equivalent analog input circuit of the AD4682  
and the AD4683. The four diodes (D) provide ESD protection  
for the analog inputs. Ensure that the analog input signals do  
not exceed the supply rails by more than 300 mV. Exceeding the  
limit causes these diodes to become forward-biased and start  
conducting into the substrate. These diodes can conduct up to  
10 mA without causing irreversible damage to the devices.  
(VCM  
)
VREF/2.  
The AD4682 and the AD4683 feature an on-chip oversampling  
block to improve performance. Rolling average oversampling  
mode and power-down options that allow power saving between  
conversions are also available. Configuration of the devices is  
implemented via the standard SPI (see the Interface section).  
The C1 capacitors in Figure 33 are typically 3 pF and can primarily  
be attributed to pin capacitance. The R1 resistors are lumped  
components made up of the on resistance of the switches. The  
value of these resistors is typically about 200 Ω. The C2 capacitors  
are sampling capacitors of the ADC with a capacitance of 15 pF  
typically.  
CONVERTER OPERATION  
The AD4682 and the AD4683 have two SAR ADCs, each based  
around two capacitive digital-to-analog converters (DACs).  
Figure 31 and Figure 32 show the simplified schematics of one  
of these ADCs in acquisition and conversion phases, respectively.  
The ADC comprises the control logic, an SAR, and two capacitive  
DACs. In Figure 31 (the acquisition phase), SW3 is closed, SW1  
and SW2 are in Position A, the comparator is held in a balanced  
condition, and the sampling capacitor (CS) arrays can acquire  
the pseudo differential signal on the input.  
V
CC  
D
C2  
R1  
A
x+  
IN  
C1  
D
CAPACITIVE  
DAC  
V
CC  
COMPARATOR  
C
C
B
A
S
D
D
A
A
x+  
C2  
IN  
R1  
SW1  
SW2  
A
x–  
IN  
CONTROL  
LOGIC  
SW3  
S
C1  
A
B
x–  
IN  
V
REF  
CAPACITIVE  
DAC  
Figure 33. Equivalent Analog Input Circuit,  
Conversion Phase—Switches Open, Track Phase—Switches Closed  
Figure 31. ADC Acquisition Phase  
When the ADC starts a conversion (see Figure 32), SW3 opens  
and SW1 and SW2 move to Position B, causing the comparator  
to become unbalanced. Both inputs are disconnected when the  
conversion begins. The control logic and charge redistribution  
DACs are used to add and subtract fixed amounts of charge  
Rev. 0 | Page 14 of 30  
 
 
 
 
 
 
 
Data Sheet  
AD4682/AD4683  
ADC TRANSFER FUNCTION  
The AD4682 and the AD4683 can use a typical 2.5 V to 3.3 V VREF  
The AD4682 and the AD4683 convert the differential voltage of  
the analog inputs (AINA+, AINA−, AINB+, and AINB−) into a  
digital output.  
.
011...111  
011...110  
011...101  
The conversion result is MSB first, twos complement. The LSB  
size is VREF/2N, where N is the ADC resolution. The ADC  
resolution is determined by the resolution of the device chosen,  
and if resolution boost mode is enabled. Table 8 outlines the LSB  
size expressed in µV for different resolutions and reference  
voltage options.  
100...010  
100...001  
100...000  
–FSR  
–FSR + 1LSB  
+FSR – 1LSB  
The ideal transfer characteristics for the AD4682 and the  
AD4683 are shown in Figure 34.  
–FSR + 0.5LSB  
+FSR – 1.5LSB  
ANALOG INPUT  
Figure 34. ADC Ideal Transfer Function (FSR = Full-Scale Range)  
Table 8. LSB Size  
Resolution (Bits) 2.5 V Reference (µV) 3.3 V Reference (µV)  
16  
18  
38.1  
9.5  
50.3  
12.6  
Rev. 0 | Page 15 of 30  
 
 
 
AD4682/AD4683  
Data Sheet  
APPLICATIONS INFORMATION  
Figure 35 shows an example of the typical connection diagram  
POWER SUPPLY  
for the AD4682 and the AD4683. Decouple the VCC, VLOGIC  
,
The typical application circuit in Figure 35 can be powered by  
a single 5 V voltage source (V+) that supplies the entire signal  
chain. The 5 V supply can come from a low noise, CMOS low  
dropout (LDO) regulator (ADP7105). The driver amplifier supply  
is supplied by the +5 V (V+) and −2.5 V negative supply rail (V−),  
which is derived from the inverter (ADM660). The inverter  
converts the +5 V to −5 V and supplies the voltage to the  
ADP7182 low noise voltage regulator to output the −2.5 V. The  
two independent supplies of the AD4682 and the AD4683, VCC  
and VLOGIC, that supply the analog circuitry and digital interface,  
respectively, can be supplied by a low quiescent current LDO  
regulator, such as the ADP166. The ADP166 is a suitable supply  
with a fixed output voltage range from 1.2 V to 3.3 V for typical  
REGCAP, and REFIO pins with suitable decoupling capacitors  
as shown in Figure 35.  
The exposed pad is a ground reference point for circuitry on  
the devices and must be connected to the PCB ground.  
Place a differential RC filter on the analog inputs to ensure  
optimal performance is achieved.  
The performance of the AD4682 and the AD4683 devices can be  
impacted by noise on the digital interface. This impact is  
dependent on the on-board layout and design. Keep a minimal  
distance between the digital line to the digital interface, or place  
a 100 Ω resistor in series and close to the SDOA pin and the  
ALERT  
SDOB/  
pin to reduce noise from the digital interface  
VCC and VLOGIC levels. Decouple both the VCC supply and the  
LOGIC supply separately with a 1 µF capacitor. Additionally, an  
coupling of the AD4682 and the AD4683.  
V
internal LDO regulator supplies the AD4682 and the AD4683. The  
on-chip regulator provides a 1.9 V supply for internal use on the  
device only. Decouple the REGCAP pin with a 1 µF capacitor  
connected to GND.  
The two pseudo differential ADC channels of the AD4682 and  
the AD4683 can accept an input voltage range from 0 V to VREF  
on AINA+ and AINB+, and a VREF/2 voltage on AINA− and AINB−.  
The AINA+, AINB+, AINA−, and AINB− analog input pins can be  
driven with an amplifier. Table 9 lists the recommended driver  
amplifiers that best fit and add value to the application. The  
AD4682 and the AD4683 have a buffered internal 2.5 V reference  
that is accessed via the REFIO pin. The buffered internal 2.5 V  
reference must use an external buffer, like the ADA4807-2,  
when connecting the reference to the external circuitry. The  
AD4682 and the AD4683 have an option to use an ultralow  
noise, high accuracy voltage reference as an external voltage  
source ranging from 2.5 V to 3.3 V, such as the ADR4533 and  
ADR4525.  
Power-Up  
The AD4682 and the AD4683 are not easily damaged by power  
supply sequencing. VCC and VLOGIC can be applied in any  
sequence. Apply an external reference after VCC and VLOGIC are  
applied.  
The AD4682 and the AD4683 require a tPOWERUP time from  
applying VCC and VLOGIC until the ADC conversion results are  
CS  
stable. Applying  
pulses or interfacing with the AD4682 and  
the AD4683 prior to the setup time elapsing does not have a  
negative impact on ADC operation. Conversion results are not  
guaranteed to meet data sheet specifications during this time,  
however, and must be ignored.  
Table 9. Signal Chain Components  
Companion Parts  
Part Name  
ADA4896-2  
ADA4940-2  
ADA4807-2  
LTC6227  
Description  
Typical Application  
ADC Driver  
1 nV/√Hz, rail-to-rail output amplifier  
Ultra low power, full differential, low distortion  
1 mA, rail-to-rail output amplifier  
1 nV/√Hz, 420 MHz gain bandwidth product (GBW), rail-  
to-rail output amplifier  
Precision, low noise, high frequency  
Precision, low density, low power  
Precision, low power, high frequency  
Precision, low noise, high frequency  
External Reference  
LDO  
ADR4525  
ADR4533  
ADP166  
Ultralow noise, high accuracy 2.5 V voltage reference  
Ultralow noise, high accuracy 3.3 V voltage reference  
Very low quiescent, 150 mA, LDO regulator  
2.5 V reference voltage  
3.3 V reference voltage  
3.0 V to 3.6 V supply for VCC and VLOGIC  
Rev. 0 | Page 16 of 30  
 
 
 
Data Sheet  
AD4682/AD4683  
V+ = 5V  
LDO  
V+  
REF  
= 2.5V TO 3.3V  
LDO  
1.65V TO 3.6V  
INVERTER  
+
V+  
V
3.0V TO 3.6V  
5V TO –5V  
V
= V  
/2  
REF  
CM  
REF  
10kΩ  
10kΩ  
+
LDO  
1µF  
1µF  
V– = –2.5V  
V+  
V
REFIO  
CC  
V
V
REF  
CM  
0V  
A
A+  
R
IN  
A
A
A+  
A–  
IN  
+
V
LOGIC  
C1  
AD4682/AD4683  
1µF  
IN  
V–  
V
SDI  
CM  
100Ω  
100Ω  
EXPOSED  
PAD  
SDOA  
SDOB/ALERT  
SCLK  
DIGITAL HOST  
(MICROPROCESSOR/  
FIELD PROGRAMMABLE GATE ARRAY)  
V+  
V
V
REF  
A
B–  
R
IN  
CS  
CM  
0V  
A
A
B+  
B–  
+
IN  
C1  
IN  
REGCAP  
V–  
1µF  
REFCAP  
0.1µF  
GND  
V
CM  
Figure 35. Typical Application Circuit  
Rev. 0 | Page 17 of 30  
 
AD4682/AD4683  
Data Sheet  
MODES OF OPERATION  
The AD4682 and the AD4683 have several on-chip configuration  
registers for controlling the operational mode of the device.  
controlled using the oversampling bits, OSR (see Table 10). The  
output result is decimated to 16-bit resolution for the AD4682 and  
the AD4683. If additional resolution is required, configure the  
resolution boost bit in the CONFIGURATION1 register. See  
the Resolution Boost section for further details.  
Multifunction pin names may be referenced by their relevant  
function only.  
OVERSAMPLING  
In rolling average oversampling mode, all ADC conversions are  
Oversampling is a common method used in analog electronics  
to improve the accuracy of the ADC result. Multiple samples of  
the analog input are captured and averaged to reduce the noise  
component from the quantization noise and the thermal noise  
(kTC) of the ADC. The AD4682 and the AD4683 offer an  
oversampling function on chip, rolling average oversampling.  
CS  
controlled and initiated by the falling edge of . After a  
conversion is complete, the result is loaded into the FIFO. The  
FIFO length is 8, regardless of the oversampling ratio set. The  
FIFO is filled on the first conversion after a power-on reset, the  
first conversion after a software controlled hard or soft reset, or  
the first conversion after the REFSEL bit is toggled. A new  
conversion result is shifted into the FIFO on completion of  
every ADC conversion, regardless of the status of the OSR bits  
and the OS_MODE bit. This conversion allows a seamless  
transition from no oversampling to rolling average oversampling  
or different rolling average oversampling ratios without waiting  
for the FIFO to fill.  
The rolling average oversampling functionality is enabled by  
writing a 1 on the OS_MODE bit, Bit 9, and a valid nonzero  
value on the OSR bits, Bits[8:6], in the CONFIGURATION1  
register. Oversampling is disabled by writing a 0 on the  
OS_MODE bit, Bit 9, and a zero value on the OSR bits, Bits[8:6], of  
the CONFIGURATION1 register.  
Rolling Average Oversampling  
The number of samples, n, defined by the OSR bits are taken  
from the FIFO, added together, and the result is divided by n.  
Rolling average oversampling mode can be used in applications  
where higher output data rates are required and where higher  
SNR or dynamic range is required. Rolling average oversampling  
involves taking a number of samples, adding the samples  
together, and dividing the result by the number of samples  
taken. This result is then output from the AD4682 or the  
AD4683. The sample data is not cleared after the process  
completes. The rolling average oversampling mode uses a first  
in, first out (FIFO) buffer of the most recent samples in the  
averaging calculation, allowing the ADC throughput rate and  
output data rate to stay the same.  
CS  
The time between  
falling edges is the cycle time, which can  
be controlled by the user, depending on the required data  
output rate.  
RESOLUTION BOOST  
The default conversion result output data size for the AD4682 and  
the AD4683 is 16 bits. When the on-chip oversampling function is  
enabled, the performance of the ADC can exceed the 16-bit level.  
To accommodate the performance boost achievable, it is possible  
to enable an additional two bits of resolution. If the RES bit in  
the CONFIGURATION1 register is set to Logic 1, and the  
AD4682 and the AD4683 are in a valid oversampling mode, the  
conversion result size for the AD4682 and the AD4683 is 18 bits.  
In this mode, 18 SCLKs are required to propagate the data.  
Rolling average oversampling mode is enabled by setting the  
OS_MODE bit to Logic 1 and having a valid nonzero value in  
the OSR bits. The oversampling ratio of the digital filter is  
Table 10. AD4682 Rolling Average Oversampling Performance Overview  
SNR (dB Typical)  
VREF = 2.5 V VREF = 3.3 V  
RES = 0 RES = 1 RES = 0 RES = 1  
OSR, Bits[8:6]  
Oversampling Ratio  
Output Data Rate (kSPS Maximum)  
000  
001  
010  
011  
Disabled  
85.7  
87.6  
90.1  
92.6  
85.7  
87.9  
90.9  
94.0  
87.3  
88.8  
91.3  
93.4  
87.3  
89.3  
92.4  
95.4  
1000  
1000  
1000  
1000  
2
4
8
Rev. 0 | Page 18 of 30  
 
 
 
 
Data Sheet  
AD4682/AD4683  
V
CC  
tCYC  
CS  
S1  
ACQ  
S2  
ACQ  
S3  
ACQ  
S4  
ACQ  
S5  
ACQ  
S6  
ACQ  
S7  
ACQ  
INTERNAL  
ENABLE OSR = 2  
S1  
ENABLE OSR = 4  
SDI  
SDOA  
SDOB  
(f +f +f +f )/4  
DON’T CARE  
S2  
(f + f )/2  
(f + f )/2  
(f + f )/2  
1
2
3
4
1
2
1
2
1
2
FIFO  
FIFO  
FIFO  
FIFO  
FIFO  
S5  
S4  
S3  
S2  
S1  
S1  
S1  
S1  
FIFO  
FIFO  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
S1  
1
2
3
4
5
6
7
8
S1  
S1  
S1  
S1  
S1  
S1  
S1  
S1  
1
2
3
4
5
6
7
8
S2  
S1  
S1  
S1  
S1  
S1  
S1  
S1  
1
S3  
S2  
S1  
S1  
S1  
S1  
S1  
S1  
1
2
3
4
5
6
7
8
S4  
S3  
S2  
S1  
S1  
S1  
S1  
S1  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
S6  
S5  
S4  
S3  
S2  
S1  
S1  
S1  
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
Figure 36. Rolling Average Oversampling Mode Configuration  
tALERTS  
tALERTC  
CS  
SDOA  
NO OVERSAMPLING OR  
ROLLING AVERAGE  
OVERSAMPLING  
CONV  
ACQ  
CONV  
ACQ  
CONV  
ACQ  
CONV  
ACQ  
INTERNAL  
ALERT  
EXCEEDS THRESHOLD  
Figure 37. Alert Operation  
ALERT  
ALERT  
pin is updated at the  
The  
function of the SDOB/  
ALERT  
end of the conversion. The alert indication status bits in the  
The alert functionality is an out of range indicator and can be  
used as an early indicator of an out of bounds conversion result.  
An alert event triggers when the conversion result value register  
exceeds the alert high limit value in the ALERT_HIGH_  
THRESHOLD register or falls below the alert low limit value in  
the ALERT_LOW_THRESHOLD register. The ALERT_HIGH_  
THRESHOLD register and ALERT_LOW_THRESHOLD  
register are common to all ADCs. When setting the threshold  
limits, the alert high threshold must always be greater than the  
alert low threshold. Detailed alert information is accessible in  
ALERT  
register are updated as well and must be read before the  
ALERT  
end of the next conversion. The  
function of the  
CS  
pin is cleared with a falling edge of . Issuing a  
ALERT  
SDOB/  
ALERT  
software reset also clears the alert status in the  
register.  
POWER MODES  
The AD4682 and the AD4683 have two power modes, normal  
and shutdown. These modes of operation provide flexible  
power management options, allowing optimization of the  
power dissipation and throughput rate ratio for different  
application requirements.  
ALERT  
the  
register.  
ALERT  
The  
register contains two status bits per ADC, one  
Program the PMODE bit in the CONFIGURATION1 register  
to configure the power modes in the AD4682 and the AD4683.  
Set the PMODE bit to Logic 0 for normal mode and Logic 1 for  
shutdown mode.  
corresponding to the high limit, and the other to the low limit.  
A logical OR of alert signals for all ADCs creates a common  
alert value. This value can be configured to drive out on the  
ALERT  
ALERT  
function of the SDOB/  
ALERT  
pin. The SDOB/  
pin  
Normal Mode  
ALERT  
is configured as  
by configuring the following bits in the  
CONFIGURATION1 and CONFIGURATION2 registers:  
Keep the AD4682 and the AD4683 in normal mode to achieve  
the fastest throughput rate. All blocks within the AD4682 and  
the AD4683 remain fully powered at all times, and an ADC  
Set the SDO bit to 1.  
Set the ALERT_EN bit to 1.  
Set a valid value to the ALERT_HIGH_THRESHOLD  
register and the ALERT_LOW_THRESHOLD register.  
CS  
conversion can be initiated by a falling edge of , when required.  
When the AD4682 and the AD4683 are not converting, the  
devices are in static mode and power consumption is automatically  
reduced. Additional current is required to perform a conversion.  
Therefore, power consumption on the AD4682 and the AD4683  
scales with throughput.  
The alert indication function is available in rolling average  
oversampling and nonoversampling modes.  
Rev. 0 | Page 19 of 30  
 
 
 
AD4682/AD4683  
Data Sheet  
bit is set to 0, the internal reference buffer is enabled. If the  
Shutdown Mode  
REFSEL bit is set to 1, the internal reference buffer is disabled. If  
an external reference is preferred, set the REFSEL bit to 1 and  
supply an external reference to the REFIO pin.  
When slower throughput rates and lower power consumption  
are required, use shutdown mode by either powering down the  
ADC between each conversion, or by performing a series of  
conversions at a high throughput rate and then powering down  
the ADC for a relatively long duration between these burst  
conversions. When the AD4682 and the AD4683 are in shutdown  
mode, all analog circuitry powers down, including the internal  
reference, if enabled. The SPI remains active during shutdown  
mode to allow the AD4682 and the AD4683 to exit shutdown  
mode.  
SOFTWARE RESET  
The AD4682 and the AD4683 have two reset modes, a soft reset  
and a hard reset. To initiate a reset, write to the reset bits,  
Bits[7:0], in the CONFIGURATION2 register.  
A soft reset maintains the contents of the configurable registers  
but refreshes the interface and the ADC blocks. Any internal  
state machines are reinitialized, and the oversampling block  
To enter shutdown mode, write to the PMODE bit in the  
CONFIGURATION1 register. The AD4682 and the AD4683  
shut down, and current consumption reduces.  
ALERT  
and FIFO are flushed. The  
register is then cleared. The  
reference and LDO regulator remain powered.  
A hard reset, in addition to the blocks reset by a soft reset, resets all  
user registers to default status, resets the reference buffer, and  
resets the internal oscillator block.  
To exit shutdown mode and return to normal mode, set the  
PMODE bit in the CONFIGURATION1 register to Logic 0. All  
register configuration settings remain unchanged entering or  
exiting shutdown mode. After exiting shutdown mode, allow  
sufficient time for the circuitry to turn on before starting a  
conversion. If the internal reference is enabled, allow the  
reference to settle for accurate conversions to happen.  
tRESET  
CS  
SDI  
SOFTWARE RESET  
Figure 38. Software Reset Operation  
INTERNAL AND EXTERNAL REFERENCE  
The AD4682 and the AD4683 have a buffered 2.5 V internal  
reference primarily used as a reference voltage for device operation.  
When using the buffered internal 2.5 V reference externally via  
the REFIO pin, the reference must use an external buffer before  
connecting to the external circuitry. Alternatively, if a more  
accurate reference or higher dynamic range is required, an  
external reference can be supplied. An externally supplied  
reference voltage can range from 2.5 V to 3.3 V.  
DIAGNOSTIC SELF TEST  
The AD4682 and the AD4683 run a diagnostic self test after a  
power-on reset (POR) or after a software hard reset to ensure  
the proper configuration is loaded into the device.  
The result of the self test is displayed in the SETUP_F bit in the  
ALERT  
register. If the SETUP_F bit is set to Logic 1, the diagnostic  
self test fails. If the self test fails, perform a software hard reset  
to reset the AD4682 and the AD4683 registers to the default status.  
Reference selection, internal or external, is configured by the  
REFSEL bit in the CONFIGURATION1 register. If the REFSEL  
tSTARTUP  
CS  
SDI  
SHUTDOWN  
SHUTDOWN MODE  
NORMAL  
NORMAL MODE  
ACCURATE CONVERSION  
Figure 39. Shutdown Mode Operation  
Rev. 0 | Page 20 of 30  
 
 
 
 
 
Data Sheet  
AD4682/AD4683  
INTERFACE  
The interface to the AD4682 and the AD4683 is via an SPI. The  
conversion results are available on the next SPI access. Take the  
CS  
ALERT  
CS  
interface consists of the , SCLK, SDOA, SDOB/  
, and SDI  
signal low, and the conversion result clocks out on the serial  
pins. Multifunction pin names may be referenced by their relevant  
function only.  
output pins. The next conversion also initiates at this point.  
The conversion result shifts out of the device as a 16-bit result  
for the AD4682 and the AD4683. The MSB of the conversion  
CS  
The  
signal frames a serial data transfer and initiates an ADC  
CS  
CS  
result shifts out on the  
falling edge. The remaining data  
conversion process. The falling edge of  
puts the track-and-  
shifts out of the device under the control of the SCLK input.  
The data shifts out on the rising edge of the SCLK, and the data  
bits are valid on both the falling edge and the rising edge. After  
hold into hold mode, at which point the analog input is sampled,  
and the bus is taken out of three-state.  
The SCLK signal synchronizes data in and out of the devices via  
the SDOA, SDOB, and SDI signals. A minimum of 16 SCLKs  
are required for a write to or read from a register. The minimum  
number of SCLKs for a conversion read is dependent on the  
resolution of the devices and the configuration settings (see  
Table 11).  
CS  
the final SCLK falling edge, take  
high again to return the  
pins to a high impedance state.  
ALERT  
SDOA and SDOB/  
The number of SCLK cycles to propagate the conversion results  
ALERT  
on the SDOA and SDOB/  
pins is dependent on the serial  
mode of operation configured and if resolution boost mode is  
enabled (see Figure 40 and Table 11 for details). If CRC reading  
is enabled, this reading requires additional SCLK pulses to  
propagate the CRC information (see the CRC section for more  
details).  
The ADC conversion operation is driven internally by an  
on-board oscillator and is independent of the SCLK signal.  
The AD4682 and the AD4683 have two serial output signals,  
SDOA and SDOB. To achieve the highest throughput of the  
devices, use both SDOA and SDOB, 2-wire mode, to read  
conversion results. If a reduced throughput is required or  
oversampling is used, it is possible to use 1-wire mode, SDOA  
signal only, for reading conversion results. Programming the  
SDO bit in the CONFIGURATION2 register configures 2-wire  
mode or 1-wire mode.  
CS  
As the  
signal initiates a conversion and frames the data, any  
data access must be completed within a single frame.  
Table 11. Number of SCLK Cycles, n, Required for Reading  
Conversion Results  
Interface  
Resolution  
Configuration Boost Mode  
CRC Read  
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
Disabled  
Enabled  
SCLK Cycles  
Configuring a cyclic redundancy check (CRC) operation for SPI  
reads or SPI writes alters the operation of the interface. Consult  
the relevant CRC Read, CRC Write, and CRC Polynomial  
sections to ensure proper operation.  
2-Wire  
1-Wire  
Disabled  
Enabled  
Disabled  
Enabled  
16  
24  
18  
26  
32  
40  
36  
44  
READING CONVERSION RESULTS  
CS  
The  
signal initiates the conversion process. A high to low  
CS  
transition on the  
signal initiates a simultaneous conversion  
of both ADCs, ADC A and ADC B. The AD4682 and the  
AD4683 have a one-cycle readback latency. Therefore, the  
CS  
1
n
1
2
3
SCLK  
SDOx  
1
CONVERSION RESULTS  
CONSULT TABLE 11 FOR VALUES FOR n, THE NUMBER OF SCLK PULSES REQUIRED.  
Figure 40. Reading Conversion Results  
Rev. 0 | Page 21 of 30  
 
 
 
 
AD4682/AD4683  
Data Sheet  
propagate all of the data. The ADC A data is output first,  
followed by the ADC B conversion results (see Figure 42).  
Serial 2-Wire Mode  
Configure 2-wire mode by setting the SDO bit in the  
CONFIGURATION1 register to 0. In 2-wire mode, the conversion  
result for ADC A is output on the SDOA pin, and the  
conversion result for ADC B is output on the SDOB/  
(see Figure 41).  
LOW LATENCY READBACK  
The interface on the AD4682 and the AD4683 has a one cycle  
latency, as shown in Figure 43. For applications that operate at  
lower throughput rates, the latency of reading the conversion  
result can be reduced. When the conversion time elapses, a  
ALERT  
pin  
Serial 1-Wire Mode  
CS  
CS  
second  
pulse after the initial  
pulse that initiates the  
In applications where slower throughput rates are allowed, the  
SPI can be configured to operate in 1-wire mode. In 1-wire mode,  
the conversion results from ADC A and ADC B are output on  
the serial output, SDOA. Additional SCLK cycles are required to  
conversion can readback the conversion result. This operation  
is shown in Figure 43.  
S0  
S1  
S2  
S3  
CS  
DON’T CARE  
DON’T CARE  
NOP  
ADC A S0  
ADC B S0  
NOP  
ADC A S1  
ADC B S1  
NOP  
SDOA  
SDOB  
SDI  
Figure 41. Reading Conversion Results: 2-Wire Mode  
S0  
S1  
S2  
S3  
CS  
DON’T CARE  
NOP  
ADC A S0  
ADC B S0  
ADC A S1  
ADC B S1  
SDOA  
SDI  
NOP  
NOP  
Figure 42. Reading Conversion Results: 1-Wire Mode  
CS  
CNV  
DON'T CARE  
ACQ  
CNV  
DON'T CARE  
ACQ  
INTERNAL  
n
n + 1  
SDOA  
SDOB  
RESULT  
RESULT  
n
n + 1  
SCLK  
TARGET SAMPLE PERIOD  
Figure 43. Low Throughput Low Latency  
Rev. 0 | Page 22 of 30  
 
 
 
 
Data Sheet  
AD4682/AD4683  
READING FROM DEVICE REGISTERS  
WRITING TO DEVICE REGISTERS  
All of the registers in the AD4682 and the AD4683 can be read  
over the SPI. To perform a register read, issue a register read  
command followed by an additional SPI command that can be  
either a valid command or a no operation (NOP) command.  
The format for a read command is shown in Table 14. Set Bit D15  
to 0 to select a read command. Bits[D14:D12] contain the  
register address, and the subsequent 12 bits, Bits[D11:D0], are  
ignored.  
All of the read and write registers in the AD4682 and the  
AD4683 can be written to over the SPI. The length of an SPI  
write access is determined by the CRC write function. An SPI  
access is 16 bits if CRC write is disabled and 24 bits when CRC  
write is enabled. The format for a write command is shown in  
Table 14. Set Bit D15 to 1 to select a write command.  
Bits[D14:D12] contain the register address, and the subsequent  
12 bits, Bits[D11:D0], contain the data to be written to the  
selected register.  
S0  
S1  
S2  
S3  
S4  
CS  
SDI  
NOP  
READ REG 1  
RESULT S0  
RESULT S0  
READ REG 2  
REG 1DATA  
NOP  
NOP  
SDOA  
SDOB  
INVALID  
INVALID  
REG 2DATA  
RESULT S3  
RESULT S3  
Figure 44. Register Read  
S0  
S1  
S2  
S3  
CS  
SDI  
NOP  
WRITE REG 1  
WRITE REG 2  
RESULT S1  
NOP  
SDOA  
SDOB  
INVALID  
RESULT S0  
RESULT S2  
Figure 45. Register Write  
Rev. 0 | Page 23 of 30  
 
 
AD4682/AD4683  
Data Sheet  
CRC Polynomial  
CRC  
For CRC checksum calculations, the following polynomial is  
always used: x8+ x2 + x + 1.  
The AD4682 and the AD4683 have CRC checksum modes that  
can improve interface robustness by detecting errors in data  
transmissions. The CRC feature is independently selectable for  
SPI reads and SPI writes. For example, the CRC function for  
SPI writes can be enabled to prevent unexpected changes to the  
device configuration but disabled on SPI reads, therefore  
maintaining a higher throughput rate. The CRC feature is  
controlled by the programming of the CRC_W bit and CRC_R  
bits in the CONFIGURATION1 register.  
The following is an example of how to generate the checksum  
on a conversion read. The 16-bit data conversion result of the  
two channels is combined to produce 32-bit data. The 8 MSBs  
of the 32-bit data are inverted and then left shifted by eight bits  
to create a number ending in eight logic zeros. The polynomial  
is aligned such that its MSB is adjacent to the leftmost Logic 1  
of the data. An exclusive OR (XOR) function is applied to the  
data to produce a new, shorter number. The polynomial is again  
aligned such that its MSB is adjacent to the leftmost Logic 1 of  
the new result, and the procedure is repeated. This process repeats  
until the original data is reduced to a value less than the  
polynomial, which is the 8-bit checksum. For example, this  
polynomial is 100000111.  
CRC Read  
If enabled, a CRC is appended to the conversion result or register  
reads and consists of an 8-bit word. The CRC is calculated in  
the conversion result for ADC A and ADC B and is output on  
SDOA. A CRC is also calculated and appended to register read  
outputs.  
Let the original data of two channels be 0xAAAA and 0x5555,  
that is, 1010 1010 1010 1010 and 0101 0101 0101 0101. The data  
of the two channels is then appended, including eight zeros on  
the right. The data then becomes 1010 1010 1010 1010 0101  
0101 0101 0101 0000 0000.  
The CRC read function can be used in 2-wire SPI mode, 1-wire  
SPI mode, and resolution boost mode.  
CRC Write  
To enable the CRC write function, set the CRC_W bit in the  
CONFIGURATION1 register to 1. To set the CRC_W bit to 1  
to enable the CRC feature, ensure the request frame has a valid  
CRC appended to the frame.  
Table 12 shows the CRC calculation of 16-bit two-channel data.  
In the final XOR operation, the reduced data is less than the  
polynomial. Therefore, the remainder is the CRC for the  
assumed data.  
After the CRC feature is enabled, all register write requests are  
ignored unless the requests are accompanied by a valid CRC  
command, requiring a valid CRC to both enable and disable the  
CRC write feature.  
Rev. 0 | Page 24 of 30  
 
 
 
 
Data Sheet  
AD4682/AD4683  
Table 12. Example CRC Calculation for 16-Bit Two-Channel Data  
Data  
1
0
1
1
1
0
0
0
1
0
1
1
1
0
0
0
0
0
1
0
1
0
1
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
0
0
0
0
0
0
1
1
1
0
0
1
0
1
0
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
X1 X1 X1 X1 X1 X1 X1 X1  
Process Data  
0
1
0
1
0
1
0
0
1
0
0
0
0
0
0
0
0
1
1
0
0
0
1
1
1
1
1
0
1
1
1
1
0
1
1
0
0
0
0
0
0
0
0
1
0
1
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
1
0
0
1
1
0
1
1
0
1
1
0
1
1
0
1
0
1
1
1
1
0
0
0
0
0
1
1
0
1
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
1
0
0
1
1
0
1
1
0
1
1
0
1
1
1
0
0
1
1
0
0
0
1
1
0
1
0
0
0
0
0
0
0
1
1
0
1
1
0
1
1
CRC  
0
0
1X = don’t care  
16 + 16 + 8 = 40 BITS  
CRCA,B  
SDOA  
SDOB  
RESULT_A  
RESULT_B  
2-WIRE 16-BIT  
16 + 16 + 8 = 40 BITS  
CRCA,B  
RESULT_A  
RESULT_B  
1-WIRE 16-BIT  
2-WIRE 18-BIT  
SDOA  
18 + 8 = 26 BITS  
RESULT_A  
CRCA,B  
SDOA  
SDOB  
RESULT_B  
18 + 18 + 8 = 44 BITS  
RESULT_B  
CRCA,B  
SDOA  
RESULT_A  
1-WIRE 18-BIT  
16 + 8 = 24 BITS  
REGISTER  
CRCREG X  
REGISTER X  
SDOA  
SDI  
READ RESULT  
16 + 8 = 24 BITS  
REGISTER  
READ REQUEST  
CRCREG X  
REGISTER X  
16 + 8 = 24 BITS  
REGISTER  
WRITE  
CRCREG X  
SDI  
WRITE REGISTER X  
Figure 46. CRC Operation  
Rev. 0 | Page 25 of 30  
 
AD4682/AD4683  
Data Sheet  
REGISTERS  
The AD4682 and the AD4683 have user programmable on-chip registers for configuring the device.  
Table 13 shows a complete overview of the registers available on the AD4682 and the AD4683. The registers are either read and write  
(R/W) or read only (R). Any read request to a write only register is ignored, and any write request to a read only register is ignored.  
Writes to any other register address are considered an NOP and are ignored. Any read request to a register address, other than those  
listed in Table 13, is considered an NOP, and the data transmitted in the next SPI frame are the conversion results.  
Table 13. Register Summary  
Bit 15  
Bit 7  
Bit 14  
Bit 6  
Bit 13  
Bit 5  
Bit 12  
Bit 4  
Bit 11  
Bit 3  
Bit 10  
Bit 2  
Bit 9  
Bit 8  
Address  
Register Name  
Bits  
Bit 1  
Bit 0  
Reset  
R/W  
0x1  
CONFIGURATION1  
[15:8]  
[7:0]  
ADDRESSING  
CRC_W  
RESERVED  
OS_MODE  
REFSEL  
OSR[2]  
PMODE  
0x0000  
R/W  
OSR[1:0]  
CRC_R  
ALERT_EN  
RES  
0x2  
0x3  
0x4  
0x5  
CONFIGURATION2  
ALERT  
[15:8]  
[7:0]  
ADDRESSING  
RESERVED  
SDO  
0x0000  
0x0000  
0x0800  
0x07FF  
R/W  
R
RESET  
[15:8]  
[7:0]  
ADDRESSING  
AL_B_HIGH  
RESERVED  
RESERVED  
CRCW_F  
SETUP_F  
RESERVED  
AL_B_LOW  
AL_A_HIGH  
AL_A_LOW  
ALERT_LOW_THRESHOLD  
ALERT_HIGH_THRESHOLD  
[15:8]  
[7:0]  
ADDRESSING  
ALERT_LOW[11:8]  
R/W  
R/W  
ALERT_LOW[7:0]  
ALERT_HIGH[7:0]  
[15:8]  
[7:0]  
ADDRESSING  
ALERT_HIGH[11:8]  
ADDRESSING REGISTERS  
A serial register transfer on the AD4682 and the AD4683 consists of 16 SCLK cycles. The 4 MSBs written to the AD4682 and the AD4683  
are decoded to determine which register is addressed. The 4 MSBs consist of the register address (REGADDR), Bits[D14:D12], and the  
read and write bit (WR), Bit D15. The register address bits determine which on-chip register is selected. The WR bit determines if the  
remaining 12 bits of data on the SDI input are loaded into the addressed register, if the addressed register is a valid write register. If the WR bit  
is 1, the bits load into the register addressed by the register select bits. If the WR bit is 0, the command is seen as a read request. The addressed  
register data is available to be read during the next read operation.  
Table 14. Addressing Register Format  
MSB  
D15  
WR  
LSB  
D0  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
REGADDR  
DATA  
Table 15. Bit Descriptions for Addressing Registers  
Bit  
Mnemonic  
Description  
D15  
WR  
If a 1 is written to the WR bit, Bits[D11:D0] of this register are written to the register specified by REGADDR, if  
the register is a valid address. Alternatively, if a 0 is written, the next data sent out on the SDOA pin is a read  
from the designated register, if the register is a valid address.  
D14 to D12 REGADDR  
When WR = 1, the contents of REGADDR determine the register for selection as outlined in Table 13.  
When WR = 0 and REGADDR contains a valid register address, the contents on the requested register are  
output on the SDOA pin during the next interface access.  
When WR = 0 and REGADDR contains 0x0, 0x6, or 0x7, the contents on the SDI line are ignored. The next  
interface access results in the conversion results being read back.  
D11 to D0  
DATA  
The data bits are written into the corresponding register specified by the REGADDR data bits when WR is  
equal to 1 and the REGADDR data bits contain a valid address.  
Rev. 0 | Page 26 of 30  
 
 
 
 
Data Sheet  
AD4682/AD4683  
CONFIGURATION1 REGISTER  
Address: 0x1, Reset: 0x0000, Name: CONFIGURATION1  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[15:12] ADDRESSING (R/W)  
Addressing.  
[0] PMODE (R/W)  
Shutdown Mode.  
[11:10] RESERVED  
[1] REFSEL (R/W)  
Reference Select.  
[9] OS_MODE (R/W)  
Oversampling Mode.  
[2] RES (R/W)  
Resolution.  
[8:6] OSR (R/W)  
Oversampling Ratio.  
[3] ALERT_EN (R/W)  
Enable Alert Indicator Function.  
[5] CRC_W (R/W)  
CRC Write.  
[4] CRC_R (R/W)  
CRC Read.  
Table 16. Bit Descriptions for CONFIGURATION1  
Bits Bit Name Description  
Reset Access  
[15:12] ADDRESSING Addressing. Bits[15:12] define the address of the relevant register. See the Addressing Registers  
section for further details.  
0x0  
R/W  
[11:10] RESERVED  
Reserved.  
0x0  
0x0  
R
R/W  
9
OS_MODE  
Oversampling Mode. Enables the rolling average oversampling mode of the ADC.  
0: disable.  
1: enable.  
[8:6]  
OSR  
Oversampling Ratio. Sets the oversampling ratio for all the ADCs in rolling average oversampling  
mode. Rolling average oversampling mode supports oversampling ratios of ×2, ×4, and ×8.  
0x0  
R/W  
000: disabled.  
001: ×2.  
010: ×4.  
011: ×8.  
100: disabled.  
101: disabled.  
110: disabled.  
111: disabled.  
5
CRC_W  
CRC Write. Controls the CRC functionality for the SDI interface. When setting the CRC_W bit  
from a 0 to a 1, follow the command with a valid CRC to set this configuration bit. If a valid  
CRC is not received, the entire frame is ignored. If the CRC_W bit is set to 1, the bit requires a  
CRC to clear it to 0.  
0x0  
R/W  
0: no CRC function.  
1: CRC function.  
4
3
CRC_R  
CRC Read. Controls the CRC functionality for the SDOA and SDOB/ALERT interface.  
0x0  
0x0  
R/W  
R/W  
0: no CRC function.  
1: CRC function.  
ALERT_EN  
Enable Alert Indicator Function. This alert function is enabled when the SDO bit = 1.  
Otherwise, the ALERT_EN bit is ignored.  
0: SDOB.  
1: ALERT.  
2
RES  
Resolution. Sets the size of the conversion result data. If OSR = 0, the RES bit is ignored, and  
the resolution is set to default resolution.  
0x0  
R/W  
0: normal resolution.  
1: 2-bit higher resolution.  
1
0
REFSEL  
PMODE  
Reference Select. Selects the ADC reference source.  
0: selects internal reference.  
1: selects external reference.  
Shutdown Mode. Sets the power modes.  
0: normal mode.  
0x0  
0x0  
R/W  
R/W  
1: shutdown mode.  
Rev. 0 | Page 27 of 30  
 
AD4682/AD4683  
Data Sheet  
CONFIGURATION2 REGISTER  
Address: 0x2, Reset: 0x0000, Name: CONFIGURATION2  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[15:12] ADDRESSING (R/W)  
[7:0] RESET (R/W)  
Addressing  
Reset  
[11:9] RESERVED  
[8] SDO (R/W)  
SDO  
Table 17. Bit Descriptions for CONFIGURATION2  
Bits Bit Name Description  
Reset Access  
[15:12] ADDRESSING Addressing. Bits[15:12] define the address of the relevant register. See the Addressing Registers  
section for further details.  
0x0  
R/W  
[11:9]  
8
RESERVED  
SDO  
Reserved.  
0x0  
0x0  
R
R/W  
SDO. Conversion results in the serial data output.  
0: 2-wire. Conversion data are output on both the SDOA and SDOB/ALERT pins.  
1: 1-wire. Conversion data are output on the SDOA pin only.  
Reset.  
[7:0]  
RESET  
0x0  
R/W  
0x3C performs a soft reset that resets some blocks. Register contents remain unchanged.  
Clears the ALERT register and flushes any oversampling stored variables or any active state  
machines.  
0xFF performs a hard reset that resets all possible blocks in the AD4682 or the AD4683.  
Register contents are set to defaults. All other values are ignored.  
ALERT REGISTER  
ALERT  
Address: 0x3, Reset: 0x0000, Name:  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
[15:12] ADDRESSING (R)  
[0] AL_A_LOW (R)  
Addressing  
Alert A Low  
[11:10] RESERVED  
[1] AL_A_HIGH (R)  
Alert A High  
[9] CRCW_F (R)  
CRC Error  
[3:2] RESERVED  
[8] SETUP_F (R)  
[4] AL_B_LOW (R)  
Load Error  
Alert B Low  
[7:6] RESERVED  
[5] AL_B_HIGH (R)  
Alert B High  
ALERT  
Description  
Table 18. Bit Descriptions for  
Bits Bit Name  
Reset Access  
[15:12] ADDRESSING Addressing. Bits[15:12] define the address of the relevant register. See the Addressing Registers  
section for further details.  
0x0  
R
[11:10] RESERVED  
Reserved.  
0x0  
0x0  
R
R
9
CRCW_F  
CRC Error. Indicates that a register write command failed due to a CRC error. This fault bit is  
sticky and remains set until the register is read.  
0: no CRC error.  
1: CRC error.  
8
SETUP_F  
Load Error. The SETUP_F bit indicates that the device configuration data did not load  
properly on startup. The SETUP_F bit does not clear on an ALERT register read. A hard reset  
via the CONFIGURATION2 register is required to clear the SETUP_F bit and restart the device  
setup again.  
0: no setup error.  
1: setup error.  
Reserved.  
0x0  
0x0  
R
R
[7:6]  
RESERVED  
Rev. 0 | Page 28 of 30  
 
 
Data Sheet  
AD4682/AD4683  
Bits  
Bit Name  
Description  
Reset Access  
5
AL_B_HIGH  
Alert B High. The alert indication high bits indicate if a conversion result for the respective  
input channel exceeds the value set in the ALERT_HIGH_THRESHOLD register. This fault bit is  
sticky and remains set until the register is read.  
0x0  
R
1: alert indication.  
0: no alert indication.  
4
AL_B_LOW  
Alert B Low. The alert indication low bits indicate if a conversion result for the respective  
input channel exceeds the value set in the ALERT_LOW_THRESHOLD register. This fault bit is  
sticky and remains set until the register is read.  
0x0  
R
1: alert indication.  
0: no alert indication.  
Reserved.  
[3:2]  
1
RESERVED  
AL_A_HIGH  
0x0  
0x0  
R
R
Alert A High. The alert indication high bits indicate if a conversion result for the respective  
input channel exceeds the value set in the ALERT_HIGH_THRESHOLD register. This fault bit is  
sticky and remains set until the register is read.  
0: no alert indication.  
1: alert indication.  
0
AL_A_LOW  
Alert A Low. The alert indication low bits indicate if a conversion result for the respective  
input channel exceeds the value set in the ALERT_LOW_THRESHOLD register. This fault bit is  
sticky and remains set until the register is read.  
0x0  
R
1: alert indication.  
0: no alert indication.  
ALERT_LOW_THRESHOLD REGISTER  
Address: 0x4, Reset: 0x0800, Name: ALERT_LOW_THRESHOLD  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
[15:12] ADDRESSING (R/W)  
[11:0] ALERT_LOW (R/W)  
Addressing  
Alert Low  
Table 19. Bit Descriptions for ALERT_LOW_THRESHOLD  
Bits Bit Name Description  
[15:12] ADDRESSING Addressing. Bits[15:12] define the address of the relevant register. See the Addressing Registers  
section for further details.  
Reset Access  
0x0 R/W  
[11:0]  
ALERT_LOW  
Alert Low. Bits[D11:D0] from ALERT_LOW move to the MSBs of the internal alert low register, 0x800 R/W  
Bits[D15:D4]. The remaining bits, Bits[D3:D0], are fixed at 0x0, which sets an alert when the  
converter result is below ALERT_LOW_THRESHOLD and disables when the converter result is  
above ALERT_LOW_THRESHOLD.  
ALERT_HIGH_THRESHOLD REGISTER  
Address: 0x5, Reset: 0x07FF, Name: ALERT_HIGH_THRESHOLD  
15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
[15:12] ADDRESSING (R/W)  
[11:0] ALERT_HIGH (R/W)  
Addressing  
Alert High  
Table 20. Bit Descriptions for ALERT_HIGH_THRESHOLD  
Bits Bit Name Description  
[15:12] ADDRESSING Addressing. Bits[15:12] define the address of the relevant register. See the Addressing Registers  
section for further details.  
Reset Access  
0x0 R/W  
[11:0]  
ALERT_HIGH Alert High. Bits[D11:D0] from ALERT_HIGH move to the MSBs of the internal alert high  
register, Bits[D15:D4]. The remaining bits, Bits[D3:D0], are fixed at 0xF, which sets an alert  
when the converter result is above ALERT_HIGH_THRESHOLD and disables when the  
converter result is below ALERT_HIGH_THRESHOLD.  
0x7FF R/W  
Rev. 0 | Page 29 of 30  
 
 
AD4682/AD4683  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
3.10  
3.00 SQ  
2.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
AREA  
PIN 1  
IONS  
INDICATOR AR EA OP T  
(SEE DETAIL A)  
13  
16  
12  
1
0.45  
0.50  
BSC  
*
1.20  
EXPOSED  
PAD  
1.10 SQ  
1.00  
9
4
8
5
0.55 REF  
0.45  
0.40  
0.35  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
SECTION OF THIS DATA SHEET.  
0.08  
SEATING  
PLANE  
0.15 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-WEED-4  
WITH EXCEPTION TO THE EXPOSED PAD  
Figure 47. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-16-45)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Throughput  
Temperature  
Range  
Package  
Option  
Model1, 2  
Resolution Rate  
Package Description  
16-Lead LFCSP  
16-Lead LFCSP  
Marking Code  
AD4682BCPZ-RL  
16-Bit  
1 MSPS  
1 MSPS  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
CP-16-45  
CP-16-45  
CP-16-45  
CP-16-45  
CAN  
CAN  
CAP  
CAP  
AD4682BCPZ-RL7  
AD4683BCPZ-RL  
AD4683BCPZ-RL7  
EVAL-AD7383FMCZ  
16-Bit  
16-Bit  
16-Bit  
500 kSPS  
500 kSPS  
16-Lead LFCSP  
16-Lead LFCSP  
AD7383 Evaluation Board  
1 Z = RoHS Compliant Part.  
2 Use the EVAL-AD7383FMCZ to evaluate the AD4682 and the AD4683.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D23411-10/20(0)  
Rev. 0 | Page 30 of 30  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY