AD5111BCPZ10-RL7 [ADI]

Single-Channel, 128-/64-/32-Position, Up/Down, ±8% Resistor Tolerance, Nonvolatile Digital Potentiometer; 单通道, 128 / 64 / 32位,上/下,A ± 8 %电阻容差,非易失性数字电位计
AD5111BCPZ10-RL7
型号: AD5111BCPZ10-RL7
厂家: ADI    ADI
描述:

Single-Channel, 128-/64-/32-Position, Up/Down, ±8% Resistor Tolerance, Nonvolatile Digital Potentiometer
单通道, 128 / 64 / 32位,上/下,A ± 8 %电阻容差,非易失性数字电位计

数字电位计
文件: 总24页 (文件大小:515K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single-Channel, 128-/64-/32-Position, Up/Down, 8%  
Resistor Tolerance, Nonvolatile Digital Potentiometer  
Data Sheet  
AD5111/AD5113/AD5115  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
DD  
Nominal resistor tolerance error: 8ꢀ maximum  
Wiper current: 6 mA  
AD5111/  
AD5113/  
AD5115  
POWER-ON  
RESET  
Rheostat mode temperature coefficient: 35 ppm/°C  
Low power consumption: 2.5mA max @ 2.7 V and 125°C  
Wide bandwidth: 4 MHz (5 kΩ option)  
Power-on EEPROM refresh time < 50 μs  
50-year typical data retention at 125°C  
1 million write cycles  
A
W
B
CLK  
DATA  
DATA  
EEPROM  
EN  
UP/DOWN  
CONTROL  
LOGIC  
CS  
RDAC  
REGISTER  
U/D  
2.3 V to 5.5 V supply operation  
Chip select enable multiple device operation  
Wide operating temperature: −40°C to +125°C  
Thin, 2 mm × 2 mm × 0.55 mm 8-lead LFCSP package  
GND  
Figure 1.  
APPLICATIONS  
Mechanical potentiometer replacement  
Portable electronics level adjustment  
Audio volume control  
Table 1. 8% Resistance Tolerance Family  
Model  
Resistance (kΩ)  
Position  
128  
128  
64  
Interface  
I2C  
Up/down  
I2C  
Up/down  
Push-button  
I2C  
AD5110  
AD5111  
AD5112  
AD5113  
AD5116  
AD5114  
AD5115  
10, 80  
10, 80  
5, 10, 80  
5, 10, 80  
5, 10, 80  
10, 80  
Low resolution DAC  
LCD panel brightness and contrast control  
Programmable voltage to current conversion  
Programmable filters, delays, time constants  
Feedback resistor programmable power supply  
Sensor calibration  
64  
64  
32  
10, 80  
32  
Up/down  
GENERAL DESCRIPTION  
The AD5111/AD5113/AD5115 provide a nonvolatile solution  
for 128-/64-/32-position adjustment applications, offering  
guaranteed low resistor tolerance errors of 8% and up to  
6 mA current density in the A, B, and W pins. The low resistor  
tolerance, low nominal temperature coefficient, and high  
bandwidth simplify open-loop applications, as well as tolerance  
matching applications.  
The new low wiper resistance feature minimizes the wiper  
resistance in the extremes of the resistor array to only 45 Ω,  
typical.  
A simple 3-wire up/down interface allows manual switching  
or high speed digital control with clock rates up to 50 MHz.  
The AD5111/AD5113/AD5115 are available in a 2 mm × 2 mm  
LFCSP package. The parts are guaranteed to operate over the  
extended industrial temperature range of −40°C to +125°C.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2011–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD5111/AD5113/AD5115  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Test Circuits..................................................................................... 17  
Theory of Operation ...................................................................... 18  
RDAC Register and EEPROM.................................................. 18  
Basic Operation .......................................................................... 18  
Low Wiper Resistance Feature ................................................. 18  
Shutdown Mode ......................................................................... 18  
EEPROM Write Operation ....................................................... 18  
RDAC Architecture.................................................................... 19  
Programming the Variable Resistor......................................... 19  
Programming the Potentiometer Divider............................... 20  
Terminal Voltage Operating Range ......................................... 20  
Power-Up Sequence ................................................................... 21  
Layout and Power Supply Biasing............................................ 21  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 22  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—AD5111 .......................................... 3  
Electrical Characteristics—AD5113 .......................................... 5  
Electrical Characteristics—AD5115 .......................................... 7  
Interface Timing Specifications.................................................. 9  
Timing Diagram ........................................................................... 9  
Absolute Maximum Ratings.......................................................... 10  
Thermal Resistance .................................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 12  
REVISION HISTORY  
4/12—Rev. 0 to Rev. A  
Changes to Features Section............................................................ 1  
Changes to Positive Supply Current, Table 2 ................................ 3  
Changes to Positive Supply Current, Table 3 ................................ 5  
Changes to Positive Supply Current, Table 4 ................................ 7  
Updated Outline Dimensions....................................................... 22  
10/11—Revision 0: Initial Version  
Rev. A | Page 2 of 24  
 
Data Sheet  
AD5111/AD5113/AD5115  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—AD5111  
10 kꢀ and 80 kꢀ versions: VDD = 2.3 V to 5.5 V, VA = VDD, VB = 0 V, 40°C < TA < +125°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resolution  
N
R-INL  
7
−2.5  
−1  
−0.5  
−1  
Bits  
LSB  
LSB  
LSB  
LSB  
%
ppm/°C  
Ω
Ω
Resistor Integral Nonlinearity2  
RAB = 10 kΩ, VDD = 2.3 V to 2.7 V  
RAB = 10 kΩ, VDD = 2.7 V to 5.5 V  
RAB = 80 kΩ  
0.5  
0.25  
0.1  
+2.5  
+1  
+0.5  
+1  
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
Wiper Resistance  
R-DNL  
0.25  
ΔRAB/RAB  
(ΔRAB/RAB)/ΔT × 106  
RW  
RBS  
RTS  
−8  
+8  
35  
70  
45  
70  
Code = zero scale  
Code = bottom scale  
Code = top scale  
140  
80  
140  
Ω
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE  
Integral Nonlinearity4  
Differential Nonlinearity4  
Full-Scale Error  
INL  
DNL  
VWFSE  
−0.5  
−0.5  
−2.5  
−1.5  
0.15  
0.15  
+0.5  
+0.5  
LSB  
LSB  
RAB = 10 kΩ  
RAB = 80 kΩ  
LSB  
LSB  
Zero-Scale Error  
VWZSE  
RAB = 10 kΩ  
RAB = 80 kΩ  
Code = half scale  
1.5  
0.5  
LSB  
LSB  
ppm/°C  
(ΔVW/VW)/ΔT × 106  
10  
Voltage Divider Temperature Coefficient3  
RESISTOR TERMINALS  
Maximum Continuous IA, IB, and IW Current3  
RAB = 10 kΩ  
RAB = 80 kΩ  
−6  
−1.5  
GND  
+6  
+1.5  
VDD  
mA  
mA  
V
Terminal Voltage Range5  
Capacitance A, Capacitance B3, 6  
CA, CB  
CW  
f = 1 MHz, measured to GND,  
code = half scale  
f = 1 MHz, measured to GND,  
code = half scale  
20  
35  
15  
pF  
Capacitance W3, 6  
pF  
Common-Mode Leakage Current3  
DIGITAL INPUTS  
Input Logic3  
VA = VW = VB  
−500  
2
+500  
nA  
High  
Low  
Input Current3  
Input Capacitance3  
POWER SUPPLIES  
Single-Supply Power Range  
Positive Supply Current  
VINH  
VINL  
IN  
V
V
μA  
pF  
0.8  
1
CIN  
5
2.3  
5.5  
3.5  
2.5  
2.4  
V
IDD  
VIH = VDD or VIL = GND, VDD = 5 V  
VIH = VDD or VIL = GND, VDD = 2.7 V  
VIH = VDD or VIL = GND, VDD = 2.3 V  
0.75  
mA  
mA  
mA  
mA  
μA  
μW  
EEMEM Store Current3, 7  
EEMEM Read Current3, 8  
Power Dissipation9  
IDD_NVM_STORE  
IDD_NVM_READ  
PDISS  
2
320  
5
VIH = VDD or VIL = GND  
∆VDD/∆VSS = 5 V 10%  
RAB = 10 kΩ  
Power Supply Rejection3  
PSR  
−50  
−64  
dB  
dB  
RAB = 80 kΩ  
Rev. A | Page 3 of 24  
 
 
AD5111/AD5113/AD5115  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1  
Max  
Unit  
DYNAMIC CHARACTERISTICS3, 10  
Bandwidth  
BW  
Code = half scale, −3 dB  
RAB = 10 kΩ  
2
200  
MHz  
kHz  
RAB = 80 kΩ  
Total Harmonic Distortion  
VW Settling Time  
THD  
ts  
VA = VDD/2 + 1 V rms, VB = VDD/  
2, f = 1 kHz, code = half scale  
RAB = 10 kΩ  
RAB = 80 kΩ  
VA = 5 V, VB = 0 V, 0.5 LSB  
error band  
−80  
−85  
dB  
dB  
RAB = 10 kΩ  
RAB = 80 kΩ  
3
12  
μs  
μs  
Resistor Noise Density  
eN_WB  
Code = half scale, TA = 25°C,  
f = 100 kHz  
RAB = 10 kΩ  
RAB = 80 kΩ  
9
20  
nV/√Hz  
nV/√Hz  
FLASH/EE MEMORY RELIABILITY3  
Endurance11  
TA = 25°C  
1
MCycles  
kCycles  
Years  
100  
Data Retention12  
50  
1 Typical values represent average readings at 25°C, VDD = 5 V, VSS = 0 V, and VLOGIC = 5 V.  
2 R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step  
change from ideal between successive tap positions. The maximum wiper current is limited to 0.8 × VDD/RAB.  
3 Guaranteed by design and characterization; not subject to production test.  
4 INL and DNL are measured at VWB with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on current direction with respect to each other.  
6 CA is measured with VW = VA = 2.5 V, CB is measured with VW = VB = 2.5 V, and CW is measured with VA = VB = 2.5 V.  
7 Different from operating current; supply current for NVM program lasts approximately 30 ms.  
8 Different from operating current; supply current for NVM read lasts approximately 20 μs.  
9 PDISS is calculated from (IDD × VDD).  
10 All dynamic characteristics use VDD = 5.5 V and VLOGIC = 5 V.  
11 Endurance is qualified at 100,000 cycles per JEDEC Standard 22, Method A117 and measured at 150°C.  
12 Retention lifetime equivalent at junction temperature (TJ) is 125°C per JEDEC Standard 22, Method A117. Retention lifetime based on an activation energy of 1 eV  
derates with junction temperature in the Flash/EE memory.  
Rev.A | Page 4 of 24  
 
Data Sheet  
AD5111/AD5113/AD5115  
ELECTRICAL CHARACTERISTICS—AD5113  
5 kΩ, 10 kΩ, and 80 kΩ versions: VDD = 2.3 V to 5.5 V, VA = VDD, VB = 0 V, 40°C < TA < +125°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resolution  
N
R-INL  
6
−2.5  
−1  
−1  
−±.25  
−1  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
%
ppm/°C  
Ω
Ω
Resistor Integral Nonlinearity2  
RAB = 5 kΩ, VDD = 2.3 V to 2.7 V  
RAB = 5 kΩ, VDD = 2.7 V to 5.5 V  
RAB = 1± kΩ  
±±.5  
±±.25 +1  
±±.25 +1  
±±.1  
±±.25 +1  
+2.5  
RAB = 8± kΩ  
+±.25  
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
Wiper Resistance  
R-DNL  
ΔRAB/RAB  
(ΔRAB/RAB)/ΔT × 1±6  
RW  
RBS  
RTS  
−8  
+8  
35  
7±  
45  
7±  
Code = zero scale  
Code = bottom scale  
Code = top scale  
14±  
8±  
14±  
Ω
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE  
Integral Nonlinearity4  
Differential Nonlinearity4  
Full-Scale Error  
INL  
DNL  
VWFSE  
−±.5  
−±.5  
−2.5  
−1.5  
−1  
±±.15 +±.5  
±±.15 +±.5  
LSB  
LSB  
RAB = 5 kΩ  
LSB  
LSB  
LSB  
LSB  
RAB =1± kΩ  
RAB = 8± kΩ  
RAB = 5 kΩ  
Zero-Scale Error  
VWZSE  
1.5  
RAB =1± kΩ  
RAB = 8± kΩ  
Code = half scale  
1
±.25  
LSB  
LSB  
ppm/°C  
(ΔVW/VW)/ΔT × 1±6  
±1±  
Voltage Divider Temperature Coefficient3  
RESISTOR TERMINALS  
Maximum Continuous IA, IB, and IW  
RAB = 5 kΩ, 1± kΩ  
RAB = 8± kΩ  
−6  
−1.5  
GND  
+6  
+1.5  
VDD  
mA  
mA  
V
Current3  
Terminal Voltage Range5  
Capacitance A, Capacitance B3, 6  
CA, CB  
CW  
f = 1 MHz, measured to GND,  
code = half scale  
f = 1 MHz, measured to GND,  
code = half scale  
2±  
pF  
Capacitance W3, 6  
35  
pF  
Common-Mode Leakage Current3  
DIGITAL INPUTS  
Input Logic3  
VA = VW = VB  
−5±±  
2
±15  
+5±±  
nA  
High  
Low  
Input Current3  
Input Capacitance3  
POWER SUPPLIES  
Single-Supply Power Range  
Positive Supply Current  
VINH  
VINL  
IN  
V
V
μA  
pF  
±.8  
±1  
CIN  
5
2.3  
5.5  
3.5  
2.5  
2.4  
V
IDD  
VIH = VDD or VIL = GND, VDD = 5 V  
VIH = VDD or VIL = GND, VDD = 2.7 V  
VIH = VDD or VIL = GND, VDD = 2.3 V  
±.75  
mA  
mA  
mA  
mA  
μA  
μW  
EEMEM Store Current3, 7  
EEMEM Read Current3, 8  
Power Dissipation9  
IDD_NVM_STORE  
IDD_NVM_READ  
PDISS  
2
32±  
5
VIH = VDD or VIL = GND  
∆VDD/∆VSS = 5 V ± 1±%  
RAB = 5 kΩ  
RAB =1± kΩ  
RAB = 8± kΩ  
Power Supply Rejection3  
PSR  
−43  
−5±  
−64  
dB  
dB  
dB  
Rev. A | Page 5 of 24  
 
AD5111/AD5113/AD5115  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1  
Max  
Unit  
DYNAMIC CHARACTERISTICS3, 10  
Bandwidth  
BW  
Code = half scale, −3 dB  
RAB = 5 kΩ  
4
2
200  
MHz  
MHz  
kHz  
RAB = 10 kΩ  
RAB = 80 kΩ  
Total Harmonic Distortion  
VW Settling Time  
THD  
VA = VDD/2 + 1 V rms, VB = VDD/2,  
f = 1 kHz, code = half scale  
RAB = 5 kΩ  
RAB = 10 kΩ  
RAB = 80 kΩ  
−75  
−80  
−85  
dB  
dB  
dB  
ts  
VA = 5 V, VB = 0 V,  
0.5 LSB error band  
RAB = 5 kΩ  
RAB = 10 kΩ  
RAB = 80 kΩ  
2.5  
3
10  
μs  
μs  
μs  
Resistor Noise Density  
eN_WB  
Code = half scale, TA = 25°C,  
f = 100 kHz  
RAB = 5 kΩ  
RAB = 10 kΩ  
RAB = 80 kΩ  
7
9
20  
nV/√Hz  
nV/√Hz  
nV/√Hz  
FLASH/EE MEMORY RELIABILITY3  
Endurance11  
TA = 25°C  
1
MCycles  
kCycles  
Years  
100  
Data Retention12  
50  
1 Typical values represent average readings at 25°C, VDD = 5 V, VSS = 0 V, and VLOGIC = 5 V.  
2 R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step  
change from ideal between successive tap positions. The maximum wiper current is limited to 0.8 × VDD/RAB.  
3 Guaranteed by design and characterization; not subject to production test.  
4 INL and DNL are measured at VWB with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on current direction with respect to each other.  
6 CA is measured with VW = VA = 2.5 V, CB is measured with VW = VB = 2.5 V, and CW is measured with VA = VB = 2.5 V.  
7 Different from operating current; supply current for NVM program lasts approximately 30 ms.  
8 Different from operating current; supply current for NVM read lasts approximately 20 μs.  
9 PDISS is calculated from (IDD × VDD).  
10 All dynamic characteristics use VDD = 5.5 V and VLOGIC = 5 V.  
11 Endurance is qualified at 100,000 cycles per JEDEC Standard 22, Method A117 and measured at 150°C.  
12 Retention lifetime equivalent at junction temperature (TJ) is 125°C per JEDEC Standard 22, Method A117. Retention lifetime based on an activation energy of 1 eV  
derates with junction temperature in the Flash/EE memory.  
Rev.A | Page 6 of 24  
 
Data Sheet  
AD5111/AD5113/AD5115  
ELECTRICAL CHARACTERISTICS—AD5115  
10 kΩ and 80 kΩ versions: VDD = 2.3 V to 5.5 V, VA = VDD, VB = 0 V, 40°C < TA < +125°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1 Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resolution  
N
R-INL  
R-DNL  
5
Bits  
LSB  
LSB  
%
ppm/°C  
Ω
Resistor Integral Nonlinearity2  
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
Wiper Resistance  
−0.5  
−0.25  
−8  
+0.5  
+0.25  
ΔRAB/RAB  
(ΔRAB/RAB)/ΔT × 106  
RW  
RBS  
RTS  
+8  
35  
Code = zero scale  
Code = bottom scale  
Code = top scale  
70  
45  
70  
140  
80  
140  
Ω
Ω
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE  
Integral Nonlinearity4  
Differential Nonlinearity4  
Full-Scale Error  
INL  
DNL  
VWFSE  
−0.25  
−0.25  
−1  
+0.25  
+0.25  
LSB  
LSB  
RAB = 10 kΩ  
LSB  
RAB = 80 kΩ  
−0.5  
LSB  
Zero-Scale Error  
VWZSE  
RAB = 10 kΩ  
1
LSB  
RAB = 80 kΩ  
Code = half scale  
0.25  
LSB  
ppm/°C  
(ΔVW/VW)/ΔT × 106  
10  
Voltage Divider Temperature Coefficient3  
RESISTOR TERMINALS  
Maximum Continuous IA, IB, and IW Current3  
RAB = 10 kΩ  
RAB = 80 kΩ  
−6  
+6  
mA  
mA  
V
−1.5  
GND  
+1.5  
VDD  
Terminal Voltage Range5  
Capacitance A, Capacitance B3, 6  
CA, CB  
CW  
f = 1 MHz, measured to GND,  
code = half scale  
f = 1 MHz, measured to GND,  
code = half scale  
20  
35  
pF  
Capacitance W3, 6  
pF  
Common-Mode Leakage Current3  
DIGITAL INPUTS  
Input Logic3  
VA = VW = VB  
−500  
2
15  
+500  
nA  
High  
Low  
Input Current3  
Input Capacitance3  
POWER SUPPLIES  
Single-Supply Power Range  
Positive Supply Current  
VINH  
VINL  
IN  
V
V
μA  
pF  
0.8  
1
CIN  
5
2.3  
5.5  
3.5  
2.5  
2.4  
V
IDD  
VIH = VDD or VIL = GND, VDD = 5 V  
VIH = VDD or VIL = GND, VDD = 2.7 V  
VIH = VDD or VIL = GND, VDD = 2.3 V  
0.75  
mA  
mA  
mA  
mA  
μA  
μW  
EEMEM Store Current3, 7  
EEMEM Read Current3, 8  
Power Dissipation9  
IDD_NVM_STORE  
IDD_NVM_READ  
PDISS  
2
320  
5
VIH = VDD or VIL = GND  
∆VDD/∆VSS = 5 V 10%  
RAB = 10 kΩ  
Power Supply Rejection3  
PSR  
−50  
−64  
dB  
dB  
RAB = 80 kΩ  
Rev. A | Page 7 of 24  
 
AD5111/AD5113/AD5115  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1 Max  
Unit  
DYNAMIC CHARACTERISTICS3, 10  
Bandwidth  
BW  
Code = half scale, −3 dB  
RAB = 10 kΩ  
2
200  
MHz  
kHz  
RAB = 80 kΩ  
Total Harmonic Distortion  
VW Settling Time  
THD  
ts  
VA = VDD/2 + 1 V rms, VB = VDD/2,  
f = 1 kHz, code = half scale  
RAB = 10 kΩ  
RAB = 80 kΩ  
VA = 5 V, VB = 0 V, 0.5 LSB error  
band  
−80  
−85  
dB  
dB  
RAB = 10 kΩ  
RAB = 80 kΩ  
μs  
μs  
2.7  
9.5  
Resistor Noise Density  
eN_WB  
Code = half scale, TA = 25°C,  
f = 100 kHz  
RAB = 10 kΩ  
RAB = 80 kΩ  
9
20  
nV/√Hz  
V
FLASH/EE MEMORY RELIABILITY3  
Endurance11  
TA = 25°C  
1
MCycles  
kCycles  
Years  
100  
Data Retention12  
50  
1 Typical values represent average readings at 25°C, VDD = 5 V, VSS = 0 V, and VLOGIC = 5 V.  
2 R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the relative step  
change from ideal between successive tap positions. The maximum wiper current is limited to 0.8 × VDD/RAB.  
3 Guaranteed by design and characterization; not subject to production test.  
4 INL and DNL are measured at VWB with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on current direction with respect to each other.  
6 CA is measured with VW = VA = 2.5 V, CB is measured with VW = VB = 2.5 V, and CW is measured with VA = VB = 2.5 V.  
7 Different from operating current; supply current for NVM program lasts approximately 30 ms.  
8 Different from operating current; supply current for NVM read lasts approximately 20 μs.  
9 PDISS is calculated from (IDD × VDD).  
10 All dynamic characteristics use VDD = 5.5 V and VLOGIC = 5 V.  
11 Endurance is qualified at 100,000 cycles per JEDEC Standard 22, Method A117 and measured at 150°C.  
12 Retention lifetime equivalent at junction temperature (TJ) is 125°C per JEDEC Standard 22, Method A117. Retention lifetime based on an activation energy of 1 eV  
derates with junction temperature in the Flash/EE memory.  
Rev.A | Page 8 of 24  
 
Data Sheet  
AD5111/AD5113/AD5115  
INTERFACE TIMING SPECIFICATIONS  
VDD = 2.3 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 5.  
Parameter  
Test Conditions/Comments Min Typ  
Max  
50  
25  
Unit  
MHz  
MHz  
ns  
Description  
fCLK  
VDD ≥ 2.7 V  
VDD < 2.7 V  
25  
Clock frequency  
t1  
t2  
CS setup time  
CLK low time  
VDD ≥ 2.7 V  
VDD < 2.7 V  
VDD ≥ 2.7 V  
VDD < 2.7 V  
10  
20  
10  
20  
15  
6
ns  
ns  
ns  
t3  
CLK high time  
ns  
ns  
t4  
t5  
t6  
U/D setup time  
ns  
U/D hold time  
VDD ≥ 2.7 V  
VDD < 2.7 V  
20  
40  
15  
12  
24  
12  
1
ns  
CS rise to CLK hold time  
ns  
ns  
t7  
t8  
CS rising edge to next CLK ignored  
U/D minimum pulse time  
VDD ≥ 2.7 V  
VDD < 2.7 V  
ns  
ns  
ns  
t9  
U/D rise to CLK falling edge  
Minimum CS time  
t10  
µs  
1
tEEPROM_PROGRAM  
15  
50  
50  
ms  
Memory program time  
Power-on EEPROM restore time  
2
tPOWER_UP  
µs  
1 EEPROM program time depends on the temperature and EEPROM write cycles. Higher timing is expected at a lower temperature and higher write cycles.  
2 Maximum time after VDD is equal to 2.3 V.  
TIMING DIAGRAMS  
t3  
t6  
t10  
t2  
t1  
t9  
t6  
t
1
CS  
CS  
t7  
CLK  
U/D  
CLK  
U/D  
t4  
t5  
R
WB  
Figure 4. Shutdown Mode Timing  
Figure 2. Increment/Decrement Mode Timing  
t
t
t
6
1
8
CS  
CLK  
tEEPROM_PROGRAM  
U/D  
DATA  
NEW DATA  
EEPROM  
Figure 3. Storage Mode Timing  
Rev.A | Page 9 of 24  
 
 
 
 
 
 
AD5111/AD5113/AD5115  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 6.  
Parameter  
VDD to GND  
VLOGIC to GND  
VA, VW, VB to GND  
IA, IW, IB  
Rating  
–0.3 V to +7.0 V  
–0.3 V to +7.0 V  
GND − 0.3 V to VDD + 0.3 V  
Pulsed1  
THERMAL RESISTANCE  
Frequency > 10 kHz  
θJA is defined by JEDEC specification JESD-51, and the value is  
dependent on the test board and test environment.  
RAW = 5 kΩ and 10 kΩ  
RAW = 80 kΩ  
±± ꢀA/d2  
±1.5 ꢀA/d2  
Table 7. Thermal Resistance  
Package Type  
8-Lead LFCSP  
Frequency ≤ 10 kHz  
RAW = 5 kΩ and 10 kΩ  
RAW = 80 kΩ  
±± ꢀA/√d2  
±1.5 ꢀA/√d2  
θJA  
901  
θJC  
Unit  
25  
°C/W  
Continuous  
1 JEDEC 2S2P test board, still air (0 ꢀ/sec air flow).  
RAW = 5 kΩ and 10 kΩ  
RAW = 80 kΩ  
±± ꢀA  
±1.5 ꢀA  
D CLK  
Digital Inputs U/ , , and  
CS  
−0.3 V to +7 V or VDD + 0.3 V  
(whichever is less)  
−40°C to +125°C  
ESD CAUTION  
Operating Teꢀperature Range3  
Maxiꢀuꢀ Junction Teꢀperature (TJ Max) 150°C  
Storage Teꢀperature Range  
Reflow Soldering  
−±5°C to +150°C  
Peak Teꢀperature  
2±0°C  
Tiꢀe at Peak Teꢀperature  
Package Power Dissipation  
20 sec to 40 sec  
(TJ ꢀax − TA)/θJA  
1 Maxiꢀuꢀ terꢀinal current is bounded by the ꢀaxiꢀuꢀ current handling of  
the switches, ꢀaxiꢀuꢀ power dissipation of the package, and ꢀaxiꢀuꢀ  
applied voltage across any two of the A, B, and W terꢀinals at a given  
resistance.  
2 Pulse duty factor.  
3 Includes prograꢀꢀing of EEPROM ꢀeꢀory.  
Rev.A | Page 10 of 24  
 
 
 
 
 
 
Data Sheet  
AD5111/AD5113/AD5115  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
1
8 CS  
DD  
AD5111/  
AD5113/  
AD5115  
TOP VIEW  
(Not to Scale)  
A 2  
W 3  
B 4  
7 U/D  
6 CLK  
5 GND  
NOTES  
1. THE EXPOSED PAD IS INTERNALLY  
FLOATING.  
Figure 5. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
VDD  
A
W
B
GND  
CLK  
Positive Power Supply. Decouple this pin with 0.1 µF ceramic capacitors and 10 µF capacitors.  
Terminal A of RDAC. GND ≤ VA ≤ VDD.  
Wiper Terminal of RDAC. GND ≤ VW ≤ VDD.  
Terminal B of RDAC. GND ≤ VB ≤ VDD.  
Ground Pin, Logic Ground Reference.  
Clock Input. Each clock pulse executes the step-up or step-down of the resistance. The direction is determined  
by the state of the U/D pin. CLK is a negative edge trigger. Data can be transferred at rates up to 50 MHz.  
7
8
U/D  
CS  
Up/Down Selection Counter Control.  
Chip Select. Active Low.  
EPAD  
Exposed Pad. The exposed pad is internally floating.  
Rev.A | Page 11 of 24  
 
AD5111/AD5113/AD5115  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.10  
0.02  
0.01  
10kΩ, –40°C  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
10kΩ, +25°C  
10kΩ, +125°C  
80kΩ, –40°C  
80kΩ, +25°C  
80kΩ, +125°C  
0.08  
0.06  
0.04  
0.02  
0
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.07  
–0.02  
–0.04  
–0.06  
80kΩ, –40°C  
80kΩ, +25°C  
80kΩ, +125°C  
CODE (Decimal)  
CODE (Decimal)  
Figure 6. R-INL vs. Code (AD5111)  
Figure 9. R-DNL vs. Code (AD5111)  
0.08  
0.06  
0.04  
0.02  
0
0.02  
5kΩ, –40°C  
5kΩ, +25°C  
5kΩ, +125°C  
0.01  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.07  
5kΩ, –40°C  
5kΩ, +25°C  
–0.02  
–0.04  
–0.06  
5kΩ, +125°C  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
80kΩ, –40°C  
80kΩ, +25°C  
80kΩ, +125°C  
10kΩ, +125°C  
80kΩ, +125°C  
10kΩ, –40°C  
80kΩ, –40°C  
10kΩ, +25°C  
80kΩ, +25°C  
0
3
6
9
12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63  
CODE (Decimal)  
0
3
6
9
12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63  
CODE (Decimal)  
Figure 7. R-INL vs. Code (AD5113)  
Figure 10. R-DNL vs. Code (AD5113)  
0.004  
0.002  
0.020  
0.015  
0.010  
0.005  
0
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
80kΩ, –40°C  
80kΩ, +25°C  
80kΩ, +125°C  
0
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–0.012  
–0.014  
–0.016  
–0.018  
–0.005  
–0.010  
–0.015  
10kΩ, –40°C  
80kΩ, –40°C  
10kΩ, +25°C  
80kΩ, +25°C  
10kΩ, +125°C  
80kΩ, +125°C  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 31  
CODE (Decimal)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 31  
CODE (Decimal)  
Figure 11. R-DNL vs. Code (AD5115)  
Figure 8. R-INL vs. Code (AD5115)  
Rev.A | Page 12 of 24  
 
Data Sheet  
AD5111/AD5113/AD5115  
0.02  
0.08  
0.06  
0.04  
0.02  
0
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
80kΩ, –40°C  
80kΩ, +25°C  
80kΩ, +125°C  
0.01  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.02  
–0.04  
–0.06  
–0.08  
10kΩ, –40°C  
80kΩ, –40°C  
10kΩ, +25°C  
80kΩ, +25°C  
10kΩ, +125°C  
80kΩ, +125°C  
–0.07  
CODE (Decimal)  
CODE (Decimal)  
Figure 15. DNL vs. Code (AD5111)  
Figure 12. INL vs. Code (AD5111)  
0.08  
0.06  
0.04  
0.02  
0
0.02  
0.01  
5kΩ, –40°C  
5kΩ, +25°C  
5kΩ, +125°C  
10kΩ, +125°C  
5kΩ, –40°C  
10kΩ, –40°C  
10kΩ, +25°C  
5kΩ, +25°C  
5kΩ, +125°C  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
80kΩ, –40°C  
80kΩ, +25°C  
80kΩ, +125°C  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.02  
–0.04  
–0.06  
–0.08  
80kΩ, –40°C  
80kΩ, +25°C  
80kΩ, +125°C  
0
3
6
9
12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63  
CODE (Decimal)  
0
3
6
9
12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63  
CODE (Decimal)  
Figure 13. INL vs. Code (AD5113)  
Figure 16. DNL vs. Code (AD5113)  
0.015  
0.004  
0.002  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
80kΩ, –40°C  
80kΩ, +25°C  
80kΩ, +125°C  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
0.010  
0.005  
0
0
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–0.012  
–0.014  
–0.016  
–0.005  
–0.010  
–0.015  
–0.020  
80kΩ, +25°C  
80kΩ, –40°C  
80kΩ, +125°C  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 31  
CODE (Decimal)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 31  
CODE (Decimal)  
Figure 14. INL vs. Code (AD5115)  
Figure 17. DNL vs. Code (AD5115)  
Rev.A | Page 13 of 24  
AD5111/AD5113/AD5115  
Data Sheet  
800  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
V
= 5V  
V
V
V
= 2.3V  
= 3.3V  
= 5V  
T = 25°C  
A
DD  
DD  
DD  
DD  
DD  
DD  
= 3.3V  
= 2.3V  
700  
600  
500  
400  
300  
200  
100  
0
–100  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0.05  
0.65  
1.25  
1.85  
2.45  
3.05  
3.65  
4.25  
4.85  
TEMPERATURE (°C)  
DIGITAL INPUT VOLTAGE (V)  
Figure 18. Supply Current vs. Temperature  
Figure 21. Supply Current (IDD) vs. Digital Input Voltage  
200  
180  
160  
140  
120  
100  
80  
200  
V
= 5V  
V
= 5V  
DD  
DD  
10kΩ  
80kΩ  
5kΩ  
10kΩ  
80kΩ  
5kΩ  
180  
160  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
0
0
0
20  
10  
5
40  
20  
10  
60  
30  
15  
80  
40  
20  
100  
50  
25  
120 AD5111  
60 AD5113  
30 AD5115  
0
0
0
20  
10  
5
40  
20  
10  
60  
30  
15  
80  
40  
20  
100  
50  
25  
120 AD5111  
60 AD5113  
30 AD5115  
CODE (Decimal)  
CODE (Decimal)  
Figure 19. Potentiometer Mode Tempco ((ΔVW/VW)/ΔT × 106) vs. Code  
Figure 22. Rheostat Mode Tempco ((ΔRWB/RWB)/ΔT × 106) vs. Code  
0
0
(0x20) [0x10]  
(0x10) [0x08]  
0x40  
–10 0x20  
0x10  
0x20  
–10  
–20  
–30  
–40  
–50  
–60  
0x10  
0x08  
0x04  
(0x08) [0x04]  
(0x04) [0x02]  
(0x02) [0x01]  
–20  
0x08  
0x04  
–30  
0x02  
0x01  
(0x01) [0x00]  
(0x00)  
0x02  
0x01  
–40  
0x00  
–50  
0x00  
–60  
AD5111 (AD5113) [AD5115]  
–70  
10k  
10k  
100k  
1M  
10M  
100M  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
Figure 20. 5 kΩ Gain vs. Frequency vs. Code  
Figure 23. 10 kΩ Gain vs. Frequency vs. Code  
Rev.A | Page 14 of 24  
Data Sheet  
AD5111/AD5113/AD5115  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
(0x20) [0x10]  
5k + 250pF  
10k + 75pF  
10k + 150pF  
10k + 250pF  
80k + 0pF  
80k + 150pF  
80k + 250pF  
5k + 0pF  
5k + 75pF  
5k + 150pF  
10k + 0pF  
0x40  
(0x10) [0x08]  
(0x08) [0x04]  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0x20  
0x10  
80k + 75pF  
(0x04) [0x02]  
(0x02) [0x01]  
(0x01) [0x00]  
(0x00)  
0x08  
0x04  
0x02  
0x01  
0x00  
AD5111 (AD5113) [AD5115]  
10k  
0
0
0
10  
5
20  
10  
5
30  
15  
40  
20  
10  
50  
25  
60  
30  
15  
AD5111  
AD5113  
AD5115  
100k  
1M  
FREQUENCY (Hz)  
CODE (Decimal)  
Figure 24. 80 kΩ Gain vs. Frequency vs. Code  
Figure 27. Maximum Bandwidth vs. Code vs. Net Capacitance  
150  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
T
= 25°C  
5.5V  
5V  
3.3V  
2.7V  
2.3V  
A
120  
90  
60  
30  
0
R
= 10kΩ  
AB  
FULL SCALE  
HALF SCALE  
QUARTER SCALE  
10k  
100k  
1M  
10M  
0
1
2
3
4
5
6
V
(V)  
DD  
FREQUENCY (Hz)  
Figure 25. Normalized Phase Flatness vs. Frequency  
Figure 28. Incremental Wiper On Resistance vs. VDD  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
V
V
= 5V  
5kΩ  
10kΩ  
80kΩ  
V
V
V
= 5V  
5kΩ  
10kΩ  
80kΩ  
DD  
A
DD  
A
B
= 2.5V + V  
= 2.5V  
= 2.5V + 1V  
= 2.5V  
IN  
RMS  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
fINB = 1kHz  
CODE = HALF SCALE  
NOISE FILTER = 22kHz  
CODE = HALF SCALE  
NOISE FILTER = 22kHz  
20  
200  
2k  
20k  
200k  
0.001  
0.01  
0.1  
1
FREQUENCY (Hz)  
AMPLITUDE (V rms)  
Figure 29. Total Harmonic Distortion + Noise (THD + N) vs. Amplitude  
Figure 26. Total Harmonic Distortion + Noise (THD + N) vs. Frequency  
Rev.A | Page 15 of 24  
AD5111/AD5113/AD5115  
Data Sheet  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
100  
80  
V
V
= 5V  
DD  
A
= V  
DD  
V
= GND  
B
60  
5kΩ  
10kΩ  
80kΩ  
40  
20  
0
–20  
–40  
–60  
–80  
–100  
–120  
V
V
V
= 5V  
DD  
= GND  
DD  
A
= V  
–0.05  
–0.10  
B
CODE = HALF SCALE  
0
0.5 1.0 1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
–1  
1
3
5
7
9
TIME (µs)  
TIME (µs)  
Figure 30. Maximum Transition Glitch  
Figure 33. Digital Feedthrough  
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
5kΩ  
10kΩ  
80kΩ  
–600 –500 –400 –300 –200 –100  
0
100 200 300 400 500 600  
1k  
10k  
FREQUENCY (Hz)  
1M  
10M  
RESISTOR DRIFT (ppm)  
Figure 31. Resistor Lifetime Drift  
Figure 34. Shutdown Isolation vs. Frequency  
7
6
5
4
3
2
1
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
10kΩ  
5kΩ  
10kΩ  
80kΩ  
V
V
V
= 5V ± 10% AC  
= 4V  
= GND  
DD  
80kΩ  
5kΩ  
A
B
CODE = HALF SCALE  
= 25°C  
T
A
0
0
0
0
10  
100  
1k  
10k  
100k  
1M  
20  
10  
5
40  
20  
10  
60  
30  
15  
80  
40  
20  
100  
50  
25  
120 AD5111  
60 AD5113  
30 AD5115  
FREQUENCY (Hz)  
CODE (Decimal)  
Figure 32. Power Supply Rejection Ratio (PSRR) vs. Frequency  
Figure 35. Theoretical Maximum Current vs. Code  
Rev.A | Page 16 of 24  
Data Sheet  
AD5111/AD5113/AD5115  
TEST CIRCUITS  
Figure 36 to Figure 41 define the test conditions used in the Specifications section.  
NC  
DUT  
A
I
V
W
A
V+ = V ± 10%  
DD  
W
V  
V  
MS  
DD  
V
A
B
DD  
PSRR (dB) = 20 log  
B
W
V+  
~
V
MS  
V  
V  
%
%
MS  
DD  
PSS (%/%) =  
V
MS  
NC = NO CONNECT  
Figure 36. Resistor Position Nonlinearity Error  
(Rheostat Operation: R-INL, R-DNL)  
Figure 39. Power Supply Sensitivity (PSS, PSRR)  
+15V  
A
DUT  
A
V+ = V  
DD  
1LSB = V+/2  
W
V
N
IN  
DUT  
AD8652  
B
V
OUT  
W
V+  
OFFSET  
GND  
B
V
MS  
2.5V  
–15V  
Figure 37. Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 40. Gain and Phase vs. Frequency  
GND  
V
DD  
NC  
0.1V  
=
R
W
GND  
DUT  
I
WB  
A
B
V
I
A
DD  
CM  
DUT  
W
W
+
B
0.1V  
I
GND  
WB  
V
DD  
GND TO V  
DD  
GND  
NC = NO CONNECT  
V
DD  
Figure 41. Common-Mode Leakage Current  
Figure 38. Wiper Resistance  
Rev.A | Page 17 of 24  
 
 
 
AD5111/AD5113/AD5115  
Data Sheet  
THEORY OF OPERATION  
The AD5111/AD5113/AD5115 digital programmable resistors  
are designed to operate as true variable resistors for analog  
LOW WIPER RESISTANCE FEATURE  
The AD5111/AD5113/AD5115 include a new feature to reduce  
the resistance between terminals. These extra steps are called  
bottom scale and top scale. At bottom scale, the typical wiper  
resistance decreases from 70 Ω to 45 Ω. At top scale, the  
resistance between Terminal A and Terminal W is decreased by  
1 LSB and the total resistance is reduced to 70 Ω. The new extra  
steps are loaded automatically in the RDAC register after zero-  
scale or full-scale position has been reached.  
signals within the terminal voltage range of GND < VTERM  
<
VDD. The resistor wiper position is determined by the RDAC  
register contents. The RDAC register acts as a scratchpad  
register that allows unlimited changes of resistance settings.  
The RDAC register can be programmed with any position  
setting using the up/down interface. Once a desirable wiper  
position is found, this value can be stored in the EEPROM.  
Thereafter, the wiper position is always restored to that position  
for subsequent power-up. The storing of EEPROM data takes  
approximately 30 ms; during this time, the device is locked and  
does not accept any new operation, thus preventing any changes  
from taking place.  
The extra steps are not equal to 1 LSB and are not included in  
the INL, DNL, R-INL, and R-DNL specifications.  
SHUTDOWN MODE  
This feature places Terminal A in open circuit, disconnected  
from the internal resistor, and connects Terminal W and  
Terminal B. A finite wiper resistance of 45 Ω is present between  
these two terminals. The command is sent by a low-to-high  
The AD5111/AD5113/AD5115 are designed to allow high  
speed digital control with clock rates up to 50 MHz.  
RDAC REGISTER AND EEPROM  
D
CLK  
CLK  
CS  
transition on the U/ pin, when  
is high and  
is enabled.  
negative edge, as shown  
The RDAC register directly controls the position of the digital  
potentiometer wiper. For example, when the RDAC register is  
0x40 (AD5111), the wiper is connected to midscale of the  
variable resistor. The RDAC register is a standard logic register;  
there is no restriction on the number of changes allowed.  
The command is executed on the  
in Figure 4.  
The AD5111/AD5113/AD5115 return the wiper to prior  
shutdown position if any other operation is performed.  
EEPROM WRITE OPERATION  
Once a desirable wiper position is found, this value can be  
saved into the EEPROM. Thereafter, the wiper position is  
always set at that position for any future on-off-on power  
supply sequence or recall operation.  
The AD5111/AD5113/AD5115 contain an EEPROM that  
allows the wiper position storage. Once a desirable wiper  
position is found, this value can be saved into the EEPROM.  
Thereafter, the wiper position is always set at that position for  
any future power-up sequence or a memory recall operation.  
BASIC OPERATION  
CS  
When  
achieved by clocking the  
and the direction of stepping into the RDAC register is  
is pulled low, changing the resistance settings is  
During the storage cycle, the device is locked and does not accept  
any new operation, thus preventing any changes from taking  
place.  
CLK  
pin. It is negative edge triggered,  
D
determined by the state of the U/ input. When a specific state  
D
The write cycle is started by applying a pulse in the U/ pin  
CS CLK  
D
of the U/ remains, the device continues to change in the same  
when  
is enabled and  
remains high, as shown in  
direction under consecutive clocks until it comes to the end of  
the resistance setting. When the wiper reaches the maximum or  
Figure 3. The write cycle takes approximately 20 ms.  
CLK  
minimum setting, additional  
pulses do not change the  
wiper setting. Figure 2 shows a typical increment/decrement  
operation.  
D
CLK  
pin  
The U/ pin value can be changed only when the  
is low.  
Rev.A | Page 18 of 24  
 
 
 
 
 
 
Data Sheet  
AD5111/AD5113/AD5115  
PROGRAMMING THE VARIABLE RESISTOR  
RDAC ARCHITECTURE  
To achieve optimum performance, Analog Devices, Inc., has  
patented the RDAC segmentation architecture for all the digital  
potentiometers. In particular, the AD5111/AD5113/AD5115  
employ a two-stage segmentation approach as shown in  
Figure 42. The AD5111/AD5113/AD5115 wiper switch is  
designed with the transmission gate CMOS topology and with  
the gate voltage derived from VDD.  
Rheostat Operation8% Resistor Tolerance  
The AD5111/AD5113/AD5115 operate in rheostat mode when  
only two terminals are used as a variable resistor. The unused  
terminal can be floating or tied to the W terminal as shown in  
Figure 43.  
A
A
A
A
W
W
W
TS  
B
B
B
R
R
L
L
Figure 43. Rheostat Mode Configuration  
The nominal resistance between Terminal A and Terminal B,  
RAB, is available in 5 kꢀ, 10 kꢀ, and 80 kꢀ and has 128/64/32  
tap points accessed by the wiper terminal. The 5-/6-/7-bit data  
in the RDAC latch is decoded to select one of the 128/64/32  
possible wiper settings. The general equations for determining  
the digitally programmed output resistance between the W  
terminal and B terminal are  
R
R
S
W
S
5-BIT/6-BIT/7-BIT  
ADDRESS  
AD5111:  
DECODER  
R
R
L
L
RWB RBS  
Bottom scale (1)  
From 0 to 128 (2)  
D
128  
RWB(D)   
RAB RW  
BS  
AD5113:  
RWB RBS  
B
Bottom scale (3)  
From 0 to 64 (4)  
D
64  
RWB (D)   
RAB RW  
Figure 42. AD5111/AD5113/AD5115 Simplified RDAC Circuit  
Low Wiper Resistance Feature  
AD5115:  
RWB RBS  
In addition, the AD5111/AD5113/AD5115 include a new  
Bottom scale (5)  
From 0 to 32 (6)  
feature to reduce the resistance between terminals. These extra  
steps are called bottom scale and top scale. At bottom scale, the  
typical wiper resistance decreases from 70 Ω to 45 Ω. At top  
scale, the resistance between Terminal A and Terminal W is  
decreased by 1 LSB and the total resistance is reduced to 70 Ω.  
The extra steps are not equal to 1 LSB and are not included in  
the INL, DNL, R-INL, and R-DNL specifications.  
D
32  
R
WB (D) RAB RW  
where:  
D is the decimal equivalent of the binary code in the 5-/6-/7-bit  
RDAC register; 128, 64, and 32 refer to the top scale step.  
R
AB is the end-to-end resistance.  
RW is the wiper resistance.  
RBS is the wiper resistance at bottom scale.  
Rev.A | Page 19 of 24  
 
 
 
 
AD5111/AD5113/AD5115  
Data Sheet  
Similar to the mechanical potentiometer, the resistance of  
the RDAC between the W terminal and the A terminal also  
produces a digitally controlled complementary resistance, RWA  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
.
The digital potentiometer easily generates a voltage divider at  
W-to-B and W-to-A that is proportional to the input voltage at  
A-to-B, as shown in Figure 44. Unlike the polarity of VDD to  
GND, which must be positive, current across A-to-B, W-to-A,  
and W-to-B can be in either direction.  
RWA starts at the maximum resistance value and decreases as the  
data loaded into the latch increases. The general equations for  
this operation are  
AD5111:  
V
I
RAW = RAB + RW  
Bottom scale (7)  
From 0 to 127 (8)  
Top scale (9)  
A
128D  
RAW (D) =  
128  
W
V
×RAB + RW  
×RAB + RW  
×RAB + RW  
O
B
RAW = RTS  
Figure 44. Potentiometer Mode Configuration  
AD5113:  
If ignoring the effect of the wiper resistance for simplicity,  
connecting Terminal A to 5 V and Terminal B to ground  
produces an output voltage at W to B ranging from 0 V to 5 V.  
The general equation defining the output voltage at VW with  
respect to ground for any valid input voltage applied to  
Terminal A and Terminal B, is  
RAW = RAB + RW  
Bottom scale (10)  
From 0 to 63 (11)  
Top scale (12)  
64 D  
RAW (D) =  
64  
RAW = RTS  
AD5115:  
R
WB(D)  
R
AW (D)  
RAB  
VW (D) =  
×VA +  
×VB  
(16)  
RAW = RAB + RW  
Bottom scale (13)  
From 0 to 31 (14)  
Top scale (15)  
RAB  
32D  
RAW (D) =  
32  
where:  
R
R
WB(D) can be obtained from Equation 1 to Equation 6.  
AW(D) can be obtained from Equation 7 to Equation 14.  
RAW = RTS  
where:  
Operation of the digital potentiometer in the divider mode  
D is the decimal equivalent of the binary code in the 5-/6-/7-bit  
RDAC register; 128, 64, and 32 refer to top scale step.  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly  
on the ratio of the internal resistors, RWA and RWB, and not the  
absolute values. Therefore, the temperature drift reduces to  
5 ppm/°C.  
RAB is the end-to-end resistance.  
RW is the wiper resistance.  
RTS is the wiper resistance at top scale.  
Regardless of which setting the part is operating in, take care  
to limit the current between A to B, W to A, and W to B, to  
the maximum continuous current of 6 mA (5 kΩ and 10 kΩ)  
or 1.5 mA (80 kΩ), or pulse current specified in Table 6.  
Otherwise, degradation or possible destruction of the internal  
switch contact can occur.  
TERMINAL VOLTAGE OPERATING RANGE  
The AD5111/AD5113/AD5115 are designed with internal  
ESD diodes for protection. These diodes also set the voltage  
boundary of the terminal operating voltages. Positive signals  
present on the A, B, or W terminals that exceed VDD are  
clamped by the forward-biased diode. There is no polarity  
constraint between VA, VW, and VB, but they cannot be higher  
than VDD or lower than GND.  
Rev.A | Page 20 of 24  
 
 
 
Data Sheet  
AD5111/AD5113/AD5115  
LAYOUT AND POWER SUPPLY BIASING  
POWER-UP SEQUENCE  
It is always a good practice to use compact, minimum lead  
length layout design. The leads to the input should be as direct  
as possible with a minimum conductor length. Ground paths  
should have low resistance and low inductance. It is also good  
practice to bypass the power supplies with quality capacitors.  
Apply low equivalent series resistance (ESR) 1 μF to 10 μF  
tantalum or electrolytic capacitors at the supplies to minimize  
any transient disturbance and to filter low frequency ripple.  
Figure 46 illustrates the basic supply bypassing configuration  
for the AD5111/AD5113/AD5115.  
Because of the ESD protection diodes that limit the voltage  
compliance at the A, B, and W terminals (see Figure 45), it is  
important to power on VDD before applying any voltage to the  
A, B, and W terminals. Otherwise, the diodes are forward-  
biased such that VDD is powered on unintentionally and can  
affect other parts of the circuit. Similarly, VDD should be  
powered down last. The ideal power-on sequence is in the  
following order: GND, VDD, and VA/VB/VW. The order of  
powering VA, VB, VW and the digital inputs is not important as  
long as they are powered on after VDD.  
AD5111/  
AD5113/  
AD5115  
V
DD  
V
V
DD  
DD  
+
C2  
10µF  
C1  
0.1µF  
A
GND  
AGND  
W
B
Figure 46. Power Supply Bypassing  
GND  
Figure 45. Maximum Terminal Voltages Set by VDD and GND  
Rev.A | Page 21 of 24  
 
 
 
 
AD5111/AD5113/AD5115  
OUTLINE DIMENSIONS  
Data Sheet  
1.70  
1.60  
1.50  
2.00  
BSC SQ  
0.50 BSC  
8
5
0.175 REF  
PIN 1 INDEX  
AREA  
EXPOSED  
PAD  
1.10  
1.00  
0.90  
0.425  
0.350  
0.275  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.60  
0.55  
0.50  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 47. 8-Lead Frame Chip Scale Package [LFCSP_UD]  
2 mm × 2 mm Body, Very Thin, Dual Lead (CP-8-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Branding  
Code  
Model1, 2  
RAB (kΩ) Resolution  
AD5111BCPZ10-RL7  
AD5111BCPZ10-500R7  
AD5111BCPZ80-RL7  
AD5111BCPZ80-500R7  
AD5113BCPZ5-RL7  
AD5113BCPZ5-500R7  
AD5113BCPZ10-RL7  
AD5113BCPZ10-500R7  
AD5113BCPZ80-RL7  
AD5113BCPZ80-500R7  
AD5115BCPZ10-RL7  
AD5115BCPZ10-500R7  
AD5115BCPZ80-RL7  
AD5115BCPZ80-500R7  
EVAL-AD5111SDZ  
10  
10  
80  
80  
5
128  
128  
128  
128  
64  
64  
64  
64  
64  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
Evaluation Board  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
7S  
7S  
7T  
7T  
85  
85  
84  
84  
86  
86  
7Y  
7Y  
7Z  
7Z  
5
10  
10  
80  
80  
10  
10  
80  
80  
64  
32  
32  
32  
32  
1 Z = RoHS Compliant Part.  
2 The EVAL-AD5111SDZ has an RAB of 10 kΩ.  
Rev. A | Page 22 of 24  
 
 
 
Data Sheet  
NOTES  
AD5111/AD5113/AD5115  
Rev. A | Page 23 of 24  
AD5111/AD5113/AD5115  
NOTES  
Data Sheet  
©2011–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09654-0-4/12(A)  
Rev. A | Page 24 of 24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY