AD5112BCPZ80-1-RL7 [ADI]

Single-Channel, 128-/64-/32-Position, I2C, ±8% Resistor Tolerance, Nonvolatile Digital Potentiometer; 单通道, 128 / 64 / 32位, I2C , ± 8 %电阻容差,非易失性数字电位计
AD5112BCPZ80-1-RL7
型号: AD5112BCPZ80-1-RL7
厂家: ADI    ADI
描述:

Single-Channel, 128-/64-/32-Position, I2C, ±8% Resistor Tolerance, Nonvolatile Digital Potentiometer
单通道, 128 / 64 / 32位, I2C , ± 8 %电阻容差,非易失性数字电位计

数字电位计
文件: 总28页 (文件大小:517K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single-Channel, 128-/64-/32-Position, I2C, 8%  
Resistor Tolerance, Nonvolatile Digital Potentiometer  
Data Sheet  
AD5110/AD5112/AD5114  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
DD  
LOGIC  
Single-channel, 128-/64-/32-position resolution  
5 kΩ, 10 kΩ, 80 kΩ nominal resistance  
Maximum 8ꢀ nominal resistor tolerance error  
Low wiper resistance  
AD5110/AD5112/AD5114  
POWER-ON  
RESET  
A
6 mA maximum wiper current density  
Resistor tolerance stored in EEPROM (0.1ꢀ accuracy)  
Rheostat mode temperature coefficient: 35 ppm/°C  
Potentiometer mode temperature coefficient: 5 ppm/°C  
2.3 V to 5.5 V single-supply operation  
1.8 V to 5.5 V logic supply operation  
W
B
DATA  
DATA  
EEPROM  
SDA  
SCL  
2
I C  
SERIAL  
INTERFACE  
RDAC  
REGISTER  
Power-on EEPROM refresh time < 50 μs  
I2C-compatible interface  
GND  
Figure 1.  
Wiper setting and EEPROM readback  
50-year typical data retention at 125°C  
1 million write cycles  
Wide operating temperature: −40°C to +125°C  
Thin, 2 mm × 2 mm × 0.55 mm 8-lead LFCSP package  
APPLICATIONS  
Mechanical potentiometer replacement  
Portable electronics level adjustment  
Audio volume control  
Low resolution DAC  
LCD panel brightness and contrast control  
Programmable voltage to current conversion  
Programmable filters, delays, time constants  
Feedback resistor programmable power supply  
Sensor calibration  
GENERAL DESCRIPTION  
The AD5110/AD5112/AD5114 provide a nonvolatile solution  
for 128-/64-/32-position adjustment applications, offering  
guaranteed low resistor tolerance errors of 8% and up to  
6 mA current density in the A, B, and W pins. The low resistor  
tolerance, low nominal temperature coefficient and high  
bandwidth simplify open-loop applications, as well as tolerance  
matching applications.  
The AD5110/AD5112/AD5114 are available in a 2 mm × 2 mm  
LFCSP package. The parts are guaranteed to operate over the  
extended industrial temperature range of −40°C to +125°C.  
Table 1. 8% Resistance Tolerance Family  
Model  
Resistance (kΩ)  
Position  
128  
128  
64  
64  
64  
Interface  
I2C  
Up/down  
I2C  
Up/down  
Push-button  
I2C  
AD5110  
AD5111  
AD5112  
AD5113  
AD5116  
AD5114  
AD5115  
10, 80  
10, 80  
5, 10, 80  
5, 10, 80  
5, 10, 80  
10, 80  
The new low wiper resistance feature minimizes the wiper  
resistance in the extremes of the resistor array to only 45 Ω,  
typical.  
The wiper settings are controllable through an I2C-compatible  
digital interface that is also used to readback the wiper register  
and EEPROM content. Resistor tolerance is stored within  
EEPROM, providing an end-to-end tolerance accuracy of 0.1%.  
32  
32  
10, 80  
Up/down  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD5110/AD5112/AD5114  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 19  
RDAC Register and EEPROM.................................................. 19  
I2C Serial Data Interface............................................................ 19  
Input Shift Register .................................................................... 20  
Write Operation.......................................................................... 21  
EEPROM Write Acknowlegde Polling .................................... 23  
Read Operation........................................................................... 23  
Reset............................................................................................. 23  
Shutdown Mode ......................................................................... 23  
RDAC Architecture.................................................................... 24  
Programming the Variable Resistor......................................... 24  
Programming the Potentiometer Divider............................... 25  
Terminal Voltage Operating Range ......................................... 26  
Power-Up Sequence ................................................................... 26  
Layout and Power Supply Biasing............................................ 26  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—AD5110 .......................................... 3  
Electrical Characteristics—AD5112 .......................................... 5  
Electrical Characteristics—AD5114 .......................................... 7  
Interface Timing Specifications.................................................. 9  
Shift Register and Timing Diagram......................................... 10  
Absolute Maximum Ratings.......................................................... 11  
Thermal Resistance .................................................................... 11  
ESD Caution................................................................................ 11  
Pin Configuration and Function Descriptions........................... 12  
Typical Performance Characteristics ........................................... 13  
Test Circuits..................................................................................... 18  
REVISION HISTORY  
10/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 28  
 
Data Sheet  
AD5110/AD5112/AD5114  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—AD5110  
10 kΩ and 80 kΩ versions: VDD = 2.3 V to 5.5 V, VLOGIC = 1.8 V to VDD, VA = VDD, VB = 0 V, 40°C < TA < +125°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resolution  
N
R-INL  
7
−2.5  
−1  
−0.5  
−1  
Bits  
LSB  
LSB  
LSB  
LSB  
%
ppm/°C  
Ω
Ω
Resistor Integral Nonlinearity2  
RAB = 10 kΩ, VDD = 2.3 V to 2.7 V  
RAB = 10 kΩ, VDD = 2.7 V to 5.5 V  
RAB = 80 kΩ  
0.5  
0.25  
0.1  
+2.5  
+1  
+0.5  
+1  
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
Wiper Resistance  
R-DNL  
0.25  
ΔRAB/RAB  
−8  
+8  
(ΔRAB/RAB)/ΔT × 106 Code = full scale  
35  
70  
45  
70  
RW  
RBS  
RTS  
Code = zero scale  
Code = bottom scale  
Code = top scale  
140  
80  
140  
Ω
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE  
Integral Nonlinearity4  
Differential Nonlinearity4  
Full-Scale Error  
INL  
DNL  
VWFSE  
−0.5  
−0.5  
−2.5  
−1.5  
0.15  
0.15  
+0.5  
+0.5  
LSB  
LSB  
RAB = 10 kΩ  
RAB = 80 kΩ  
LSB  
LSB  
Zero-Scale Error  
VWZSE  
RAB = 10 kΩ  
RAB = 80 kΩ  
Code = half scale  
1.5  
0.5  
LSB  
LSB  
ppm/°C  
(ΔVW/VW)/ΔT × 106  
10  
Voltage Divider Temperature Coefficient3  
RESISTOR TERMINALS  
Maximum Continuous IA, IB, and IW  
RAB = 10 kΩ  
RAB = 80 kΩ  
−6  
−1.5  
GND  
+6  
+1.5  
VDD  
mA  
mA  
V
Current3  
Terminal Voltage Range5  
Capacitance A, Capacitance B3  
CA, CB  
CW  
f = 1 MHz, measured to GND,  
code = half scale,  
VW = VA = 2.5 V or VW = VB = 2.5 V  
f = 1 MHz, measured to GND,  
code = half scale, VA = VB = 2.5 V  
20  
pF  
Capacitance W3  
35  
15  
pF  
Common-Mode Leakage Current3  
VA = VW = VB  
−500  
+500  
nA  
DIGITAL INPUTS  
Input Logic3  
High  
VINH  
VINL  
VLOGIC = 1.8 V to 2.3 V  
VLOGIC = 2.3 V to 5.5 V  
VLOGIC = 1.8 V to 2.3 V  
VLOGIC = 2.3 V to 5.5 V  
0.8 × VLOGIC  
0.7 × VLOGIC  
V
V
V
V
Low  
0.2 × VLOGIC  
0.3 × VLOGIC  
Input Hysteresis3  
Input Current3  
Input Capacitance3  
DIGITAL OUTPUT (SDA)  
Output Low Voltage3  
VHYST  
IN  
0.1 × VLOGIC  
V
1
μA  
pF  
CIN  
5
2
VOL  
ISINK = 3 mA  
ISINK = 6 mA  
0.2  
0.4  
+1  
V
V
μA  
pF  
Three-State Leakage Current  
Three-State Output Capacitance3  
−1  
Rev. 0 | Page 3 of 28  
 
 
AD5110/AD5112/AD5114  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1  
Max  
Unit  
POWER SUPPLIES  
Single-Supply Power Range  
Logic Supply Range  
Positive Supply Current  
EEMEM Store Current3, 6  
EEMEM Read Current3, 7  
Logic Supply Current  
Power Dissipation8  
2.3  
1.8  
5.5  
VDD  
V
V
IDD  
VDD = 5 V  
750  
2
nA  
mA  
μA  
nA  
μW  
IDD_NVM_STORE  
IDD_NVM_READ  
ILOGIC  
PDISS  
PSR  
320  
30  
5
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
∆VDD/∆VSS = 5 V 10%  
RAB = 10 kΩ  
Power Supply Rejection3  
−50  
−64  
dB  
dB  
RAB = 80 kΩ  
DYNAMIC CHARACTERISTICS3, 9  
Bandwidth  
BW  
Code = half scale, −3 dB  
RAB = 10 kΩ  
2
MHz  
kHz  
RAB = 80 kΩ  
200  
Total Harmonic Distortion  
VW Settling Time  
THD  
VA = VDD/2 +1 V rms, VB = VDD/2,  
f = 1 kHz, code = half scale  
RAB = 10 kΩ  
RAB = 80 kΩ  
VA = 5 V, VB = 0 V,  
0.5 LSB error band  
−80  
−85  
dB  
dB  
ts  
RAB = 10 kΩ  
RAB = 80 kΩ  
3
μs  
μs  
12  
Resistor Noise Density  
eN_WB  
Code = half scale, TA = 25°C,  
f = 100 kHz  
RAB = 10 kΩ  
RAB = 80 kΩ  
9
20  
nV/√Hz  
nV/√Hz  
FLASH/EE MEMORY RELIABILITY3  
Endurance10  
TA = 25°C  
1
MCycles  
kCycles  
Years  
100  
Data Retention11  
50  
1 Typical values represent average readings at 25°C, VDD = 5 V, VSS = 0 V, and VLOGIC = 5 V.  
2 Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. The maximum wiper current is limited to 0.75 × VDD/RAB.  
3 Guaranteed by design and characterization, not subject to production test.  
4 INL and DNL are measured at VWB with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other.  
6 Different from operating current; supply current for NVM program lasts approximately 30 ms.  
7 Different from operating current; supply current for NVM read lasts approximately 20 μs.  
8 PDISS is calculated from (IDD × VDD) + (ILOGIC × VLOGIC).  
9 All dynamic characteristics use VDD = 5.5 V, and VLOGIC = 5 V.  
10 Endurance is qualified at 100,000 cycles per JEDEC Standard 22, Method A117 and measured at 150°C.  
11 Retention lifetime equivalent at junction temperature (TJ) = 125°C per JEDEC Standard 22, Method A117. Retention lifetime based on an activation energy of 1 eV  
derates with junction temperature in the Flash/EE memory.  
Rev. 0 | Page 4 of 28  
 
Data Sheet  
AD5110/AD5112/AD5114  
ELECTRICAL CHARACTERISTICS—AD5112  
5 kΩ, 10 kΩ, and 80 kΩ versions: VDD = 2.3 V to 5.5 V, VLOGIC = 1.8 V to VDD, VA = VDD, VB = 0 V, 40°C < TA < +125°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resolution  
N
R-INL  
6
−2.5  
−1  
−1  
−0.25  
+1  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
%
ppm/°C  
Ω
Ω
Resistor Integral Nonlinearity2  
RAB = 5 kΩ, VDD = 2.3 V to 2.7 V  
RAB = 5 kΩ, VDD = 2.7 V to 5.5 V  
RAB = 10 kΩ  
0.5  
+2.5  
+1  
+1  
+0.25  
+1  
0.25  
0.25  
0.1  
RAB = 80 kΩ  
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
Wiper Resistance  
R-DNL  
0.25  
ΔRAB/RAB  
(ΔRAB/RAB)/ΔT × 106  
RW  
RBS  
RTS  
−8  
+8  
Code = full scale  
Code = zero scale  
Code = bottom scale  
Code = top scale  
35  
70  
45  
70  
140  
80  
140  
Ω
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE  
Integral Nonlinearity4  
Differential Nonlinearity4  
Full-Scale Error  
INL  
DNL  
VWFSE  
−0.5  
−0.5  
−2.5  
−1.5  
−1  
0.15  
0.15  
+0.5  
+0.5  
LSB  
LSB  
RAB = 5 kΩ  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
ppm/°C  
RAB =10 kΩ  
RAB = 80 kΩ  
RAB = 5 kΩ  
RAB =10 kΩ  
RAB = 80 kΩ  
Code = half scale  
Zero-Scale Error  
VWZSE  
1.5  
1
0.25  
(ΔVW/VW)/ΔT × 106  
10  
Voltage Divider Temperature Coefficient3  
RESISTOR TERMINALS  
Maximum Continuous IA, IB, and IW  
RAB = 5 kΩ, 10 kΩ  
RAB = 80 kΩ  
−6  
−1.5  
GND  
+6  
+1.5  
VDD  
mA  
mA  
V
Current3  
Terminal Voltage Range5  
Capacitance A, Capacitance B3  
CA, CB  
CW  
f = 1 MHz, measured to GND,  
code = half scale, VW = VA =  
2.5 V or VW = VB = 2.5 V  
f = 1 MHz, measured to GND,  
code = half scale,  
VA = VB = 2.5 V  
VA = VW = VB  
20  
35  
15  
pF  
Capacitance W3  
pF  
Common-Mode Leakage Current3  
−500  
+500  
nA  
DIGITAL INPUTS  
Input Logic3  
High  
VINH  
VINL  
VLOGIC = 1.8 V to 2.3 V  
VLOGIC = 2.3 V to 5.5 V  
VLOGIC = 1.8 V to 2.3 V  
VLOGIC = 2.3 V to 5.5 V  
0.8 × VLOGIC  
0.7 × VLOGIC  
V
V
V
V
Low  
0.2 × VLOGIC  
0.3 × VLOGIC  
Input Hysteresis3  
Input Current3  
Input Capacitance3  
DIGITAL OUTPUT (SDA)  
Output Low Voltage3  
VHYST  
IN  
0.1 × VLOGIC  
V
1
μA  
pF  
CIN  
5
2
VOL  
ISINK = 3 mA  
ISINK = 6 mA  
0.2  
0.4  
+1  
V
V
μA  
pF  
Three-State Leakage Current  
Three-State Output Capacitance3  
−1  
Rev. 0 | Page 5 of 28  
 
AD5110/AD5112/AD5114  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1  
Max  
Unit  
POWER SUPPLIES  
Single-Supply Power Range  
Logic Supply Range  
Positive Supply Current  
EEMEM Store Current3, 6  
EEMEM Read Current3, 7  
Logic Supply Current  
Power Dissipation8  
2.3  
1.8  
5.5  
VDD  
V
V
IDD  
VDD = 5 V  
750  
2
nA  
mA  
μA  
nA  
μW  
IDD_NVM_STORE  
IDD_NVM_READ  
ILOGIC  
PDISS  
PSR  
320  
30  
5
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
∆VDD/∆VSS = 5 V 10%  
RAB = 5 kΩ  
RAB =10 kΩ  
RAB = 80 kΩ  
Power Supply Rejection3  
−43  
−50  
−64  
dB  
dB  
dB  
DYNAMIC CHARACTERISTICS3, 9  
Bandwidth  
BW  
Code = half scale − 3 dB  
RAB = 5 kΩ  
4
2
200  
MHz  
MHz  
kHz  
RAB = 10 kΩ  
RAB = 80 kΩ  
Total Harmonic Distortion  
THD  
VA = VDD/2 + 1 V rms,  
VB = VDD/2, f = 1 kHz,  
code = half scale  
RAB = 5 kΩ  
RAB = 10 kΩ  
RAB = 80 kΩ  
VA = 5 V, VB = 0 V,  
0.5 LSB error band  
−75  
−80  
−85  
dB  
dB  
dB  
μs  
VW Settling Time  
ts  
RAB = 5 kΩ  
RAB = 10 kΩ  
RAB = 80 kΩ  
2.5  
3
10  
μs  
μs  
μs  
Resistor Noise Density  
eN_WB  
Code = half scale, TA = 25°C,  
f = 100 kHz  
RAB = 5 kΩ  
RAB = 10 kΩ  
RAB = 80 kΩ  
7
9
20  
nV/√Hz  
nV/√Hz  
nV/√Hz  
FLASH/EE MEMORY RELIABILITY3  
Endurance10  
TA = 25°C  
1
MCycles  
kCycles  
Years  
100  
Data Retention11  
50  
1 Typical values represent average readings at 25°C, VDD = 5 V, VSS = 0 V, and VLOGIC = 5 V.  
2 Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. The maximum wiper current is limited to 0.75 × VDD/RAB.  
3 Guaranteed by design and characterization, not subject to production test.  
4 INL and DNL are measured at VWB with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other.  
6 Different from operating current; supply current for NVM program lasts approximately 30 ms.  
7 Different from operating current; supply current for NVM read lasts approximately 20 μs.  
8 PDISS is calculated from (IDD × VDD) + (ILOGIC × VLOGIC).  
9 All dynamic characteristics use VDD = 5.5 V, and VLOGIC = 5 V.  
10 Endurance is qualified at 100,000 cycles per JEDEC Standard 22, Method A117 and measured at 150°C.  
11 Retention lifetime equivalent at junction temperature (TJ) = 125°C per JEDEC Standard 22, Method A117. Retention lifetime based on an activation energy of 1 eV  
derates with junction temperature in the Flash/EE memory.  
Rev. 0 | Page 6 of 28  
 
Data Sheet  
AD5110/AD5112/AD5114  
ELECTRICAL CHARACTERISTICS—AD5114  
10 kΩ and 80 kΩ versions: VDD = 2.3 V to 5.5 V, VLOGIC = 1.8 V to VDD, VA = VDD, VB = 0 V, 40°C < TA < +125°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1 Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resolution  
N
R-INL  
R-DNL  
5
Bits  
LSB  
LSB  
%
ppm/°C  
Ω
Resistor Integral Nonlinearity2  
Resistor Differential Nonlinearity2  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient3  
Wiper Resistance  
−0.5  
−0.25  
−8  
+0.5  
+0.25  
ΔRAB/RAB  
(ΔRAB/RAB)/ΔT × 106  
RW  
RBS  
RTS  
+8  
35  
Code = full scale  
Code = zero scale  
Code = bottom scale  
Code = top scale  
70  
45  
70  
140  
80  
140  
Ω
Ω
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE  
Integral Nonlinearity4  
Differential Nonlinearity4  
Full-Scale Error  
INL  
DNL  
VWFSE  
−0.25  
−0.25  
−1  
+0.25  
+0.25  
LSB  
LSB  
RAB = 10 kΩ  
LSB  
RAB = 80 kΩ  
−0.5  
LSB  
Zero-Scale Error  
VWZSE  
RAB = 10 kΩ  
1
LSB  
RAB = 80 kΩ  
Code = half scale  
0.25  
LSB  
ppm/°C  
(ΔVW/VW)/ΔT × 106  
10  
Voltage Divider Temperature Coefficient3  
RESISTOR TERMINALS  
Maximum Continuous IA, IB, and IW  
RAB = 10 kΩ  
RAB = 80 kΩ  
−6  
−1.5  
GND  
+6  
+1.5  
VDD  
mA  
mA  
V
Current3  
Terminal Voltage Range5  
Capacitance A, Capacitance B3  
CA, CB  
CW  
f = 1 MHz, measured to GND,  
code = half scale, VW = VA =  
2.5 V or VW = VB = 2.5 V  
f = 1 MHz, measured to  
GND, code = half scale, VA =  
VB = 2.5 V  
20  
35  
pF  
Capacitance W3  
pF  
Common-Mode Leakage Current3  
VA = VW = VB  
−500  
15  
+500  
nA  
DIGITAL INPUTS  
Input Logic3  
High  
VINH  
VINL  
VLOGIC = 1.8 V to 2.3 V  
VLOGIC = 2.3 V to 5.5 V  
VLOGIC = 1.8 V to 2.3 V  
VLOGIC = 2.3 V to 5.5 V  
0.8 × VLOGIC  
0.7 × VLOGIC  
V
V
V
V
Low  
0.2 × VLOGIC  
0.3 × VLOGIC  
Input Hysteresis3  
Input Current3  
Input Capacitance3  
DIGITAL OUTPUT (SDA)  
Output Low Voltage3  
VHYST  
IN  
0.1 × VLOGIC  
V
1
μA  
pF  
CIN  
5
2
VOL  
ISINK = 3 mA  
ISINK = 6 mA  
0.2  
0.4  
+1  
V
V
μA  
pF  
Three-State Leakage Current  
Three-State Output Capacitance3  
−1  
Rev. 0 | Page 7 of 28  
 
AD5110/AD5112/AD5114  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ1 Max  
Unit  
POWER SUPPLIES  
Single-Supply Power Range  
Logic Supply Range  
Positive Supply Current  
EEMEM Store Current3, 6  
EEMEM Read Current3,7  
Logic Supply Current  
Power Dissipation8  
2.3  
1.8  
5.5  
VDD  
V
V
IDD  
VDD = 5 V  
750  
2
nA  
mA  
μA  
nA  
μW  
IDD_NVM_STORE  
IDD_NVM_READ  
ILOGIC  
PDISS  
PSR  
320  
30  
5
VIH = VLOGIC or VIL = GND  
VIH = VLOGIC or VIL = GND  
∆VDD/∆VSS = 5 V 10%  
RAB = 10 kΩ  
Power Supply Rejection3  
−50  
−64  
dB  
dB  
RAB = 80 kΩ  
DYNAMIC CHARACTERISTICS3, 9  
Bandwidth  
BW  
Code = half scale, −3 dB  
RAB = 10 kΩ  
2
200  
MHz  
kHz  
RAB = 80 kΩ  
Total Harmonic Distortion  
THD  
VA = VDD/2 + 1 V rms,  
VB = VDD/2, f = 1 kHz,  
code = half scale  
RAB = 10 kΩ  
RAB = 80 kΩ  
−80  
−85  
dB  
dB  
VW Settling Time  
ts  
VA = 5 V, VB = 0 V, 0.5 LSB  
error band  
RAB = 10 kΩ  
RAB = 80 kΩ  
μs  
μs  
2.7  
9.5  
Resistor Noise Density  
eN_WB  
Code = half scale, TA = 25°C,  
f = 100 kHz  
RAB = 10 kΩ  
RAB = 80 kΩ  
9
20  
nV/√Hz  
nV/√Hz  
FLASH/EE MEMORY RELIABILITY3  
Endurance10  
TA = 25°C  
1
MCycles  
kCycles  
Years  
100  
Data Retention11  
50  
1 Typical values represent average readings at 25°C, VDD = 5 V, VSS = 0 V, and VLOGIC = 5 V.  
2 Resistor position nonlinearity error (R-INL) is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. The maximum wiper current is limited to 0.75 × VDD/RAB.  
3 Guaranteed by design and characterization, not subject to production test.  
4 INL and DNL are measured at VWB with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V. DNL specification limits  
of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other.  
6 Different from operating current; supply current for NVM program lasts approximately 30 ms.  
7 Different from operating current; supply current for NVM read lasts approximately 20 μs.  
8 PDISS is calculated from (IDD × VDD) + (ILOGIC × VLOGIC).  
9 All dynamic characteristics use VDD = 5.5 V, and VLOGIC = 5 V.  
10 Endurance is qualified at 100,000 cycles per JEDEC Standard 22, Method A117 and measured at 150°C.  
11 Retention lifetime equivalent at junction temperature (TJ) = 125°C per JEDEC Standard 22, Method A117. Retention lifetime based on an activation energy of 1 eV  
derates with junction temperature in the Flash/EE memory.  
Rev. 0 | Page 8 of 28  
 
Data Sheet  
AD5110/AD5112/AD5114  
INTERFACE TIMING SPECIFICATIONS  
VLOGIC = 1.8 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 5.  
Test Conditions/  
Comments  
Parameter1  
Min  
Typ  
Max  
100  
400  
Unit  
kHz  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
Description  
2
fSCL  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Serial clock frequency  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
4.0  
0.6  
4.7  
1.3  
250  
100  
0
tHIGH, SCL high time  
tLOW, SCL low time  
tSU;DAT, data setup time  
3.45  
0.9  
tHD;DAT, data hold time  
0
4.7  
0.6  
4
0.6  
4.7  
tSU;STA, setup time for a repeated start condition  
tHD;STA, hold time (repeated) start condition  
tBUF, bus free time between a stop and a start  
condition  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Fast mode  
1.3  
4
0.6  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
µs  
µs  
t8  
tSU;STO, setup time for stop condition  
tRDA, rise time of SDA signal  
tFDA, fall time of SDA signal  
tRCL, rise time of SCL signal  
t9  
1000  
300  
300  
300  
1000  
300  
1000  
300  
300  
300  
50  
20 + 0.1 CL  
20 + 0.1 CL  
20 + 0.1 CL  
20 + 0.1 CL  
t10  
t11  
t11A  
t12  
tRCL1, rise time of SCL signal after a repeated start  
condition and after an acknowledge bit.  
tFCL, fall time of SCL signal  
20 + 0.1 CL  
0
3
tSP  
Pulse width of suppressed spike  
Memory program time  
4
tEEPROM_PROGRAM  
15  
50  
5
tPOWER_UP  
tRESET  
50  
25  
Power-on EEPROM restore time  
Reset EEPROM restore time  
1 Maximum bus capacitance is limited to 400 pF.  
2 The SDA and SCL timing is measured with the input filters enabled. Switching off the input filters improves the transfer rate but has a negative effect on EMC behavior  
of the part.  
3 Input filtering on the SCL and SDA inputs suppress noise spikes that are less than 50 ns for fast mode.  
4 EEPROM program time depends on the temperature and EEPROM write cycles. Higher timing is expected at a lower temperature and higher write cycles.  
5 Maximum time after VDD is equal to 2.3 V.  
Rev. 0 | Page 9 of 28  
 
 
AD5110/AD5112/AD5114  
Data Sheet  
SHIFT REGISTER AND TIMING DIAGRAM  
DB7 (MSB)  
D7  
DB0 (LSB)  
D0  
D1  
C1  
C0  
D6  
D5  
D4  
D3  
0
0
0
0
0
C2  
D2  
DATA BITS  
CONTROL BITS  
Figure 2. Input Register Content  
t11  
t12  
t6  
t2  
t6  
SCL  
SDA  
t1  
t5  
t10  
t8  
t4  
t3  
t9  
t7  
P
S
S
P
Figure 3. 2-Wire Serial Interface Timing Diagram  
Rev. 0 | Page 10 of 28  
 
 
 
Data Sheet  
AD5110/AD5112/AD5114  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 6.  
Parameter  
VDD to GND  
VLOGIC to GND  
VA, VW, VB to GND  
IA, IW, IB  
Rating  
–0.3 V to +7.0 V  
–0.3 V to +7.0 V  
GND − 0.3 V to VDD + 0.3 V  
Pulsed1  
THERMAL RESISTANCE  
Frequency > 10 kHz  
θJA is defined by JEDEC specification JESD-51, and the value is  
dependent on the test board and test environment.  
RAW = 5 kΩ and 10 kΩ  
RAW = 80 kΩ  
6 mA/d2  
1.5 mA/d2  
Table 7. Thermal Resistance  
Package Type  
Frequency ≤ 10 kHz  
RAW = 5 kΩ and 10 kΩ  
RAW = 80 kΩ  
6 mA/√d2  
1.5 mA/√d2  
θJA  
θJC  
Unit  
8-Lead LFCSP  
901  
25  
°C/W  
Continuous  
1 JEDEC 2S2P test board, still air (0 m/sec air flow).  
RAW = 5 kΩ and 10 kΩ  
RAW = 80 kΩ  
Digital Inputs SDA and SCL  
6 mA  
1.5 mA  
ESD CAUTION  
−0.3 V to +7 V or VLOGIC + 0.3 V  
(whichever is less)  
−40°C to +125°C  
Operating Temperature Range3  
Maximum Junction Temperature (TJ Max) 150°C  
Storage Temperature Range  
Reflow Soldering  
−65°C to +150°C  
Peak Temperature  
260°C  
Time at Peak Temperature  
Package Power Dissipation  
20 sec to 40 sec  
(TJ max − TA)/θJA  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Pulse duty factor.  
3 Includes programming of EEPROM memory.  
Rev. 0 | Page 11 of 28  
 
 
 
 
 
 
AD5110/AD5112/AD5114  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
8
7
6
5
V
LOGIC  
DD  
AD5110/  
AD5112/  
AD5114  
A
SDA  
SCL  
GND  
W
B
TOP VIEW  
(Not to Scale)  
NOTES  
1. THE EXPOSED PAD IS INTERNALLY FLOATING.  
Figure 4. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
VDD  
Positive Power Supply; 2.3 V to 5.5 V. This pin should be decoupled with 0.1 µF ceramic capacitors and 10 µF  
capacitors.  
2
3
4
5
6
A
W
B
GND  
SCL  
Terminal A of RDAC. GND ≤ VA ≤ VDD.  
Wiper Terminal of RDAC. GND ≤ VW ≤ VDD.  
Terminal B of RDAC. GND ≤ VB ≤ VDD.  
Ground Pin, Logic Ground Reference.  
Serial Clock Line. This pin is used in conjunction with the SDA line to clock data into or out of the 16-bit input  
registers.  
7
8
SDA  
Serial Data Line. This pin is used in conjunction with the SCL line to clock data into or out of the 16-bit input  
registers. It is a bidirectional, open-drain data line that should be pulled to the supply with an external pull-up  
resistor.  
Logic Power Supply; 1.8 V to VDD. This pin should be decoupled with 0.1 µF ceramic capacitors and 10 µF  
capacitors.  
VLOGIC  
EPAD  
Exposed Pad. The exposed pad is internally floating.  
Rev. 0 | Page 12 of 28  
 
Data Sheet  
AD5110/AD5112/AD5114  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.10  
0.02  
0.01  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
80kΩ, –40°C  
80kΩ, +25°C  
80kΩ, +125°C  
0.08  
0.06  
0.04  
0.02  
0
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.07  
–0.02  
–0.04  
–0.06  
80kΩ, –40°C  
80kΩ, +25°C  
80kΩ, +125°C  
CODE (Decimal)  
CODE (Decimal)  
Figure 5. R-INL vs. Code (AD5110)  
Figure 8. R-DNL vs. Code (AD5110)  
0.08  
0.06  
0.04  
0.02  
0
0.02  
5kΩ, –40°C  
5kΩ, +25°C  
5kΩ, +125°C  
5kΩ, –40°C  
5kΩ, +25°C  
0.01  
0
5kΩ, +125°C  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
80kΩ, –40°C  
80kΩ, +25°C  
80kΩ, +125°C  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.07  
–0.02  
–0.04  
–0.06  
10kΩ, +125°C  
80kΩ, +125°C  
10kΩ, –40°C  
80kΩ, –40°C  
10kΩ, +25°C  
80kΩ, +25°C  
0
3
6
9
12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63  
CODE (Decimal)  
0
3
6
9
12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63  
CODE (Decimal)  
Figure 6. R-INL vs. Code (AD5112)  
Figure 9. R-DNL vs. Code (AD5112)  
0.020  
0.015  
0.010  
0.005  
0
0.004  
0.002  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
80kΩ, –40°C  
80kΩ, +25°C  
80kΩ, +125°C  
0
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–0.012  
–0.014  
–0.016  
–0.018  
–0.005  
–0.010  
–0.015  
10kΩ, –40°C  
80kΩ, –40°C  
10kΩ, +25°C  
80kΩ, +25°C  
10kΩ, +125°C  
80kΩ, +125°C  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 31  
CODE (Decimal)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 31  
CODE (Decimal)  
Figure 10. R-DNL vs. Code (AD5114)  
Figure 7. R-INL vs. Code (AD5114)  
Rev. 0 | Page 13 of 28  
 
AD5110/AD5112/AD5114  
Data Sheet  
0.08  
0.06  
0.04  
0.02  
0
0.02  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
80kΩ, –40°C  
80kΩ, +25°C  
80kΩ, +125°C  
0.01  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.02  
–0.04  
–0.06  
–0.08  
10kΩ, –40°C  
80kΩ, –40°C  
10kΩ, +25°C  
80kΩ, +25°C  
10kΩ, +125°C  
80kΩ, +125°C  
–0.07  
CODE (Decimal)  
CODE (Decimal)  
Figure 11. INL vs. Code (AD5110)  
Figure 14. DNL vs. Code (AD5110)  
0.08  
0.06  
0.04  
0.02  
0
0.02  
5kΩ, –40°C  
5kΩ, +25°C  
5kΩ, +125°C  
10kΩ, +125°C  
5kΩ, –40°C  
10kΩ, –40°C  
10kΩ, +25°C  
5kΩ, +25°C  
0.01  
0
5kΩ, +125°C  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
80kΩ, –40°C  
80kΩ, +25°C  
80kΩ, +125°C  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.02  
–0.04  
–0.06  
–0.08  
80kΩ, –40°C  
80kΩ, +25°C  
80kΩ, +125°C  
0
3
6
9
12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63  
CODE (Decimal)  
0
3
6
9
12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63  
CODE (Decimal)  
Figure 12. INL vs. Code (AD5112)  
Figure 15. DNL vs. Code (AD5112)  
0.004  
0.002  
0.015  
0.010  
0.005  
0
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
10kΩ, –40°C  
10kΩ, +25°C  
10kΩ, +125°C  
80kΩ, –40°C  
80kΩ, +25°C  
80kΩ, +125°C  
0
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–0.012  
–0.014  
–0.016  
–0.005  
–0.010  
–0.015  
–0.020  
80kΩ, +25°C  
80kΩ, –40°C  
80kΩ, +125°C  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 31  
CODE (Decimal)  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 31  
CODE (Decimal)  
Figure 13. INL vs. Code (AD5114)  
Figure 16. DNL vs. Code (AD5114)  
Rev. 0 | Page 14 of 28  
Data Sheet  
AD5110/AD5112/AD5114  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
800  
700  
600  
500  
400  
300  
V
V
V
V
= 5.0V  
= 3.3V  
= 2.3V  
= 1.8V  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
200  
100  
0
2.3V AVERAGE OF I  
2.3V AVERAGE OF I  
3.3V AVERAGE OF I  
3.3V AVERAGE OF I  
5.0V AVERAGE OF I  
5.0V AVERAGE OF I  
DD  
LOGIC  
DD  
LOGIC  
DD  
LOGIC  
–100  
–40 –25 –10  
–0.02  
5
20  
35  
50  
65  
80  
95 110 125  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
TEMPERATURE (°C)  
DIGITAL INPUT VOLTAGE (V)  
Figure 17. Supply Current vs. Temperature  
Figure 20. Supply Current (ILOGIC) vs. Digital Input Voltage  
200  
200  
180  
160  
140  
120  
100  
80  
V
= 5V  
V
= 5V  
DD  
DD  
180  
160  
140  
120  
100  
80  
10kΩ  
80kΩ  
5kΩ  
10kΩ  
80kΩ  
5kΩ  
60  
60  
40  
40  
20  
20  
0
0
0
0
0
20  
10  
5
40  
20  
10  
60  
30  
15  
80  
40  
20  
100  
50  
25  
120 AD5110  
60 AD5112  
30 AD5114  
0
0
0
20  
10  
5
40  
20  
10  
60  
30  
15  
80  
40  
20  
100  
50  
25  
120 AD5110  
60 AD5112  
30 AD5114  
CODE (Decimal)  
CODE (Decimal)  
Figure 18. Potentiometer Mode Tempco ((ΔVW/VW)/ΔT × 106) vs. Code  
Figure 21. Rheostat Mode Tempco ((ΔRWB/RWB)/ΔT × 106) vs. Code  
0
0
(0x20) [0x10]  
(0x10) [0x08]  
0x40  
–10 0x20  
0x10  
0x20  
–10  
–20  
–30  
–40  
–50  
–60  
0x10  
0x08  
(0x08) [0x04]  
(0x04) [0x02]  
(0x02) [0x01]  
–20  
0x08  
0x04  
0x02  
0x01  
0x04  
–30  
(0x01) [0x00]  
(0x00)  
0x02  
0x01  
–40  
0x00  
–50  
0x00  
–60  
AD5110 (AD5112) [AD5114]  
–70  
10k  
10k  
100k  
1M  
10M  
100M  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
Figure 22. 10 kΩ Gain vs. Frequency vs. Code  
Figure 19. 5 kΩ Gain vs. Frequency vs. Code  
Rev. 0 | Page 15 of 28  
AD5110/AD5112/AD5114  
Data Sheet  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
(0x20) [0x10]  
0x40  
5k + 250pF  
10k + 75pF  
10k + 150pF  
10k + 250pF  
80k + 0pF  
80k + 150pF  
80k + 250pF  
5k + 0pF  
(0x10) [0x08]  
(0x08) [0x04]  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
0x20  
0x10  
5k + 75pF  
5k + 150pF  
10k + 0pF  
80k + 75pF  
(0x04) [0x02]  
(0x02) [0x01]  
(0x01) [0x00]  
(0x00)  
0x08  
0x04  
0x02  
0x01  
0x00  
AD5110 (AD5112) [AD5114]  
10k  
0
0
0
10  
5
20  
10  
5
30  
15  
40  
20  
10  
50  
25  
60  
30  
15  
AD5110  
AD5112  
AD5114  
100k  
1M  
FREQUENCY (Hz)  
CODE (Decimal)  
Figure 23. 80 kΩ Gain vs. Frequency vs. Code  
Figure 26. Maximum Bandwidth vs. Code vs. Net Capacitance  
150  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
5.5V  
5V  
3.3V  
2.7V  
2.3V  
TEMPERATURE = 25°C  
120  
90  
60  
30  
0
AD5110  
= 10kΩ  
R
AB  
FULL SCALE  
HALF SCALE  
QUARTER SCALE  
10k  
100k  
1M  
10M  
0
1
2
3
4
5
6
FREQUENCY (Hz)  
V
(V)  
DD  
Figure 24. Normalized Phase Flatness vs. Frequency  
Figure 27. Incremental Wiper On Resistance vs. VDD  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
V
V
= 5V,  
V
V
V
= 5V,  
5kΩ  
10kΩ  
80kΩ  
5kΩ  
10kΩ  
80kΩ  
DD  
A
B
DD  
A
= 2.5V + 1V  
= 2.5V  
= 2.5V + V  
= 2.5V  
RMS  
IN  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
fINB = 1kHz  
CODE = HALF SCALE  
NOISE FILTER = 22kHz  
CODE = HALF SCALE  
NOISE FILTER = 22kHz  
20  
200  
2k  
20k  
200k  
0.001  
0.01  
0.1  
1
FREQUENCY (Hz)  
AMPLITUDE (V rms)  
Figure 28. Total Harmonic Distortion + Noise (THD + N) vs. Amplitude  
Figure 25. Total Harmonic Distortion + Noise (THD + N) vs. Frequency  
Rev. 0 | Page 16 of 28  
Data Sheet  
AD5110/AD5112/AD5114  
0.4  
0.3  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
V
V
= 5V  
V
V
V
= 5V  
DD  
DD  
A
= V  
= V  
DD  
A
DD  
= GND  
= GND  
B
B
5kΩ  
10kΩ  
80kΩ  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
10kΩ  
80kΩ  
5kΩ  
–0.05  
–0.10  
–1  
0
0.6  
1.2  
1.8  
2.5  
1
3
5
7
9
TIME (µs)  
TIME (µs)  
Figure 29. Maximum Transition Glitch  
Figure 32. Digital Feedthrough  
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
5kΩ  
10kΩ  
80kΩ  
–600 –500 –400 –300 –200 –100  
0
100 200 300 400 500 600  
1k  
10k  
FREQUENCY (Hz)  
1M  
10M  
RESISTOR DRIFT (ppm)  
Figure 30. Resistor Lifetime Drift  
Figure 33. Shutdown Isolation vs. Frequency  
7
6
5
4
3
2
1
0
0
5kΩ  
10kΩ  
80kΩ  
10kΩ  
80kΩ  
5kΩ  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
V
V
V
= 5V ± 10% AC  
= GND  
DD  
= 4V  
A
B
HALF SCALE  
T
= 25°C  
A
10  
100  
1k  
10k  
100k  
1M  
0
0
0
20  
10  
5
40  
20  
10  
60  
30  
15  
80  
40  
20  
100  
50  
25  
120 AD5110  
60 AD5112  
30 AD5114  
FREQUENCY (Hz)  
CODE (Decimal)  
Figure 34. Theoretical Maximum Current vs. Code  
Figure 31. Power Supply Rejection Ratio (PSRR) vs. Frequency  
Rev. 0 | Page 17 of 28  
AD5110/AD5112/AD5114  
Data Sheet  
TEST CIRCUITS  
Figure 35 to Figure 40 define the test conditions used in the Specifications section.  
NC  
DUT  
A
I
V
W
A
V+ = V ± 10%  
DD  
W
ΔV  
ΔV  
MS  
DD  
V
A
B
DD  
PSRR (dB) = 20 log  
B
W
V+  
~
V
ΔV  
ΔV  
%
%
MS  
MS  
DD  
PSS (%/%) =  
V
MS  
NC = NO CONNECT  
Figure 35. Resistor Position Nonlinearity Error  
(Rheostat Operation: R-INL, R-DNL)  
Figure 38. Power Supply Sensitivity (PSS, PSRR)  
+15V  
A
DUT  
A
V+ = V  
DD  
1LSB = V+/2  
W
V
N
IN  
DUT  
AD8652  
V
OUT  
W
B
V+  
OFFSET  
GND  
B
V
MS  
2.5V  
–15V  
Figure 36. Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 39. Gain and Phase vs. Frequency  
GND  
V
DD  
NC  
0.1V  
=
R
W
DUT  
GND  
I
WB  
A
A
B
V
I
DD  
CM  
W
DUT  
W
+
B
0.1V  
I
WB  
GND  
V
DD  
GND TO V  
DD  
NC = NO CONNECT  
GND  
V
DD  
Figure 37. Wiper Resistance  
Figure 40. Common-Mode Leakage Current  
Rev. 0 | Page 18 of 28  
 
 
 
Data Sheet  
AD5110/AD5112/AD5114  
THEORY OF OPERATION  
I2C SERIAL DATA INTERFACE  
The AD5110/AD5112/AD5114 digital programmable resistors  
are designed to operate as true variable resistors for analog  
The AD5110/AD5112/AD5114 have 2-wire I2C-compatible  
serial interfaces. These devices can be connected to an I2C bus  
as a slave device under the control of a master device. See  
Figure 3 for a timing diagram of a typical write sequence.  
signals within the terminal voltage range of GND < VTERM  
<
VDD. The resistor wiper position is determined by the RDAC  
register contents. The RDAC register acts as a scratchpad  
register that allows unlimited changes of resistance settings.  
The AD5110/AD5112/AD5114 support standard (100 kHz) and  
fast (400 kHz) data transfer modes. Support is not provided for  
10-bit addressing and general call addressing.  
The RDAC register can be programmed with any position  
setting using the I2C interface. Once a desirable wiper position  
is found, this value can be stored in the EEPROM memory.  
Thereafter, the wiper position is always restored to that position  
for subsequent power-up. The storing of EEPROM data takes  
approximately 18 ms; during this time, the device is locked and  
does not acknowledge any new command, thus preventing any  
changes from taking place.  
The 2-wire serial bus protocol operates as follows:  
1. The master initiates data transfer by establishing a start  
condition, which is when a high-to-low transition on the  
SDA line occurs while SCL is high. The following byte is  
the address byte, which consists of the 7-bit slave address  
and an R/W bit. The slave device corresponding to the  
transmitted address responds by pulling SDA low during  
the ninth clock pulse (this is termed the acknowledge bit).  
At this stage, all other devices on the bus remain idle while  
the selected device waits for data to be written to, or read  
from, its shift register.  
RDAC REGISTER AND EEPROM  
The RDAC register directly controls the position of the digital  
potentiometer wiper. For example, when the RDAC register is  
loaded with 0x3F (128-taps), the wiper is connected to full scale  
of the variable resistor. The RDAC register is a standard logic  
register; there is no restriction on the number of changes  
allowed.  
W
2. If the R/ bit is set high, the master reads from the slave  
W
device. However, if the R/ bit is set low, the master writes  
It is possible to both write to and read from the RDAC register  
using the I2C interface (see Table 10).  
to the slave device.  
3. Data is transmitted over the serial bus in sequences of nine  
clock pulses (eight data bits followed by an acknowledge  
bit). The transitions on the SDA line must occur during  
the low period of SCL and remain stable during the high  
period of SCL.  
4. When all data bits have been read or written, a stop  
condition is established. In write mode, the master pulls  
the SDA line high during the 10th clock pulse to establish  
a stop condition. In read mode, the master issues a no  
acknowledge for the ninth clock pulse (that is, the SDA line  
remains high). The master brings the SDA line low before  
the 10th clock pulse, and high during the 10th clock pulse to  
establish a stop condition.  
The contents of the RDAC register can be stored to the  
EEPROM using Command 1 (Table 10). Thereafter, the  
RDAC register is always set at that position for any future  
on-off-on power supply sequence. It is possible to read back  
the data saved into the EEPROM with Command 6 in Table 10.  
In addition, the resistor tolerance error is saved within the  
EEPROM; this can be read back and used to calculate the end-  
to-end tolerance, providing an accuracy of 0.1%.  
Low Wiper Resistance Feature  
The AD5110/AD5112/AD5114 include extra steps to achieve a  
minimum resistance between Terminal W and Terminal A or  
Terminal B. These extra steps are called bottom scale and top  
scale. At bottom scale, the typical wiper resistance decreases  
from 70 Ω to 45 Ω. At top scale, the resistance between  
Terminal A and Terminal W is decreased by 1 LSB, and the  
total resistance is reduced to 70 Ω. The extra steps are not equal  
to 1 LSB and are not included in the INL, DNL, R-INL, and  
R-DNL specifications.  
I2C Address  
The AD5110/AD5112/AD5114 each have two different slave  
address options available. See Table 9 for a list of slave addresses.  
Table 9. Device Address Selection  
Model  
AD511X1 BCPZ Y2  
AD511X1 BCPZ Y2-1  
7-Bit I2C Device Address  
0101111  
0101100  
1 Model.  
2 Resistance.  
Rev. 0 | Page 19 of 28  
 
 
 
 
 
AD5110/AD5112/AD5114  
Data Sheet  
INPUT SHIFT REGISTER  
For the AD5110/AD5112/AD5114, the input shift register is  
16 bits wide (see Figure 2). The 16-bit word consists of five  
unused bits (should be set to zero), followed by three control  
bits, and eight RDAC data bits. If the RDAC register is read from  
or written to in the AD5112, Bit DB0 is a don’t care. The RDAC  
register is read from or written to in the AD5114, Bit DB0 and  
DB1 are don’t cares. Data is loaded MSB first (Bit DB15).  
The three control bits determine the function of the software  
command (Table 10). Figure 3 shows a timing diagram of a  
typical AD5110/AD5112/AD5114 write sequence.  
The command bits (Cx) control the operation of the digital  
potentiometer and the internal EEPROM. The data bits (Dx)  
are the values that are loaded into the decoded register.  
Table 10. Command Operation Truth Table  
Command  
Data1  
DB10 DB8 DB7  
DB0  
Command  
Number  
C2  
0
0
C1 C0  
D7  
X
X
D6 D5 D4 D3 D2 D1 D0  
Operation  
0
1
2
0
0
1
0
1
0
X
X
6
X
X
5
X
X
4
X
X
3
X
X
2
X
X
12  
X
X
02, 3  
LSB  
No operation  
Write contents of RDAC register to EEPROM  
Write contents of serial register data to RDAC  
0
7
MSB  
1
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
X
0
1
A0  
Top scale  
Bottom scale  
Software shutdown  
0: shutdown off  
1: shutdown on  
3
0
1
1
4
5
6
1
1
1
0
0
1
0
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Software reset: refresh RDAC register with EEPROM  
Read contents of RDAC register  
Read contents of EEPROM  
A1 A0  
A1  
0
0
A0  
0
1
Data  
Wiper position saved  
Resistor tolerance  
1 X is don’t care.  
2 In the AD5114, this bit is a don’t care.  
3 In the AD5112, this bit is a don’t care.  
Rev. 0 | Page 20 of 28  
 
 
 
Data Sheet  
AD5110/AD5112/AD5114  
WRITE OPERATION  
When writing to the AD5110/AD5112/AD5114, the user  
must begin with a start command followed by an address  
these data bytes are acknowledged by the AD5110/AD5112/  
AD5114. A stop condition follows. The write operations for  
the AD5110/AD5112/AD5114 are shown in Figure 41,  
Figure 42, and Figure 43.  
W
byte (R/ = 0), after which the AD5110/AD5112/AD5114  
acknowledge that it is prepared to receive data by pulling  
SDA low.  
A repeated write function gives the user flexibility to update  
the device a number of times after addressing the part only  
once, as shown in Figure 44.  
Two bytes of data are then written to the DAC, the most  
significant byte, followed by the least significant byte. Both of  
1
9
1
9
SCL  
1
0
0
1
1
A1  
A0  
R/W  
0
0
0
0
0
C1  
C0  
SDA  
START BY  
C2  
ACK. BY  
AD5110  
ACK. BY  
AD5110  
MASTER  
FRAME 2  
FRAME 1  
MOST SIGNIFICANT DATA BYTE  
SERIAL BUS ADDRESS BYTE  
9
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK. BY STOP BY  
MASTER  
AD5110  
FRAME 3  
LEAST SIGNIFICANT DATA BYTE  
Figure 41. AD5110 Interface Write Command  
1
9
1
0
9
SCL  
SDA  
1
0
0
1
1
A1  
A0  
R/W  
0
0
0
0
C1  
C0  
C2  
ACK. BY  
AD5112  
ACK. BY  
AD5112  
START BY  
MASTER  
FRAME 2  
FRAME 1  
MOST SIGNIFICANT DATA BYTE  
SERIAL BUS ADDRESS BYTE  
9
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
ACK. BY STOP BY  
MASTER  
AD5112  
FRAME 3  
LEAST SIGNIFICANT DATA BYTE  
Figure 42. AD5112 Interface Write Command  
Rev. 0 | Page 21 of 28  
 
 
 
AD5110/AD5112/AD5114  
Data Sheet  
1
9
1
0
9
SCL  
1
0
0
1
1
A1  
A0  
R/W  
0
0
0
0
C1  
C0  
SDA  
START BY  
C2  
ACK. BY  
AD5114  
ACK. BY  
AD5114  
MASTER  
FRAME 2  
FRAME 1  
MOST SIGNIFICANT DATA BYTE  
SERIAL BUS ADDRESS BYTE  
9
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
ACK. BY STOP BY  
MASTER  
AD5114  
FRAME 3  
LEAST SIGNIFICANT DATA BYTE  
Figure 43. AD5114 Interface Write Command  
1
9
1
0
9
SCL  
SDA  
1
0
0
1
1
A1  
A0  
R/W  
0
0
0
0
C2  
C1  
C0  
START BY  
MASTER  
ACK. BY  
AD5110  
ACK. BY  
AD5110  
FRAME 1  
SERIAL BUS ADDRESS BYTE  
FRAME 2  
MOST SIGNIFICANT DATA BYTE  
9
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK. BY  
AD5110  
FRAME 3  
LEAST SIGNIFICANT DATA BYTE  
9
1
0
9
SCL (CONTINUED)  
SDA (CONTINUED)  
0
0
0
0
C2  
C1  
C0  
ACK. BY  
AD5110  
FRAME 4  
MOST SIGNIFICANT DATA BYTE  
9
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK. BY STOP BY  
AD5110 MASTER  
FRAME 5  
LEAST SIGNIFICANT DATA BYTE  
Figure 44. AD5110 Interface Multiple Write  
Rev. 0 | Page 22 of 28  
 
 
Data Sheet  
AD5110/AD5112/AD5114  
the RDAC register, EEPROM memory. The user can then read  
back the data. This begins with a start command followed by an  
EEPROM WRITE ACKNOWLEGDE POLLING  
After each write operation to the EEPROM, an internal write  
cycle begins. The I2C interface of the device is disabled. To  
determine if the internal write cycle is complete and the I2C  
interface is enabled, interface polling can be executed. I2C  
interface polling can be conducted by sending a start condition,  
followed by the slave address and the write bit. If the I2C  
interface responds with an acknowledge, the write cycle is  
complete, and the interface is ready to proceed with further  
operations. Otherwise, I2C interface polling can be repeated  
until it succeeds.  
W
address byte (R/ = 1), after which the device acknowledges  
that it is prepared to transmit data by pulling SDA low. Two  
bytes of data are then read from the device, which are both  
acknowledged by the master, as shown in Figure 45. A stop  
condition follows. If the master does not acknowledge the first  
byte, then the second byte is not transmitted by the AD5110/  
AD5112/AD5114.  
The AD5110/AD5112/AD5114 does not support repeat  
readback.  
RESET  
READ OPERATION  
The AD5110/AD5112/AD5114 can be reset by executing  
Command 4 (see Table 10). The reset command loads the  
RDAC register with the contents of the EEPROM and takes  
approximately 25 µs. EEPROM is pre-loaded to midscale at the  
factory, and initial power-up is, accordingly, at midscale.  
The AD5110/AD5112/AD5114 allow read back of the contents  
of the RDAC register and EEPROM memory through the I2C  
interface by using Command 6 (see Table 10).  
When reading data back from the AD5110/AD5112/AD5114,  
the user must first issue a readback command to the device.  
This begins with a start command, followed by an address  
SHUTDOWN MODE  
W
byte (R/ = 0), after which the AD5110/AD5112/AD5114  
The AD5110/AD5112/AD5114 can be shut down by executing  
the software shutdown command, Command 3 (see Table 10).  
This feature places the RDAC in a zero-power-consumption  
state where Terminal A is open-circuited and the wiper,  
Terminal W is connected to Terminal B but a finite wiper  
resistance of 45 Ω is present. The part can be taken out of  
shutdown mode by executing Command 3 (see Table 10)  
and setting Bit DB0 to 0.  
acknowledges that it is prepared to receive data by pulling  
SDA low.  
Two bytes of data are then written to the AD5110/AD5112/  
AD5114, the most significant byte followed by the least  
significant byte. Both of these data bytes are acknowledged by  
the AD5110/AD5112/AD5114. A stop condition follows. These  
bytes contain the read instruction, which enables readback of  
1
9
1
0
9
SCL  
1
0
0
1
1
A1  
A0  
R/W  
0
0
0
0
C1  
C0  
SDA  
START BY  
C2  
ACK. BY  
AD5110  
ACK. BY  
AD5110  
MASTER  
FRAME 2  
FRAME 1  
MOST SIGNIFICANT DATA BYTE  
SERIAL BUS ADDRESS BYTE  
9
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK. BY STOP BY  
MASTER  
AD5110  
FRAME 3  
LEAST SIGNIFICANT DATA BYTE  
1
9
1
0
9
SCL  
SDA  
1
0
0
1
1
A1  
A0  
R/W  
0
0
0
0
C1  
C0  
C2  
ACK. BY  
AD5110  
NO ACK.  
BY MASTER MASTER  
STOP BY  
START BY  
MASTER  
FRAME 2  
MOST SIGNIFICANT DATA BYTE  
FRAME 1  
SERIAL BUS ADDRESS BYTE  
Figure 45. AD5110 Interface Read Command  
Rev. 0 | Page 23 of 28  
 
 
 
 
 
AD5110/AD5112/AD5114  
Data Sheet  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation— 8% Resistor Tolerance  
RDAC ARCHITECTURE  
To achieve optimum performance, Analog Devices, Inc., has  
patented the RDAC segmentation architecture for all the digital  
potentiometers. In particular, the AD5110/AD5112/AD5114  
employ a two-stage segmentation approach as shown in  
Figure 46. The AD5110/AD5112/AD5114 wiper switch is  
designed with the transmission gate CMOS topology and with  
the gate voltage derived from VDD.  
The AD5110/AD5112/AD5114 operate in rheostat mode when  
only two terminals are used as a variable resistor. The unused  
terminal can be floating or tied to the Terminal W as shown in  
Figure 47.  
A
A
A
A
W
W
W
TS  
B
B
B
R
R
L
Figure 47. Rheostat Mode Configuration  
The nominal resistance between Terminal A and Terminal B,  
AB, is available in 5 kꢀ, 10 kꢀ, and 80 kꢀ and has 32/64/128  
L
R
tap points accessed by the wiper terminal. The 5-/6-/7-bit data  
in the RDAC latch is decoded to select one of the 32/64/128  
possible wiper settings. The general equations for determining  
the digitally programmed output resistance between the W  
terminal and B terminal are  
R
R
S
S
W
6-BIT/7-BIT/8-BIT  
ADDRESS  
AD5110:  
DECODER  
R
R
RWB RBS  
Bottom scale (0xFF) (1)  
From 0x00 to 0x80 (2)  
L
D
128  
R
WB (D)   
RAB RW  
L
BS  
AD5112:  
RWB RBS  
Bottom scale (0xFF) (3)  
From 0x00 to 0x40 (4)  
B
D
64  
R
WB (D)   
RAB RW  
Figure 46. AD5110/AD5112/AD5114 Simplified RDAC Circuit  
AD5114:  
WB RBS  
Top Scale/Bottom Scale Architecture  
R
Bottom scale (0xFF) (5)  
From 0x00 to 0x20 (6)  
In addition, the AD5110/AD5112/AD5114 include a new  
D
32  
R
WB (D)   RAB RW  
feature to reduce the resistance between terminals. These extra  
steps are called bottom scale and top scale. At bottom scale, the  
typical wiper resistance decreases from 70 Ω to 45 Ω. At top  
scale, the resistance between Terminal A and Terminal W is  
decreased by 1 LSB, and the total resistance is reduced to 70 Ω.  
The extra steps are not equal to 1 LSB and are not included in  
the INL, DNL, R-INL, and R-DNL specifications.  
where:  
D is the decimal equivalent of the binary code in the 5-/6-/7-bit  
RDAC register.  
R
AB is the end-to-end resistance.  
RW is the wiper resistance.  
RBS is the wiper resistance at bottom scale  
Rev. 0 | Page 24 of 28  
 
 
 
 
Data Sheet  
AD5110/AD5112/AD5114  
Similar to the mechanical potentiometer, the resistance of  
the RDAC between the W terminal and the A terminal also  
produces a digitally controlled complementary resistance, RWA  
Table 11. Tolerance Format  
Data Byte  
.
DB7 DB6 DB5 DB4 DB3  
DB2 DB1 DB0  
2-1 2-2 2-3  
Sign 24  
23  
22  
21  
RWA also gives a maximum of 8% absolute resistance error. RWA  
.
starts at the maximum resistance value and decreases as the  
data loaded into the latch increases. The general equations for  
this operation are  
For example, if RAB = 10 kΩ and the data readback shows  
01010010, the end-to-end resistance can be calculated as,  
if,  
AD5110:  
DB[7] is 0 = negative  
DB[6:3] is 1010 = 10  
DB[2:0] is 010 = 2 × 2−3 = 0.25  
RAW = RAB + RW  
Bottom scale (0xFF) (7)  
From 0x00 to 0x7F (8)  
Top scale (0x80) (9)  
128 D  
128  
R
AW (D) =  
×RAB + RW  
×RAB + RW  
×RAB + RW  
then,  
tolerance = −10.25% and, therefore, RAB = 8.975 kΩ  
RAW = RTS  
AD5112:  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
RAW = RAB + RW  
Bottom scale (0xFF) (10)  
From 0x00 to 0x3F (11)  
Top scale (0x40) (12)  
The digital potentiometer easily generates a voltage divider at  
wiper-to-B and wiper-to-A that is proportional to the input  
voltage at A to B, as shown in Figure 48. Unlike the polarity of  
64 D  
64  
R
AW (D) =  
VDD to GND, which must be positive, voltage across A-to-B, W-  
to-A, and W-to-B can be at either polarity.  
RAW = RTS  
AD5114:  
V
I
A
B
RAW = RAB + RW  
Bottom scale (0xFF) (13)  
From 0x00 to 0x1F (14)  
Top scale (0x20) (15)  
W
V
O
32 D  
32  
R
AW (D) =  
RAW = RTS  
where:  
Figure 48. Potentiometer Mode Configuration  
Connecting Terminal A to 5 V and Terminal B to ground  
produces an output voltage at the Wiper W to Terminal B  
ranging from 0 V to 5 V. The general equation defining the  
output voltage at VW with respect to ground for any valid input  
voltage applied to Terminal A and Terminal B, is:  
D is the decimal equivalent of the binary code in the 5-/6-/7-bit  
RDAC register.  
R
R
R
AB is the end-to-end resistance.  
W is the wiper resistance.  
TS is the wiper resistance at top scale.  
R
WB(D)  
RAB  
RAW (D)  
RAB  
In the bottom-scale condition or top-scale condition, a finite  
total wiper resistance of 45 Ω is present. Regardless of which  
setting the part is operating in, take care to limit the current  
between Terminal A to Terminal B, Terminal W to Terminal A,  
and Terminal W to Terminal B, to the maximum continuous  
current of 6 mA or to the pulse current specified in Table 6.  
Otherwise, degradation or possible destruction of the internal  
switch contact can occur.  
VW (D) =  
×VA +  
×VB  
(16)  
where:  
R
R
WB(D) can be obtained from Equation 1 to Equation 6.  
AW(D) can be obtained from Equation 7 to Equation 15.  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the internal resistors, RAW and RWB, and not the  
absolute values. Therefore, the temperature drift reduces to  
5 ppm/°C.  
Calculating the Actual End-to-End Resistance  
The resistance tolerance is stored in the internal memory  
during factory testing. The actual end-to-end resistance can,  
therefore, be calculated, which is valuable for calibration,  
tolerance matching, and precision applications.  
The resistance tolerance in percentage is stored in fixed-point  
format, using an 8-bit sign magnitude binary. The data can be  
read back by executing Command 6 and setting Bit DB0 (A0).  
The MSB is the sign bit (0 = − and 1 = +) and the next four bits  
are the integer part, the fractional part is represented by the  
three LSBs, as shown in Table 11.  
Rev. 0 | Page 25 of 28  
 
 
 
AD5110/AD5112/AD5114  
Data Sheet  
of powering VA, VB, VW, and digital inputs is not important as  
long as they are powered after VDD and VLOGIC. Regardless of the  
power-up sequence and the ramp rates of the power supplies,  
once VLOGIC is powered, the power-on preset activates, which  
restores EEPROM values to the RDAC registers.  
TERMINAL VOLTAGE OPERATING RANGE  
The AD5110/AD5112/AD5114 are designed with internal  
ESD diodes for protection. These diodes also set the voltage  
boundary of the terminal operating voltages. Positive signals  
present on Terminal A, Terminal B, or Terminal W that  
exceed VDD are clamped by the forward-biased diode. There  
is no polarity constraint between VA, VW, and VB, but they  
cannot be higher than VDD or lower than GND.  
LAYOUT AND POWER SUPPLY BIASING  
It is always a good practice to use compact, minimum lead  
length layout design. The leads to the input should be as direct  
as possible with a minimum conductor length. Ground paths  
should have low resistance and low inductance. It is also good  
practice to bypass the power supplies with quality capacitors.  
Low equivalent series resistance (ESR) 1 μF to 10 μF tantalum  
or electrolytic capacitors should be applied at the supplies to  
minimize any transient disturbance and to filter low frequency  
ripple. Figure 50 illustrates the basic supply bypassing  
V
DD  
A
W
B
configuration for the AD5110/AD5112/AD5114.  
GND  
Figure 49. Maximum Terminal Voltages Set by VDD and GND  
AD5110/  
AD5112/  
AD5114  
POWER-UP SEQUENCE  
V
V
LOGIC  
V
V
LOGIC  
DD  
DD  
Because there are diodes to limit the voltage compliance at  
Terminal A, Terminal B, and Terminal W (Figure 49), it is  
important to power VDD first before applying any voltage  
to Terminal A, Terminal B, and Terminal W. Otherwise,  
the diode is forward-biased such that VDD is powered  
unintentionally. The ideal power-up sequence is GND,  
VDD, VLOGIC, digital inputs, and VA, VB, and VW. The order  
+
+
C2  
10µF  
C1  
0.1µF  
C3  
0.1µF  
C4  
10µF  
GND  
Figure 50. Power Supply Bypassing  
Rev. 0 | Page 26 of 28  
 
 
 
 
 
Data Sheet  
AD5110/AD5112/AD5114  
OUTLINE DIMENSIONS  
1.70  
1.60  
1.50  
2.00  
BSC SQ  
0.50 BSC  
8
5
PIN 1 INDEX  
EXPOSED  
PAD  
1.10  
1.00  
0.90  
AREA  
0.425  
0.350  
0.275  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.60  
0.55  
0.50  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 51. 8-Lead Frame Chip Scale Package[LFCSP_UD]  
2.00 mm × 2.00 mm Body, Ultra Thin, Dual Lead  
(CP-8-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
RAB (kΩ) Resolution Range  
Package  
Description  
Package  
Option  
Model1  
I2C Address  
0101111  
0101111  
0101100  
0101111  
0101111  
0101100  
0101111  
0101111  
0101100  
0101111  
0101111  
0101100  
0101111  
0101111  
0101100  
0101111  
0101111  
0101100  
0101111  
0101111  
0101100  
Branding  
4J  
4J  
4H  
4L  
4L  
AD5110BCPZ10-RL7  
AD5110BCPZ10-500R7  
AD5110BCPZ10-1-RL7  
AD5110BCPZ80-RL7  
AD5110BCPZ80-500R7  
AD5110BCPZ80-1-RL7  
AD5112BCPZ5-RL7  
AD5112BCPZ5-500R7  
AD5112BCPZ5-1-RL7  
AD5112BCPZ10-RL7  
AD5112BCPZ10-500R7  
AD5112BCPZ10-1-RL7  
AD5112BCPZ80-RL7  
AD5112BCPZ80-500R7  
AD5112BCPZ80-1-RL7  
AD5114BCPZ10-RL7  
AD5114BCPZ10-500R7  
AD5114BCPZ10-1-RL7  
AD5114BCPZ80-RL7  
AD5114BCPZ80-500R7  
AD5114BCPZ80-1-RL7  
EVAL-AD5110SDZ  
10  
10  
10  
80  
80  
80  
5
128  
128  
128  
128  
128  
128  
64  
64  
64  
64  
64  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_UD  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
8-Lead LFCSP_WD  
Evaluation Board  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
CP-8-10  
4K  
7P  
7P  
7N  
7L  
7L  
7K  
7R  
7R  
7Q  
81  
5
5
10  
10  
10  
80  
80  
80  
10  
10  
10  
80  
80  
80  
64  
64  
64  
64  
32  
32  
32  
32  
32  
32  
81  
80  
83  
83  
82  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 27 of 28  
 
 
 
AD5110/AD5112/AD5114  
NOTES  
Data Sheet  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09582-0-10/11(0)  
Rev. 0 | Page 28 of 28  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY