AD5160BRJ5-R2 [ADI]

256-Position SPI Compatible Digital Potentiometer; 256位SPI兼容数字电位计
AD5160BRJ5-R2
型号: AD5160BRJ5-R2
厂家: ADI    ADI
描述:

256-Position SPI Compatible Digital Potentiometer
256位SPI兼容数字电位计

数字电位计
文件: 总16页 (文件大小:775K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256-Position SPI Compatible  
Digital Potentiometer  
AD5160  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
DD  
256-position  
End-to-end resistance 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ  
Compact SOT-23-8 (2.9 mm × 3 mm) package  
SPI compatible interface  
A
CS  
SPI INTERFACE  
SDI  
Power-on preset to midscale  
Single supply 2.7 V to 5.5 V  
Low temperature coefficient 45 ppm/°C  
Low power, IDD = 8 µA  
W
B
CLK  
WIPER  
REGISTER  
Wide operating temperature –40°C to +125°C  
Evaluation board available  
GND  
Figure 1.  
APPLICATIONS  
Mechanical potentiometer replacement in new designs  
Transducer adjustment of pressure, temperature, position,  
chemical, and optical sensors  
RF amplifier biasing  
PIN CONFIGURATION  
1
2
3
4
W
8
7
6
5
A
B
CS  
SDI  
Automotive electronics adjustment  
Gain control and offset adjustment  
V
AD5160  
DD  
GND  
CLK  
TOP VIEW  
(Not to Scale)  
GENERAL OVERVIEW  
Figure 2.  
The AD5160 provides a compact 2.9 mm × 3 mm packaged  
solution for 256-position adjustment applications. These devices  
perform the same electronic adjustment function as mechanical  
potentiometers or variable resistors, with enhanced resolution,  
solid-state reliability, and superior low temperature coefficient  
performance.  
The wiper settings are controllable through an SPI compatible  
digital interface. The resistance between the wiper and either  
end point of the fixed resistor varies linearly with respect to the  
digital code transferred into the RDAC latch.  
Operating from a 2.7 V to 5.5 V power supply and consuming  
less than 5 µA allows for usage in portable battery-operated  
applications.  
Note:  
The terms digital potentiometer, VR, and RDAC are used interchangeably.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD5160  
TABLE OF CONTENTS  
Electrical Characteristics—5 kΩ Version ...................................... 3  
ESD Protection ........................................................................... 13  
Terminal Voltage Operating Range.......................................... 13  
Power-Up Sequence ................................................................... 13  
Layout and Power Supply Bypassing ....................................... 14  
Pin Configuration and Function Descriptions........................... 15  
Pin Configuration ...................................................................... 15  
Pin Function Descriptions ........................................................ 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
ESD Caution................................................................................ 16  
Electrical Characteristics—10 kΩ, 50 kΩ, 100 kΩ Versions ....... 4  
Timing Characteristics—5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ Versions 5  
Absolute Maximum Ratings ........................................................... 5  
Typical Performance Characteristics ............................................. 6  
Test Circuits..................................................................................... 10  
SPI Interface .................................................................................... 11  
Operation......................................................................................... 12  
Programming the Variable Resistor ......................................... 12  
Programming the Potentiometer Divider............................... 13  
SPI Compatible 3-Wire Serial Bus ........................................... 13  
REVISION HISTORY  
Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
AD5160  
ELECTRICAL CHARACTERISTICS—5 kΩ VERSION  
(VDD = 5 V 10%, or 3 V 10%ꢀ VA = +VDDꢀ VB = 0 Vꢀ –40°C < TA < +125°Cꢀ unless otherwise noted.)  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Wiper Resistance  
R-DNL  
R-INL  
∆RAB  
∆RAB/∆T  
RW  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
–1.5  
–4  
–30  
0.1  
0.ꢀ5 +4  
+1.5  
LSB  
LSB  
%
ppm/°C  
+30  
VAB = VDD, Wiper = no connect  
45  
50  
120  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (Specifications apply to all VRs)  
Resolution  
N
8
Bits  
Differential Nonlinearity4  
Integral Nonlinearity4  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
∆VW/∆T  
VWFSE  
VWZSE  
–1.5  
–1.5  
0.1  
0.6  
15  
–2.5  
+2  
+1.5  
+1.5  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Code = 0x80  
Code = 0xFF  
Code = 0x00  
–6  
0
0
+6  
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range5  
VA,B,W  
CA,B  
GND  
VDD  
V
pF  
Capacitance6 A, B  
f = 1 MHz, measured to GND,  
Code = 0x80  
f = 1 MHz, measured to GND,  
Code = 0x80  
45  
60  
Capacitance6 W  
CW  
pF  
Shutdown Supply Currentꢀ  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
IDD_SD  
ICM  
VDD = 5.5 V  
VA = VB = VDD/2  
0.01  
1
1
µA  
nA  
VIH  
VIL  
VIH  
VIL  
IIL  
2.4  
2.1  
V
V
V
V
µA  
pF  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance6  
0.8  
VDD = 3 V  
VDD = 3 V  
VIN = 0 V or 5 V  
0.6  
1
CIL  
5
POWER SUPPLIES  
Power Supply Range  
Supply Current  
Power Dissipation8  
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
5.5  
8
0.2  
V
µA  
mW  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V, VDD = 5 V  
3
Power Supply Sensitivity  
PSS  
∆VDD = +5 V 10%,  
Code = Midscale  
0.02  
0.05 %/%  
DYNAMIC CHARACTERISTICS6, 9  
Bandwidth –3dB  
BW_5K  
THDW  
tS  
RAB = 5 kΩ, Code = 0x80  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA= 5 V, VB = 0 V, 1 LSB error  
band  
1.2  
0.05  
1
MHz  
%
µs  
Total Harmonic Distortion  
VW Settling Time  
Resistor Noise Voltage Density  
eN_WB  
RWB = 2.5 kΩ, RS = 0  
6
nV/√Hz  
Rev. 0 | Page 3 of 16  
 
 
 
 
 
 
 
 
 
 
AD5160  
ELECTRICAL CHARACTERISTICS—10 kΩ, 50 kΩ, 100 kΩ VERSIONS  
(VDD = 5 V 10%, or 3 V 10%ꢀ VA = VDDꢀ VB = 0 Vꢀ –40°C < TA < +125°Cꢀ unless otherwise noted.)  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
R-DNL  
R-INL  
∆RAB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
VAB = VDD,  
Wiper = no connect  
–1  
–2  
–30  
0.1  
0.25  
+1  
+2  
+30  
LSB  
LSB  
%
∆RAB/∆T  
45  
50  
ppm/°C  
Wiper Resistance  
RW  
VDD = 5 V  
120  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (Specifications apply to all VRs)  
Resolution  
N
8
Bits  
Differential Nonlinearity4  
Integral Nonlinearity4  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
∆VW/∆T  
VWFSE  
VWZSE  
–1  
–1  
0.1  
0.3  
15  
–1  
+1  
+1  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Code = 0x80  
Code = 0xFF  
Code = 0x00  
–3  
0
0
3
Zero-Scale Error  
1
RESISTOR TERMINALS  
Voltage Range5  
VA,B,W  
CA,B  
GND  
VDD  
V
pF  
Capacitance6 A, B  
f = 1 MHz, measured to  
GND, Code = 0x80  
f = 1 MHz, measured to  
GND, Code = 0x80  
45  
60  
Capacitance6 W  
CW  
pF  
Shutdown Supply Currentꢀ  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
IDD_SD  
ICM  
VDD = 5.5 V  
VA = VB = VDD/2  
0.01  
1
1
µA  
nA  
VIH  
VIL  
VIH  
VIL  
IIL  
2.4  
2.1  
V
V
V
V
µA  
pF  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance6  
0.8  
VDD = 3 V  
VDD = 3 V  
VIN = 0 V or 5 V  
0.6  
1
CIL  
5
POWER SUPPLIES  
Power Supply Range  
Supply Current  
Power Dissipation8  
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
5.5  
8
0.2  
V
µA  
mW  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V,  
3
V
DD = 5 V  
Power Supply Sensitivity  
PSS  
∆VDD = +5 V 10%,  
Code = Midscale  
0.02  
0.05 %/%  
DYNAMIC CHARACTERISTICS6, 9  
Bandwidth –3dB  
BW  
RAB = 10 kΩ/50 kΩ/100 kΩ,  
Code = 0x80  
VA =1 V rms, VB = 0 V,  
f = 1 kHz, RAB = 10 kΩ  
VA = 5 V, VB = 0 V,  
1 LSB error band  
RWB = 5 kΩ, RS = 0  
600/100/40  
kHz  
%
Total Harmonic Distortion  
THDW  
tS  
0.05  
2
VW Settling Time (10 kΩ/50 kΩ/100 kΩ)  
Resistor Noise Voltage Density  
µs  
eN_WB  
9
nV/√Hz  
Rev. 0 | Page 4 of 16  
 
AD5160  
TIMING CHARACTERISTICS—5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ VERSIONS  
(VDD = +5V 10%, or +3V 10%ꢀ VA = VDDꢀ VB = 0 Vꢀ –40°C < TA < +125°Cꢀ unless otherwise noted.)  
Table 3.  
Parameter  
Symbol  
Conditions  
Min Typ1 Max Unit  
SPI INTERFACE TIMING CHARACTERISTICS6, 10 (Specifications Apply to All Parts)  
Clock Frequency  
Input Clock Pulsewidth  
Data Setup Time  
Data Hold Time  
fCLK  
tCH, tCL  
tDS  
25  
MHz  
ns  
ns  
Clock level high or low  
20  
5
5
tDH  
ns  
CS  
tCSS  
15  
40  
0
ns  
Setup Time  
CS  
tCSW  
tCSH0  
tCSH1  
tCS1  
ns  
High Pulsewidth  
CS  
CS  
ns  
CLK Fall to  
CLK Fall to  
CS  
Fall Hold Time  
Rise Hold Time  
0
ns  
10  
ns  
Rise to Clock Rise Setup  
NOTES  
1 Typical specifications represent average readings at +25°C and VDD = 5 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VAB = VDD, Wiper (VW) = no connect.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V.  
DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor terminals A, B, W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test.  
Measured at the A terminal. The A terminal is open circuited in shutdown mode.  
8 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
9 All dynamic characteristics use VDD = 5 V.  
10 See timing diagram for location of measured values. All input control voltages are specified with tR = tF = 2 ns (10% to 90% of 3 V) and timed from a voltage  
level of 1.5 V.  
ABSOLUTE MAXIMUM RATINGS1  
(TA = +25°C, unless otherwise noted.)  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
VDD to GND  
VA, VB, VW to GND  
Value  
–0.3 V to +ꢀ V  
VDD  
1
IMAX  
20 mA  
Digital Inputs and Output Voltage to GND 0 V to +ꢀ V  
Operating Temperature Range  
Maximum Junction Temperature (TJMAX  
Storage Temperature  
–40°C to +125°C  
)
150°C  
–65°C to +150°C  
300°C  
Lead Temperature (Soldering, 10 sec)  
Thermal Resistance2 θJA: MSOP-10  
230°C/W  
NOTES  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Package power dissipation = (TJMAX – TA)/θJA  
.
Rev. 0 | Page 5 of 16  
 
 
AD5160  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
1.0  
0.8  
5V  
3V  
–40°C  
+25°C  
+85°C  
+125°C  
0.8  
0.6  
0.6  
0.4  
0.2  
0.4  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 6. DNL vs. Code, VDD = 5 V  
Figure 3. R-INL vs. Code vs. Supply Voltages  
1.0  
0.8  
1.0  
0.8  
0.6  
5V  
3V  
5V  
3V  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 7. INL vs. Code vs. Supply Voltages  
Figure 4. R-DNL vs. Code vs. Supply Voltages  
1.0  
0.8  
1.0  
0.8  
_
40°C  
5V  
3V  
+25°C  
+85°C  
0.6  
0.6  
+125°C  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 5. INL vs. Code, VDD = 5 V  
Figure 8. DNL vs. Code vs. Supply Voltages  
Rev. 0 | Page 6 of 16  
 
AD5160  
1.0  
0.8  
2.5  
2.0  
1.5  
1.0  
0.5  
–40  
°C  
+25°C  
+85°C  
0.6  
+125°C  
0.4  
V
V
= 5.5V  
= 2.7V  
DD  
DD  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
–40  
0
40  
80  
120  
0
32  
64  
96  
128  
160  
192  
224  
256  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 12. Zero-Scale Error vs. Temperature  
Figure 9. R-INL vs. Code, VDD = 5 V  
1.0  
0.8  
10  
_
40°C  
+25°C  
+85°C  
0.6  
+125°C  
0.4  
0.2  
V
= 5.5V  
= 2.7V  
DD  
0
1
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
DD  
0.1  
0
32  
64  
96  
128  
160  
192  
224  
256  
–40  
0
40  
80  
120  
CODE (Decimal)  
TEMPERATURE (°C)  
Figure 10. R-DNL vs. Code, VDD = 5 V  
Figure 13. Supply Current vs. Temperature  
2.5  
2.0  
1.5  
1.0  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 2.7V  
= 5.5V  
DD  
DD  
V
= 5V  
DD  
0.5  
0
–40  
0
40  
80  
120  
–40  
0
40  
80  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Full-Scale Error vs. Temperature  
Figure 14. Shutdown Current vs. Temperature  
Rev. 0 | Page ꢀ of 16  
AD5160  
REF LEVEL  
0.000dB  
/DIV  
MARKER 510 634.725Hz  
MAG (A/R) –9.049dB  
6.000dB  
200  
150  
100  
50  
0
0x80  
–6  
0x40  
–12  
0x20  
0x10  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x08  
0x04  
0x02  
0x01  
0
–50  
0
1k  
START 1 000.000Hz  
10k  
100k  
1M  
32  
64  
96  
128  
160  
192  
224  
256  
STOP 1 000 000.000Hz  
CODE (Decimal)  
Figure 15. Rheostat Mode Tempco ∆RWB/∆T vs. Code  
Figure 18. Gain vs. Frequency vs. Code, RAB = 10 kΩ  
REF LEVEL  
0.000dB  
0
/DIV  
MARKER 100 885.289Hz  
MAG (A/R) –9.014dB  
6.000dB  
160  
140  
120  
100  
80  
0x80  
–6  
0x40  
0x20  
0x10  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x08  
60  
0x04  
0x02  
0x01  
40  
20  
0
–20  
0
32  
64  
96  
128  
160  
192  
224  
256  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
CODE (Decimal)  
STOP 1 000 000.000Hz  
Figure 16. Potentiometer Mode Tempco ∆VWB/∆T vs. Code  
Figure 19. Gain vs. Frequency vs. Code, RAB = 50 kΩ  
REF LEVEL  
0.000dB  
0
/DIV  
MARKER 54 089.173Hz  
MAG (A/R) –9.052dB  
REF LEVEL  
0.000dB  
0
/DIV  
MARKER 1 000 000.000Hz  
MAG (A/R) –8.918dB  
6.000dB  
6.000dB  
0x80  
–6  
0x80  
–6  
0x40  
0x20  
–12  
0x40  
0x20  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x10  
0x10  
0x08  
0x04  
0x02  
0x01  
0x08  
0x04  
0x02  
0x01  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
STOP 1 000 000.000Hz  
STOP 1 000 000.000Hz  
Figure 20. Gain vs. Frequency vs. Code, RAB = 100 kΩ  
Figure 17. Gain vs. Frequency vs. Code, RAB = 5 kΩ  
Rev. 0 | Page 8 of 16  
AD5160  
REF LEVEL  
–5.000dB  
/DIV  
0.500dB  
–5.5  
5k– 1.026 MHz  
10k– 511 MHz  
50k– 101 MHz  
100k– 54 MHz  
–6.0  
–6.5  
–7.0  
–7.5  
–8.0  
–8.5  
–9.0  
–9.5  
–10.0  
–10.5  
1
VW  
CLK  
R = 50kΩ  
R = 5kΩ  
2
R = 10kΩ  
R = 100kΩ  
Ch 1 200mV  
B
Ch 2 5.00 V  
B
M 100ns A CH2 3.00 V  
W
W
Figure 24. Digital Feedthrough  
10k  
START 1 000.000Hz  
100k  
1M  
10M  
STOP 1 000 000.000Hz  
Figure 21. –3 dB Bandwidth @ Code = 0x80  
60  
40  
20  
0
CODE = 0x80, V = V , V = 0V  
A
DD  
B
V
V
= 5V  
= 0V  
A
B
1
VW  
CS  
PSRR @ V = 3V DC ± 10% p-p AC  
DD  
2
Ch 1 100mV  
B
Ch 2 5.00 V  
B
M 200ns A CH1 152mV  
W
W
PSRR @ V = 5V DC ± 10% p-p AC  
DD  
Figure 25. Midscale Glitch, Code 0x80–0x7F  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 22. PSRR vs. Frequency  
900  
V
= 5V  
DD  
800  
700  
600  
500  
400  
300  
V
V
= 5V  
= 0V  
A
B
1
VW  
CS  
CODE = 0x55  
CODE = 0xFF  
2
200  
100  
0
Ch 1  
5.00V  
B
Ch 2 5.00 V  
B
M 200ns A CH1 3.00 V  
W
W
Figure 26. Large Signal Settling Time, Code 0xFF–0x00  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
Figure 23. IDD vs. Frequency  
Rev. 0 | Page 9 of 16  
AD5160  
TEST CIRCUITS  
Figure 27 to Figure 35 illustrate the test circuits that define the  
test conditions used in the product specification tables.  
5V  
OP279  
V
DUT  
A
V+ = V  
DD  
OUT  
N
V
1LSB = V+/2  
IN  
W
W
V+  
OFFSET  
GND  
B
A
DUT  
B
V
MS  
OFFSET  
BIAS  
Figure 27. Test Circuit for Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 32. Test Circuit for Noninverting Gain  
NO CONNECT  
DUT  
A
+15V  
I
W
W
A
V
DUT  
IN  
W
AD8610  
–15V  
V
OUT  
OFFSET  
GND  
B
B
V
MS  
2.5V  
Figure 33. Test Circuit for Gain vs. Frequency  
Figure 28. Test Circuit for Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
0.1V  
SW  
R
=
SW  
I
DUT  
DUT  
CODE = 0x00  
I
= V /R  
NOMINAL  
DD  
W
W
A
V
W
W
V
MS2  
B
0.1V  
I
SW  
B
V
R
= [V  
– V  
]/I  
MS2  
W
MS1  
W
MS1  
V
TO V  
DD  
SS  
Figure 29. Test Circuit for Wiper Resistance  
Figure 34. Test Circuit for Incremental ON Resistance  
V
A
NC  
V+ = V  
PSRR (dB) = 20 LOG  
10%  
DD  
V  
V  
MS  
DD  
(
)
V
DD  
A
I
V
A
B
%
CM  
V  
V  
DUT  
GND  
DD  
MS  
W
V+  
W
PSS (%/%) =  
%
DD  
B
V
SS  
V
V
MS  
CM  
NC NC = NO CONNECT  
Figure 30. Test Circuit for Power Supply Sensitivity (PSS, PSSR)  
Figure 35. Test Circuit for Common-Mode Leakage current  
A
B
DUT  
5V  
W
V
IN  
OP279  
V
OUT  
OFFSET  
GND  
OFFSET  
BIAS  
Figure 31. Test Circuit for Inverting Gain  
Rev. 0 | Page 10 of 16  
 
 
 
AD5160  
SPI INTERFACE  
1
0
1
Table 5. AD5160 Serial Data-Word Format  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDI  
CLK  
CS  
B7  
Dꢀ  
MSB  
2ꢀ  
B6 B5 B4 B3 B2 B1 B0  
D6 D5 D4 D3 D2 D1 D0  
0
1
RDAC REGISTER LOAD  
LSB  
20  
0
1
0
VOUT  
Figure 36. AD5160 SPI Interface Timing Diagram  
(VA = 5 V, VB = 0 V, VW = VOUT  
)
1
SDI  
(DATA IN)  
0
Dx  
Dx  
tDS  
tCH  
tCS1  
tCH  
1
CLK  
0
tCSH1  
tCL  
tCSHO  
tCSS  
1
CS  
tCSW  
tS  
0
VDD  
VOUT  
0
±1LSB  
Figure 37. SPI Interface Detailed Timing Diagram (VA = 5 V, VB = 0 V, VW = VOUT  
)
Rev. 0 | Page 11 of 16  
 
 
 
AD5160  
OPERATION  
The AD5160 is a 256-position digitally controlled variable  
resistor (VR) device.  
The general equation determining the digitally programmed  
output resistance between W and B is  
An internal power-on preset places the wiper at midscale  
during power-on, which simplifies the fault condition recovery  
at power-up.  
D
256  
RWB (D) =  
×RAB +RW  
(1)  
where D is the decimal equivalent of the binary code loaded in  
the 8-bit RDAC register, RAB is the end-to-end resistance, and  
RW is the wiper resistance contributed by the on resistance of  
the internal switch.  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
The nominal resistance of the RDAC between terminals A and  
B is available in 5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ. The final two  
or three digits of the part number determine the nominal  
resistance value, e.g., 10 kΩ = 10ꢀ 50 kΩ = 50. The nominal  
resistance (RAB) of the VR has 256 contact points accessed by  
the wiper terminal, plus the B terminal contact. The 8-bit data  
in the RDAC latch is decoded to select one of the 256 possible  
settings. Assume a 10 kΩ part is used, the wipers first  
connection starts at the B terminal for data 0x00. Since there is a  
60 Ω wiper contact resistance, such connection yields a  
minimum of 60 Ω resistance between terminals W and B. The  
second connection is the first tap point, which corresponds to  
99 Ω (RWB = RAB/256 + RW = 39 Ω + 60 Ω) for data 0x01.  
The third connection is the next tap point, representing 177 Ω  
(2 × 39 Ω + 60 Ω) for data 0x02, and so on. Each LSB data value  
increase moves the wiper up the resistor ladder until the last tap  
point is reached at 9961 Ω (RAB – 1 LSB + RW). Figure 38 shows  
a simplified diagram of the equivalent RDAC circuit where the  
last resistor string will not be accessedꢀ therefore, there is 1 LSB  
less of the nominal resistance at full scale in addition to the  
wiper resistance.  
In summary, if RAB = 10 kΩ and the A terminal is open  
circuited, the following output resistance RWB will be set for the  
indicated RDAC latch codes.  
Table 6. Codes and Corresponding RWB Resistance  
D (Dec.)  
RWB (Ω)  
9,961  
5,060  
99  
Output State  
255  
128  
1
Full Scale (RAB – 1 LSB + RW)  
Midscale  
1 LSB  
0
60  
Zero Scale (Wiper Contact Resistance)  
Note that in the zero-scale condition a finite wiper resistance of  
60 Ω is present. Care should be taken to limit the current flow  
between W and B in this state to a maximum pulse current of  
no more than 20 mA. Otherwise, degradation or possible  
destruction of the internal switch contact can occur.  
Similar to the mechanical potentiometer, the resistance of the  
RDAC between the wiper W and terminal A also produces a  
digitally controlled complementary resistance RWA. When these  
terminals are used, the B terminal can be opened. Setting the  
resistance value for RWA starts at a maximum value of resistance  
and decreases as the data loaded in the latch increases in value.  
The general equation for this operation is  
A
RS  
D7  
D6  
256 D  
256  
RS  
RWA (D) =  
×RAB + RW  
(2)  
D5  
D4  
D3  
D2  
RS  
D1  
For RAB = 10 kΩ and the B terminal open circuited, the  
following output resistance RWA will be set for the indicated  
RDAC latch codes.  
D0  
W
RDAC  
Table 7. Codes and Corresponding RWA Resistance  
LATCH  
RS  
AND  
B
D (Dec.)  
RWA (Ω)  
Output State  
Full Scale  
Midscale  
1 LSB  
DECODER  
255  
128  
1
99  
5,060  
9,961  
10,060  
Figure 38. AD5160 Equivalent RDAC Circuit  
0
Zero Scale  
Typical device to device matching is process lot dependent and  
may vary by up to 30%. Since the resistance element is  
processed in thin film technology, the change in RAB with  
temperature has a very low 45 ppm/°C temperature coefficient.  
Rev. 0 | Page 12 of 16  
 
 
AD5160  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
ESD PROTECTION  
All digital inputs are protected with a series input resistor and  
parallel Zener ESD structures shown in Figure 39 and Figure 40.  
This applies to the digital input pins SDI, CLK, and  
The digital potentiometer easily generates a voltage divider at  
wiper-to-B and wiper-to-A proportional to the input voltage at  
A-to-B. Unlike the polarity of VDD to GND, which must be  
positive, voltage across A-B, W-A, and W-B can be at either  
polarity.  
CS  
.
340Ω  
LOGIC  
V
SS  
If ignoring the effect of the wiper resistance for approximation,  
connecting the A terminal to 5 V and the B terminal to ground  
produces an output voltage at the wiper-to-B starting at 0 V up  
to 1 LSB less than 5 V. Each LSB of voltage is equal to the  
voltage applied across terminal AB divided by the 256 positions  
of the potentiometer divider. The general equation defining the  
output voltage at VW with respect to ground for any valid input  
voltage applied to terminals A and B is  
Figure 39. ESD Protection of Digital Pins  
A,B,W  
V
SS  
Figure 40. ESD Protection of Resistor Terminals  
D
256  
256 D  
256  
VW (D) =  
VA  
+
VB  
(3)  
TERMINAL VOLTAGE OPERATING RANGE  
The AD5160 VDD and GND power supply defines the boundary  
conditions for proper 3-terminal digital potentiometer  
operation. Supply signals present on terminals A, B, and W that  
exceed VDD or GND will be clamped by the internal forward  
biased diodes (see Figure 41).  
For a more accurate calculation, which includes the effect of  
wiper resistance, VW, can be found as  
RWB (D)  
256  
RWA (D)  
256  
VW (D) =  
VA  
+
VB  
(4)  
V
DD  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the internal resistors RWA and RWB and not the  
absolute values. Therefore, the temperature drift reduces to  
15 ppm/°C.  
A
W
B
V
SS  
Figure 41. Maximum Terminal Voltages Set by VDD and VSS  
SPI COMPATIBLE 3-WIRE SERIAL BUS  
The AD5160 contains a 3-wire SPI compatible digital interface  
CS  
(SDI, , and CLK). The 8-bit serial word must be loaded MSB  
POWER-UP SEQUENCE  
first. The format of the word is shown in Table 5.  
Since the ESD protection diodes limit the voltage compliance at  
terminals A, B, and W (see Figure 41), it is important to power  
VDD/GND before applying any voltage to terminals A, B, and Wꢀ  
otherwise, the diode will be forward biased such that VDD will be  
powered unintentionally and may affect the rest of the users  
circuit. The ideal power-up sequence is in the following order:  
GND, VDD, digital inputs, and then VA/B/W. The relative order of  
powering VA, VB, VW, and the digital inputs is not important as  
long as they are powered after VDD/GND.  
The positive-edge sensitive CLK input requires clean transitions  
to avoid clocking incorrect data into the serial input register.  
Standard logic families work well. If mechanical switches are  
used for product evaluation, they should be debounced by a  
CS  
flip-flop or other suitable means. When  
is low, the clock  
loads data into the serial register on each positive clock edge  
(see Figure 36).  
The data setup and data hold times in the specification table  
determine the valid timing requirements. The AD5160 uses an  
8-bit serial input data register word that is transferred to the  
CS  
internal RDAC register when the  
Extra MSB bits are ignored.  
line returns to logic high.  
Rev. 0 | Page 13 of 16  
 
 
 
 
AD5160  
LAYOUT AND POWER SUPPLY BYPASSING  
It is a good practice to employ compact, minimum lead length  
layout design. The leads to the inputs should be as direct as  
possible with a minimum conductor length. Ground paths  
should have low resistance and low inductance.  
V
V
DD  
DD  
+
10  
C3  
C1  
µ
F
0.1µF  
AD5160  
Similarly, it is also a good practice to bypass the power supplies  
with quality capacitors for optimum stability. Supply leads to the  
device should be bypassed with disc or chip ceramic capacitors  
of 0.01 µF to 0.1 µF. Low ESR 1 µF to 10 µF tantalum or  
electrolytic capacitors should also be applied at the supplies to  
minimize any transient disturbance and low frequency ripple  
(see Figure 42). Note that the digital ground should also be  
joined remotely to the analog ground at one point to minimize  
the ground bounce.  
GND  
Figure 42. Power Supply Bypassing  
Rev. 0 | Page 14 of 16  
 
 
AD5160  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN CONFIGURATION  
PIN FUNCTION DESCRIPTIONS  
Table 8.  
Pin Name Description  
1
2
3
4
W
8
7
6
5
A
B
CS  
SDI  
V
AD5160  
DD  
1
2
3
4
5
6
W
W Terminal.  
GND  
CLK  
TOP VIEW  
(Not to Scale)  
VDD  
GND  
CLK  
SDI  
CS  
Positive Power Supply.  
Digital Ground.  
Serial Clock Input. Positive edge triggered.  
Serial Data Input.  
Figure 43.  
CS  
Chip Select Input, Active Low. When returns  
high, data will be loaded into the DAC register.  
8
B
B Terminal.  
A Terminal.  
A
Rev. 0 | Page 15 of 16  
 
AD5160  
OUTLINE DIMENSIONS  
2.90 BSC  
8
1
7
2
6
3
5
4
1.60 BSC  
PIN 1  
2.80 BSC  
0.65 BSC  
1.95  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
0.60  
0.45  
0.30  
8°  
4°  
0°  
0.38  
0.22  
0.15 MAX  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178BA  
Figure 44. 8-Lead Small Outline Transistor Package [SOT-23]  
(RJ-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
RAB (Ω)  
Temperature  
Package Description  
SOT-23-8  
Package Option  
Branding  
D08  
AD5160BRJ5-R2  
AD5160BRJ5-RLꢀ  
AD5160BRJ10-R2  
AD5160BRJ10-RLꢀ  
AD5160BRJ50-R2  
AD5160BRJ50-RLꢀ  
AD5160BRJ100-R2  
AD5160BRJ100-RLꢀ  
AD5160EVAL  
5k  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
RJ-8  
5k  
SOT-23-8  
D08  
10k  
SOT-23-8  
D09  
10k  
SOT-23-8  
D09  
50k  
SOT-23-8  
D0A  
50k  
SOT-23-8  
D0A  
100k  
100k  
See Note 1  
SOT-23-8  
D0B  
SOT-23-8  
D0B  
Evaluation Board  
1The evaluation board is shipped with the 10 kΩ RAB resistor option; however, the board is compatible with all available resistor value options.  
The AD5160 contains 2532 transistors. Die size: 30.7 mil × 76.8 mil = 2,358 sq. mil.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
© 2003 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective companies.  
C03434–0–5/03(0)  
Rev. 0 | Page 16 of 16  
 

相关型号:

AD5160BRJ5-RL7

256-Position SPI Compatible Digital Potentiometer
ADI

AD5160BRJ50

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJ50-R2

256-Position SPI Compatible Digital Potentiometer
ADI

AD5160BRJ50-RL7

256-Position SPI Compatible Digital Potentiometer
ADI

AD5160BRJZ10-R2

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ10-R22

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ10-RL7

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ10-RL72

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ100-R2

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ100-R22

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ100-RL7

256-Position SPI-Compatible Digital Potentiometer
ADI

AD5160BRJZ100-RL72

256-Position SPI-Compatible Digital Potentiometer
ADI