AD5161BRM100 [ADI]

256-Position SPI/I2C Selectable Digital Potentiometer; 256位SPI / I2C可选的数字电位计
AD5161BRM100
型号: AD5161BRM100
厂家: ADI    ADI
描述:

256-Position SPI/I2C Selectable Digital Potentiometer
256位SPI / I2C可选的数字电位计

数字电位计
文件: 总20页 (文件大小:927K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256-Position SPI/I2C Selectable  
Digital Potentiometer  
AD5161  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
SDO/NC  
DD  
256-position  
SDI/SDA  
CLK/SCL  
End-to-end resistance 5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ  
Compact MSOP-10 (3 mm × 4.9 mm) package  
Pin selectable SPI/I2C compatible interface  
Extra package address decode pin AD0  
Full read/write of wiper register  
A
2
SPI OR I C  
INTERFACE  
DIS  
W
B
CS/AD0  
Power-on preset to midscale  
Single supply 2.7 V to 5.5 V  
WIPER  
REGISTER  
Low temperature coefficient 45 ppm/°C  
Low power, IDD = 8 µA  
GND  
Wide operating temperature –40°C to +125°C  
SDO output allows multiple device daisy-chaining  
Evaluation board available  
Figure 1.  
APPLICATIONS  
Mechanical potentiometer replacement in new designs  
PIN CONFIGURATION  
Transducer adjustment of pressure, temperature, position,  
chemical, and optical sensors  
RF amplifier biasing  
Automotive electronics adjustment  
Gain control and offset adjustment  
1
2
3
4
5
10  
9
8
7
6
A
B
W
V
DIS  
GND  
CLK/SCL  
AD5161  
DD  
CS/ADO  
SDO/NC  
SDI/SDA  
TOP VIEW  
(Not to Scale)  
Figure 2.  
GENERAL OVERVIEW  
The AD5161 provides a compact 3 mm × 4.9 mm packaged  
solution for 256-position adjustment applications. These devices  
perform the same electronic adjustment function as mechanical  
potentiometers or variable resistors, with enhanced resolution,  
solid-state reliability, and superior low temperature coefficient  
performance.  
The wiper settings are controllable through a pin selectable SPI  
or I2C compatible digital interface, which can also be used to  
read back the wiper register content. When the SPI mode is  
used, the device can be daisy-chained (SDO to SDI), allowing  
several parts to share the same control lines. In the I2C mode,  
address pin AD0 can be used to place up to two devices on the  
same bus. In this same mode, command bits are available to  
reset the wiper position to midscale or to shut down the device  
into a state of zero power consumption.  
Note:  
The terms digital potentiometer, VR, and RDAC are used interchangeably.  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed  
Associated Companies conveys a license for the purchaser under the Philips I2C  
Patent Rights to use these components in an I2C system, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Operating from a 2.7 V to 5.5 V power supply and consuming  
less than 5 µA allows for usage in portable battery-operated  
applications.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD5161  
TABLE OF CONTENTS  
Electrical Characteristics—5 kΩ Version ...................................... 3  
Level Shifting for Bidirectional Interface................................ 17  
ESD Protection ........................................................................... 17  
Terminal Voltage Operating Range.......................................... 17  
Power-Up Sequence ................................................................... 17  
Layout and Power Supply Bypassing ....................................... 17  
Pin Configuration and Function Descriptions........................... 18  
Pin Configuration ...................................................................... 18  
Pin Function Descriptions ........................................................ 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
ESD Caution................................................................................ 19  
Electrical Characteristics—10 kΩ, 50 kΩ, 100 kΩ Versions ....... 4  
Timing Characteristics—5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ Versions 5  
Absolute Maximum Ratings1 .......................................................... 6  
Typical Performance Characteristics ............................................. 7  
Test Circuits..................................................................................... 11  
SPI Interface .................................................................................... 12  
I2C Interface..................................................................................... 13  
Operation......................................................................................... 14  
Programming the Variable Resistor ......................................... 14  
Programming the Potentiometer Divider............................... 15  
Pin Selectable Digital Interface................................................. 15  
REVISION HISTORY  
Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
AD5161  
ELECTRICAL CHARACTERISTICS—5 kΩ VERSION  
(VDD = 5 V 10%, or 3 V 10%ꢀ VA = +VDDꢀ VB = 0 Vꢀ –40°C < TA < +125°Cꢀ unless otherwise noted.)  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Wiper Resistance  
R-DNL  
R-INL  
∆RAB  
∆RAB/∆T  
RW  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
–1.5  
–4  
–30  
0.1  
0.ꢀ5 +4  
+1.5  
LSB  
LSB  
%
ppm/°C  
+30  
VAB = VDD, Wiper = no connect  
45  
50  
120  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (Specifications apply to all VRs)  
Resolution  
N
8
Bits  
Differential Nonlinearity4  
Integral Nonlinearity4  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
∆VW/∆T  
VWFSE  
VWZSE  
–1.5  
–1.5  
0.1  
0.ꢁ  
15  
–2.5  
+2  
+1.5  
+1.5  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Code = 0x80  
Code = 0xFF  
Code = 0x00  
–ꢁ  
0
0
+ꢁ  
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range5  
VA,B,W  
CA,B  
GND  
VDD  
V
pF  
CapacitanceA, B  
f = 1 MHz, measured to GND,  
Code = 0x80  
f = 1 MHz, measured to GND,  
Code = 0x80  
45  
ꢁ0  
CapacitanceW  
CW  
pF  
Shutdown Supply Currentꢀ  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
IDD_SD  
ICM  
VDD = 5.5 V  
VA = VB = VDD/2  
0.01  
1
1
µA  
nA  
VIH  
VIL  
VIH  
VIL  
IIL  
2.4  
2.1  
V
V
V
V
µA  
pF  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitanceꢁ  
0.8  
VDD = 3 V  
VDD = 3 V  
VIN = 0 V or 5 V  
0.ꢁ  
1
CIL  
5
POWER SUPPLIES  
Power Supply Range  
Supply Current  
Power Dissipation8  
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
5.5  
8
0.2  
V
µA  
mW  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V, VDD = 5 V  
3
Power Supply Sensitivity  
PSS  
∆VDD = +5 V 10%,  
Code = Midscale  
0.02  
0.05 %/%  
DYNAMIC CHARACTERISTICSꢁ, 9  
Bandwidth –3dB  
BW_5K  
THDW  
tS  
RAB = 5 kΩ, Code = 0x80  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA= 5 V, VB = 0 V, 1 LSB error  
band  
1.2  
0.05  
1
MHz  
%
µs  
Total Harmonic Distortion  
VW Settling Time  
Resistor Noise Voltage Density  
eN_WB  
RWB = 2.5 kΩ, RS = 0  
nV/√Hz  
Rev. 0 | Page 3 of 20  
 
 
 
 
 
 
 
 
 
 
AD5161  
ELECTRICAL CHARACTERISTICS—10 kΩ, 50 kΩ, 100 kΩ VERSIONS  
(VDD = 5 V 10%, or 3 V 10%ꢀ VA = VDDꢀ VB = 0 Vꢀ –40°C < TA < +125°Cꢀ unless otherwise noted.)  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
R-DNL  
R-INL  
∆RAB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
VAB = VDD,  
Wiper = no connect  
–1  
–2  
–30  
0.1  
0.25  
+1  
+2  
+30  
LSB  
LSB  
%
∆RAB/∆T  
45  
50  
ppm/°C  
Wiper Resistance  
RW  
VDD = 5 V  
120  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (Specifications apply to all VRs)  
Resolution  
N
8
Bits  
Differential Nonlinearity4  
Integral Nonlinearity4  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
∆VW/∆T  
VWFSE  
VWZSE  
–1  
–1  
0.1  
0.3  
15  
–1  
+1  
+1  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Code = 0x80  
Code = 0xFF  
Code = 0x00  
–3  
0
0
3
Zero-Scale Error  
1
RESISTOR TERMINALS  
Voltage Range5  
VA,B,W  
CA,B  
GND  
VDD  
V
pF  
CapacitanceA, B  
f = 1 MHz, measured to  
GND, Code = 0x80  
f = 1 MHz, measured to  
GND, Code = 0x80  
45  
ꢁ0  
CapacitanceW  
CW  
pF  
Shutdown Supply Currentꢀ  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
IDD_SD  
ICM  
VDD = 5.5 V  
VA = VB = VDD/2  
0.01  
1
1
µA  
nA  
VIH  
VIL  
VIH  
VIL  
IIL  
2.4  
2.1  
V
V
V
V
µA  
pF  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitanceꢁ  
0.8  
VDD = 3 V  
VDD = 3 V  
VIN = 0 V or 5 V  
0.ꢁ  
1
CIL  
5
POWER SUPPLIES  
Power Supply Range  
Supply Current  
Power Dissipation8  
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
5.5  
8
0.2  
V
µA  
mW  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V,  
3
V
DD = 5 V  
Power Supply Sensitivity  
PSS  
∆VDD = +5 V 10%,  
Code = Midscale  
0.02  
0.05 %/%  
DYNAMIC CHARACTERISTICSꢁ, 9  
Bandwidth –3dB  
BW  
RAB = 10 kΩ/50 kΩ/100 kΩ,  
Code = 0x80  
VA =1 V rms, VB = 0 V,  
f = 1 kHz, RAB = 10 kΩ  
VA = 5 V, VB = 0 V,  
1 LSB error band  
RWB = 5 kΩ, RS = 0  
ꢁ00/100/40  
kHz  
%
Total Harmonic Distortion  
THDW  
tS  
0.05  
2
VW Settling Time (10 kΩ/50 kΩ/100 kΩ)  
Resistor Noise Voltage Density  
µs  
eN_WB  
9
nV/√Hz  
Rev. 0 | Page 4 of 20  
 
AD5161  
TIMING CHARACTERISTICS—5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ VERSIONS  
(VDD = +5V 10%, or +3V 10%ꢀ VA = VDDꢀ VB = 0 Vꢀ –40°C < TA < +125°Cꢀ unless otherwise noted.)  
Table 3.  
Parameter  
Symbol  
Conditions  
Min Typ1 Max Unit  
SPI INTERFACE TIMING CHARACTERISTICSꢁ, 10 (Specifications Apply to All Parts)  
Clock Frequency  
Input Clock Pulsewidth  
Data Setup Time  
Data Hold Time  
fCLK  
tCH, tCL  
tDS  
25  
MHz  
ns  
ns  
Clock level high or low  
20  
5
5
tDH  
ns  
CS  
tCSS  
15  
40  
0
ns  
Setup Time  
CS  
tCSW  
tCSH0  
tCSH1  
tCS1  
ns  
High Pulsewidth  
CS  
CS  
ns  
CLK Fall to  
CLK Fall to  
CS  
Fall Hold Time  
Rise Hold Time  
0
ns  
10  
ns  
Rise to Clock Rise Setup  
I2C INTERFACE TIMING CHARACTERISTICSꢁ, 11 (Specifications Apply to All Parts)  
SCL Clock Frequency  
tBUF Bus Free Time between STOP and START  
tHD;STA Hold Time (Repeated START)  
fSCL  
t1  
t2  
400  
kHz  
µs  
µs  
1.3  
0.ꢁ  
After this period, the first clock pulse is  
generated.  
tLOW Low Period of SCL Clock  
tHIGH High Period of SCL Clock  
tSU;STA Setup Time for Repeated START Condition  
tHD;DAT Data Hold Time  
tSU;DAT Data Setup Time  
tF Fall Time of Both SDA and SCL Signals  
tR Rise Time of Both SDA and SCL Signals  
tSU;STO Setup Time for STOP Condition  
t3  
t4  
t5  
tꢁ  
tꢀ  
t8  
t9  
t10  
1.3  
0.ꢁ  
0.ꢁ  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
50  
0.9  
100  
0.ꢁ  
300  
300  
NOTES  
1 Typical specifications represent average readings at +25°C and VDD = 5 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VAB = VDD, Wiper (VW) = no connect.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V.  
DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions.  
5 Resistor terminals A, B, W have no limitations on polarity with respect to each other.  
Guaranteed by design and not subject to production test.  
Measured at the A terminal. The A terminal is open circuited in shutdown mode.  
8 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
9 All dynamic characteristics use VDD = 5 V.  
10 See timing diagram for location of measured values. All input control voltages are specified with tR = tF = 2 ns (10% to 90% of 3 V) and timed from a voltage  
level of 1.5 V.  
11 See timing diagrams for locations of measured values.  
Rev. 0 | Page 5 of 20  
 
 
 
AD5161  
ABSOLUTE MAXIMUM RATINGS1  
(TA = +25°C, unless otherwise noted.)  
Table 4  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Value  
VDD to GND  
–0.3 V to +ꢀ V  
VDD  
VA, VB, VW to GND  
1
IMAX  
20 mA  
Digital Inputs and Output Voltage to GND 0 V to +ꢀ V  
Operating Temperature Range  
Maximum Junction Temperature (TJMAX  
Storage Temperature  
–40°C to +125°C  
)
150°C  
–ꢁ5°C to +150°C  
300°C  
Lead Temperature (Soldering, 10 sec)  
Thermal Resistance2 θJA: MSOP-10  
200°C/W  
NOTES  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Package power dissipation = (TJMAX – TA)/θJA  
.
Rev. 0 | Page ꢁ of 20  
 
AD5161  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
1.0  
0.8  
5V  
3V  
–40°C  
+25°C  
+85°C  
+125°C  
0.8  
0.6  
0.6  
0.4  
0.2  
0.4  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 6. DNL vs. Code, VDD = 5 V  
Figure 3. R-INL vs. Code vs. Supply Voltages  
1.0  
0.8  
1.0  
0.8  
5V  
3V  
5V  
3V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 7. INL vs. Code vs. Supply Voltages  
Figure 4. R-DNL vs. Code vs. Supply Voltages  
1.0  
0.8  
1.0  
0.8  
_
40°C  
5V  
3V  
+25°C  
+85°C  
0.6  
0.6  
+125°C  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (Decimal)  
CODE (Decimal)  
Figure 5. INL vs. Code, VDD = 5 V  
Figure 8. DNL vs. Code vs. Supply Voltages  
Rev. 0 | Page ꢀ of 20  
 
AD5161  
1.0  
0.8  
2.5  
2.0  
1.5  
1.0  
0.5  
–40  
°C  
+25°C  
+85°C  
0.6  
+125°C  
0.4  
V
V
= 5.5V  
= 2.7V  
DD  
DD  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
0
–1.0  
0
–40  
0
40  
80  
120  
32  
64  
96  
128  
160  
192  
224  
256  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 12. Zero-Scale Error vs. Temperature  
Figure 9. R-INL vs. Code, VDD = 5 V  
1.0  
0.8  
10  
_
40°C  
+25°C  
+85°C  
0.6  
+125°C  
0.4  
0.2  
V
= 5.5V  
= 2.7V  
DD  
0
1
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
DD  
0.1  
0
32  
64  
96  
128  
160  
192  
224  
256  
–40  
0
40  
80  
120  
CODE (Decimal)  
TEMPERATURE (°C)  
Figure 10. R-DNL vs. Code, VDD = 5 V  
Figure 13. Supply Current vs. Temperature  
2.5  
2.0  
1.5  
1.0  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 2.7V  
DD  
DD  
= 5.5V  
V
= 5V  
DD  
0.5  
0
–40  
0
40  
80  
120  
–40  
0
40  
80  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Full-Scale Error vs. Temperature  
Figure 14. Shutdown Current vs. Temperature  
Rev. 0 | Page 8 of 20  
AD5161  
REF LEVEL  
0.000dB  
0
/DIV  
MARKER 510 634.725Hz  
MAG (A/R) –9.049dB  
6.000dB  
200  
0x80  
–6  
0x40  
–12  
150  
100  
50  
0x20  
0x10  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x08  
0x04  
0x02  
0x01  
0
–50  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
0
32  
64  
96  
128  
160  
192  
224  
256  
STOP 1 000 000.000Hz  
CODE (Decimal)  
Figure 15. Rheostat Mode Tempco ∆RWB/∆T vs. Code  
Figure 18. Gain vs. Frequency vs. Code, RAB = 10 kΩ  
REF LEVEL  
0.000dB  
0
/DIV  
MARKER 100 885.289Hz  
MAG (A/R) –9.014dB  
6.000dB  
160  
140  
120  
100  
80  
0x80  
–6  
0x40  
0x20  
0x10  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x08  
60  
0x04  
0x02  
0x01  
40  
20  
0
–20  
0
32  
64  
96  
128  
160  
192  
224  
256  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
CODE (Decimal)  
STOP 1 000 000.000Hz  
Figure 16. Potentiometer Mode Tempco ∆VWB/∆T vs. Code  
Figure 19. Gain vs. Frequency vs. Code, RAB = 50 kΩ  
REF LEVEL  
0.000dB  
0
/DIV  
MARKER 54 089.173Hz  
MAG (A/R) –9.052dB  
REF LEVEL  
0.000dB  
0
/DIV  
MARKER 1 000 000.000Hz  
MAG (A/R) –8.918dB  
6.000dB  
6.000dB  
0x80  
–6  
0x80  
–6  
0x40  
0x20  
–12  
0x40  
0x20  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x10  
0x10  
0x08  
0x04  
0x02  
0x01  
0x08  
0x04  
0x02  
0x01  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
1k  
START 1 000.000Hz  
10k  
100k  
1M  
STOP 1 000 000.000Hz  
STOP 1 000 000.000Hz  
Figure 20. Gain vs. Frequency vs. Code, RAB = 100 kΩ  
Figure 17. Gain vs. Frequency vs. Code, RAB = 5 kΩ  
Rev. 0 | Page 9 of 20  
AD5161  
REF LEVEL  
–5.000dB  
/DIV  
0.500dB  
–5.5  
5k– 1.026 MHz  
10k– 511 MHz  
50k– 101 MHz  
100k– 54 MHz  
–6.0  
–6.5  
–7.0  
–7.5  
–8.0  
–8.5  
–9.0  
–9.5  
–10.0  
–10.5  
1
VW  
CLK  
R = 50kΩ  
R = 5kΩ  
2
R = 10kΩ  
R = 100kΩ  
Ch 1 200mV  
B
Ch 2 5.00 V  
B
M 100ns A CH2 3.00 V  
W
W
Figure 24. Digital Feedthrough  
10k  
START 1 000.000Hz  
100k  
1M  
10M  
STOP 1 000 000.000Hz  
Figure 21. –3 dB Bandwidth @ Code = 0x80  
60  
40  
20  
0
CODE = 0x80, V = V , V = 0V  
A
DD  
B
V
V
= 5V  
= 0V  
A
B
1
VW  
CS  
PSRR @ V = 3V DC ± 10% p-p AC  
DD  
2
Ch 1 100mV  
B
Ch 2 5.00 V  
B
M 200ns A CH1 152mV  
W
W
PSRR @ V = 5V DC ± 10% p-p AC  
DD  
Figure 25. Midscale Glitch, Code 0x80–0x7F  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 22. PSRR vs. Frequency  
900  
V
= 5V  
DD  
800  
700  
600  
500  
400  
300  
V
V
= 5V  
= 0V  
A
B
1
VW  
CS  
CODE = 0x55  
CODE = 0xFF  
2
200  
100  
0
Ch 1  
5.00V  
B
Ch 2 5.00 V  
B
M 200ns A CH1 3.00 V  
W
W
Figure 26. Large Signal Settling Time, Code 0xFF–0x00  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
Figure 23. IDD vs. Frequency  
Rev. 0 | Page 10 of 20  
AD5161  
TEST CIRCUITS  
Figure 27 to Figure 35 illustrate the test circuits that define the  
test conditions used in the product specification tables.  
5V  
OP279  
V
DUT  
A
V+ = V  
DD  
OUT  
N
V
1LSB = V+/2  
IN  
W
W
V+  
OFFSET  
GND  
B
A
DUT  
B
V
MS  
OFFSET  
BIAS  
Figure 27. Test Circuit for Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 32. Test Circuit for Noninverting Gain  
NO CONNECT  
DUT  
A
+15V  
I
W
W
A
V
DUT  
IN  
W
AD8610  
–15V  
V
OUT  
OFFSET  
GND  
B
B
V
MS  
2.5V  
Figure 33. Test Circuit for Gain vs. Frequency  
Figure 28. Test Circuit for Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
0.1V  
SW  
R
=
SW  
I
DUT  
DUT  
CODE = 0x00  
I
= V /R  
NOMINAL  
DD  
W
W
A
V
W
W
V
MS2  
B
0.1V  
I
SW  
B
V
R
= [V  
– V  
]/I  
MS2  
W
MS1  
W
MS1  
V
TO V  
DD  
SS  
Figure 29. Test Circuit for Wiper Resistance  
Figure 34. Test Circuit for Incremental ON Resistance  
V
A
NC  
V+ = V  
PSRR (dB) = 20 LOG  
10%  
DD  
V  
V  
MS  
DD  
(
)
V
DD  
A
I
V
A
B
%
CM  
V  
V  
DUT  
GND  
DD  
MS  
W
V+  
W
PSS (%/%) =  
%
DD  
B
V
SS  
V
V
MS  
CM  
NC NC = NO CONNECT  
Figure 30. Test Circuit for Power Supply Sensitivity (PSS, PSSR)  
Figure 35. Test Circuit for Common-Mode Leakage current  
A
B
DUT  
5V  
W
V
IN  
OP279  
V
OUT  
OFFSET  
GND  
OFFSET  
BIAS  
Figure 31. Test Circuit for Inverting Gain  
Rev. 0 | Page 11 of 20  
 
 
 
AD5161  
SPI INTERFACE  
1
0
1
Table 5. AD5161 Serial Data-Word Format  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDI  
CLK  
CS  
B7  
Dꢀ  
MSB  
2ꢀ  
B6 B5 B4 B3 B2 B1 B0  
Dꢁ D5 D4 D3 D2 D1 D0  
0
1
RDAC REGISTER LOAD  
LSB  
20  
0
1
0
VOUT  
Figure 36. AD5161 SPI Interface Timing Diagram  
(VA = 5 V, VB = 0 V, VW = VOUT  
)
1
SDI  
(DATA IN)  
0
Dx  
Dx  
tDS  
tCH  
tCS1  
tCH  
1
CLK  
0
tCSH1  
tCL  
tCSHO  
tCSS  
1
CS  
tCSW  
tS  
0
VDD  
VOUT  
0
±1LSB  
Figure 37. SPI Interface Detailed Timing Diagram (VA = 5 V, VB = 0 V, VW = VOUT  
)
Rev. 0 | Page 12 of 20  
 
 
 
AD5161  
I2C INTERFACE  
Table 6. Write Mode  
S
0
1
0
1
1
0
AD0 W  
A
X
R
RS SD  
X
X
X
X
X
A
Dꢀ Dꢁ D5 D4 D3 D2 D1 D0  
Data Byte  
A
P
Slave Address Byte  
Instruction Byte  
Table 7. Read Mode  
S
0
1
0
1
1
0
AD0  
A
Dꢀ Dꢁ D5 D4 D3 D2 D1 D0  
Data Byte  
A
P
Slave Address Byte  
S = Start Condition  
P = Stop Condition  
A = Acknowledge  
X = Don’t Care  
R = Read  
RS = Reset wiper to Midscale 80H  
SD = Shutdown connects wiper to B terminal and open  
circuits A terminal. It does not change contents of wiper  
register.  
W
= Write  
D7, D6, D5, D4, D3, D2, D1, D0 = Data Bits  
t2  
t8  
t9  
SCL  
SDA  
t6  
t7  
t5  
t10  
t2  
t3  
t4  
t9  
t8  
t1  
P
S
S
P
Figure 38. I2C Interface Detailed Timing Diagram  
1
9
1
9
1
9
SCL  
X
RS  
SD  
X
X
X
X
X
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
1
1
0
AD0 R/W  
SDA  
ACK BY  
AD5161  
ACK BY  
AD5161  
ACK BY  
AD5161  
FRAME 1  
FRAME 2  
INSTRUCTION BYTE  
FRAME 3  
STOP BY  
START BY  
MASTER  
SLAVE ADDRESS BYTE  
DATA BYTE  
MASTER  
Figure 39. Writing to the RDAC Register  
1
9
1
9
SCL  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
1
1
0
AD0 R/W  
SDA  
ACK BY  
AD5161  
NO ACK  
BY MASTER  
FRAME 1  
FRAME 2  
RDAC REGISTER  
START BY  
MASTER  
STOP BY  
MASTER  
SLAVE ADDRESS BYTE  
Figure 40. Reading Data from a Previously Selected RDAC Register in Write Mode  
Rev. 0 | Page 13 of 20  
 
 
 
 
 
AD5161  
OPERATION  
The AD5161 is a 256-position digitally controlled variable  
resistor (VR) device.  
The general equation determining the digitally programmed  
output resistance between W and B is  
An internal power-on preset places the wiper at midscale  
during power-on, which simplifies the fault condition recovery  
at power-up.  
D
256  
RWB (D) =  
×RAB +RW  
(1)  
where D is the decimal equivalent of the binary code loaded in  
the 8-bit RDAC register, RAB is the end-to-end resistance, and  
RW is the wiper resistance contributed by the on resistance of  
the internal switch.  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
The nominal resistance of the RDAC between terminals A and  
B is available in 5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ. The final two  
or three digits of the part number determine the nominal  
resistance value, e.g., 10 kΩ = 10ꢀ 50 kΩ = 50. The nominal  
resistance (RAB) of the VR has 256 contact points accessed by  
the wiper terminal, plus the B terminal contact. The 8-bit data  
in the RDAC latch is decoded to select one of the 256 possible  
settings. Assume a 10 kΩ part is used, the wipers first  
connection starts at the B terminal for data 0x00. Since there is a  
60 Ω wiper contact resistance, such connection yields a  
minimum of 60 Ω resistance between terminals W and B. The  
second connection is the first tap point, which corresponds to  
99 Ω (RWB = RAB/256 + RW = 39 Ω + 60 Ω) for data 0x01.  
The third connection is the next tap point, representing 177 Ω  
(2 × 39 Ω + 60 Ω) for data 0x02, and so on. Each LSB data value  
increase moves the wiper up the resistor ladder until the last tap  
point is reached at 9961 Ω (RAB – 1 LSB + RW). Figure 41 shows  
a simplified diagram of the equivalent RDAC circuit where the  
last resistor string will not be accessedꢀ therefore, there is 1 LSB  
less of the nominal resistance at full scale in addition to the  
wiper resistance.  
In summary, if RAB = 10 kΩ and the A terminal is open  
circuited, the following output resistance RWB will be set for the  
indicated RDAC latch codes.  
Table 8. Codes and Corresponding RWB Resistance  
D (Dec.)  
RWB (Ω)  
9,9ꢁ1  
5,0ꢁ0  
99  
Output State  
255  
128  
1
Full Scale (RAB – 1 LSB + RW)  
Midscale  
1 LSB  
0
ꢁ0  
Zero Scale (Wiper Contact Resistance)  
Note that in the zero-scale condition a finite wiper resistance of  
60 Ω is present. Care should be taken to limit the current flow  
between W and B in this state to a maximum pulse current of  
no more than 20 mA. Otherwise, degradation or possible  
destruction of the internal switch contact can occur.  
Similar to the mechanical potentiometer, the resistance of the  
RDAC between the wiper W and terminal A also produces a  
digitally controlled complementary resistance RWA. When these  
terminals are used, the B terminal can be opened. Setting the  
resistance value for RWA starts at a maximum value of resistance  
and decreases as the data loaded in the latch increases in value.  
The general equation for this operation is  
A
SD BIT  
RS  
D7  
D6  
256 D  
256  
RWA (D) =  
×RAB + RW  
(2)  
RS  
D5  
D4  
D3  
D2  
RS  
D1  
For RAB = 10 kΩ and the B terminal open circuited, the  
following output resistance RWA will be set for the indicated  
RDAC latch codes.  
D0  
W
RDAC  
Table 9. Codes and Corresponding RWA Resistance  
LATCH  
RS  
DECODER  
AND  
D (Dec.)  
RWA (Ω)  
Output State  
Full Scale  
Midscale  
1 LSB  
B
255  
128  
1
99  
5,0ꢁ0  
9,9ꢁ1  
10,0ꢁ0  
Figure 41. AD5161 Equivalent RDAC Circuit  
0
Zero Scale  
Typical device to device matching is process lot dependent and  
may vary by up to 30%. Since the resistance element is  
processed in thin film technology, the change in RAB with  
temperature has a very low 45 ppm/°C temperature coefficient.  
Rev. 0 | Page 14 of 20  
 
 
AD5161  
CS  
internal RDAC register when the  
Extra MSB bits are ignored.  
line returns to logic high.  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
The digital potentiometer easily generates a voltage divider at  
wiper-to-B and wiper-to-A proportional to the input voltage at  
A-to-B. Unlike the polarity of VDD to GND, which must be  
positive, voltage across A-B, W-A, and W-B can be at either  
polarity.  
Daisy-Chain Operation  
The serial data output (SDO) pin contains an open-drain  
N-channel FET. This output requires a pull-up resistor in order  
to transfer data to the next package’s SDI pin. This allows for  
daisy-chaining several RDACs from a single processor serial  
data line. The pull-up resistor termination voltage can be larger  
than the VDD supply voltage. It is recommended to increase the  
clock period when using a pull-up resistor to the SDI pin of the  
following device because capacitive loading at the daisy-chain  
node SDO-SDI between devices may induce time delay to  
subsequent devices. Users should be aware of this potential  
problem to achieve data transfer successfully (see Figure 42). If  
two AD5161s are daisy-chained, a total of at least 16 bits of data  
is required. The first eight bits, complying with the format  
shown in Table 5, go to U2 and the second eight bits with the  
If ignoring the effect of the wiper resistance for approximation,  
connecting the A terminal to 5 V and the B terminal to ground  
produces an output voltage at the wiper-to-B starting at 0 V up  
to 1 LSB less than 5 V. Each LSB of voltage is equal to the  
voltage applied across terminal AB divided by the 256 positions  
of the potentiometer divider. The general equation defining the  
output voltage at VW with respect to ground for any valid input  
voltage applied to terminals A and B is  
D
256  
256 D  
256  
VW (D) =  
VA  
+
VB  
(3)  
CS  
same format go to U1.  
clocked into their respective serial registers. After this,  
pulled high to complete the operation and load the RDAC latch.  
CS  
should be kept low until all 16 bits are  
For a more accurate calculation, which includes the effect of  
wiper resistance, VW, can be found as  
CS  
is  
If the data word during the  
low period is greater than 16  
RWB (D)  
256  
RWA (D)  
256  
VW (D) =  
VA  
+
VB  
(4)  
bits, any additional MSBs will be discarded.  
VDD  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the internal resistors RWA and RWB and not the  
absolute values. Therefore, the temperature drift reduces to  
15 ppm/°C.  
AD5161  
RP  
AD5161  
µC  
MOSI  
CLK SC  
U1  
U2  
2.2k  
SDI  
CS  
SDO  
CLK  
SDI  
SDO  
CLK  
CS  
PIN SELECTABLE DIGITAL INTERFACE  
The AD5161 provides the flexibility of a selectable interface.  
When the digital interface select (DIS) pin is tied low, the SPI  
mode is engaged. When the DIS pin is tied high, the I2C mode is  
engaged.  
Figure 42. Daisy-Chain Configuration  
I2C Compatible 2-Wire Serial Bus (DIS = 1)  
SPI Compatible 3-Wire Serial Bus (DIS = 0)  
The AD5161 can also be controlled via an I2C compatible serial  
bus with DIS tied high. The RDACs are connected to this bus as  
slave devices.  
The AD5161 contains a 3-wire SPI compatible digital interface  
CS  
(SDI, , and CLK). The 8-bit serial word must be loaded MSB  
first. The format of the word is shown in Table 5.  
The first byte of the AD5161 is a slave address byte (see Table 6  
and Table 7). It has a 7-bit slave address and a R/ bit. The six  
MSBs of the slave address are 010110, and the following bit is  
determined by the state of the AD0 pin of the device. AD0  
allows the user to place up to two of the I2C compatible devices  
on one bus.  
The positive-edge sensitive CLK input requires clean transitions  
to avoid clocking incorrect data into the serial input register.  
Standard logic families work well. If mechanical switches are  
used for product evaluation, they should be debounced by a  
W
CS  
flip-flop or other suitable means. When  
is low, the clock  
loads data into the serial register on each positive clock edge  
(see Figure 36).  
The 2-wire I2C serial bus protocol operates as follows:  
1. The master initiates data transfer by establishing a START  
condition, which is when a high-to-low transition on the  
SDA line occurs while SCL is high (see Figure 39). The  
following byte is the slave address byte, which consists of  
The data setup and data hold times in the specification table  
determine the valid timing requirements. The AD5161 uses an  
8-bit serial input data register word that is transferred to the  
Rev. 0 | Page 15 of 20  
 
 
AD5161  
W
5. When all data bits have been read or written, a STOP  
condition is established by the master. A STOP condition is  
defined as a low-to-high transition on the SDA line while  
SCL is high. In write mode, the master will pull the SDA  
line high during the tenth clock pulse to establish a STOP  
condition (see Figure 39). In read mode, the master will  
issue a No Acknowledge for the ninth clock pulse (i.e., the  
SDA line remains high). The master will then bring the  
SDA line low before the tenth clock pulse which goes high  
to establish a STOP condition (see Figure 40).  
the 7-bit slave address followed by an R/ bit (this bit  
determines whether data will be read from or written to  
the slave device).  
The slave whose address corresponds to the transmitted  
address responds by pulling the SDA line low during the  
ninth clock pulse (this is termed the acknowledge bit). At  
this stage, all other devices on the bus remain idle while the  
selected device waits for data to be written to or read from  
its serial register. If the R/ bit is high, the master will read  
from the slave device. On the other hand, if the R/ bit is  
W
W
A repeated write function gives the user flexibility to update the  
RDAC output a number of times after addressing and  
low, the master will write to the slave device.  
2. A write operation contains an extra instruction byte that a  
read operation does not contain. Such an instruction byte  
in write mode follows the slave address byte. The first bit  
(MSB) of the instruction byte is a don’t care.  
instructing the part only once. During the write cycle, each data  
byte will update the RDAC output. For example, after the RDAC  
has acknowledged its slave address and instruction bytes, the  
RDAC output will update after these two bytes. If another byte  
is written to the RDAC while it is still addressed to a specific  
slave device with the same instruction, this byte will update the  
output of the selected slave device. If different instructions are  
needed, the write mode has to start again with a new slave  
address, instruction, and data byte. Similarly, a repeated read  
function of the RDAC is also allowed.  
The second MSB, RS, is the midscale reset. A logic high on  
this bit moves the wiper to the center tap where RWA = RWB  
This feature effectively writes over the contents of the  
register, and thus, when taken out of reset mode, the RDAC  
will remain at midscale.  
.
The third MSB, SD, is a shutdown bit. A logic high causes  
an open circuit at terminal A while shorting the wiper to  
terminal B. This operation yields almost 0 Ω in rheostat  
mode or 0 V in potentiometer mode. It is important to note  
that the shutdown operation does not disturb the contents  
of the register. When brought out of shutdown, the  
previous setting will be applied to the RDAC. Also, during  
shutdown, new settings can be programmed. When the  
part is returned from shutdown, the corresponding VR  
setting will be applied to the RDAC.  
Readback RDAC Value  
The AD5161 allows the user to read back the RDAC values in  
the read mode. Refer to Table 6 and Table 7 for the  
programming format.  
Multiple Devices on One Bus  
Figure 43 shows two AD5161 devices on the same serial bus.  
Each has a different slave address since the states of their AD0  
pins are different. This allows each RDAC within each device to  
be written to or read from independently. The master device  
output bus line drivers are open-drain pull-downs in a fully I2C  
compatible interface.  
The remainder of the bits in the instruction byte are don’t  
cares (see Table 6).  
3. After acknowledging the instruction byte, the last byte in  
write mode is the data byte. Data is transmitted over the  
serial bus in sequences of nine clock pulses (eight data bits  
followed by an acknowledge bit). The transitions on the  
SDA line must occur during the low period of SCL and  
remain stable during the high period of SCL (see Table 6).  
+5V  
RP  
RP  
SDA  
SCL  
MASTER  
+5V  
4. In the read mode, the data byte follows immediately after  
the acknowledgment of the slave address byte. Data is  
transmitted over the serial bus in sequences of nine clock  
pulses (a slight difference with the write mode, where there  
are eight data bits followed by an acknowledge bit).  
Similarly, the transitions on the SDA line must occur  
during the low period of SCL and remain stable during the  
high period of SCL (see Figure 40).  
SDA SCL  
SDA SCL  
AD0  
AD0  
AD5161  
AD5161  
Figure 43. Multiple AD5161 Devices on One I2C Bus  
Rev. 0 | Page 1ꢁ of 20  
 
AD5161  
LEVEL SHIFTING FOR BIDIRECTIONAL INTERFACE  
TERMINAL VOLTAGE OPERATING RANGE  
While most legacy systems may be operated at one voltage, a  
new component may be optimized at another. When two  
systems operate the same signal at two different voltages, proper  
level shifting is needed. For instance, one can use a 3.3 V  
E2PROM to interface with a 5 V digital potentiometer. A level  
shifting scheme is needed to enable a bidirectional  
The AD5161 VDD and GND power supply defines the boundary  
conditions for proper 3-terminal digital potentiometer  
operation. Supply signals present on terminals A, B, and W that  
exceed VDD or GND will be clamped by the internal forward  
biased diodes (see Figure 47).  
V
DD  
communication so that the setting of the digital potentiometer  
can be stored to and retrieved from the E2PROM. Figure 44  
shows one of the implementations. M1 and M2 can be any  
N-channel signal FETs, or if VDD falls below 2.5 V, low threshold  
FETs such as the FDV301N.  
A
W
B
V
= 3.3V  
V
= 5V  
DD2  
DD1  
V
R
R
R
R
P
SS  
P
P
P
G
Figure 47. Maximum Terminal Voltages Set by VDD and VSS  
S
D
SDA2  
SCL2  
SDA1  
SCL1  
G
POWER-UP SEQUENCE  
M1  
S
D
Since the ESD protection diodes limit the voltage compliance at  
terminals A, B, and W (see Figure 47), it is important to power  
VDD/GND before applying any voltage to terminals A, B, and Wꢀ  
otherwise, the diode will be forward biased such that VDD will be  
powered unintentionally and may affect the rest of the users  
circuit. The ideal power-up sequence is in the following order:  
GND, VDD, digital inputs, and then VA/B/W. The relative order of  
powering VA, VB, VW, and the digital inputs is not important as  
long as they are powered after VDD/GND.  
M2  
3.3V  
5V  
2
AD5161  
E PROM  
Figure 44. Level Shifting for Operation at Different Potentials  
ESD PROTECTION  
All digital inputs are protected with a series input resistor and  
parallel Zener ESD structures shown in Figure 45 and Figure 46.  
This applies to the digital input pins SDI/SDA, CLK/SCL, and  
LAYOUT AND POWER SUPPLY BYPASSING  
It is a good practice to employ compact, minimum lead length  
layout design. The leads to the inputs should be as direct as  
possible with a minimum conductor length. Ground paths  
should have low resistance and low inductance.  
CS  
/AD0.  
340Ω  
LOGIC  
V
ss  
Similarly, it is also a good practice to bypass the power supplies  
with quality capacitors for optimum stability. Supply leads to the  
device should be bypassed with disc or chip ceramic capacitors  
of 0.01 µF to 0.1 µF. Low ESR 1 µF to 10 µF tantalum or  
electrolytic capacitors should also be applied at the supplies to  
minimize any transient disturbance and low frequency ripple  
(see Figure 48). Note that the digital ground should also be  
joined remotely to the analog ground at one point to minimize  
the ground bounce.  
Figure 45. ESD Protection of Digital Pins  
A,B,W  
VSS  
Figure 46. ESD Protection of Resistor Terminals  
V
V
DD  
DD  
+
10  
C3  
C1  
µ
F
0.1µF  
AD5161  
GND  
Figure 48. Power Supply Bypassing  
Rev. 0 | Page 1ꢀ of 20  
 
 
 
 
 
 
AD5161  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN CONFIGURATION  
PIN FUNCTION DESCRIPTIONS  
1
2
3
4
5
10  
9
8
7
6
Table 10.  
Pin Name  
A
B
W
V
DIS  
GND  
CLK/SCL  
AD5161  
DD  
Description  
A Terminal.  
B Terminal.  
CS/ADO  
SDO/NC  
SDI/SDA  
TOP VIEW  
1
2
3
A
(Not to Scale)  
B
CS  
CS  
CS  
: Chip Select Input, Active Low. When  
/AD0  
Figure 49.  
returns high, data will be loaded into the DAC  
register.  
AD0: Programmable address bit 0 for multiple  
package decoding.  
4
5
SDO/NC SDO: Serial Data Output. Open-drain transistor  
requires pull-up resistor.  
NC: No Connect.  
SDI/SDA SDI: Serial Data Input.  
SDA: Serial Data Input/Output.  
8
CLK/SCL Serial Clock Input. Positive edge triggered.  
GND  
DIS  
Digital Ground.  
Digital Interface Select (SPI/I2C Select).  
SPI when DIS = 0, I2C when DIS = 1.  
9
VDD  
W
Positive Power Supply.  
W Terminal.  
10  
Rev. 0 | Page 18 of 20  
 
AD5161  
OUTLINE DIMENSIONS  
3.00 BSC  
10  
6
4.90 BSC  
3.00 BSC  
PIN 1  
1
5
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.23  
0.20  
0.17  
0.80  
0.40  
8°  
0°  
0.15  
0.00  
0.27  
0.17  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187BA  
Figure 50. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD51ꢁ1BRM5  
RAB (Ω)  
Temperature  
Package Description  
MSOP-10  
Package Option  
RM-10  
Branding  
5k  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
D0C  
D0C  
D0D  
D0D  
D0E  
D0E  
D0F  
D0F  
AD51ꢁ1BRM5-RLꢀ  
AD51ꢁ1BRM10  
AD51ꢁ1BRM10-RLꢀ  
AD51ꢁ1BRM50  
AD51ꢁ1BRM50-RLꢀ  
AD51ꢁ1BRM100  
AD51ꢁ1BRM100-RLꢀ  
AD51ꢁ1EVAL  
5k  
MSOP-10  
RM-10  
10k  
MSOP-10  
RM-10  
10k  
MSOP-10  
RM-10  
50k  
MSOP-10  
RM-10  
50k  
MSOP-10  
RM-10  
100k  
100k  
See Note 1  
MSOP-10  
RM-10  
MSOP-10  
RM-10  
Evaluation Board  
1The evaluation board is shipped with the 10 kΩ RAB resistor option; however, the board is compatible with all available resistor value options.  
The AD5161 contains 2532 transistors. Die size: 30.7 mil × 76.8 mil = 2358 sq. mil.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 19 of 20  
 
AD5161  
NOTES  
©
2003 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective companies.  
C03435–0–5/03(0)  
Rev. 0 | Page 20 of 20  

相关型号:

AD5161BRM100-RL7

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5161BRM5

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5161BRM5-RL7

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5161BRM50

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5161BRM50-RL7

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5161BRMZ10

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5161BRMZ10-RL7

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5161BRMZ100

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5161BRMZ100-RL7

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5161BRMZ5

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5161BRMZ5-RL7

256-Position SPI/I2C Selectable Digital Potentiometer
ADI

AD5161BRMZ50

256-Position SPI/I2C Selectable Digital Potentiometer
ADI