AD5162EVAL [ADI]

Dual, 256-Position, SPI Digital Potentiometer; 双通道, 256位, SPI数字电位计
AD5162EVAL
型号: AD5162EVAL
厂家: ADI    ADI
描述:

Dual, 256-Position, SPI Digital Potentiometer
双通道, 256位, SPI数字电位计

数字电位计
文件: 总20页 (文件大小:830K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, 256-Position, SPI  
Digital Potentiometer  
AD5162  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
A1  
W1  
B1  
W2  
B2  
2-channel, 256-position potentiometer  
End-to-end resistance: 2.5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ  
Compact 10-lead MSOP (3 mm × 4.9 mm) package  
Fast settling time: tS = 5 µs typical on power-up  
Full read/write of wiper register  
V
DD  
Power-on preset to midscale  
Computer software replaces microcontroller in factory  
programming applications  
Single supply: 2.7 V to 5.5 V  
Low temperature coefficient: 35 ppm/°C  
Low power: IDD = 6 µA maximum  
Wide operating temperature: −40°C to +125°C  
Evaluation board available  
WIPER  
REGISTER 1  
WIPER  
REGISTER 2  
GND  
A = 0  
A = 1  
AD5162  
CLK  
SDI  
CS  
SPI INTERFACE  
Qualified for automotive applications  
Figure 1.  
APPLICATIONS  
Systems calibrations  
Electronics level settings  
Mechanical trimmers replacement in new designs  
Permanent factory PCB setting  
Transducer adjustment of pressure, temperature, position,  
chemical, and optical sensors  
RF amplifier biasing  
Automotive electronics adjustment  
Gain control and offset adjustment  
GENERAL DESCRIPTION  
The AD5162 provides a compact 3 mm × 4.9 mm packaged  
solution for dual, 256-position adjustment applications. This  
device performs the same electronic adjustment function as a  
3-terminal mechanical potentiometer. Available in four end-to-  
end resistance values (2.5 kΩ, 10 kΩ, 50 kΩ, 100 kΩ), this low  
temperature coefficient device is ideal for high accuracy and  
stability-variable resistance adjustments. The wiper settings are  
controllable through an SPI digital interface. The resistance  
between the wiper and either endpoint of the fixed resistor  
varies linearly with respect to the digital code transferred into  
the RDAC latch.1  
Operating from a 2.7 V to 5.5 V power supply and consuming  
less than 6 µA allows the AD5162 to be used in portable battery-  
operated applications.  
For applications that program the AD5162 at the factory,  
Analog Devices offers device programming software running  
on Windows® NT/2000/XP operating systems. This software  
effectively replaces the need for external SPI controllers, which  
in turn enhances the time to market of systems. An AD5162  
evaluation kit and software are available. The kit includes a  
cable and instruction manual.  
1 The terms digital potentiometer, VR, and RDAC are used interchangeably.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2003–2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD5162  
TABLE OF CONTENTS  
Theory of Operation ...................................................................... 13  
Programming the Variable Resistor and Voltage................... 13  
Programming the Potentiometer Divider............................... 14  
ESD Protection ........................................................................... 14  
Terminal Voltage Operating Range ......................................... 14  
Power-Up Sequence ................................................................... 14  
Layout and Power Supply Bypassing ....................................... 15  
Constant Bias to Retain Resistance Setting............................. 15  
Evaluation Board ........................................................................ 15  
SPI Interface .................................................................................... 16  
SPI-Compatible, 3-Wire Serial Bus.......................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Automotive Products................................................................. 17  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics: 2.5 kΩ Version................................. 3  
Electrical Characteristics: 10 kΩ, 50 kΩ, and 100 kΩ Versions  
......................................................................................................... 4  
Timing Characteristics: All Versions ......................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Test Circuits..................................................................................... 12  
REVISION HISTORY  
12/10—Rev. B to Rev.C  
Added Automotive Parts to Features Section ............................... 1  
Added Automotive Products Paragraph...................................... 17  
4/09—Rev. A to Rev. B  
Changes to Features Section............................................................ 1  
Changes to DC Characteristics—Rheostat Mode Parameter and  
to DC Characteristics—Potentiometer Divider Mode Parameter,  
Table 1 ................................................................................................ 3  
Updated Outline Dimensions....................................................... 17  
Changes to Ordering Guide .......................................................... 17  
11/03—Rev. 0 to Rev. A  
Changes to Electrical Characteristics ............................................ 3  
11/03—Revision 0: Initial Version  
Rev. C | Page 2 of 20  
 
AD5162  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS: 2.5 kΩ VERSION  
VDD = 5 V 10%, or 3 V 10%; VA = VDD; VB = 0 V; −40°C < TA < +125°C; unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ 1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Wiper Resistance  
R-DNL  
R-INL  
∆RAB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
−2  
−14  
−20  
0.1  
2
+2  
+14  
+55  
LSB  
LSB  
%
ppm/°C  
(∆RAB/RAB )/∆T VAB = VDD, wiper = no connect  
RWB  
35  
160  
Code = 0x00, VDD = 5 V  
200  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE4  
Differential Nonlinearity5  
Integral Nonlinearity5  
DNL  
INL  
−1.5  
−2  
0.1  
0.6  
+1.5  
+2  
LSB  
LSB  
Voltage Divider Temperature  
Coefficient  
(∆VW/VW)/∆T  
Code = 0x80  
15  
ppm/°C  
Full-Scale Error  
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range6  
VWFSE  
VWZSE  
Code = 0xFF  
Code = 0x00  
−14  
0
−5.5  
4.5  
0
12  
LSB  
LSB  
VA, VB, VW  
CA, CB  
GND  
VDD  
V
pF  
Capacitance A, B7  
f = 1 MHz, measured to GND,  
code = 0x80  
f = 1 MHz, measured to GND,  
code = 0x80  
45  
60  
1
Capacitance W7  
CW  
ICM  
pF  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance7  
POWER SUPPLIES  
VA = VB = VDD/2  
nA  
VIH  
VIL  
VIH  
VIL  
IIL  
VDD = 5 V  
VDD = 5 V  
VDD = 3 V  
VDD = 3 V  
2.4  
2.1  
V
V
V
V
µA  
pF  
0.8  
0.6  
1
VIN = 0 V or 5 V  
CIL  
5
Power Supply Range  
Supply Current  
VDD RANGE  
IDD  
PDISS  
2.7  
5.5  
6
30  
V
µA  
µW  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V, VDD = 5 V  
VDD = 5 V 10%, code = midscale  
3.5  
Power Dissipation8  
Power Supply Sensitivity  
DYNAMIC CHARACTERISTICS9  
Bandwidth, −3 dB  
Total Harmonic Distortion  
VW Settling Time  
PSS  
0.02  
0.08  
%/%  
BW  
THDW  
tS  
Code = 0x80  
4.8  
0.1  
1
MHz  
%
µs  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA = 5 V, VB = 0 V, 1 LSB error band  
RWB = 1.25 kΩ, RS = 0  
Resistor Noise Voltage Density  
eN_WB  
3.2  
nV/√Hz  
1 Typical specifications represent average readings at 25°C and VDD = 5 V.  
2 Resistor position nonlinearity error, R-INL, is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from the ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VA = VDD, VB = 0 V, wiper (VW) = no connect.  
4 Specifications apply to all VRs.  
5 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V.  
DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions.  
6 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other.  
7 Guaranteed by design, but not subject to production test.  
8 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
9 All dynamic characteristics use VDD = 5 V.  
Rev. C | Page 3 of 20  
 
 
 
 
AD5162  
ELECTRICAL CHARACTERISTICS: 10 kΩ, 50 kΩ, AND 100 kΩ VERSIONS  
VDD = 5 V 10%, or 3 V 10%; VA = VDD; VB = 0 V; −40°C < TA < 125°C; unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Wiper Resistance  
R-DNL  
R-INL  
∆RAB  
(∆RAB/RAB )/∆T  
RWB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
VAB = VDD, wiper = no connect  
Code = 0x00, VDD = 5 V  
−1  
−2.5  
−20  
0.1  
0.25  
+1  
+2.5  
+20  
LSB  
LSB  
%
ppm/°C  
35  
160  
200  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE4  
Differential Nonlinearity5  
Integral Nonlinearity5  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
(∆VW/VW)/∆T  
VWFSE  
VWZSE  
−1  
−1  
0.1  
0.3  
15  
+1  
+1  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Code = 0x80  
Code = 0xFF  
Code = 0x00  
−2.5 −1  
0
0
2.5  
Zero-Scale Error  
1
RESISTOR TERMINALS  
Voltage Range6  
VA, VB, VW  
CA, CB  
GND  
VDD  
V
pF  
Capacitance A, B7  
f = 1 MHz, measured to GND,  
code = 0x80  
f = 1 MHz, measured to GND,  
code = 0x80  
45  
60  
1
Capacitance W7  
CW  
ICM  
pF  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance  
POWER SUPPLIES  
VA = VB = VDD/2  
nA  
VIH  
VIL  
VIH  
VIL  
IIL  
VDD = 5 V  
VDD = 5 V  
VDD = 3 V  
VDD = 3 V  
2.4  
2.1  
V
V
V
V
µA  
pF  
0.8  
0.6  
1
VIN = 0 V or 5 V  
CIL  
5
Power Supply Range  
Supply Current  
Power Dissipation  
Power Supply Sensitivity  
DYNAMIC CHARACTERISTICS  
Bandwidth, −3 dB  
VDD RANGE  
IDD  
PDISS  
2.7  
5.5  
6
30  
V
µA  
µW  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V, VDD = 5 V  
VDD = 5 V 10%, code = midscale  
3.5  
PSS  
0.02  
0.08 %/%  
BW  
RAB = 10 kΩ/50 kΩ/100 kΩ,  
code = 0x80  
VA = 1 V rms, VB = 0 V,  
f = 1 kHz, RAB = 10 kΩ  
VA = 5 V, VB = 0 V,  
1 LSB error band  
600/100/40  
kHz  
%
Total Harmonic Distortion  
VW Settling Time  
THDW  
tS  
0.1  
2
µs  
Resistor Noise Voltage Density  
eN_WB  
RWB = 5 kΩ, RS = 0  
9
nV/√Hz  
1 Typical specifications represent average readings at 25°C and VDD = 5 V.  
2 Resistor position nonlinearity error, R-INL, is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from the ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VA = VDD, VB = 0 V, wiper (VW) = no connect.  
4 Specifications apply to all VRs.  
5 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V.  
DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions.  
6 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other.  
7 Guaranteed by design, but not subject to production test.  
Rev. C | Page 4 of 20  
 
 
 
AD5162  
TIMING CHARACTERISTICS: ALL VERSIONS  
VDD = 5 V 10%, or 3 V 10%; VA = VDD; VB = 0 V; −40°C < TA < +125°C; unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
25  
Unit  
SPI INTERFACE TIMING CHARACTERISTICS1  
Clock Frequency  
fCLK  
tCH, tCL  
tDS  
MHz  
ns  
ns  
Input Clock Pulse Width  
Data Setup Time  
Clock level high or low  
20  
5
Data Hold Time  
tDH  
5
ns  
CS Setup Time  
tCSS  
15  
40  
0
ns  
CS High Pulse Width  
CLK Fall to CS Fall Hold Time  
CLK Fall to CS Rise Hold Time  
CS Rise to Clock Rise Setup  
tCSW  
tCSH0  
tCSH1  
tCS1  
ns  
ns  
0
ns  
10  
ns  
1 See the timing diagrams for the locations of measured values (that is, see Figure 42 and Figure 43).  
Rev. C | Page 5 of 20  
 
 
 
AD5162  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
VDD to GND  
VA, VB, VW to GND  
Terminal Current, Ax to Bx, Ax to Wx, Bx to Wx1  
Pulsed  
Continuous  
Digital Inputs and Output Voltage to GND  
Operating Temperature Range  
Maximum Junction Temperature (TJMAX  
Storage Temperature  
–0.3 V to +7 V  
VDD  
20 mA  
5 mA  
0 V to 7 V  
–40°C to +125°C  
150°C  
–65°C to +150°C  
300°C  
)
ESD CAUTION  
Lead Temperature (Soldering, 10 sec)  
Thermal Resistance, θJA for 10-Lead MSOP2  
230°C/W  
1 The maximum terminal current is bound by the maximum current handling  
of the switches, the maximum power dissipation of the package, and the  
maximum applied voltage across any two of the A, B, and W terminals at a  
given resistance.  
2 The package power dissipation is (TJMAX − TA)/θJA  
.
Rev. C | Page 6 of 20  
 
 
 
 
AD5162  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
10  
9
W1  
B2  
B1  
A1  
8
W2  
AD5162  
TOP VIEW  
CS  
7
GND  
SDI  
CLK  
6
V
DD  
Figure 2.  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
9
10  
B1  
A1  
W2  
GND  
VDD  
CLK  
SDI  
CS  
B1 Terminal.  
A1 Terminal.  
W2 Terminal.  
Digital Ground.  
Positive Power Supply.  
Serial Clock Input. Positive-edge triggered.  
Serial Data Input.  
Chip Select Input, Active Low. When CS returns high, data is loaded into the DAC register.  
B2  
W1  
B2 Terminal.  
W1 Terminal.  
Rev. C | Page 7 of 20  
 
AD5162  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.0  
0.5  
0.4  
T
= 25°C  
R
= 10k  
A
AB  
R
= 10kΩ  
AB  
1.5  
1.0  
0.3  
V
= 2.7V  
DD  
0.2  
0.5  
0.1  
V
= 2.7V; T = –40°C, +25°C, +85°C, +125°C  
A
DD  
0
0
V
= 5.5V  
DD  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (DECIMAL)  
CODE (DECIMAL)  
Figure 6. DNL vs. Code vs. Temperature  
Figure 3. R-INL vs. Code vs. Supply Voltages  
0.5  
0.4  
1.0  
0.8  
T
R
= 25°C  
T
R
= 25°C  
A
A
= 10kΩ  
= 10kΩ  
AB  
AB  
0.3  
0.6  
0.2  
0.4  
V
= 2.7V  
DD  
V = 5.5V  
DD  
0.1  
0.2  
0
0
V
= 2.7V  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
DD  
V
= 5.5V  
DD  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (DECIMAL)  
CODE (DECIMAL)  
Figure 4. R-DNL vs. Code vs. Supply Voltages  
Figure 7. INL vs. Code vs. Supply Voltages  
0.5  
0.4  
0.5  
0.4  
T
R
= 25°C  
R
= 10kΩ  
A
AB  
= 10kΩ  
AB  
0.3  
0.3  
V
= 5.5V  
DD  
T
= –40°C, +25°C, +85°C, +125°C  
A
0.2  
0.2  
0.1  
0.1  
V
= 2.7V  
DD  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
= 5.5V  
DD  
V
= 2.7V  
DD  
T
= –40°C, +25°C, +85°C, +125°C  
A
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (DECIMAL)  
CODE (DECIMAL)  
Figure 5. INL vs. Code vs. Temperature  
Figure 8. DNL vs. Code vs. Supply Voltages  
Rev. C | Page 8 of 20  
 
AD5162  
2.0  
1.5  
4.50  
3.75  
3.00  
2.25  
1.50  
0.75  
0
R
= 10kΩ  
R
= 10kΩ  
AB  
AB  
V
= 2.7V  
DD  
= –40°C, +25°C, +85°C, +125°C  
T
A
1.0  
0.5  
0
V
= 2.7V, V = 2.7V  
A
DD  
V
= 5.5V  
DD  
= –40°C, +25°C, +85°C, +125°C  
–0.5  
–1.0  
–1.5  
–2.0  
T
A
V
= 5.5V, V = 5.0V  
A
DD  
0
32  
64  
96  
128  
160  
192  
224  
256  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
CODE (DECIMAL)  
TEMPERATURE (°C)  
Figure 9. R-INL vs. Code vs. Temperature  
Figure 12. Zero-Scale Error vs. Temperature  
10  
0.5  
0.4  
R
= 10kΩ  
AB  
0.3  
V
V
= 5V  
DD  
0.2  
V
= 2.7V, 5.5V; T = –40°C, +25°C, +85°C, +125°C  
A
DD  
0.1  
1
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
= 3V  
DD  
0.1  
–40  
–7  
26  
59  
92  
125  
0
32  
64  
96  
128  
160  
192  
224  
256  
TEMPERATURE (°C)  
CODE (DECIMAL)  
Figure 10. R-DNL vs. Code vs. Temperature  
Figure 13. Supply Current vs. Temperature  
120  
100  
80  
2.0  
1.5  
R
= 10kΩ  
R
= 10kΩ  
AB  
AB  
1.0  
0.5  
60  
V
= 2.7V  
DD  
= –40°C TO +85°C, –40°C TO +125°C  
T
A
0
V
= 5.5V, V = 5.0V  
A
DD  
40  
V
= 5.5V  
DD  
= –40°C TO +85°C, –40°C TO +125°C  
–0.5  
–1.0  
–1.5  
–2.0  
T
A
20  
V
= 2.7V, V = 2.7V  
A
DD  
0
–20  
0
32  
64  
96  
128  
160  
192  
224  
256  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
CODE (DECIMAL)  
TEMPERATURE (°C)  
Figure 14. Rheostat Mode Tempco ΔRWB/ΔT vs. Code  
Figure 11. Full-Scale Error vs. Temperature  
Rev. C | Page 9 of 20  
AD5162  
50  
0
–6  
R
= 10kΩ  
AB  
0x80  
0x40  
0x20  
0x10  
40  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
30  
V
T
= 2.7V  
DD  
= –40°C TO +85°C, –40°C TO +125°C  
20  
A
0x08  
0x04  
0x02  
0x01  
10  
0
–10  
–20  
V
= 5.5V  
DD  
= –40°C TO +85°C, –40°C TO +125°C  
T
A
–30  
0
32  
64  
96  
128  
160  
192  
224  
256  
1k  
10k  
100k  
1M  
CODE (DECIMAL)  
FREQUENCY (Hz)  
Figure 15. Potentiometer Mode Tempco ΔVWB/ΔT vs. Code  
Figure 18. Gain vs. Frequency vs. Code, RAB = 50 kΩ  
0
–6  
0
–6  
0x80  
0x80  
0x40  
0x20  
0x40  
0x20  
0x10  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x10  
0x08  
0x04  
0x02  
0x01  
0x08  
0x04  
0x02 0x01  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
Figure 16. Gain vs. Frequency vs. Code, RAB = 2.5 kΩ  
Figure 19. Gain vs. Frequency vs. Code, RAB = 100 kΩ  
0
–6  
0
–6  
0x80  
0x40  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
100kΩ  
60kHz  
50kΩ  
0x20  
0x10  
0x08  
0x04  
120kHz  
10kΩ  
570kHz  
2.5kΩ  
2.2MHz  
0x02  
0x01  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 17. Gain vs. Frequency vs. Code, RAB = 10 kΩ  
Figure 20. −3 dB Bandwidth at Code = 0x80  
Rev. C | Page 10 of 20  
AD5162  
10  
T
= 25°C  
A
1
V
= 5.5V  
DD  
V
V
W2  
0.1  
0.01  
V
= 2.7V  
DD  
W1  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
DIGITAL INPUT VOLTAGE (V)  
Figure 21. Supply Current vs. Digital Input Voltage  
Figure 24. Analog Crosstalk  
V
W
V
W
CLK  
Figure 25. Midscale Glitch, Code 0x80 to Code 0x7F  
Figure 22. Digital Feedthrough  
V
V
V
W
W2  
CS  
W1  
Figure 23. Digital Crosstalk  
Figure 26. Large-Signal Settling Time  
Rev. C | Page 11 of 20  
AD5162  
TEST CIRCUITS  
Figure 27 through Figure 32 illustrate the test circuits that define the test conditions used in the product specification tables (see Table 1  
and Table 2).  
V
A
V+ = V ± 10%  
DD  
V  
V  
MS  
V+ = V  
DD  
1LSB = V+/2  
DUT  
W
DUT  
W
PSRR (dB) = 20 LOG  
(
)
N
DD  
V  
V  
%
%
A
B
A
B
MS  
DD  
V  
DD  
PSS (%/%) =  
V+  
V+  
V
V
MS  
MS  
Figure 27. Test Circuit for Potentiometer Divider Nonlinearity Error  
(INL, DNL)  
Figure 30. Test Circuit for Power Supply Sensitivity  
(PSS, PSSR)  
NO CONNECT  
DUT  
DUT  
+15V  
A
W
I
W
A
V
W
IN  
AD8610  
–15V  
V
B
OUT  
OFFSET  
GND  
B
V
MS  
2.5V  
Figure 28. Test Circuit for Resistor Position Nonlinearity Error  
(Rheostat Operation: R-INL, R-DNL)  
Figure 31. Test Circuit for Gain vs. Frequency  
NC  
DUT  
DUT  
I
= V /R  
DD NOMINAL  
W
I
A
B
CM  
A
B
V
DD  
V
W
W
W
V
MS2  
GND  
V
CM  
R
= [V  
MS1  
– V  
]/I  
W
MS2  
W
V
MS1  
NC NC = NO CONNECT  
Figure 29. Test Circuit for Wiper Resistance  
Figure 32. Test Circuit for Common-Mode Leakage Current  
Rev. C | Page 12 of 20  
 
 
 
AD5162  
THEORY OF OPERATION  
The AD5162 is a 256-position, digitally controlled variable  
resistor (VR) device.  
The general equation determining the digitally programmed  
output resistance between W and B is  
An internal power-on preset places the wiper at midscale  
during power-on, which simplifies the fault condition recovery  
at power-up.  
D
256  
R
WB(D) =  
× RAB + 2× RW  
(1)  
where:  
D is the decimal equivalent of the binary code loaded in the  
8-bit RDAC register.  
PROGRAMMING THE VARIABLE RESISTOR AND  
VOLTAGE  
Rheostat Operation  
R
R
AB is the end-to-end resistance.  
W is the wiper resistance contributed by the on resistance of  
The nominal resistance of the RDAC between Terminal A and  
Terminal B is available in 2.5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ.  
The nominal resistance (RAB) of the VR has 256 contact points  
accessed by the wiper terminal and the B terminal contact. The  
8-bit data in the RDAC latch is decoded to select one of the  
256 possible settings.  
the internal switch.  
In summary, if RAB is 10 kΩ and the A terminal is open  
circuited, the output resistance, RWB, is set according to the  
RDAC latch codes, as listed in Table 6.  
Table 6. Codes and Corresponding RWB Resistance  
A
A
A
D (Dec)  
RWB (Ω) Output State  
255  
128  
1
9961  
5060  
139  
Full scale (RAB − 1 LSB + RW)  
Midscale  
1 LSB  
W
W
W
B
B
B
0
100  
Zero scale (wiper contact resistance)  
Figure 33. Rheostat Mode Configuration  
Assuming that a 10 kΩ part is used, the first connection of the  
wiper starts at the B terminal for Data 0x00. Because there is  
a 50 Ω wiper contact resistance, such a connection yields a  
minimum of 100 Ω (2 × 50 Ω) resistance between Terminal W  
and Terminal B. The second connection is the first tap point,  
which corresponds to 139 Ω (RWB = RAB/256 + 2 × RW = 39 Ω +  
2 × 50 Ω) for Data 0x01. The third connection is the next tap  
point, representing 178 Ω (2 × 39 Ω + 2 × 50 Ω) for Data 0x02,  
and so on. Each LSB data value increase moves the wiper up the  
resistor ladder until the last tap point is reached at 10,100 Ω  
(RAB + 2 × RW).  
Note that in the zero-scale condition, a finite wiper resistance of  
100 Ω is present. Care should be taken to limit the current flow  
between W and B in this state to a maximum pulse current of  
no more than 20 mA. Otherwise, degradation or possible  
destruction of the internal switch contact may occur.  
Similar to the mechanical potentiometer, the resistance of the  
RDAC between Wiper W and Terminal A also produces a  
digitally controlled complementary resistance, RWA. When these  
terminals are used, the B terminal can be opened. Setting the  
resistance value for RWA starts at a maximum value of resistance  
and decreases as the data loaded in the latch increases in value.  
The general equation for this operation is  
A
R
S
256 D  
256  
RWA(D) =  
× RAB + 2× RW  
(2)  
R
R
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S
When RAB is 10 kΩ and the B terminal is open circuited, the  
output resistance, RWA, is set according to the RDAC latch  
codes, as listed in Table 7.  
S
W
Table 7. Codes and Corresponding RWA Resistance  
D (Dec)  
RWA (Ω)  
Output State  
Full scale  
Midscale  
1 LSB  
255  
128  
1
139  
5060  
9961  
R
RDAC  
S
LATCH  
AND  
DECODER  
B
0
10,060  
Zero scale  
Typical device-to-device matching is process-lot dependent and  
may vary by up to 30%. Because the resistance element is  
Figure 34. AD5162 Equivalent RDAC Circuit  
processed in thin-film technology, the change in RAB with tem-  
perature has a very low temperature coefficient of 35 ppm/°C.  
Rev. C | Page 13 of 20  
 
 
 
 
AD5162  
PROGRAMMING THE POTENTIOMETER DIVIDER  
ESD PROTECTION  
Voltage Output Operation  
All digital inputs are protected with a series of input resistors  
and parallel Zener ESD structures, as shown in Figure 36 and  
The digital potentiometer easily generates a voltage divider at  
wiper to B and wiper to A, proportional to the input voltage at  
A to B. Unlike the polarity of VDD to GND, which must be  
positive, voltage across A to B, W to A, and W to B can be at  
either polarity.  
CS  
Figure 37. This applies to the SDI, CLK, and  
digital input pins.  
340  
LOGIC  
GND  
V
I
A
Figure 36. ESD Protection of Digital Pins  
A, B, W  
W
V
O
B
GND  
Figure 35. Potentiometer Mode Configuration  
Figure 37. ESD Protection of Resistor Terminals  
If ignoring the effect of the wiper resistance for approximation,  
connecting the A terminal to 5 V and the B terminal to ground  
produces an output voltage at the wiper to B, starting at 0 V up  
to 1 LSB less than 5 V. Each LSB of voltage is equal to the voltage  
applied across the A and B terminals divided by the 256 positions  
of the potentiometer divider. The general equation defining the  
output voltage at VW with respect to ground for any valid input  
voltage applied to Terminal A and Terminal B is  
TERMINAL VOLTAGE OPERATING RANGE  
The AD5162 VDD and GND power supply defines the boundary  
conditions for proper 3-terminal digital potentiometer opera-  
tion. Supply signals present on the A, B, and W terminals that  
exceed VDD or GND are clamped by the internal forward-biased  
diodes (see Figure 38).  
V
DD  
D
256  
256 D  
256  
A
VW (D) =  
VA +  
VB  
(3)  
W
B
A more accurate calculation, which includes the effect of wiper  
resistance, VW, is  
GND  
R
WB(D)  
RAB  
RWA(D)  
RAB  
VW (D) =  
VA +  
VB  
(4)  
Figure 38. Maximum Terminal Voltages Set by VDD and GND  
Operation of the digital potentiometer in the divider mode  
POWER-UP SEQUENCE  
results in more accurate operation over temperature. Unlike in  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the internal resistors RWA and RWB, not on the absolute  
values. Therefore, the temperature drift reduces to 15 ppm/°C.  
Because the ESD protection diodes limit the voltage compliance  
at the A, B, and W terminals (see Figure 38), it is important to  
power VDD/GND before applying voltage to the A, B, and W  
terminals; otherwise, the diode is forward-biased such that VDD  
is powered unintentionally and may affect the rest of the users  
circuit. The ideal power-up sequence is in the following order:  
GND, VDD, digital inputs, and then VA, VB, VW. The relative  
order of powering VA, VB, VW, and the digital inputs is not  
important, as long as they are powered after VDD/GND.  
Rev. C | Page 14 of 20  
 
 
 
 
 
 
 
AD5162  
110  
108  
106  
104  
102  
100  
98  
LAYOUT AND POWER SUPPLY BYPASSING  
T
= 25°C  
It is good practice to employ compact, minimum lead length  
layout design. The leads to the inputs should be as direct as  
possible with a minimum conductor length. Ground paths  
should have low resistance and low inductance.  
A
Similarly, it is also good practice to bypass the power supplies with  
quality capacitors for optimum stability. Supply leads to the device  
should be bypassed with disc or chip ceramic capacitors of 0.01 μF  
to 0.1 μF. Low ESR 1 μF to 10 μF tantalum or electrolytic capacitors  
should also be applied at the supplies to minimize any transient  
disturbance and low frequency ripple (see Figure 39). In addition,  
note that the digital ground should be joined remotely to the  
analog ground at one point to minimize the ground bounce.  
96  
94  
92  
90  
0
5
10  
15  
20  
25  
30  
DAYS  
Figure 40. Battery Operating Life Depletion  
EVALUATION BOARD  
V
V
DD  
DD  
+
C3  
C1  
An evaluation board, along with all necessary software, is  
available to program the AD5162 from any PC running  
Windows® 98/2000/XP. The graphical user interface, as shown  
in Figure 41, is straightforward and easy to use. More detailed  
information is available in the user manual, which is supplied  
with the board.  
10F  
0.1F  
AD5162  
GND  
Figure 39. Power Supply Bypassing  
CONSTANT BIAS TO RETAIN RESISTANCE SETTING  
For users who desire nonvolatility but cannot justify the additional  
cost of the EEMEM, the AD5162 can be considered a low cost  
alternative by maintaining a constant bias to retain the wiper  
setting. The AD5162 is designed specifically for low power  
applications, allowing low power consumption even in battery-  
operated systems. The graph in Figure 40 demonstrates the  
power consumption from a 3.4 V, 450 mAhr Li-Ion cell phone  
battery connected to the AD5162. The measurement over time  
shows that the device draws approximately 1.3 μA and consumes  
negligible power. Over a course of 30 days, the battery is depleted  
by less than 2%, the majority of which is due to the intrinsic  
leakage current of the battery itself.  
Figure 41. AD5162 Evaluation Board Software  
The AD5162 starts at midscale upon power-up. To increment or  
decrement the resistance, simply move the scrollbars in the left of  
the software window (see Figure 41). To write a specific value,  
use the bit pattern in the upper part of the SDI Write Bit Control  
(Hit Run) box and then click Run. The format of writing data  
to the device is shown in Table 8.  
This demonstrates that constantly biasing the potentiometer can be  
a practical approach. Most portable devices do not require the  
removal of batteries for the purpose of charging. Although the  
resistance setting of the AD5162 is lost when the battery needs  
replacement, such events occur rather infrequently such that  
this inconvenience is justified by the lower cost and smaller size  
offered by the AD5162. If total power is lost, the user should be  
provided with a means to adjust the setting accordingly.  
Rev. C | Page 15 of 20  
 
 
 
 
 
 
AD5162  
SPI INTERFACE  
SPI-COMPATIBLE, 3-WIRE SERIAL BUS  
Table 8. Serial Data-Word Format1  
MSB  
LSB  
B0  
The AD5162 contains a 3-wire, SPI-compatible digital interface  
(SDI, , and CLK). The 9-bit serial word must be loaded MSB  
CS  
first. The format of the word is shown in Table 8.  
B8  
A0  
(28)  
B7  
D7  
(27)  
B6  
B5  
B4  
B3  
B2  
B1  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(20)  
The positive-edge sensitive CLK input requires clean transitions  
to avoid clocking incorrect data into the serial input register.  
Standard logic families work well. If mechanical switches are  
used for product evaluation, they should be debounced by a  
1 The values of bits are shown in parentheses.  
1
A0 D7 D6 D5 D4 D3 D2 D1 D0  
SDI  
0
1
flip-flop or another suitable means. When  
is low, the clock  
CS  
CLK  
loads data into the serial register on each positive clock edge  
(see Figure 42).  
0
1
RDAC REGISTER LOAD  
CS  
0
1
The data setup and data hold times in Table 3 determine the  
valid timing requirements. The AD5162 uses a 9-bit serial input  
data register word that is transferred to the internal RDAC  
V
OUT  
0
Figure 42. SPI Interface Timing Diagram  
register when the  
are ignored.  
line returns to logic high. Extra MSB bits  
CS  
(VA = 5 V, VB = 0 V, VW = VOUT  
)
1
SDI  
Dx  
Dx  
tDS  
(DATA IN)  
0
tCS1  
tCH  
tCH  
1
CLK  
0
tCSH1  
tCL  
tCSH0  
tCSS  
1
CS  
tCSW  
tS  
0
V
DD  
0
±1LSB  
V
OUT  
Figure 43. SPI Interface Detailed Timing Diagram (VA = 5 V, VB = 0 V, VW = VOUT  
)
Rev. C | Page 16 of 20  
 
 
 
 
 
 
AD5162  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 44. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2, 3  
RAB (kΩ)  
Temperature  
Package Description  
Package Option  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
Branding  
D0Q  
D0Q  
D0R  
D0S  
D0S  
D0T  
D0T  
D74  
D74  
AD5162BRM2.5  
AD5162BRM2.5-RL7  
AD5162BRM10  
2.5  
2.5  
10  
50  
50  
100  
100  
2.5  
2.5  
10  
10  
50  
50  
100  
100  
100  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
Evaluation Board  
AD5162BRM50  
AD5162BRM50-RL7  
AD5162BRM100  
AD5162BRM100-RL7  
AD5162BRMZ2.5  
AD5162BRMZ2.5-RL7  
AD5162BRMZ10  
AD5162BRMZ10-RL7  
AD5162BRMZ50  
AD5162BRMZ50-RL7  
AD5162BRMZ100  
AD5162BRMZ100-RL7  
AD5162WBRMZ100-RL7  
AD5162EVAL  
D9K  
D9K  
D0S#  
D0S#  
D0T#  
D0T#  
D0T#  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
3 The evaluation board is shipped with the 10 k Ω RAB resistor option; however, the board is compatible with all available resistor value options.  
AUTOMOTIVE PRODUCTS  
The AD5162W model is available with controlled manufacturing to support the quality and reliability requirements of automotive  
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers  
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in  
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to  
obtain the specific Automotive Reliability reports for these models.  
Rev. C | Page 17 of 20  
 
 
 
 
AD5162  
NOTES  
Rev. C | Page 18 of 20  
AD5162  
NOTES  
Rev. C | Page 19 of 20  
AD5162  
NOTES  
©2003–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04108-0-12/10(C)  
Rev. C | Page 20 of 20  

相关型号:

AD5162WBRMZ100-RL7

Dual, 256-Position, SPI Digital Potentiometer
ADI

AD5165

256-Position, Ultralow Power 1.8 V Logic-Level Digital Potentiometer
ADI

AD5165A

Audio Amplifier, 2.5W, 1 Channel(s), 1 Func, 3 X 3 M, LEAD FREE, DFN-8
ESMT

AD5165BUJZ100

256-Position, Ultralow Power 1.8 V Logic-Level Digital Potentiometer
ADI

AD5165BUJZ100-R2

256-Position, Ultralow Power 1.8 V Logic-Level Digital Potentiometer
ADI

AD5165BUJZ100-R7

256-Position, Ultralow Power 1.8 V Logic-Level Digital Potentiometer
ADI

AD5165EVAL

256-Position, Ultralow Power 1.8 V Logic-Level Digital Potentiometer
ADI

AD516J

IC OP-AMP, 1 MHz BAND WIDTH, BCY8, TO-99, 8 PIN, Operational Amplifier
ADI

AD516K

IC OP-AMP, 1 MHz BAND WIDTH, BCY8, TO-99, 8 PIN, Operational Amplifier
ADI

AD516S

IC OP-AMP, 1 MHz BAND WIDTH, BCY8, TO-99, 8 PIN, Operational Amplifier
ADI

AD517

Low Cost, Laser Trimmed, Precision IC Op Amp
ADI

AD5170

256-Position Two-Time Programmable I2C Digital Potentiometer
ADI