AD5233BRU10 [ADI]

Nonvolatile Memory Digital Potentiometers; 非易失性存储器数字电位器
AD5233BRU10
型号: AD5233BRU10
厂家: ADI    ADI
描述:

Nonvolatile Memory Digital Potentiometers
非易失性存储器数字电位器

电位器 存储
文件: 总14页 (文件大小:222K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY TECHNICAL DATA  
Nonvolatile Memory  
a
Digital Potentiometers  
AD5231/AD5232/AD5233  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
Nonvolatile Memory Preset Maintains Wiper Settings  
AD5231 Single, 1024 Position Resolution  
AD5232 Dual, 256 Position Resolution  
AD5233 Quad, 64 Position Resolution  
10K, 50K, 100K Ohm Terminal Resistance  
Linear or Log taper Settings  
Increment/Decrement Commands, Push Button Command  
SPI Compatible Serial Data Input with Readback Function  
+3 to +5V Single Supply or 2.5V Dual Supply Operation  
User EEMEM nonvolatile memory for constant storage  
AD5231  
C S  
VD D  
AD DR  
D ECO D E  
R D AC 1  
REGISTER  
C LK  
SDI  
R D AC 1  
SDI  
A1  
W 1  
B1  
SERIAL  
EEMEM1  
INTERFACE  
SDO  
G ND  
SDO  
W P  
D IG ITAL 2  
REGISTER  
O1  
O2  
D IG ITAL  
O UTPU T  
BUFFER  
2
EEMEM  
C ON TR O L  
R D Y  
PR  
APPLICATIONS  
EEMEM2  
VSS  
28 BYTES  
Mechanical Potentiometer Replacement  
Instrumentation: Gain, Offset Adjustment  
Programmable Voltage to Current Conversion  
Programmable Filters, Delays, Time Constants  
Line Impedance Matching  
Power Supply Adjustment  
DIP Switch Setting  
USER EEM EM  
AD5232  
C S  
VDD  
ADDR  
DECODE  
R DAC1  
R DAC1  
C LK  
SDI  
R EG ISTER  
A1  
W 1  
B1  
SDI  
SER IAL  
G ND  
EEM EM 1  
IN TERFAC E  
SDO  
GENERAL DESCRIPTION  
The AD5231/AD5232/AD5233 family provides a single-  
/dual-/quad-channel, digitally controlled variable resistor (VR)  
with resolutions of 1024/256/64 positions respectively. These  
devices perform the same electronic adjustment function as a  
potentiometer or variable resistor. The AD523X’s versatile  
programming via a Micro Controller allows multiple modes of  
operation and adjustment.  
R DAC2  
SDO  
W P  
R DAC2  
R EG ISTER  
A2  
W 2  
B2  
EEM EM  
C ON TR O L  
R DY  
PR  
EEM EM 2  
14 BY T ES  
VSS  
U S ER E EM E M  
AD5233  
C S  
In the direct program mode a predetermined setting of the  
RDAC register can be loaded directly from the micro controller.  
Another key mode of operation allows the RDAC register to be  
refreshed with the setting previously stored in the EEMEM  
register. When changes are made to the RDAC register to  
establish a new wiper position, the value of the setting can be  
saved into the EEMEM by executing an EEMEM save  
operation. Once the settings are saved in the EEMEM register  
these values will be transferred automatically to the RDAC  
register to set the wiper position at system power ON. Such  
operation is enabled by the internal preset strobe and the preset  
can also be accessed externally.  
VDD  
ADDR  
DECODE  
R DAC1  
R DAC1  
C LK  
SDI  
R EG ISTER  
A1  
W 1  
B1  
SDI  
SER IAL  
EEM EM 1  
IN TERFAC E  
SDO  
R DAC2  
SDO  
W P  
R DAC2  
R EG ISTER  
A2  
W 2  
B2  
EEM EM  
C ON TR O L  
R DY  
G ND  
EEM EM 2  
11 BY T ES  
U S ER E EM E M  
The basic mode of adjustment is the increment and decrement  
command controlling the present setting of the Wiper position  
setting (RDAC) register. An internal scratch pad RDAC register  
can be moved UP or DOWN, one step of the nominal terminal  
resistance between terminals A-and-B. This linearly changes the  
wiper to B terminal resistance (RWB) by one position segment of  
the device's end-to-end resistance (RAB). For  
exponential/logarithmic changes in wiper setting, a left/right  
shift command adjusts levels in +/-6dB steps, which can be  
useful for sound and light alarm applications.  
R DAC3  
R DAC3  
R EG ISTER  
O1  
O2  
A3  
W 3  
B3  
D IGITAL  
O UTPU T  
BUFFER  
EEM EM 3  
2
R DAC4  
D IGITAL 5  
R EG ISTER  
R DAC4  
A4  
R EG ISTER  
W 4  
PR  
B4  
EEM EM 5  
EEM EM 4  
VSS  
The AD523X are available in the thin TSSOP package. All  
parts are guaranteed to operate over the extended industrial  
temperature range of -40°C to +85°C.  
REV PrF, 22 MAR '01  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use; nor for any infringements of patents  
or other rights of third parties, which may result from its use. No license is granted by  
implication or otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781/329-4700  
Fax:617/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1999  
PRELIMINARY TECHNICAL DATA  
AD5231/AD5232/AD5233 - SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS 10K, 50K, 100K OHM VERSIONS (VDD = +3V 10% or +5V 10% and VSS=0V,  
VA = +VDD, VB = 0V, -40°C < TA < +85°C unless otherwise noted.)  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Units  
DC CHARACTERISTICS RHEOSTAT MODE Specifications apply to all VRs  
Resistor Differential Nonlinearity2  
R-DNL  
R-INL  
RWB, VA=NC  
RWB, VA=NC  
-1  
-1  
-30  
±1/4  
±1/2  
+1  
+1  
30  
LSB  
%FS  
Resistor Nonlinearity2  
Nominal resistor tolerance  
R  
TA = 25°C, VAB = VDD,Wiper (VW) = No connect  
%
Resistance Temperature Coefficent  
RAB/T  
V
= V , Wiper (VW) = No Connect  
500  
50  
200  
ppm/°C  
AB DD  
Wiper Resistance  
Wiper Resistance  
RW  
RW  
IW = 1 V/R, VDD = +5V  
IW = 1 V/R, VDD = +3V  
100  
DC CHARACTERISTICS POTENTIOMETER DIVIDER MODE Specifications apply to all VRs  
Resolution  
N
AD5231/AD5232/AD5233  
10 / 8 / 6  
–1  
Bits  
Integral Nonlinearity3  
INL  
±1/2  
+1  
+1  
%FS  
Differential Nonlinearity3  
Voltage Divider Temperature Coefficent  
Full-Scale Error  
DNL  
–1  
±1/4  
LSB  
ppm/°C  
%FS  
VW/T  
VWFSE  
Code = Half-scale  
Code = Full-scale  
Code = Zero-scale  
15  
–3  
0
+0  
+3  
Zero-Scale Error  
VWZSE  
%FS  
RESISTOR TERMINALS  
Voltage Range4  
VA,B,W  
CA,B  
CW  
VSS  
VDD  
V
pF  
pF  
µA  
5
Capacitance Ax, Bx  
f = 1 MHz, measured to GND, Code = Half-scale  
f = 1 MHz, measured to GND, Code = Half-scale  
VA = VB = VDD/2  
45  
60  
0.01  
5
Capacitance Wx  
Common-mode Leakage Current6  
ICM  
1
DIGITAL INPUTS & OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Output Logic High  
Output Logic High  
Output Logic Low  
Input Current  
VIH  
VIL  
with respect to GND, VDD = 5V  
with respect to GND, VDD = 5V  
with respect to GND, VDD = 3V  
with respect to GND, VDD = 3V  
RPULL-UP = 2.2Kto +5V  
IOH = 40µA, VLOGIC = +5V  
IOL = 1.6mA, VLOGIC = +5V  
VIN = 0V or VDD  
2.4  
2.1  
V
V
0.8  
0.6  
VIH  
VIL  
V
V
VOH  
VOH  
VOL  
IIL  
4.9  
4
V
V
0.4  
±1  
V
µA  
pF  
Input Capacitance5  
CIL  
5
POWER SUPPLIES  
Single-Supply Power Range  
VDD  
VSS = 0V  
2.7  
5.5  
V
Dual-Supply Power Range  
VDD/VSS  
±2.25  
±2.75  
V
Positive Supply Current  
IDD  
VIH = VDD or VIL = GND  
2
20  
µA  
Programming Mode Current  
IDD(PG)  
IDD(READ)  
ISS  
PDISS  
PSS  
VIH = VDD or VIL = GND  
35  
mA  
mA  
µA  
mW  
%/%  
13  
Read Mode Current  
VIH = VDD or VIL = GND  
0.9  
9
10  
0.1  
0.01  
Negative Supply Current  
VIH = VDD or VIL = GND, VDD = 2.5V, VSS = -2.5V  
VIH = VDD or VIL = GND  
Power Dissipation7  
Power Supply Sensitivity  
VDD = +5V ±10%  
0.002  
DYNAMIC CHARACTERISTICS5, 8  
Bandwidth –3dB  
BW_10K  
THDW  
tS  
R = 10KΩ  
600  
KHz  
%
Total Harmonic Distortion  
VA =1Vrms, VB = 0V, f=1KHz  
0.003  
VW Settling Time  
VA= VDD, VB=0V, 50% of final value  
For RAB = 10K/50K/100K  
1 / 3 / 6  
9
µs  
Resistor Noise Voltage  
eN_WB  
CT  
RWB = 5K, f = 1KHz  
nVHz  
Crosstalk (CW1/CW2  
)
VA = VDD, VB = 0V, Measure VW with adjacent  
VR making full scale change  
-65  
dB  
NOTES: See bottom of table next page.  
REV PrF  
2
22 MAR '01  
Information contained in this Preliminary data sheet describes a product in the early definition stage. There is no guarantee that the  
information contained here will become a final product in its present form. For latest information contact Walt Heinzer/Analog Devices, Santa  
Clara, CA. TEL(408)382-3107; FAX (408)382-2708; walt.heinzer@analog.com  
PRELIMINARY TECHNICAL DATA  
AD5231/AD5232/AD5233 - SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS 10K, 50K, 100K OHM VERSIONS (VDD = +3V 10% to +5V 10% and VSS=0V,  
VA = +VDD, VB = 0V, -40°C < TA < +85°C unless otherwise noted.)  
Parameter  
Symbol Conditions  
Min  
Typ1  
Max  
Units  
INTERFACE TIMING CHARACTERISTICS applies to all parts(Notes 5, 9)  
Clock Cycle Time  
t 1  
20  
10  
10  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
ns  
ns  
ms  
ns  
ns  
us  
Input Clock Pulse Width  
CS Setup Time  
t 2 , t 3  
t 4  
Clock level high or low  
Data Setup Time  
Data Hold Time  
t 5  
From Positive CLK transition  
From Positive CLK transition  
t 6  
5
CLK Shutdown Time  
CS Rise to Clock Rise Setup  
CS High Pulse Width  
CLK to SDO Propagation Delay10  
t 7  
0
t 8  
10  
10  
1
t 9  
t 10  
RP = 1K, CL < 20pF  
Applies to Command 2H, 3H, 9H  
25  
25  
Store to Nonvolatile EEMEM Save Time11 t 12  
CS to SDO - SPI line acquire  
CS to SDO - SPI line release  
RDY Rise to CS Fall  
t13  
t14  
t15  
Startup Time  
t16  
CLK Setup Time  
t17  
For 1 CLK period (t4 - t3 = 1 CLK period)  
Preset Pulse Width (Asynchronous)  
Preset Response Time  
tPR  
50  
tPRESP  
PR pulsed low then high  
70  
NOTES:  
1.  
2.  
Typicals represent average readings at +25°C and VDD = +5V.  
Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper positions. R-DNL measures the  
relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. IW = VDD/R for both VDD=+3V or VDD=+5V.  
3.  
INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = VSS  
DNL specification limits of ±1LSB maximum are Guaranteed Monotonic operating conditions.  
Resistor terminals A, B, W have no limitations on polarity with respect to each other.  
Guaranteed by design and not subject to production test.  
.
4.  
5.  
6.  
7.  
8.  
9.  
Common mode leakage current is a measure of the DC leakage from any terminal A, B, W to a common mode bias level of VDD / 2.  
PDISS is calculated from (IDD x VDD) + (ISS X VSS).  
All dynamic characteristics use VDD = +5V.  
See timing diagram for location of measured values. All input control voltages are specified with tR=tF=2.5ns(10% to 90% of 3V) and timed from a voltage level of 1.5V. Switching  
characteristics are measured using both VDD = +3V or +5V.  
10. Propagation delay depends on value of VDD, RPULL_UP, and CL see applications text.  
11. Low only for instruction commands 8, 9,10, 2, 3: CMD_8 ~ 1ms; CMD_9,10 ~0.12ms; CMD_2,3 ~20ms  
12. Dual Supply Operation primarily affects the POT terminals.  
13. Read Mode current is not continuous.  
Timing Diagram  
CLK  
t17  
t1  
t3  
t2  
t7  
t8  
t4  
CS  
t9  
t5  
t6  
SDI  
M SB  
LSB  
t13  
t10  
t14  
SDO1  
SDO2  
M SB  
LSB  
M SB  
LSB  
t15  
t16  
t12  
RDY  
SDO1 CLK IDLES LOW  
SDO2 CLK IDLES HIGH  
Figure 1. Timing Diagram  
REV PrF  
3
22 MAR '01  
Information contained in this Preliminary data sheet describes a product in the early definition stage. There is no guarantee that the  
information contained here will become a final product in its present form. For latest information contact Walt Heinzer/Analog Devices, Santa  
Clara, CA. TEL(408)382-3107; FAX (408)382-2708; walt.heinzer@analog.com  
PRELIMINARY TECHNICAL DATA  
Nonvolatile Memory Digital Potentiometers AD5231/AD5232/AD5233  
Digital Inputs & Output Voltage to GND .................. 0V, +7V  
Operating Temperature Range ........................ -40°C to +85°C  
Maximum Junction Temperature (TJ MAX) ..................+150°C  
Absolute Maximum Rating (TA = +25°C, unless  
otherwise noted)  
V
DD to GND..............................................................-0.3, +7V  
Storage Temperature ..................................... -65°C to +150°C  
Lead Temperature (Soldering, 10 sec) .........................+300°C  
Package Power Dissipation ........................ (TJMAX - TA) / θJA  
VSS to GND .................................................................0V, -7V  
VDD to VSS .........................................................................+7V  
VA, VB, VW to GND..................................................VSS, VDD  
A
X – BX, AX – WX, BX – WX  
Intermittent ................................................... 20mA  
Continuous................................................... 1.3mA  
Thermal Resistance θJA,  
TSSOP-16 ..................................................... 150°C/W  
TSSOP-24 ..................................................... 128°C/W  
Ox to GND.................................................................. 0V, VDD  
Ordering Guide  
Number of  
Channels  
End to End  
R (k Ohm)  
Temp  
Range  
Package  
Description  
Package #Devices  
Option per Container  
Top Mark  
Model  
AD5231BRU10  
X1  
X1  
X1  
X1  
X1  
X1  
10  
-40/+85°C  
-40/+85°C  
-40/+85°C  
-40/+85°C  
-40/+85°C  
-40/+85°C  
TSSOP-16  
TSSOP-16  
TSSOP-16  
TSSOP-16  
TSSOP-16  
TSSOP-16  
RU-16  
AD5231BRU10-REEL7  
AD5231BRU50  
10  
50  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
1,000  
1,000  
1,000  
AD5231BRU50-REEL7  
AD5231BRU100  
50  
100  
100  
AD5231BRU100-REEL7  
AD5232BRU10  
AD5232BRU10-REEL7  
AD5232BRU50  
X2  
X2  
X2  
X2  
X2  
X2  
10  
10  
-40/+85°C  
-40/+85°C  
-40/+85°C  
-40/+85°C  
-40/+85°C  
-40/+85°C  
TSSOP-16  
TSSOP-16  
TSSOP-16  
TSSOP-16  
TSSOP-16  
TSSOP-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
1,000  
1,000  
1,000  
50  
AD5232BRU50-REEL7  
AD5232BRU100  
50  
100  
100  
AD5232BRU100-REEL7  
AD5233BRU10  
X4  
X4  
X4  
X4  
X4  
X4  
10  
-40/+85°C  
-40/+85°C  
-40/+85°C  
-40/+85°C  
-40/+85°C  
-40/+85°C  
TSSOP-24  
TSSOP-24  
TSSOP-24  
TSSOP-24  
TSSOP-24  
TSSOP-24  
RU-24  
RU-24  
RU-24  
RU-24  
RU-24  
RU-24  
AD5233BRU10-REEL7  
AD5233BRU50  
10  
50  
AD5233BRU50-REEL7  
AD5233BRU100  
AD5233BRU100-REEL7  
50  
100  
100  
The AD5231/AD5232/AD5233 contains 9,646 transistors.  
Die size: 69 mil x 115 mil, 7,993 sq. mil  
REV PrF  
4
22 MAR '01  
Information contained in this Preliminary data sheet describes a product in the early definition stage. There is no guarantee that the  
information contained here will become a final product in its present form. For latest information contact Walt Heinzer/Analog Devices, Santa  
Clara, CA. TEL(408)382-3107; FAX (408)382-2708; walt.heinzer@analog.com  
PRELIMINARY TECHNICAL DATA  
Nonvolatile Memory Digital Potentiometers AD5231/AD5232/AD5233  
AD5231 PIN CONFIGURATION  
AD5232 PIN CONFIGURATION  
O1  
CLK  
SDI  
SDO  
GND  
VSS  
1
2
3
4
5
6
7
8
16 O2  
CLK  
SDI  
SDO  
GND  
VSS  
1
2
3
4
5
6
7
8
16 RDY  
15  
14  
13  
12  
11  
10  
9
RDY  
CS  
15  
14  
13  
12  
11  
10  
9
CS  
PR  
PR  
WP  
VDD  
A2  
W2  
B2  
WP  
VDD  
A1  
A1  
T1  
W1  
W1  
B1  
B1  
AD5231 PIN FUNCTION DESCRIPTION  
AD5232 PIN FUNCTION DESCRIPTION  
#
Name  
Description  
#
Name  
Description  
1
O1  
Non-Volatile Digital Output #1, ADDR(O1) =  
1H, data bit position D0  
1
CLK  
Serial Input Register clock pin. Shifts in one  
bit at a time on positive clock edges.  
2
CLK  
Serial Input Register clock pin. Shifts in one  
bit at a time on positive clock CLK edges.  
2
3
SDI  
Serial Data Input Pin. Shifts in one bit at a  
time on positive clock CLK edges.  
3
4
SDI  
Serial Data Input Pin.  
SDO  
Serial Data Output Pin. Open Drain Output  
requires external pull-up resistor. Commands 9  
& 10 activate the SDO output. See Instruction  
operation Truth Table. Other commands shift  
out the previously loaded bit pattern delayed  
by 16 clock pulses. This allows daisy-chain  
operation of multiple packages.  
SDO  
Serial Data Output Pin. Open Drain Output  
requires external pull-up resistor. Commands 9  
& 10 activate the SDO output. See Instruction  
operation Truth Table. Other commands shift  
out the previously loaded bit pattern delayed  
by 24 clock pulses. This allows daisy-chain  
operation of multiple packages.  
4
5
GND  
VSS  
Ground pin, logic ground reference  
5
6
GND  
VSS  
Ground pin, logic ground reference.  
Negative Supply. Connect to zero volts for  
single supply applications.  
Negative Supply. Connect to zero volts for  
single supply applications.  
6
7
A1  
A terminal of RDAC1.  
7
T1  
Used as digital input during factory test mode.  
Leave pin floating or connect to VDD or VSS.  
W1  
Wiper terminal of RDAC1,  
ADDR(RDAC1) = 0H.  
8
9
B1  
B terminal of RDAC1.  
8
B1  
B2  
W2  
B terminal of RDAC1.  
B terminal of RDAC2.  
W1  
Wiper terminal of RDAC1,  
ADDR(RDAC1) = 0H  
9
10  
Wiper terminal of RDAC2,  
ADDR(RDAC2) = 1H.  
10  
11  
A1  
A terminal of RDAC1.  
VDD  
Positive Power Supply Pin. Should be the  
input-logic HIGH voltage.  
11  
12  
A2  
A terminal of RDAC2.  
VDD  
Positive Power Supply Pin. Should be the  
input-logic HIGH voltage.  
12  
WP  
PR  
Write Protect Pin. When active low WP  
prevents any changes to the present contents  
except retrieving EEMEM contents and  
RESET.  
13  
WP  
PR  
Write Protect Pin. When active low, WP  
prevents any changes to the present contents,  
except retrieving EEMEM content and  
RESET.  
13  
Hardware over ride preset pin. Refreshes the  
scratch pad register with current contents of  
the EEMEM register. Factory default loads  
midscale 200H until EEMEM loaded with a  
new value by the user (PR is activated at the  
rising logic high transition)  
14  
Hardware over ride preset pin. Refreshes the  
scratch pad register with current contents of  
the EEMEM register. Factory default loads  
midscale 80H until EEMEM loaded with a new  
value by the user (PR is activated at the logic  
high transition).  
14  
15  
16  
CS  
Serial Register chip select active low. Serial  
register operation takes place when CS returns  
to logic high.  
15  
16  
CS  
Serial Register chip select active low. Serial  
register operation takes place when CS returns  
to logic high.  
RDY  
O2  
Ready. Active-high open drain output.  
Identifies completion of commands 2, 3, 8, 9,  
10.  
RDY  
Ready. Active-high open drain output.  
Identifies completion of commands 2, 3, 8, 9,  
10.  
Non-Volatile Digital Output #2, ADDR(O2) =  
1H, data bit position D1.  
REV PrF  
5
22 MAR '01  
Information contained in this Preliminary data sheet describes a product in the early definition stage. There is no guarantee that the  
information contained here will become a final product in its present form. For latest information contact Walt Heinzer/Analog Devices, Santa  
Clara, CA. TEL(408)382-3107; FAX (408)382-2708; walt.heinzer@analog.com  
PRELIMINARY TECHNICAL DATA  
Nonvolatile Memory Digital Potentiometers AD5231/AD5232/AD5233  
AD5233 PIN CONFIGURATION  
O1  
CLK  
SDI  
SDO  
GND  
VSS  
1
2
3
4
5
6
7
8
9
24 O2  
23 RDY  
22 CS  
PR  
21  
20  
19  
18  
17  
16  
15  
14  
13  
WP  
VDD  
A4  
W4  
B4  
A3  
W3  
B3  
A1  
W1  
B1  
A2 10  
W2 11  
B2 12  
AD5233 PIN FUNCTION DESCRIPTION  
#
1
2
3
4
Name  
O1  
Description  
Non-Volatile Digital Output #1, ADDR(O1) = 4H, data bit position D0.  
Serial Input Register clock pin. Shifts in one bit at a time on positive clock CLK edges.  
Serial Data Input Pin.  
CLK  
SDI  
SDO  
Serial Data Output Pin. Open Drain Output requires external pull-up resistor. Commands 9 & 10 activate the SDO output.  
See Instruction operation Truth Table. Other commands shift out the previously loaded bit pattern delayed by 16 clock  
pulses. This allows daisy-chain operation of multiple packages.  
5
GND  
VSS  
A1  
Ground pin, logic ground reference  
Negative Supply. Connect to zero volts for single supply applications.  
A terminal of RDAC1.  
6
7
8
W1  
B1  
Wiper terminal of RDAC1, ADDR(RDAC1) = 0H.  
B terminal of RDAC1.  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
A2  
A terminal of RDAC2.  
W2  
B2  
Wiper terminal of RDAC2, ADDR(RDAC2) = 1H.  
B terminal of RDAC2.  
B3  
B terminal of RDAC3.  
W3  
A3  
Wiper terminal of RDAC3, ADDR(RDAC3) = 2H.  
A terminal of RDAC3.  
B4  
B terminal of RDAC4.  
W4  
A4  
Wiper terminal of RDAC4, ADDR(RDAC4) = 3H.  
A terminal of RDAC4.  
VDD  
WP  
Positive Power Supply Pin. Should be the input-logic HIGH voltage.  
Write Protect Pin. When active low, WP prevents any changes to the present contents, except retrieving EEMEM content  
and RESET.  
21  
PR  
Hardware over ride preset pin. Refreshes the scratch pad register with current contents of the EEMEM register. Factory  
default loads midscale 20H until EEMEM loaded with a new value by the user (PR is activated at the logic high  
transition).  
22  
23  
24  
CS  
Serial Register chip select active low. Serial register operation takes place when CS returns to logic high.  
Ready. Active-high open drain output. Identifies completion of commands 2, 3, 8, 9, 10.  
Non-Volatile Digital Output #2, ADDR(O2) = 4H, data bit position D1.  
RDY  
O2  
REV PrF  
6
22 MAR '01  
Information contained in this Preliminary data sheet describes a product in the early definition stage. There is no guarantee that the  
information contained here will become a final product in its present form. For latest information contact Walt Heinzer/Analog Devices, Santa  
Clara, CA. TEL(408)382-3107; FAX (408)382-2708; walt.heinzer@analog.com  
PRELIMINARY TECHNICAL DATA  
Nonvolatile Memory Digital Potentiometers AD5231/AD5232/AD5233  
SERIAL DATA INTERFACE  
OPERATIONAL OVERVIEW  
The AD523X family contains a four-wire SPI compatible digital  
interface (SDI, SDO, CS, and CLK). Key features of this  
interface include:  
The AD5231/32/33 digital potentiometer family is designed to  
operate as a true variable resistor replacement device for analog  
signals that remain within the terminal voltage range of  
VSS<VTERM<VDD. The basic voltage range is limited to a |VDD  
VSS| < 5.5V.  
-
Independently Programmable Read & Write to all registers  
Direct parallel refresh of all RDAC wiper registers from  
corresponding internal EEMEM registers  
Increment & Decrement instructions for each RDAC wiper  
register  
Left & right Bit Shift of all RDAC wiper registers to  
achieve 6dB level changes  
Nonvolatile storage of the present scratch pad RDAC  
register values into the corresponding EEMEM register  
Extra bytes of user addressable electrical-erasable memory  
Control of the digital potentiometer allows both scratch pad  
register (RDAC register) changes to be made, as well as,  
100,000 nonvolatile electrically erasable memory (EEMEM)  
register operations. The EEMEM update process takes  
approximately 20.2ms, during this time the shift register is  
locked preventing any changes from taking place. The RDY pin  
flags the completion of this EEMEM save. The EEMEM  
retention is designed to last 15 years at 85°C, which is  
equivalent to 90 years at 55°C, without refresh.  
The serial interface contains three different word formats to  
support the single AD5231, dual AD5232, and the quad  
AD5233 digital potentiometer devices. The AD5232 and  
AD5233 use a 16-bit serial data word loaded MSB first, while  
the AD5231 uses a 24-bit serial word loaded MSB first. The  
format of the SPI compatible word is shown in Table 1 and 2.  
The Command Bits (Cx) control the operation of the digital  
potentiometer according to the command instructions shown in  
Table 3, 4, and 5. The Address Bits (Ax) determine which  
register is activated. The Data Bits (Dx) are the values that are  
loaded into the decoded register. The last instruction executed  
prior to a period of no programming activity should be the No  
OPeration (NOP) instruction. This will place the internal logic  
circuitry in a minimum power dissipation state.  
The scratch pad register can be changed incrementally by using  
the software controlled Increment/Decrement instruction or the  
Shift Left/Right instruction command. Once an Increment,  
Decrement or Shift command has been loaded into the shift  
register subsequent CS strobes will repeat this command. This is  
useful for push button control applications. Alternately the  
scratch pad register can be programmed with any position value  
using the standard SPI serial interface mode by loading the  
representative data word. The scratch pad register can be loaded  
with the current contents of the nonvolatile EEMEM register  
under program control. At system power ON, the default value  
of the scratch pad memory is the value previously saved in the  
EEMEM register. The factory EEMEM preset value is midscale.  
The scratch pad (wiper) register can be loaded with the current  
contents of the nonvolatile EEMEM register under hardware  
control by pulsing the PR pin. Beware that the PR pulse first sets  
the wiper at midscale when brought to logic zero, and then on  
the positive transition to logic high, it reloads the DAC wiper  
register with the contents of EEMEM. Similarly, the saved  
EEMEM value will automatically be retrieved to the scratch pad  
register during system power ON.  
PR  
VALID  
COMMAND  
COMMAND  
+5V  
PROCESSOR  
& ADDRESS  
DECODE  
COUNTER  
R PULLUP  
CLK  
SERIAL  
REGISTER  
A serial data output pin is available for daisy chaining and for  
readout of the internal register contents. The serial input data  
register uses a 16 or 24-bit instruction/address/data WORD.  
Write protect (WP) disables any changes of current content in  
the scratch pad register regardless of the commands, except that  
EEMEM setting can be retrieved using commands 1 and 9.  
Therefore, write-protect (WP) pin provides hardware EEMEM  
protection feature.  
SDO  
GND  
CS  
SDI  
Figure 2. Equivalent Digital Input-Output Logic  
The equivalent serial data input and output logic is shown in  
figure 2. The open drain output SDO is disabled whenever chip  
select CS is logic high. The SPI interface can be used in two  
slave modes CPHA=1, CPOL=1 and CPHA=0, CPOL=0. CPHA  
and CPOL refer to the control bits, which dictate SPI timing in  
the following microprocessors/Micro Converters:  
DIGITAL INPUT/OUTPUT CONFIGURATION  
All digital inputs are ESD protected high input impedance that  
can be driven directly from most digital sources. For PR and WP,  
which are active at logic low, can be tied directly to VDD if they  
are not being used.  
ADuC812/824, M68HC11, and MC68HC16R1/916R1.  
The SDO and RDY pins are open drain digital outputs where  
pull-up resistors are needed only if using these functions. A  
resistor value in the range of 1k to 10k ohm optimizes the power  
and switching speed trade off.  
REV PrF  
7
22 MAR '01  
Information contained in this Preliminary data sheet describes a product in the early definition stage. There is no guarantee that the  
information contained here will become a final product in its present form. For latest information contact Walt Heinzer/Analog Devices, Santa  
Clara, CA. TEL(408)382-3107; FAX (408)382-2708; walt.heinzer@analog.com  
PRELIMINARY TECHNICAL DATA  
Nonvolatile Memory Digital Potentiometers AD5231/AD5232/AD5233  
Table 1. AD5232 & AD5233 16-bit Serial Data Word  
MSB  
LSB  
D0  
AD5232  
AD5233  
C3  
C2  
C2  
C1  
C1  
C0  
C0  
A3  
A3  
A2  
A2  
A1  
A1  
A0  
A0  
D7  
X
D6  
X
D5  
D5  
D4  
D4  
D3  
D3  
D2  
D2  
D1  
D1  
C3  
D0  
Table 2. AD5231 24-bit Serial Data Word  
M
S
B
L
S
B
D
0
AD5231  
C
3
C
2
C
1
C
0
A3 A2 A1 A0  
X
X
X
X
X
X
D
9
D
D
7
D
D
5
D
4
D
3
D
2
D
1
8
6
Command bits are identified as Cx, address bits are Ax, and data bits are Dx. Command instruction codes are defined in tables 3, 4, & 5.  
REV PrF  
8
22 MAR '01  
Information contained in this Preliminary data sheet describes a product in the early definition stage. There is no guarantee that the  
information contained here will become a final product in its present form. For latest information contact Walt Heinzer/Analog Devices, Santa  
Clara, CA. TEL(408)382-3107; FAX (408)382-2708; walt.heinzer@analog.com  
PRELIMINARY TECHNICAL DATA  
Nonvolatile Memory Digital Potentiometers AD5231/AD5232/AD5233  
Table 3. AD5231 Instruction/Operation Truth Table  
Inst Instruction Byte 1  
No.  
Data Byte 1  
B15 •••• B8  
Data Byte 0  
B7 ••• B0  
Operation  
B15 •••••••••••••••• B8  
C3 C2 C1 C0 A3 A2 A1 A0  
X ••• D9 D8 D7 ••• D0  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
X
X
X
X
X ••• X  
X ••• X  
X ••• X  
X
X
X
X
X
X
••• X  
••• X  
••• X  
No Operation (NOP): Do nothing  
1
<< ADDR >>  
<< ADDR >>  
<< ADDR >>  
<< ADDR >>  
Write contents of EEMEM(ADDR) to RDAC(ADDR)  
Register  
2
SAVE WIPER SETTING: Write contents of  
RDAC(ADDR) to EEMEM(ADDR)  
3
X ••• D9 D8 D7 ••• D0  
Write contents of Serial Register Data Byte 0 & 1 to  
EEMEM(ADDR)  
4
X ••• X  
X ••• X  
X ••• X  
X ••• X  
X ••• X  
X ••• X  
X ••• X  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
••• X  
••• X  
••• X  
••• X  
••• X  
••• X  
••• X  
Decrement 6dB: Right Shift contents of  
RDAC(ADDR), stops at all "Zeros".  
5
X
X
X
X
Decrement All 6dB: Right Shift contents of all  
RDAC Registers, stops at all "Zeros".  
6
<< ADDR >>  
Decrement contents of RDAC(ADDR) by "One",  
stops at all "Zeros".  
7
X
0
X
0
X
0
X
0
Decrement contents of RDAC Register by "One",  
stops at all "Zeros".  
8
RESET: Load all RDACs with their corresponding  
EEMEM previously-saved values  
9
<< ADDR >>  
<< ADDR >>  
<< ADDR >>  
<< ADDR >>  
Write contents of EEMEM(ADDR) to Serial Register  
Data Byte 0 & 1  
10  
11  
12  
13  
14  
15  
Write contents of RDAC(ADDR) to Serial Register  
Data Byte 0 & 1  
X ••• D9 D8 D7 ••• D0  
Write contents of Serial Register Data Byte 0 &1 to  
RDAC(ADDR)  
X ••• X  
X ••• X  
X ••• X  
X ••• X  
X
X
X
X
X
X
X
X
••• X  
••• X  
••• X  
••• X  
Increment 6dB: Left Shift contents of  
RDAC(ADDR), stops at all "Ones".  
X
X
X
X
Increment All 6dB: Left Shift contents of all RDAC  
Registers, stops at all "Ones".  
<< ADDR >>  
Increment contents of RDAC(ADDR) by "One",  
stops at all "Ones".  
X
X
X
X
Increment contents of RDAC Register by "One",  
stops at all "Ones".  
NOTES:  
1. The SDO output shifts-out the last 16-bits of data clocked into the serial register for daisy chain operation. Exception:  
following Instruction #9 or #10 the selected internal register data will be present in data byte 0 & 1. Instructions  
following #9 & #10 must be a full 24-bit data word to completely clock out the contents of the serial register.  
2. The RDAC register is a volatile scratch pad register that is refreshed at power ON from the corresponding non-volatile  
EEMEM register.  
3. The increment, decrement and shift commands ignore the contents of the shift register Data Byte 0.  
4. Execution of the Operation column noted in the table takes place when the CS strobe returns to logic high.  
REV PrF  
9
22 MAR '01  
Information contained in this Preliminary data sheet describes a product in the early definition stage. There is no guarantee that the  
information contained here will become a final product in its present form. For latest information contact Walt Heinzer/Analog Devices, Santa  
Clara, CA. TEL(408)382-3107; FAX (408)382-2708; walt.heinzer@analog.com  
PRELIMINARY TECHNICAL DATA  
Nonvolatile Memory Digital Potentiometers AD5231/AD5232/AD5233  
Table 4. AD5232 Instruction/Operation Truth Table  
Inst Instruction Byte 1  
No.  
Data Byte 0  
B7 ••••••••••••••••• B0  
Operation  
B15 •••••••••••••••• B8  
C3 C2 C1 C0 A3 A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
No Operation (NOP): Do nothing  
1
<< ADDR >>  
<< ADDR >>  
<< ADDR >>  
<< ADDR >>  
Write contents of EEMEM(ADDR) to RDAC(ADDR)  
Register  
2
SAVE WIPER SETTING: Write contents of  
RDAC(ADDR) to EEMEM(ADDR)  
3
D7 D6 D5 D4 D3 D2 D1 D0  
Write contents of Serial Register Data Byte 0 to  
EEMEM(ADDR)  
4
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Decrement 6dB: Right Shift contents of  
RDAC(ADDR) , stops at all "Zeros".  
5
X
X
X
X
Decrement All 6dB: Right Shift contents of all  
RDAC Registers, stops at all "Zeros".  
6
<< ADDR >>  
Decrement contents of RDAC(ADDR) by "One",  
stops at all "Zeros".  
7
X
0
X
0
X
0
X
0
Decrement contents of all RDAC Registers by  
"One", stops at all "Zeros".  
8
RESET: Load all RDACs with their corresponding  
EEMEM previously-saved values  
9
<< ADDR >>  
<< ADDR >>  
<< ADDR >>  
<< ADDR >>  
Write contents of EEMEM(ADDR) to Serial Register  
Data Byte 0  
10  
11  
12  
13  
14  
15  
Write contents of RDAC(ADDR) to Serial Register  
Data Byte 0  
D7 D6 D5 D4 D3 D2 D1 D0  
Write contents of Serial Register Data Byte 0 to  
RDAC(ADDR)  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Increment 6dB: Left Shift contents of  
RDAC(ADDR), stops at all "Ones".  
X
X
X
X
Increment All 6dB: Left Shift contents of all RDAC  
Registers, stops at all "Ones".  
<< ADDR >>  
Increment contents of RDAC(ADDR) by "One",  
stops at all "Ones".  
X
X
X
X
Increment contents of all RDAC Registers "One",  
stops at all "Ones".  
NOTES:  
1. The SDO output shifts-out the last 8-bits of data clocked into the serial register for daisy chain operation. Exception:  
following Instruction #9 or #10 the selected internal register data will be present in data byte 0. Instructions following #9  
& #10 must be a full 16-bit data word to completely clock out the contents of the serial register.  
2. The RDAC register is a volatile scratch pad register that is refreshed at power ON from the corresponding non-volatile  
EEMEM register.  
3. The increment, decrement and shift commands ignore the contents of the shift register Data Byte 0.  
4. Execution of the Operation column noted in the table takes place when the CS strobe returns to logic high.  
REV PrF  
10  
22 MAR '01  
Information contained in this Preliminary data sheet describes a product in the early definition stage. There is no guarantee that the  
information contained here will become a final product in its present form. For latest information contact Walt Heinzer/Analog Devices, Santa  
Clara, CA. TEL(408)382-3107; FAX (408)382-2708; walt.heinzer@analog.com  
PRELIMINARY TECHNICAL DATA  
Nonvolatile Memory Digital Potentiometers AD5231/AD5232/AD5233  
Table 5. AD5233 Instruction/Operation Truth Table  
Inst Instruction Byte 1  
No.  
Data Byte 0  
B7 ••••••••••••••••• B0  
Operation  
B15 •••••••••••••••• B8  
C3 C2 C1 C0 A3 A2 A1 A0  
D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
No Operation (NOP): Do nothing  
1
<< ADDR >>  
<< ADDR >>  
<< ADDR >>  
<< ADDR >>  
Write contents of EEMEM(ADDR) to RDAC(ADDR)  
Register  
2
SAVE WIPER SETTING: Write contents of  
RDAC(ADDR) to EEMEM(ADDR)  
3
D7 D6 D5 D4 D3 D2 D1 D0  
Write contents of Serial Register Data Byte 0 to  
EEMEM(ADDR)  
4
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Decrement 6dB: Right Shift contents of  
RDAC(ADDR), stops at all "Zeros".  
5
X
X
X
X
Decrement All 6dB: Right Shift contents of all  
RDAC Registers, stops at all "Zeros".  
6
<< ADDR >>  
Decrement contents of RDAC(ADDR) by "One",  
stops at all "Zeros".  
7
X
0
X
0
X
0
X
0
Decrement contents of all RDAC Registers by  
"One", stops at all "Zeros".  
8
RESET: Load all RDACs with their corresponding  
EEMEM previously-saved values  
9
<< ADDR >>  
<< ADDR >>  
<< ADDR >>  
<< ADDR >>  
Write contents of EEMEM(ADDR) to Serial Register  
Data Byte 0  
10  
11  
12  
13  
14  
15  
Write contents of RDAC(ADDR) to Serial Register  
Data Byte 0  
D7 D6 D5 D4 D3 D2 D1 D0  
Write contents of Serial Register Data Byte 0 to  
RDAC(ADDR)  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Increment 6dB: Left Shift contents of  
RDAC(ADDR), stops at all "Ones".  
X
X
X
X
Increment All 6dB: Left Shift contents of all RDAC  
Registers, stops at all "Ones".  
<< ADDR >>  
Increment contents of RDAC(ADDR) by "One",  
stops at all "Ones".  
X
X
X
X
Increment contents of all RDAC Registers by  
"One", stops at all "Ones".  
NOTES:  
1. The SDO output shifts-out the last 8-bits of data clocked into the serial register for daisy chain operation. Exception:  
following Instruction #9 or #10 the selected internal register data will be present in data byte 0. Instructions following #9  
& #10 must be a full 16-bit data word to completely clock out the contents of the serial register. The wiper only has 64  
positions that correspond to the lower 6-bits of register data.  
2. The RDAC register is a volatile scratch pad register that is refreshed at power ON from the corresponding non-volatile  
EEMEM register.  
3. The increment, decrement and shift commands ignore the contents of the shift register Data Byte 0.  
4. Execution of the Operation column noted in the table takes place when the CS strobe returns to logic high.  
REV PrF  
11  
22 MAR '01  
Information contained in this Preliminary data sheet describes a product in the early definition stage. There is no guarantee that the  
information contained here will become a final product in its present form. For latest information contact Walt Heinzer/Analog Devices, Santa  
Clara, CA. TEL(408)382-3107; FAX (408)382-2708; walt.heinzer@analog.com  
PRELIMINARY TECHNICAL DATA  
Nonvolatile Memory Digital Potentiometers AD5231/AD5232/AD5233  
Latched Digital Outputs  
A pair of digital outputs, O1 & O2, is available on the AD5231,  
Detail Programmable Potentiometer Operation  
and the AD5233 parts that provide a nonvolatile logic 0 or logic  
1 setting. O1 & O2 are standard CMOS logic outputs shown in  
figure 2A. These outputs are ideal to replace functions often  
provided by DIP switches. In addition, they can be used to drive  
other standard CMOS logic controlled parts that need an  
occasional setting change.  
The actual structure of the RDAC is designed to emulate the  
performance of a mechanical potentiometer. The RDAC  
contains a string of connected resistor segments, with an array of  
analog switches that act as the wiper connection to several  
points along the resistor array. The number of points is the  
resolution of the device. For example, the AD5232 has 256  
connection points allowing it to provide better than 0.5% set-  
ability resolution. Figure 3 provides an equivalent diagram of  
the connections between the three terminals that make up one  
channel of the RDAC. The SWA and SWB will always be ON  
while one of the switches SW(0) to SW(2N-1) will be ON one at  
a time depending upon the resistance step decoded from the  
Data Bits. Note there are two 50 ohm wiper resistances, RW. The  
resistance contributed by RW must be accounted for in the output  
resistance. At terminals A-to-wiper, RW is the sum of the  
resistances of SWA and SWX. Similarly, RW is the sum of the  
resistances SWB and SWX at terminals B-to-Wiper.  
VD D  
OUTPUTS  
O1 & O2  
PINS  
GND  
Figure 2A. Logic Outputs O1 & O2.  
SW A  
AX  
Using Additional internal Nonvolatile EEMEM  
The AD523x family of devices contains additional internal user  
storage registers (EEMEM) for saving constants and other 8-bit  
data. Table 6 provides an address map of the internal storage  
registers shown in the functional block diagrams as EEMEM1,  
EEMEM2, … EEMEMn, and bytes of USER EEMEM.  
SW (2N-1)  
RDAC  
W X  
RS  
W IPER  
REGISTER  
&
SW (2N-2)  
Table 6: EEMEM Address Map  
DECODER  
EEMEM  
Address  
(ADDR)  
EEMEM Contents of each device  
EEMEM(ADDR)  
RS  
SW (1)  
SW (0)  
SW B  
AD5231 (16B)  
AD5232  
(8B)  
AD5233  
RS  
(8B)  
RS = RAB / N  
0000  
0001  
0010  
0011  
0100  
0101  
***  
RDAC  
RDAC1  
RDAC2  
USER 1  
USER 2  
USER 3  
USER 4  
***  
RDAC1  
RDAC2  
RDAC3  
RDAC4  
O1 & O2  
USER 1  
***  
DIG ITAL  
CIRCUITRY  
O1 & O2  
USER 1  
USER 2  
USER 3  
USER 4  
***  
BX  
O MITTED FO R  
CLARITY  
Figure 3. Equivalent RDAC structure  
TEST CIRCUITS  
Figures X7 to X15 define the test conditions used in the product  
specification's table.  
1111  
NOTES:  
USER 14  
USER 14  
USER 11  
1. RDAC data stored in EEMEM locations are transferred to  
their corresponding RDAC REGISTER at Power ON, or  
when the following instructions are executed Inst#1 and  
Inst#8.  
2. O1 & O2 data stored in EEMEM locations are transferred  
to their corresponding DIGITAL REGISTER at Power ON,  
or when the following instructions are executed Inst#1 and  
Inst#8.  
Figure X7. Potentiometer Divider Nonlinearity error test circuit  
(INL, DNL)  
3. USER data are internal nonvolatile EEMEM registers  
available to store and retrieve constants using Inst#3 and  
Inst#9 respectively.  
4. AD5231 EEMEM locations are 2 bytes each (16-bits) of  
data, while the AD5232 & AD5233 are 1 byte each (8-bits).  
REV PrF  
12  
22 MAR '01  
Information contained in this Preliminary data sheet describes a product in the early definition stage. There is no guarantee that the  
information contained here will become a final product in its present form. For latest information contact Walt Heinzer/Analog Devices, Santa  
Clara, CA. TEL(408)382-3107; FAX (408)382-2708; walt.heinzer@analog.com  
PRELIMINARY TECHNICAL DATA  
Nonvolatile Memory Digital Potentiometers AD5231/AD5232/AD5233  
Figure X8. Resistor Position Nonlinearity Error (Rheostat  
Figure X14. Incremental ON Resistance Test Circuit  
Operation; R-INL, R-DNL)  
Figure X15. Common Mode Leakage current test circuit  
Figure X9. Wiper Resistance test Circuit  
TYPICAL PERFORMANCE GRAPHS  
TBD  
Figure X10. Power supply sensitivity test circuit (PSS, PSSR)  
Figure X11. Inverting Gain test Circuit  
Figure X12. Non-Inverting Gain test circuit  
Figure X13. Gain Vs Frequency test circuit  
REV PrF  
13  
22 MAR '01  
Information contained in this Preliminary data sheet describes a product in the early definition stage. There is no guarantee that the  
information contained here will become a final product in its present form. For latest information contact Walt Heinzer/Analog Devices, Santa  
Clara, CA. TEL(408)382-3107; FAX (408)382-2708; walt.heinzer@analog.com  
PRELIMINARY TECHNICAL DATA  
Nonvolatile Memory Digital Potentiometers AD5231/AD5232/AD5233  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm)  
REV PrF  
14  
22 MAR '01  
Information contained in this Preliminary data sheet describes a product in the early definition stage. There is no guarantee that the  
information contained here will become a final product in its present form. For latest information contact Walt Heinzer/Analog Devices, Santa  
Clara, CA. TEL(408)382-3107; FAX (408)382-2708; walt.heinzer@analog.com  

相关型号:

AD5233BRU10-REEL7

Nonvolatile Memory Digital Potentiometers
ADI

AD5233BRU100

Nonvolatile Memory Digital Potentiometers
ADI

AD5233BRU100-REEL7

Nonvolatile Memory Digital Potentiometers
ADI

AD5233BRU50

Nonvolatile Memory Digital Potentiometers
ADI

AD5233BRU50-REEL7

Nonvolatile Memory Digital Potentiometers
ADI

AD5233BRUZ100-R7

Nonvolatile, Quad, 64-Position Digital Potentiometer
ADI

AD5233BRUZ50-R7

Nonvolatile, Quad, 64-Position Digital Potentiometer
ADI

AD5235

Nonvolatile Memory, Dual 1024 Position Digital Potentiometers
ADI

AD5235-EP

Nonvolatile Memory, Dual 1024-Position Digital Potentiometer
ADI

AD5235BRU25

Nonvolatile Memory, Dual 1024 Position Digital Potentiometers
ADI

AD5235BRU25

DUAL 25K DIGITAL POTENTIOMETER, 3-WIRE SERIAL CONTROL INTERFACE, 1024 POSITIONS, PDSO16, MO-153AB, TSSOP-16
ROCHESTER

AD5235BRU25-EP-RL7

Nonvolatile Memory, Dual 1024-Position Digital Potentiometer
ADI