AD5243 [ADI]

Dual 256-Position I2C Compatible Digital Potentiometer; 双256位I2C兼容数字电位计
AD5243
型号: AD5243
厂家: ADI    ADI
描述:

Dual 256-Position I2C Compatible Digital Potentiometer
双256位I2C兼容数字电位计

数字电位计
文件: 总20页 (文件大小:1067K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual 256-Position I2C Compatible  
Digital Potentiometer  
AD5243/AD5248  
FEATURES  
2-channel, 256-position  
FUNCTIONAL BLOCK DIAGRAMS  
A1  
W1  
B1  
A2  
W2  
B2  
End-to-end resistance: 2.5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ  
Compact MSOP-10 (3 mm × 4.9 mm) package  
Fast settling time: tS = 5 µs typ on power-up  
Full read/write of wiper register  
Power-on preset to midscale  
V
DD  
WIPER  
REGISTER 1  
WIPER  
REGISTER 2  
Extra package address decode pins AD0 and AD1 (AD5248  
only)  
GND  
Computer software replaces µC in factory programming  
applications  
Single supply: 2.7 V to 5.5 V  
AD5243  
SDA  
SCL  
PC INTERFACE  
Low temperature coefficient: 35 ppm/°C  
Low power: IDD = 6 µA max  
Figure 1. AD5243  
Wide operating temperature: −40°C to +125°C  
Evaluation board available  
W1  
B1  
W2  
B2  
APPLICATIONS  
Systems calibrations  
V
DD  
RDAC  
REGISTER 1  
RDAC  
REGISTER 2  
Electronics level settings  
Mechanical Trimmers® replacement in new designs  
Permanent factory PCB setting  
GND  
Transducer adjustment of pressure, temperature, position,  
chemical, and optical sensors  
AD0  
AD1  
ADDRESS  
DECODE  
AD5248  
8
RF amplifier biasing  
Automotive electronics adjustment  
Gain control and offset adjustment  
SDA  
SCL  
SERIAL INPUT  
REGISTER  
Figure 2. AD5248  
GENERAL DESCRIPTION  
The AD5243 and AD5248 provide a compact 3 mm × 4.9 mm  
packaged solution for dual 256-position adjustment applica-  
tions. These devices perform the same electronic adjustment  
function as a 3-terminal mechanical potentiometer (AD5243)  
or a 2-terminal variable resistor (AD5248). Available in four  
different end-to-end resistance values (2.5 kΩ, 10 kΩ, 50 kΩ,  
and 100 kΩ), these low temperature coefficient devices are ideal  
for high accuracy and stability variable resistance adjustments.  
The wiper settings are controllable through the I2C compatible  
digital interface. The AD5248 has extra package address decode  
pins AD0 and AD1, allowing multiple parts to share the same  
I2C 2-wire bus on a PCB. The resistance between the wiper and  
either endpoint of the fixed resistor varies linearly with respect  
to the digital code transferred into the RDAC latch.1  
Operating from a 2.7 V to 5.5 V power supply and consuming  
less than 6 µA allows for usage in portable battery-operated  
applications.  
For applications that program the AD5243/AD5258 at the  
factory, Analog Devices offers device programming software  
running on Windows® NT/2000/XP operating systems. This  
software effectively replaces any external I2C controllers, which  
in turn enhances users’ systems time-to-market. An AD5243/  
AD5248 evaluation kit and software are available. The kit  
includes a cable and instruction manual.  
1The terms digital potentiometer, VR, and RDAC are used interchangeably.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD5243/AD5248  
TABLE OF CONTENTS  
Electrical Characteristics—2.5 kΩ Version................................... 3  
ESD Protection ........................................................................... 14  
Terminal Voltage Operating Range.......................................... 14  
Power-Up Sequence ................................................................... 14  
Layout and Power Supply Bypassing ....................................... 14  
Constant Bias to Retain Resistance Setting............................. 15  
Evaluation Board........................................................................ 15  
I2C Interface .................................................................................... 16  
I2C Compatible 2-Wire Serial Bus ........................................... 16  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Electrical Characteristics—10 kΩ, 50 kΩ, 100 kΩ Versions ....... 4  
Timing Characteristics—All Versions ........................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 8  
Test Circuits ..................................................................................... 12  
Theory of Operation ...................................................................... 13  
Programming the Variable Resistor and Voltage.................... 13  
Programming the Potentiometer Divider............................... 14  
REVISION HISTORY  
Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
AD5243/AD5248  
ELECTRICAL CHARACTERISTICS—2.5 kΩ VERSION  
VDD = 5 V 10ꢀ, or 3 V 10ꢀ% VA = +VDD% VB = 0 V% 40°C < TA < +125°C% unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
RWB (Wiper Resistance)  
R-DNL  
R-INL  
RAB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 27°C  
−2  
−6  
−20  
0.1  
0.ꢀ7  
+2  
+6  
+77  
LSB  
LSB  
%
(∆RAB/RAB )/∆T VAB = VDD, wiper = no connect  
RWB Code = 0x00, VDD = 7 V  
37  
160  
ppm/°C  
200  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (Specifications Apply to All VRs)  
Differential Nonlinearity4  
Integral Nonlinearity  
DNL  
INL  
−1.7  
−2  
0.1  
0.6  
+1.7  
+2  
LSB  
LSB  
Voltage Divider Temperature  
Coefficient  
(∆VW/VW)/∆T  
Code = 0x80  
17  
ppm/°C  
Full-Scale Error  
Zero-Scale Error  
VWFSE  
VWZSE  
Code = 0xFF  
Code = 0x00  
−10  
0
−2.7  
2
0
10  
LSB  
LSB  
RESISTOR TERMINALS  
Voltage Range7  
VA, VB, VW  
CA, CB  
CW  
IA_SD  
ICM  
GND  
VDD  
V
Capacitance6 A, B  
f = 1 MHz, measured to GND, Code = 0x80  
f = 1 MHz, measured to GND, Code = 0x80  
VDD = 7.7 V  
47  
60  
0.01  
1
pF  
pF  
µA  
nA  
Capacitance6 W  
Shutdown Supply Currentꢀ  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
1
VA = VB = VDD/2  
VIH  
VIL  
VIH  
VIL  
IIL  
VDD = 7 V  
VDD = 7 V  
VDD = 3 V  
VDD = 3 V  
2.4  
2.1  
V
V
V
V
µA  
pF  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance6  
0.8  
0.6  
1
VIN = 0 V or 7 V  
CIL  
7
POWER SUPPLIES  
Power Supply Range  
Supply Current  
Power Dissipation8  
Power Supply Sensitivity  
DYNAMIC CHARACTERISTICS 9  
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
7.7  
6
30  
V
VIH = 7 V or VIL = 0 V  
VIH = 7 V or VIL = 0 V, VDD = 7 V  
VDD = 7 V 10%, Code = midscale  
3.7  
µA  
µW  
%/%  
PSS  
0.02  
0.08  
Bandwidth −3 dB  
Total Harmonic Distortion  
VW Settling Time  
Resistor Noise Voltage Density  
See notes at end of section.  
BW_2.7 K  
THDW  
tS  
Code = 0x80  
4.8  
0.1  
1
MHz  
%
µs  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA = 7 V, VB = 0 V, 1 LSB error band  
RWB = 1.27 kΩ, RS = 0  
eN_WB  
3.2  
nV/Hz  
Rev. 0 | Page 3 of 20  
 
AD5243/AD5248  
ELECTRICAL CHARACTERISTICS—10 kΩ, 50 kΩ, 100 kΩ VERSIONS  
VDD = 5 V 10ꢀ, or 3 V 10ꢀ% VA = VDD% VB = 0 V% 40°C < TA < 125°C% unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
RWB (Wiper Resistance)  
R-DNL  
R-INL  
RAB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 27°C  
−1  
−2.7  
−20  
0.1  
0.27  
+1  
+2.7  
+20  
LSB  
LSB  
%
(∆RAB/RAB )/∆T VAB = VDD, wiper = no connect  
RWB Code = 0x00, VDD =7 V  
37  
160  
ppm/°C  
200  
DC CHARACTERISTICS—POTENTIOMETER DIVIDER MODE (Specifications Apply to All VRs)  
Differential Nonlinearity4  
Integral Nonlinearity4  
DNL  
INL  
−1  
−1  
0.1  
0.3  
+1  
+1  
LSB  
LSB  
Voltage Divider Temperature  
Coefficient  
(∆VW/VW)/∆T  
Code = 0x80  
17  
ppm/°C  
Full-Scale Error  
Zero-Scale Error  
VWFSE  
VWZSE  
Code = 0xFF  
Code = 0x00  
−2.7 −1  
0
2.7  
LSB  
LSB  
0
1
RESISTOR TERMINALS  
Voltage Range7  
Capacitance6 A, B  
Capacitance6 W  
Shutdown Supply Currentꢀ  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance  
POWER SUPPLIES  
Power Supply Range  
Supply Current  
Power Dissipation  
Power Supply Sensitivity  
VA, VB, VW  
CA, CB  
CW  
IA_SD  
ICM  
GND  
VDD  
V
f = 1 MHz, measured to GND, Code = 0x80  
f = 1 MHz, measured to GND, Code = 0x80  
VDD = 7.7 V  
47  
60  
0.01  
1
pF  
pF  
µA  
nA  
1
VA = VB = VDD/2  
VIH  
VIL  
VIH  
VIL  
IIL  
VDD = 7 V  
VDD = 7 V  
VDD = 3 V  
VDD = 3 V  
2.4  
2.1  
V
V
V
V
µA  
pF  
0.8  
0.6  
1
VIN = 0 V or 7 V  
CIL  
7
VDD RANGE  
IDD  
PDISS  
2.ꢀ  
7.7  
6
30  
0.0  
8
V
VIH = 7 V or VIL = 0 V  
VIH = 7 V or VIL = 0 V, VDD = 7 V  
VDD = 7 V 10%, Code = midscale  
3.7  
µA  
µW  
%/%  
PSS  
0.02  
DYNAMIC CHARACTERISTICS  
Bandwidth −3 dB  
BW  
RAB = 10 kΩ/70 kΩ/100 kΩ, Code = 0x80  
600/100/4  
0
kHz  
Total Harmonic Distortion  
VW Settling Time (10 kΩ/70 kΩ/100  
kΩ)  
THDW  
tS  
VA = 1 V rms, VB = 0 V, f = 1 kHz, RAB = 10 kΩ  
VA = 7 V, VB = 0 V, 1 LSB error band  
0.1  
2
%
µs  
Resistor Noise Voltage Density  
eN_WB  
RWB = 7 kΩ, RS = 0  
9
nV/Hz  
See notes at end of section.  
Rev. 0 | Page 4 of 20  
 
AD5243/AD5248  
TIMING CHARACTERISTICS—ALL VERSIONS  
VDD = 5V 10ꢀ, or 3V 10ꢀ% VA = VDD% VB = 0 V% −40°C < TA < +125°C% unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ1 Max  
Unit  
I2C INTERFACE TIMING CHARACTERISTICS10 (Specifications Apply to All Parts)  
SCL Clock Frequency  
tBUF Bus Free Time between STOP and START  
tHD;STA Hold Time (Repeated START)  
fSCL  
t1  
t2  
0
1.3  
0.6  
400  
kHz  
µs  
µs  
After this period, the first clock pulse is  
generated.  
tLOW Low Period of SCL Clock  
tHIGH High Period of SCL Clock  
tSU;STA Setup Time for Repeated START Condition  
tHD;DAT Data Hold Time11  
tSU;DAT Data Setup Time  
tF Fall Time of Both SDA and SCL Signals  
tR Rise Time of Both SDA and SCL Signals  
tSU;STO Setup Time for STOP Condition  
t3  
t4  
t7  
t6  
tꢀ  
t8  
t9  
t10  
1.3  
0.6  
0.6  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
0.9  
100  
0.6  
300  
300  
See notes at end of section.  
NOTES  
1 Typical specifications represent average readings at 27°C and VDD = 7 V.  
2 Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VAB = VDD, wiper (VW) = no connect.  
4 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V.  
DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions.  
7 Resistor terminals A, B, W have no limitations on polarity with respect to each other.  
6 Guaranteed by design and not subject to production test.  
Measured at the A terminal. The A terminal is open circuited in shutdown mode.  
8PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
9All dynamic characteristics use VDD = 7 V.  
10See timing diagrams for locations of measured values.  
11The maximum tHD:DAT must be met only if the device does not stretch the low period (tLOW) of the SCL signal.  
Rev. 0 | Page 7 of 20  
 
AD5243/AD5248  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
VDD to GND  
VA, VB, VW to GND  
Terminal Current, Ax to Bx, Ax to Wx, Bx to Wx1  
Pulsed  
Continuous  
Digital Inputs and Output Voltage to GND  
Operating Temperature Range  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only% functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Value  
–0.3 V to +ꢀ V  
VDD  
20 mA  
7 mA  
0 V to ꢀ V  
–40°C to +127°C  
170°C  
Maximum Junction Temperature (TJMAX  
)
Storage Temperature  
Lead Temperature (Soldering, 10 sec)  
Thermal Resistance2 θJA: MSOP-10  
–67°C to +170°C  
300°C  
230°C/W  
1Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2Package power dissipation = (TJMAX − TA)/θJA  
.
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 6 of 20  
 
AD5243/AD5248  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
1
2
3
4
5
10  
9
10  
9
W1  
B2  
W1  
B1  
A1  
B1  
AD0  
W2  
B2  
8
8
W2  
AD5243  
TOP VIEW  
A2  
AD5248  
TOP VIEW  
AD1  
SDA  
SCL  
7
7
GND  
SDA  
SCL  
GND  
6
6
V
V
DD  
DD  
Figure 3. AD5243 Pin Configuration  
Figure 4. AD5248 Pin Configuration  
Table 5. AD5243 Pin Function Descriptions  
Table 6. AD5248 Pin Function Descriptions  
Pin  
No.  
Pin  
No.  
Mnemonic Description  
Mnemonic Description  
1
B1  
B1 Terminal.  
1
B1  
B1 Terminal.  
2
3
4
7
A1  
A1 Terminal.  
W2 Terminal.  
Digital Ground.  
Positive Power Supply.  
Serial Clock Input. Positive edge  
triggered.  
Serial Data Input/Output.  
A2 Terminal.  
B2 Terminal.  
2
AD0  
Programmable Address Bit 0 for Multiple  
Package Decoding.  
W2 Terminal.  
Digital Ground.  
Positive Power Supply.  
Serial Clock Input. Positive edge  
triggered.  
Serial Data Input/Output.  
Programmable Address Bit 1 for Multiple  
Package Decoding.  
B2 Terminal.  
W1 Terminal.  
W2  
GND  
VDD  
SCL  
3
4
7
6
W2  
GND  
VDD  
6
SCL  
8
9
10  
SDA  
A2  
B2  
8
SDA  
AD1  
W1  
W1 Terminal.  
9
10  
B2  
W1  
Rev. 0 | Page ꢀ of 20  
 
AD5243/AD5248  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.0  
0.5  
0.4  
T
R
= 25°C  
R
= 10k  
A
AB  
= 10kΩ  
AB  
1.5  
1.0  
0.3  
V
= 2.7V  
DD  
0.2  
0.5  
0.1  
V
= 2.7V; T = –40°C, +25°C, +85°C, +125°C  
A
DD  
0
0
V
= 5.5V  
DD  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
0
0
0
32  
64  
96  
128  
160  
192  
224  
256  
0
0
0
32  
32  
32  
64  
96  
128  
160  
192  
224  
256  
256  
256  
CODE (DECIMAL)  
CODE (DECIMAL)  
Figure 5. R-INL vs. Code vs. Supply Voltages  
Figure 8. DNL vs. Code vs. Temperature  
0.5  
0.4  
1.0  
0.8  
T
R
= 25°C  
T
R
= 25°C  
= 10kΩ  
A
A
= 10kΩ  
AB  
AB  
0.3  
0.6  
0.2  
0.4  
V
= 2.7V  
DD  
V
= 5.5V  
0.1  
0.2  
DD  
0
0
V
= 2.7V  
DD  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
= 5.5V  
DD  
32  
64  
96  
128  
160  
192  
224  
256  
64  
96  
128  
160  
192  
224  
CODE (DECIMAL)  
CODE (DECIMAL)  
Figure 6. R-DNL vs. Code vs. Supply Voltages  
Figure 9. INL vs. Code vs. Supply Voltages  
0.5  
0.4  
0.5  
0.4  
R
= 10kΩ  
T
R
= 25°C  
= 10kΩ  
AB  
A
AB  
0.3  
0.3  
V
= 5.5V  
DD  
T
= –40°C, +25°C, +85°C, +125°C  
A
0.2  
0.2  
0.1  
0.1  
V
= 2.7V  
DD  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
= 5.5V  
DD  
V
= 2.7V  
DD  
T
= –40°C, +25°C, +85°C, +125°C  
A
32  
64  
96  
128  
160  
192  
224  
256  
64  
96  
128  
160  
192  
224  
CODE (DECIMAL)  
CODE (DECIMAL)  
Figure 7. INL vs. Code vs. Temperature  
Figure 10. DNL vs. Code vs. Supply Voltages  
Rev. 0 | Page 8 of 20  
 
AD5243/AD5248  
2.0  
1.5  
4.50  
3.75  
3.00  
2.25  
1.50  
0.75  
0
R
= 10kΩ  
R
= 10kΩ  
AB  
AB  
V
= 2.7V  
DD  
= –40°C, +25°C, +85°C, +125°C  
T
A
1.0  
0.5  
0
V
= 2.7V, V = 2.7V  
A
DD  
V
= 5.5V  
DD  
= –40°C, +25°C, +85°C, +125°C  
–0.5  
–1.0  
–1.5  
–2.0  
T
A
V
= 5.5V, V = 5.0V  
A
DD  
0
32  
64  
96  
128  
160  
192  
224  
256  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
CODE (DECIMAL)  
TEMPERATURE (°C)  
Figure 11. R-INL vs. Code vs. Temperature  
Figure 14. Zero-Scale Error vs. Temperature  
0.5  
0.4  
10  
R
= 10kΩ  
AB  
0.3  
V
V
= 5V  
DD  
0.2  
V
= 2.7V, 5.5V; T = –40°C, +25°C, +85°C, +125°C  
A
DD  
0.1  
0
1
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
= 3V  
DD  
0.1  
–40  
0
32  
64  
96  
128  
160  
192  
224  
256  
–7  
26  
59  
92  
125  
TEMPERATURE (°C)  
CODE (DECIMAL)  
Figure 12. R-DNL vs. Code vs. Temperature  
Figure 15. Supply Current vs. Temperature  
120  
100  
80  
2.0  
1.5  
R
= 10kΩ  
R
= 10kΩ  
AB  
AB  
1.0  
0.5  
60  
V
= 2.7V  
DD  
= –40°C TO +85°C, –40°C TO +125°C  
T
A
0
V
= 5.5V, V = 5.0V  
A
DD  
40  
V
= 5.5V  
DD  
= –40°C TO +85°C, –40°C TO +125°C  
–0.5  
–1.0  
–1.5  
–2.0  
T
A
20  
V
= 2.7V, V = 2.7V  
A
DD  
0
–20  
0
32  
64  
96  
128  
160  
192  
224  
256  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
CODE (DECIMAL)  
TEMPERATURE (°C)  
Figure 16. Rheostat Mode Tempco ∆RWB/∆T vs. Code  
Figure 13. Full-Scale Error vs. Temperature  
Rev. 0 | Page 9 of 20  
AD5243/AD5248  
50  
40  
30  
0
–6  
R
= 10kΩ  
AB  
0x80  
0x40  
0x20  
0x10  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
V
T
= 2.7V  
DD  
= –40°C TO +85°C, –40°C TO +125°C  
20  
10  
A
0x08  
0x04  
0x02  
0x01  
0
–10  
–20  
–30  
V
= 5.5V  
DD  
= –40°C TO +85°C, –40°C TO +125°C  
T
A
0
32  
64  
96  
128  
160  
192  
224  
256  
1k  
10k  
100k  
1M  
CODE (DECIMAL)  
FREQUENCY (Hz)  
Figure 17. Potentiometer Mode Tempco ∆VWB/∆T vs. Code  
Figure 20. Gain vs. Frequency vs. Code, RAB = 50 kΩ  
0
–6  
0
–6  
0x80  
0x80  
0x40  
0x20  
0x40  
0x20  
0x10  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x10  
0x08  
0x04  
0x02  
0x01  
0x08  
0x04  
0x02 0x01  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
Figure 18. Gain vs. Frequency vs. Code, RAB = 2.5 kΩ  
Figure 21. Gain vs. Frequency vs. Code, RAB = 100 kΩ  
0
–6  
0
–6  
0x80  
0x40  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
100kΩ  
60kHz  
50kΩ  
0x20  
0x10  
0x08  
0x04  
120kHz  
10kΩ  
570kHz  
2.5kΩ  
2.2MHz  
0x02  
0x01  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 19. Gain vs. Frequency vs. Code, RAB = 10 kΩ  
Figure 22. –3 dB Bandwidth @ Code = 0x80  
Rev. 0 | Page 10 of 20  
AD5243/AD5248  
10  
T
= 25°C  
A
1
V
= 5.5V  
DD  
V
V
W2  
0.1  
0.01  
V
= 2.7V  
DD  
W1  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
DIGITAL INPUT VOLTAGE (V)  
Figure 26. Analog Crosstalk  
Figure 23. IDD vs. Input Voltage  
V
V
W
W
SCL  
Figure 27. Midscale Glitch, Code 0x80 to 0x7F  
Figure 24. Digital Feedthrough  
V
W
V
V
W2  
SCL  
W1  
Figure 28. Large Signal Settling Time  
Figure 25. Digital Crosstalk  
Rev. 0 | Page 11 of 20  
AD5243/AD5248  
TEST CIRCUITS  
Figure 29 through Figure 35 illustrate the test circuits that define the test conditions used in the product specification tables.  
V+ = V  
DUT  
W
DUT  
W
DD  
1LSB = V+/2  
+15V  
N
A
B
A
B
V
IN  
V+  
AD8610  
–15V  
V
OUT  
OFFSET  
GND  
V
MS  
2.5V  
Figure 29. Test Circuit for Potentiometer Divider Nonlinearity Error  
(INL, DNL)  
Figure 33. Test Circuit for Gain vs. Frequency  
NO CONNECT  
DUT  
0.1V  
R
=
SW  
I
SW  
CODE = 0x00  
DUT  
W
I
W
A
W
I
SW  
0.1V  
B
B
V
MS  
V
TO V  
DD  
SS  
Figure 30. Test Circuit for Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
Figure 34. Test Circuit for Incremental On Resistance  
NC  
DUT  
I
= V /R  
DD NOMINAL  
W
A
B
DUT  
V
W
W
A
B
I
CM  
V
V
MS2  
DD  
W
R
= [V  
– V  
]/I  
MS2 W  
W
MS1  
GND  
V
MS1  
V
CM  
NC NC = NO CONNECT  
Figure 31. Test Circuit for Wiper Resistance  
Figure 35. Test Circuit for Common-Mode Leakage Current  
V
A
V+ = V ± 10%  
DD  
V  
V  
MS  
DUT  
W
PSRR (dB) = 20 LOG  
(
)
DD  
V  
V  
%
%
A
B
MS  
DD  
V  
PSS (%/%) =  
DD  
V+  
V
MS  
Figure 32. Test Circuit for Power Supply Sensitivity(PSS, PSSR)  
Rev. 0 | Page 12 of 20  
 
 
 
AD5243/AD5248  
THEORY OF OPERATION  
The AD5243/AD5248 are 256-position digitally controlled  
variable resistor (VR) devices.  
The general equation determining the digitally programmed  
output resistance between W and B is  
An internal power-on preset places the wiper at midscale  
during power-on, which simplifies the fault condition recovery  
at power-up.  
D
256  
R
WB (D) =  
× RAB + 2× RW  
(1)  
where:  
PROGRAMMING THE VARIABLE RESISTOR AND  
VOLTAGE  
Rheostat Operation  
D is the decimal equivalent of the binary code loaded in the  
8-bit RDAC register.  
R
AB is the end-to-end resistance.  
The nominal resistance of the RDAC between Terminals A and  
B is available in 2.5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ. The nominal  
resistance (RAB) of the VR has 256 contact points accessed by  
the wiper terminal, plus the B terminal contact. The 8-bit data  
in the RDAC latch is decoded to select one of the 256 possible  
settings.  
R
W is the wiper resistance contributed by the on resistance of  
the internal switch.  
In summary, if RAB = 10 kΩ and the A terminal is open  
circuited, the following output resistance RWB is set for the  
indicated RDAC latch codes.  
Table 7. Codes and Corresponding RWB Resistance  
A
A
A
D (Dec)  
RWB (Ω)  
9,961  
7,060  
139  
Output State  
W
W
W
277  
128  
1
Full scale (RAB − 1 LSB + RW)  
Midscale  
1 LSB  
B
B
B
Figure 36. Rheostat Mode Configuration  
0
100  
Zero scale (wiper contact resistance)  
Note that, in the zero-scale condition, a finite wiper resistance  
of 100 Ω is present. Care should be taken to limit the current  
flow between W and B in this state to a maximum pulse current  
of no more than 20 mA. Otherwise, degradation or possible  
destruction of the internal switch contact can occur.  
Assuming that a 10 kΩ part is used, the wiper’s first connection  
starts at the B terminal for data 0x00. Because there is a 50 Ω  
wiper contact resistance, such a connection yields a minimum  
of 100 Ω (2 × 50 Ω) resistance between Terminals W and B. The  
second connection is the first tap point, which corresponds to  
139 Ω (RWB = RAB/256 + 2 × RW = 39 Ω + 2 × 50 Ω) for data  
0x01. The third connection is the next tap point, representing  
178 Ω (2 × 39 Ω + 2 × 50 Ω) for data 0x02, and so on. Each LSB  
data value increase moves the wiper up the resistor ladder until  
the last tap point is reached at 10,100 Ω (RAB + 2 × RW).  
Similar to the mechanical potentiometer, the resistance of the  
RDAC between the Wiper W and Terminal A also produces a  
digitally controlled complementary resistance, RWA. When these  
terminals are used, the B terminal can be opened. Setting the  
resistance value for RWA starts at a maximum value of resistance  
and decreases as the data loaded in the latch increases in value.  
The general equation for this operation is  
A
R
S
256 D  
256  
R
RWA(D) =  
× RAB + 2× RW  
(2)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S
R
S
For RAB = 10 kΩ and the B terminal open circuited, the  
following output resistance RWA is set for the indicated RDAC  
latch codes.  
W
Table 8. Codes and Corresponding RWA Resistance  
D (Dec)  
RWA (Ω)  
Output State  
Full scale  
Midscale  
1 LSB  
277  
128  
1
139  
R
RDAC  
S
7,060  
9,961  
10,060  
LATCH  
AND  
DECODER  
B
0
Zero scale  
Figure 37. AD5243 Equivalent RDAC Circuit  
Rev. 0 | Page 13 of 20  
 
AD5243/AD5248  
340  
Typical device-to-device matching is process lot dependent and  
may vary by up to 30ꢀ. Because the resistance element is  
processed in thin film technology, the change in RAB with  
temperature has a very low 35 ppm/°C temperature coefficient.  
LOGIC  
GND  
Figure 39. ESD Protection of Digital Pins  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
A, B, W  
The digital potentiometer easily generates a voltage divider at  
wiper-to-B and wiper-to-A proportional to the input voltage at  
A to B. Unlike the polarity of VDD to GND, which must be  
positive, voltage across A to B, W to A, and W to B can be at  
either polarity.  
GND  
Figure 40. ESD Protection of Resistor Terminals  
TERMINAL VOLTAGE OPERATING RANGE  
The AD5243/AD5248 VDD and GND power supply defines the  
boundary conditions for proper 3-terminal digital potentiome-  
ter operation. Supply signals present on Terminals A, B, and W  
that exceed VDD or GND are clamped by the internal forward  
biased diodes (see Figure 41).  
V
I
A
W
V
O
B
V
DD  
Figure 38. Potentiometer Mode Configuration  
A
If ignoring the effect of the wiper resistance for approximation,  
connecting the A terminal to 5 V and the B terminal to ground  
produces an output voltage at the wiper-to-B starting at 0 V up  
to 1 LSB less than 5 V. Each LSB of voltage is equal to the volt-  
age applied across terminal AB divided by the 256 positions of  
the potentiometer divider. The general equation defining the  
output voltage at VW with respect to ground for any valid input  
voltage applied to terminals A and B is  
W
B
GND  
Figure 41. Maximum Terminal Voltages Set by VDD and GND  
POWER-UP SEQUENCE  
Because the ESD protection diodes limit the voltage compliance  
at Terminals A, B, and W (see Figure 41), it is important to  
power VDD/GND before applying any voltage to Terminals A, B,  
and W% otherwise, the diode is forward biased such that VDD is  
powered unintentionally and may affect the rest of the users  
circuit. The ideal power-up sequence is in the following order:  
GND, VDD, digital inputs, and then VA, VB, and VW. The relative  
order of powering VA, VB, VW, and the digital inputs is not  
important as long as they are powered after VDD/GND.  
D
256  
256 D  
256  
VW (D) =  
VA +  
VB  
(3)  
A more accurate calculation, which includes the effect of wiper  
resistance, VW, is  
RWB (D)  
RWA(D)  
RAB  
(4)  
VW (D) =  
VA +  
VB  
RAB  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation overtemperature. Unlike  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the internal resistors RWA and RWB and not the  
absolute values. Therefore, the temperature drift reduces to  
15 ppm/°C.  
LAYOUT AND POWER SUPPLY BYPASSING  
It is good practice to employ compact, minimum lead length  
layout design. The leads to the inputs should be as direct as  
possible with a minimum conductor length. Ground paths  
should have low resistance and low inductance.  
ESD PROTECTION  
Similarly, it is also good practice to bypass the power supplies  
with quality capacitors for optimum stability. Supply leads to the  
device should be bypassed with disk or chip ceramic capacitors  
of 0.01 µF to 0.1 µF. Low ESR 1 µF to 10 µF tantalum or electro-  
lytic capacitors should also be applied at the supplies to  
minimize any transient disturbance and low frequency ripple  
(see Figure 42). Note that the digital ground should also be  
joined remotely to the analog ground at one point to minimize  
the ground bounce.  
All digital inputs are protected with a series of input resistors  
and parallel Zener ESD structures, shown in Figure 39 and  
Figure 40. This applies to the digital input pins SDA, SCL, AD0,  
and AD1 (AD5248 only).  
Rev. 0 | Page 14 of 20  
 
 
 
 
AD5243/AD5248  
This demonstrates that constantly biasing the potentiometer is  
not an impractical approach. Most portable devices do not  
require the removal of batteries for the purpose of charging.  
Although the resistance setting of the AD5243/AD5248 is lost  
when the battery needs replacement, such events occur rather  
infrequently such that this inconvenience is justified by the  
lower cost and smaller size offered by the AD5243/AD5248. If  
and when total power is lost, the user should be provided with a  
means to adjust the setting accordingly.  
V
V
DD  
DD  
+
C3  
10µF  
C1  
0.1µF  
AD5243  
GND  
Figure 42. Power Supply Bypassing  
EVALUATION BOARD  
CONSTANT BIAS TO RETAIN RESISTANCE SETTING  
An evaluation board, along with all necessary software, is avail-  
able to program the AD5243/AD5248 from any PC running  
Windows 98/2000/XP. The graphical user interface, as shown in  
Figure 44, is straightforward and easy to use. More detailed  
information is available in the user manual, which comes with  
the board.  
For users who desire nonvolatility but cannot justify the addi-  
tional cost for the EEMEM, the AD5243/AD5248 may be  
considered as low cost alternatives by maintaining a constant  
bias to retain the wiper setting. The AD5243/AD5248 are  
designed specifically with low power in mind, which allows low  
power consumption even in battery-operated systems. The  
graph in Figure 43 demonstrates the power consumption from a  
3.4 V 450 mAhr Li-Ion cell phone battery, which is connected to  
the AD5243/AD5248. The measurement over time shows that  
the device draws approximately 1.3 µA and consumes negligible  
power. Over a course of 30 days, the battery is depleted by less  
than 2ꢀ, the majority of which is due to the intrinsic leakage  
current of the battery itself.  
110%  
108%  
T
= 25°C  
A
106%  
104%  
102%  
100%  
98%  
Figure 44. AD5243 Evaluation Board Software  
96%  
The AD5243/AD5248 start at midscale upon power-up. To  
increment or decrement the resistance, the user may simply  
move the scrollbars on the left. To write any specific value, the  
user should use the bit pattern in the upper screen and press the  
Run button. The format of writing data to the device is shown  
in Table 9. To read the data out from the device, the user can  
simply press the Read button. The format of the read bits is  
shown in Table 10.  
94%  
92%  
90%  
0
5
10  
15  
20  
25  
30  
DAYS  
Figure 43. Battery Operating Life Depletion  
Rev. 0 | Page 17 of 20  
 
 
 
AD5243/AD5248  
I2C INTERFACE  
I2C COMPATIBLE 2-WIRE SERIAL BUS  
The 2-wire I2C serial bus protocol operates as follows:  
1. The master initiates data transfer by establishing a START  
condition, which is when a high-to-low transition on the  
SDA line occurs while SCL is high (see Figure 46). The  
following byte is the slave address byte, which consists of  
3. In the read mode, the data byte follows immediately after  
the acknowledgment of the slave address byte. Data is  
transmitted over the serial bus in sequences of nine clock  
pulses (a slight difference with the write mode, eight data  
bits are followed by an acknowledge bit). Similarly, the  
transitions on the SDA line must occur during the low  
period of SCL and remain stable during the high period of  
SCL (see Figure 48 and Figure 49).  
the slave address followed by an R/ bit (this bit deter-  
W
mines whether data is read from or written to the slave  
device). The AD5243 has a fixed slave address byte, while  
the AD5248 has two configurable address bits AD0 and  
AD1 (see Table 9).  
Note that the channel of interest is the one that is previ-  
ously selected in the write mode. In the case where users  
need to read the RDAC values of both channels, they need  
to program the first channel in the write mode and then  
change to the read mode to read the first channel value.  
After that, they need to change back to the write mode with  
the second channel selected and read the second channel  
value in the read mode again. It is not necessary for users  
to issue the Frame 3 data byte in the write mode for subse-  
quent readback operation. Users should refer to Figure 48  
and Figure 49 for the programming format.  
The slave whose address corresponds to the transmitted  
address responds by pulling the SDA line low during the  
ninth clock pulse (this is termed the acknowledge bit). At  
this stage, all other devices on the bus remain idle while the  
selected device waits for data to be written to or read from  
its serial register. If the R/ bit is high, the master reads  
W
from the slave device. On the other hand, if the R/ bit is  
W
low, the master writes to the slave device.  
2. In the write mode, the second byte is the instruction byte.  
The first bit (MSB) of the instruction byte is the RDAC  
subaddress select bit. A Logic Low selects Channel 1 and a  
Logic High selects Channel 2.  
4. After all data bits have been read or written, a STOP condi-  
tion is established by the master. A STOP condition is  
defined as a low-to-high transition on the SDA line while  
SCL is high. In write mode, the master pulls the SDA line  
high during the tenth clock pulse to establish a STOP  
condition (see Figure 46 and Figure 47). In read mode, the  
master issues a no acknowledge for the ninth clock pulse  
(that is, the SDA line remains high). The master then  
brings the SDA line low before the tenth clock pulse, which  
goes high to establish a STOP condition (see Figure 48 and  
Figure 49).  
The second MSB, SD, is a shutdown bit. A logic high causes  
an open circuit at Terminal A while shorting the wiper to  
Terminal B. This operation yields almost 0 Ω in rheostat  
mode or 0 V in potentiometer mode. It is important to note  
that the shutdown operation does not disturb the contents  
of the register. When brought out of shutdown, the previ-  
ous setting is applied to the RDAC. Also, during shutdown,  
new settings can be programmed. When the part is  
returned from shutdown, the corresponding VR setting is  
applied to the RDAC.  
A repeated write function gives the user flexibility to  
update the RDAC output a number of times after  
The remainder of the bits in the instruction byte are don’t  
care bits (see Table 9).  
addressing and instructing the part only once. For example,  
after the RDAC has acknowledged its slave address and  
instruction bytes in the write mode, the RDAC output  
updates on each successive byte. If different instructions  
are needed, the write/read mode has to start again with a  
new slave address, instruction, and data byte. Similarly, a  
repeated read function of the RDAC is also allowed.  
After acknowledging the instruction byte, the last byte in  
write mode is the data byte. Data is transmitted over the  
serial bus in sequences of nine clock pulses (eight data bits  
followed by an acknowledge bit). The transitions on the  
SDA line must occur during the low period of SCL and  
remain stable during the high period of SCL (see Figure 46  
and Figure 47).  
Rev. 0 | Page 16 of 20  
 
AD5243/AD5248  
Table 9. Write Mode  
AD5243  
S
0
1
0
1
1
1
1
W
A
A0  
SD  
X
X
X
X
X
X
A
Dꢀ  
D6  
D7  
D4  
D3  
D2  
D1  
D0  
A
P
P
Slave Address Byte  
Instruction Byte  
Data Byte  
AD5248  
S
0
1
0
1
1
AD1 AD0  
W
A
A0 SD  
X
X
X
X
X
X
A
Dꢀ D6 D7 D4 D3 D2 D1 D0  
Data Byte  
A
Slave Address Byte  
Instruction Byte  
Table 10. Read Mode  
AD5243  
S
0
1
0
1
1
1
1
R
A
Dꢀ  
D6  
D7  
D4  
D3  
D2  
D1  
D0  
A
P
Slave Address Byte  
Data Byte  
AD5248  
S
0
1
0
1
1
AD1  
AD0  
R
A
Dꢀ  
D6  
D7  
D4  
D3  
D2  
D1  
D0  
A
P
Slave Address Byte  
Data Byte  
LEGEND  
S = Start condition.  
P = Stop condition.  
A = Acknowledge.  
X = Don’t care.  
R = Read.  
A0 = RDAC subaddress select bit.  
SD = Shutdown connects wiper to B terminal and  
open circuits A terminal. It does not change contents  
of wiper register.  
W = Write.  
AD0, AD1 = Package pin  
Dꢀ, D6, D7, D4, D3, D2, D1, D0 = Data bits.  
programmable address bits.  
t2  
t8  
t6  
t9  
SCL  
t10  
t4  
t7  
t5  
t2  
t3  
t9  
t8  
SDA  
t1  
P
S
S
P
Figure 45. I2C Interface Detailed Timing Diagram  
1
0
9
1
9
1
9
SCL  
SDA  
1
0
1
1
1
1
R/W  
A0 SD  
X
X
X
X
X
X
D7 D6 D5 D4 D3 D2 D1 D0  
ACK BY  
AD5243  
ACK BY  
AD5243  
ACK BY  
AD5243  
START BY  
MASTER  
STOP BY  
MASTER  
FRAME 2  
INSTRUCTION BYTE  
FRAME 3  
DATA BYTE  
FRAME 1  
SLAVE ADDRESS BYTE  
Figure 46. Writing to the RDAC Register—AD5243  
Rev. 0 | Page 1ꢀ of 20  
AD5243/AD5248  
1
9
1
9
1
9
SCL  
0
1
0
1
1
AD1 AD0 R/W  
A0 SD  
X
X
X
X
X
X
D7 D6 D5 D4 D3 D2 D1 D0  
SDA  
ACK BY  
AD5248  
ACK BY  
AD5248  
ACK BY  
AD5248  
START BY  
MASTER  
STOP BY  
MASTER  
FRAME 2  
INSTRUCTION BYTE  
FRAME 3  
DATA BYTE  
FRAME 1  
SLAVE ADDRESS BYTE  
Figure 47. Writing to the RDAC Register—AD5248  
1
9
1
9
SCL  
0
1
0
1
1
1
1
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
SDA  
ACK BY  
AD5243  
NO ACK  
BY MASTER  
START BY  
MASTER  
FRAME 2  
RDAC REGISTER  
STOP BY  
MASTER  
FRAME 1  
SLAVE ADDRESS BYTE  
Figure 48. Reading Data from a Previously Selected RDAC Register in Write Mode—AD5243  
1
0
9
1
9
SCL  
SDA  
1
0
1
1
AD1 AD0 R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
NO ACK  
BY MASTER  
ACK BY  
AD5248  
START BY  
MASTER  
FRAME 2  
RDAC REGISTER  
FRAME 1  
SLAVE ADDRESS BYTE  
STOP BY  
MASTER  
Figure 49. Reading Data from a Previously Selected RDAC Register in Write Mode—AD5248  
Multiple Devices on One Bus (Applies Only to AD5248)  
5V  
R
R
P
P
Figure 50 shows four AD5248 devices on the same serial bus.  
Each has a different slave address, because the states of their  
AD0 and AD1 pins are different. This allows each device on the  
bus to be written to or read from independently. The master  
device output bus line drivers are open-drain pull-downs in a  
fully I2C compatible interface.  
SDA  
SCL  
MASTER  
5V  
5V  
5V  
SDA SCL  
AD1  
SDA SCL  
AD1  
SDA SCL  
AD1  
SDA SCL  
AD1  
AD0  
AD0  
AD0  
AD0  
AD5248  
AD5248  
AD5248  
AD5248  
Figure 50. Multiple AD5248 Devices on One I2C Bus  
Rev. 0 | Page 18 of 20  
 
AD5243/AD5248  
OUTLINE DIMENSIONS  
3.00 BSC  
10  
6
4.90 BSC  
3.00 BSC  
PIN 1  
1
5
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.27  
0.17  
SEATING  
PLANE  
0.23  
0.08  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187BA  
Figure 51. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
RAB  
Temperature  
Package Description  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
Evaluation Board  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
Package Option  
Branding  
D0L  
D0L  
D0M  
D0M  
D0N  
D0N  
D0P  
D0P  
AD7243BRM2.7  
AD7243BRM2.7-RLꢀ  
AD7243BRM10  
AD7243BRM10-RLꢀ  
AD7243BRM70  
AD7243BRM70-RLꢀ  
AD7243BRM100  
AD7243BRM100-RLꢀ  
AD7243EVAL  
2.7 kΩ  
2.7 kΩ  
10 kΩ  
10 kΩ  
70 kΩ  
−40°C to +127°C  
−40°C to +127°C  
−40°C to +127°C  
−40°C to +127°C  
−40°C to +127°C  
−40°C to +127°C  
−40°C to +127°C  
−40°C to +127°C  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
70 kΩ  
100 kΩ  
100 kΩ  
See Note 1  
2.7 kΩ  
2.7 kΩ  
10 kΩ  
10 kΩ  
70 kΩ  
70 kΩ  
AD7248BRM2.7  
AD7248BRM2.7-RLꢀ  
AD7248BRM10  
AD7248BRM10-RLꢀ  
AD7248BRM70  
AD7248BRM70-RLꢀ  
AD7248BRM100  
AD7248BRM100-RLꢀ  
AD7248EVAL  
−40°C to +127°C  
−40°C to +127°C  
−40°C to +127°C  
−40°C to +127°C  
−40°C to +127°C  
−40°C to +127°C  
−40°C to +127°C  
−40°C to +127°C  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
D1F  
D1F  
D1G  
D1G  
D1H  
D1H  
D1J  
100 kΩ  
100 kΩ  
See Note 1  
D1J  
Evaluation Board  
1The evaluation board is shipped with the 10 kΩ RAB resistor option; however, the board is compatible with all available resistor value options.  
Rev. 0 | Page 19 of 20  
 
AD5243/AD5248  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C  
Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04109–0–1/04(0)  
Rev. 0 | Page 20 of 20  

相关型号:

AD5243BRM10

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM10-R2

IC 10K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO10, 3 X 4.90 MM, MO-187BA, MSOP-10, Digital Potentiometer
ADI

AD5243BRM10-RL7

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM100

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM100-R2

IC 100K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO10, 3 X 4.90 MM, MO-187BA, MSOP-10, Digital Potentiometer
ADI

AD5243BRM100-RL7

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM2.5

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM2.5-R2

IC 2.5K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO10, 3 X 4.90 MM, MO-187BA, MSOP-10, Digital Potentiometer
ADI

AD5243BRM2.5-RL7

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM50

Dual 256-Position I2C Compatible Digital Potentiometer
ADI

AD5243BRM50-R2

IC 50K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 256 POSITIONS, PDSO10, 3 X 4.90 MM, MO-187BA, MSOP-10, Digital Potentiometer
ADI

AD5243BRM50-RL7

Dual 256-Position I2C Compatible Digital Potentiometer
ADI