AD5258 [ADI]

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer; 非易失, I2C兼容64位,数字电位器
AD5258
型号: AD5258
厂家: ADI    ADI
描述:

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
非易失, I2C兼容64位,数字电位器

电位器
文件: 总24页 (文件大小:1241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Nonvolatile, I2C-Compatible  
64-Position, Digital Potentiometer  
AD5258  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
Nonvolatile memory maintains wiper settings  
64-position  
Compact MSOP-10 (3 mm × 4.9 mm) package  
I2C®-compatible interface  
VLOGIC pin provides increased interface flexibility  
End-to-end resistance 1 k, 10 kΩ, 50 kΩ, 100 kΩ  
Resistance tolerance stored in EEPROM (0.1% accuracy)  
Power-on EEPROM refresh time <1 ms  
Software write protect command  
RDAC  
V
DD  
A
RDAC  
V
RDAC  
LOGIC  
EEPROM  
W
REGISTER  
GND  
B
6
6
DATA  
CONTROL  
SCL  
SDA  
2
I C  
SERIAL  
INTERFACE  
AD0  
AD1  
COMMAND  
DECODE LOGIC  
AD5258  
ADDRESS  
DECODE LOGIC  
POWER-  
ON RESET  
Three-state Address Decode Pins AD0 and AD1 allow  
9 packages per bus  
CONTROL LOGIC  
100-year typical data retention at 55°C  
Wide operating temperature 40°C to +85°C  
3 V to 5 V single supply  
Figure 1. Block Diagram  
V
V
DD  
LOGIC  
A
EEPROM  
APPLICATIONS  
SCL  
SDA  
AD0  
AD1  
RDAC  
REGISTER  
AND  
2
I C  
LCD panel VCOM adjustment  
SERIAL  
INTERFACE  
LEVEL  
LCD panel brightness and contrast control  
Mechanical potentiometer replacement in new designs  
Programmable power supplies  
RF amplifier biasing  
Automotive electronics adjustment  
Gain control and offset adjustment  
Fiber to the home systems  
SHIFTER  
W
COMMAND  
DECODE LOGIC  
ADDRESS  
DECODE LOGIC  
CONTROL  
LOGIC  
GND  
B
Figure 2. Block Diagram Showing Level Shifters  
Electronics level settings  
GENERAL DESCRIPTION  
CONNECTION DIAGRAM  
The AD5258 provides a compact, nonvolatile 3 mm × 4.9 mm  
packaged solution for 64-position adjustment applications.  
These devices perform the same electronic adjustment function  
as mechanical potentiometers1 or variable resistors, but with  
enhanced resolution and solid-state reliability.  
W
AD0  
AD1  
SDA  
SCL  
1
2
3
4
5
10  
9
A
B
V
AD5258  
8
TOP VIEW  
DD  
(Not to Scale)  
7
GND  
6
V
LOGIC  
Figure 3. Pinout  
The wiper settings are controllable through an I2C-compatible  
digital interface that is also used to read back the wiper register  
and EEPROM content. Resistor tolerance is also stored within  
EEPROM providing an end-to-end tolerance accuracy of 0.1%.  
There is also a software write protection function that ensures  
data cannot be written to the EEPROM register.  
1 The terms digital potentiometer, VR (variable resistor), and RDAC are used  
interchangeably.  
A separate VLOGIC pin delivers increased interface flexibility. For  
users who need multiple parts on one bus, Address Bit AD0 and  
Address Bit AD1 allow up to nine devices on the same bus.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
AD5258  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Write Modes ................................................................................ 17  
Read Modes................................................................................. 17  
Store/Restore Modes .................................................................. 17  
Tolerance Readback Modes ...................................................... 18  
ESD Protection of Digital Pins and Resistor Terminals........ 19  
Power-Up Sequence ................................................................... 19  
Layout and Power Supply Bypassing ....................................... 19  
Multiple Devices on One Bus ................................................... 19  
Evaluation Board........................................................................ 19  
Display Applications ...................................................................... 20  
Circuitry ...................................................................................... 20  
Outline Dimensions....................................................................... 21  
Ordering Guide .......................................................................... 21  
Electrical Characteristics............................................................. 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Test Circuits ..................................................................................... 13  
Theory of Operation ...................................................................... 14  
Programming the Variable Resistor......................................... 14  
Programming the Potentiometer Divider............................... 14  
I2C Interface..................................................................................... 15  
I2C Byte Formats............................................................................. 16  
Generic Interface ........................................................................ 16  
REVISION HISTORY  
3/05—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
AD5258  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VDD = VLOGIC = 5 V 10%, or 3 V 10%ꢀ VA = VDDꢀ VB = 0 Vꢀ −40°C < TA < +85°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS: RHEOSTAT MODE  
Resistor Differential Nonlinearity  
1 kΩ  
R-DNL  
RWB, VA = no connect  
LSB  
−1.5  
−0.25  
0.3  
0.1  
+1.5  
+0.25  
10 kΩ/50 kΩ/100 kΩ  
Resistor Integral Nonlinearity  
1 kΩ  
10 kΩ/100 kΩ  
50 kΩ  
R-INL  
RWB, VA = no connect  
TA = 25°C, VDD = 5.5 V  
LSB  
−5  
−0.5  
−0.25  
0.5  
0.1  
0.1  
+5  
+0.5  
+0.25  
Nominal Resistor Tolerance  
1 kΩ  
RAB  
0.9  
1.5  
kΩ  
10 kΩ/50 kΩ/100 kΩ  
Resistance Temperature Coefficient  
Total Wiper Resistance  
∆RAB  
−30  
+30  
%
(∆RAB × 106)/(RAB × ∆T) Code = 0x00/0x20  
200/15  
75  
ppm/°C  
RWB  
Code = 0x00  
350  
DC CHARACTERISTICS:  
POTENTIOMETER DIVIDER MODE  
Differential Nonlinearity  
1 kΩ  
10 kΩ/50 kΩ/100 kΩ  
Integral Nonlinearity  
1 kΩ  
10 kΩ/50 kΩ/100 kΩ  
Full-Scale Error  
1 kΩ  
DNL  
LSB  
LSB  
LSB  
−1  
−0.25  
0.3  
0.1  
+1  
+0.25  
INL  
−1  
−0.25  
0.3  
0.1  
+1  
+0.25  
VWFSE  
Code = 0x3F  
−6  
−1  
−1  
−3  
−0.3  
−0.1  
0
0
0
10 kΩ  
50 kΩ/100 kΩ  
Zero-Scale Error  
1 kΩ  
10 kΩ  
50 kΩ/100 kΩ  
VWZSE  
Code = 0x00  
LSB  
0
0
0
3
5
1
0.5  
0.3  
0.1  
120/15  
Voltage Divider Temperature  
Coefficient  
(∆VW × 106)/(VW × ∆T)  
Code = 0x00/0x20  
ppm/°C  
RESISTOR TERMINALS  
Voltage Range  
VA, B, W  
CA, B  
GND  
VDD  
V
pF  
Capacitance A, B  
f = 1 MHz, measured to GND,  
code = 0x20  
f = 1 MHz, measured to GND,  
code = 0x20  
45  
60  
10  
Capacitance W  
CW  
ICM  
pF  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
VA = VB = VDD/2  
nA  
VIH  
VIL  
IIL  
0.7 × VL  
−0.5  
VL + 0.5  
0.3 × VL  
V
V
µA  
Input Logic Low  
Leakage Current  
SDA, AD0, AD1  
SCL – Logic High  
SCL – Logic Low  
VIN = 0 V or 5 V  
VIN = 0 V  
VIN = 5 V  
0.01  
−1.4  
0.01  
5
1
+1  
1
−2.5  
Input Capacitance  
CIL  
pF  
Rev. 0 | Page 3 of 24  
 
AD5258  
Parameter  
Symbol  
Conditions  
Min  
2.7  
Typ1  
Max  
Unit  
POWER SUPPLIES  
Power Supply Range  
Positive Supply Current  
Logic Supply  
VDD  
IDD  
VLOGIC  
ILOGIC  
5.5  
2
5.5  
6
V
µA  
V
µA  
mA  
µW  
%/%  
0.5  
2.7  
Logic Supply Current  
Programming Mode Current (EEPROM) ILOGIC(PROG)  
Power Dissipation  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V, VDD = 5 V  
VDD = +5 V 10%, Code = 0x20  
3.5  
35  
20  
PDISS  
PSRR  
40  
0.06  
Power Supply Rejection Ratio  
DYNAMIC CHARACTERISTICS  
Bandwidth −3 dB  
0.01  
BW  
Code = 0x20  
RAB = 1 kΩ  
RAB = 10 kΩ  
RAB = 50 kΩ  
RAB = 100 kΩ  
RAB = 10 kΩ, VA = 1 V rms, VB = 0,  
f = 1 kHz  
RAB = 10 kΩ, VAB = 5 V,  
1 LSB error band  
18000  
1000  
190  
100  
0.1  
kHz  
kHz  
kHz  
kHz  
%
Total Harmonic Distortion  
VW Settling Time  
THDW  
tS  
500  
9
ns  
Resistor Noise Voltage Density  
eN_WB  
RWB = 5 kΩ, f = 1 kHz  
nV/√Hz  
1
Typical values represent average readings at 25°C and VDD = 5 V.  
Rev. 0 | Page 4 of 24  
 
AD5258  
TIMING CHARACTERISTICS  
VDD = VLOGIC = 5 V 10%, or 3 V 10%ꢀ VA = VDDꢀ VB = 0 Vꢀ −40°C < TA < +85°C, unless otherwise noted.  
Table 2.  
Parameter  
I2C INTERFACE TIMING CHARACTERISTICS  
Symbol  
Conditions  
Min Typ Max Unit  
SCL Clock Frequency  
tBUF Bus Free Time between STOP and START  
tHD;STA Hold Time (Repeated START)  
fSCL  
t1  
t2  
0
1.3  
0.6  
400  
kHz  
µs  
µs  
After this period, the first clock pulse is  
generated.  
tLOW Low Period of SCL Clock  
tHIGH High Period of SCL Clock  
tSU;STA Setup Time for Repeated START  
Condition  
t3  
t4  
t5  
1.3  
0.6  
0.6  
µs  
µs  
µs  
tHD;DAT Data Hold Time  
tSU;DAT Data Setup Time  
t6  
t7  
t8  
t9  
0
100  
0.9  
µs  
ns  
ns  
ns  
µs  
ms  
µs  
tF Fall Time of Both SDA and SCL Signals  
tR Rise Time of Both SDA and SCL Signals  
tSU;STO Setup Time for STOP Condition  
EEPROM Data Storing Time  
300  
300  
t10  
0.6  
tEEMEM_STORE  
26  
300  
EEPROM Data Restoring Time at Power On1  
tEEMEM_RESTORE1 VDD rise time dependant. Measure  
without decoupling capacitors at VDD and  
GND.  
EEPROM Data Restoring Time upon Restore  
Command1  
tEEMEM_RESTORE2 VDD = 5 V.  
300  
540  
µs  
µs  
EEPROM Data Rewritable Time2  
FLASH/EE MEMORY RELIABILITY  
Endurance3  
tEEMEM_REWRITE  
100 700  
100  
kCycles  
Years  
Data Retention4  
1 During power-up, the output is momentarily preset to midscale before restoring EEPROM content.  
2 Delay time after power-on PRESET prior to writing new EEPROM data.  
3 Endurance is qualified to 100,000 cycles per JEDEC Std. 22 method A117, and is measured at –40°C, +25°C, and +85°C; typical endurance at +25°C is 700,000 cycles.  
4 Retention lifetime equivalent at junction temperature (TJ) = 55°C per JEDEC Std. 22, Method A117. Retention lifetime based on an activation energy of 0.6eV derates  
with junction temperature.  
t6  
t8  
t9  
SCL  
t10  
t5  
t7  
t4  
t2  
t3  
t9  
t8  
t1  
SDA  
P
S
P
Figure 4. I2C Interface Timing Diagram  
Rev. 0 | Page 5 of 24  
 
 
 
 
 
 
AD5258  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating onlyꢀ functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Value  
0.3 V to +7 V  
GND 0.3 V, VDD + 0.3 V  
VDD to GND  
VA, VB, VW to GND  
IMAX  
Pulsed1  
20 mA  
5 mA  
Continuous  
Digital Inputs and Output Voltage to GND 0 V to +7 V  
40°C to +85°C  
150°C  
Operating Temperature Range  
Maximum Junction Temperature (TJMAX  
Storage Temperature  
Lead Temperature (Soldering, 10 sec)  
Thermal Resistance2 θJA: MSOP 10  
)
65°C to +150°C  
300°C  
200°C/W  
1 Maximum terminal current is bounded by the maximum current handling of  
the switches, maximum power dissipation of the package, and maximum  
applied voltage across any two of the A, B, and W terminals at a given  
resistance.  
2 Package power dissipation = (TJMAX – TA)/θJA  
.
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 6 of 24  
 
 
 
AD5258  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
W
AD0  
AD1  
SDA  
SCL  
1
2
3
4
5
10  
9
A
B
V
AD5258  
8
TOP VIEW  
DD  
(Not to Scale)  
7
GND  
6
V
LOGIC  
Figure 5. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
W Terminal, GND ≤ VW ≤ VDD.  
Programmable Three-State Address Bit 0 for Multiple Package Decoding. State is registered on  
power-up.  
1
2
W
ADO  
3
AD1  
Programmable Three-State Address Bit 1 for Multiple Package Decoding. State is registered on  
power-up.  
4
5
6
7
8
9
10  
SDA  
SCL  
VLOGIC  
GND  
VDD  
B
Serial Data Input/Output.  
Serial Clock Input. Positive edge triggered.  
Logic Power Supply.  
Digital Ground.  
Positive Power Supply.  
B Terminal, GND ≤ VB ≤ VDD.  
A Terminal, GND ≤ VA ≤ VDD.  
A
Rev. 0 | Page 7 of 24  
 
AD5258  
TYPICAL PERFORMANCE CHARACTERISTICS  
VDD = VLOGIC = 5.5 V, RAB = 10 kΩ, TA = 25°C, unless otherwise noted.  
0.5  
0.4  
0.3  
0.2  
0.10  
0.08  
0.06  
0.04  
0.02  
0
2.7V  
0.1  
0
5.5V  
–0.1  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–40°C  
+85°C  
+25°C  
–0.2  
–0.3  
–0.4  
–0.5  
0
8
16  
24  
65  
40  
48  
56  
64  
0
8
16  
24  
65  
40  
48  
56  
64  
CODE (Decimal)  
CODE (Decimal)  
Figure 6. R-INL vs. Code vs. Supply Voltage  
Figure 9. DNL vs. Code vs. Temperature  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0
2.7V  
5.5V  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
5.5V  
2.7V  
0
8
16  
24  
65  
40  
48  
56  
64  
0
8
16  
24  
65  
40  
48  
56  
64  
CODE (Decimal)  
CODE (Decimal)  
Figure 7. R-DNL vs. Code vs. Supply Voltages  
Figure 10. INL vs. Supply Voltages  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0
2.7V  
+85°C  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
+25°C  
–40°C  
5.5V  
0
8
16  
24  
65  
40  
48  
56  
64  
0
8
16  
24  
65  
40  
48  
56  
64  
CODE (Decimal)  
CODE (Decimal)  
Figure 8. INL vs. Code vs. Temperature  
Figure 11. DNL vs. Code vs. Supply Voltages  
Rev. 0 | Page 8 of 24  
 
AD5258  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
ZSE @ V = 2.7V  
DD  
ZSE @ V = 5.5V  
DD  
–40°C  
+85°C  
+25°C  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
0
8
16  
24  
65  
40  
48  
56  
64  
–40  
–20  
0
20  
40  
60  
80  
CODE (Decimal)  
TEMPERATURE (°C)  
Figure 12. R-INL vs. Code vs. Temperature  
Figure 15. Zero-Scale Error vs. Temperature  
1
0.25  
0.20  
0.15  
0.10  
0.05  
0
+85°C  
–40°C  
V
= 5.5V  
DD  
+25°C  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
0.1  
–40  
–20  
0
20  
40  
60  
80  
0
8
16  
24  
65  
40  
48  
56  
64  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 13. R-DNL vs. Code vs. Temperature  
Figure 16. Supply Current vs. Temperature  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.35  
–0.40  
–0.45  
–0.50  
6
5
4
3
2
1
V
= 5.5V  
DD  
FSE @ V = 5.5V  
DD  
FSE @ V = 2.7V  
DD  
V
= 2.7V  
20  
DD  
0
–40  
–40  
–20  
0
20  
40  
60  
80  
–20  
0
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. Full-Scale Error vs. Temperature  
Figure 17. Logic Supply Current vs. Temperature vs. VDD  
Rev. 0 | Page 9 of 24  
AD5258  
250  
200  
150  
100  
50  
120  
100  
80  
60  
40  
20  
0
100k Rt @ V = 5.5V  
DD  
1k  
50k  
50k Rt @ V = 5.5V  
DD  
10k  
0
10k Rt @ V = 5.5V  
DD  
–50  
–100  
1k Rt @ V = 5.5V  
DD  
100k  
–150  
0
–40  
–20  
0
20  
40  
60  
80  
8
16  
24  
65  
40  
48  
56  
64  
TEMPERATURE (°C)  
CODE (Decimal)  
Figure 18. Rheostat Mode Tempco (ΔRAB ×106)/( RAB × ∆T) vs. Code  
Figure 21. Total Resistance vs. Temperature  
120  
0
–6  
20  
H
100  
10  
08  
H
H
1k  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
80  
60  
04  
02  
H
H
01  
H
40  
50k  
20  
0
10k  
100k  
–20  
0
8
16  
24  
65  
40  
48  
56  
64  
10k  
100k  
1M  
10M  
100M  
CODE (Decimal)  
FREQUENCY (Hz)  
Figure 19. Potentiometer Mode Tempco (ΔVW × 106)/( VW × ΔT) vs. Code  
Figure 22. Gain vs. Frequency vs. Code, RAB = 1 kΩ  
350  
300  
0
–6  
20  
10  
08  
H
H
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
R
@ V = 2.7V  
DD  
H
H
WB  
250  
200  
150  
100  
50  
04  
02  
01  
H
H
R
@ V = 5.5V  
DD  
WB  
0
–40  
–20  
0
20  
40  
60  
80  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 20. RWB vs. Temperature  
Figure 23. Gain vs. Frequency vs. Code, RAB = 10 kΩ  
Rev. 0 | Page 10 of 24  
AD5258  
0
–6  
80  
60  
40  
20  
0
CODE = MIDSCALE, V = V  
, V = 0V  
B
20  
10  
A
LOGIC  
H
H
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
PSRR @ V  
= 5V DC ± 10% p-p AC  
LOGIC  
08  
04  
02  
01  
H
H
H
H
PSRR @ V  
= 3V DC ± 10% p-p AC  
LOGIC  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 27. PSRR vs. Frequency  
Figure 24. Gain vs. Frequency vs. Code, RAB = 50 kΩ  
0
–6  
20  
10  
08  
04  
02  
01  
H
H
H
H
H
H
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
V
W
1
SCL  
2
400ns/DIV  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 28. Digital Feedthrough  
Figure 25. Gain vs. Frequency vs. Code, RAB = 100 kΩ  
10k  
1k  
V
= V = 5V  
LOGIC  
DD  
V
W
1
V
= V  
= 3V  
LOGIC  
DD  
100  
10  
1µs/DIV  
0
1
2
3
4
5
V
(V)  
IH  
Figure 29. Midscale Glitch, Code 0×7F to 0×80  
Figure 26. Logic Supply Current vs. Input Voltage  
Rev. 0 | Page 11 of 24  
AD5258  
V
W
1
SCL  
2
200ns/DIV  
Figure 30. Large Signal Settling Time  
Rev. 0 | Page 12 of 24  
AD5258  
TEST CIRCUITS  
Figure 31 through Figure 36 illustrate the test circuits that  
define the test conditions used in the product specification  
tables.  
V
V+ = V  
1LSB = V+/2  
A
V+ = V  
±
10%  
DUT  
W
DD  
DD  
N
V  
V  
MS  
)
A
B
DUT  
W
PSRR (dB) = 20 LOG  
(
%
%
DD  
V  
V  
A
B
V+  
MS  
V  
PSS (%/%) =  
DD  
DD  
V+  
V
MS  
V
MS  
Figure 31. Test Circuit for Potentiometer Divider Nonlinearity Error (INL, DNL)  
Figure 34. Test Circuit for Power Supply Sensitivity (PSS, PSSR)  
NO CONNECT  
DUT  
DUT  
+5V  
A
W
V
I
IN  
W
A
W
AD8610  
–5V  
V
OUT  
B
OFFSET  
GND  
B
+2.5V  
V
MS  
Figure 32. Test Circuit for Resistor Position Nonlinearity Error  
(Rheostat Operation; R-INL, R-DNL)  
Figure 35. Test Circuit for Gain vs. Frequency  
0.1V  
R
=
SW  
I
SW  
DUT  
DUT  
I
= V /R  
DD NOMINAL  
CODE = 0x00  
W
A
B
W
V
W
W
V
MS2  
I
SW  
0.1V  
R
= [V  
– V  
]/I  
W
MS1  
MS2 W  
B
V
MS1  
GND TO V  
DD  
Figure 33. Test Circuit for Wiper Resistance  
Figure 36. Test Circuit for Common-Mode Leakage Current  
Rev. 0 | Page 13 of 24  
 
 
 
AD5258  
THEORY OF OPERATION  
The AD5258 is a 64-position digitally controlled variable  
resistor (VR) device. The wiper’s default value, prior to  
programming the EEPROM, is midscale.  
Similar to the mechanical potentiometer, the resistance of the  
RDAC between Wiper W and Terminal A produces a digitally  
controlled complementary resistance, RWA. The resistance value  
setting for RWA starts at a maximum value of resistance and  
decreases as the data loaded in the latch increases in value. The  
general equation for this operation is  
PROGRAMMING THE VARIABLE RESISTOR  
Rheostat Operation  
The nominal resistance (RAB) of the RDAC between Terminal A  
and Terminal B is available in 1 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ.  
The nominal resistance of the VR has 64 contact points  
accessed by the wiper terminal. The 6-bit data in the RDAC  
latch is decoded to select one of 64 possible settings.  
64 D  
64  
(2)  
RWA (D) =  
× RAB + 2 × RW  
Typical device-to-device matching is process lot dependent and  
may vary by up to 30%. For this reason, resistance tolerance is  
stored in the EEPROM such that the user will know the actual  
A
A
A
R
AB within 0.1%.  
W
W
W
PROGRAMMING THE POTENTIOMETER DIVIDER  
B
B
B
Voltage Output Operation  
The digital potentiometer easily generates a voltage divider at  
Wiper W-to-Terminal B and Wiper W-to-Terminal A propor-  
tional to the input voltage at Terminal A to Terminal B. Unlike  
the polarity of VDD to GND, which must be positive, voltage  
across Terminal A to Terminal B, Wiper W to Terminal A, and  
Wiper W to Terminal B can be at either polarity.  
Figure 37. Rheostat Mode Configuration  
The general equation determining the digitally programmed  
output resistance between Wiper W and Terminal B is  
D
(1)  
RWB  
(
D
)
=
× RAB + 2 × RW  
64  
V
I
A
where:  
D is the decimal equivalent of the binary code loaded in the  
6-bit RDAC register.  
W
V
O
R
R
AB is the end-to-end resistance.  
W is the wiper resistance contributed by the on resistance of  
B
each internal switch.  
Figure 39. Potentiometer Mode Configuration  
If ignoring the effect of the wiper resistance for approximation,  
connecting the A terminal to 5 V and the B terminal to ground  
produces an output voltage at Wiper W-to-Terminal B starting  
at 0 V up to 1 LSB less than 5 V. The general equation defining  
the output voltage at VW with respect to ground for any valid  
input voltage applied to Terminal A and Terminal B is  
A
R
S
D5  
D4  
D3  
D2  
D1  
D0  
R
R
S
S
W
D
VW (D) = VA +  
64  
64 D  
64  
(3)  
VB  
A more accurate calculation, which includes the effect of wiper  
resistance, VW, is  
R
RDAC  
S
R
WB (D)  
RAB  
RWA(D)  
RAB  
LATCH  
AND  
DECODER  
(4)  
VW (D) =  
VA +  
VB  
B
Figure 38. AD5258 Equivalent RDAC Circuit  
Operation of the digital potentiometer in the divider mode  
results in a more accurate operation over temperature. Unlike  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the Internal Resistors, RWA and RWB, and not the  
absolute values.  
Note that in the zero-scale condition, there is a relatively low  
value finite wiper resistance. Care should be taken to limit the  
current flow between Wiper W and Terminal B in this state to a  
maximum pulse current of no more than 20 mA. Otherwise,  
degradation or destruction of the internal switch contact can  
occur.  
Rev. 0 | Page 14 of 24  
 
AD5258  
I2C INTERFACE  
(store), or from EEPROM to RDAC (restore). The final five  
bits are all zeros (see Table 13 to Table 14).  
Note that the wipers default value, prior to programming the  
EEPROM, is midscale.  
4. Reading: Assuming the register of interest was not just  
written to, it is necessary to write a dummy address and  
instruction byte. The instruction byte will vary depending  
on whether the data that is wanted is the RDAC register,  
EEPROM register, or tolerance register (see Table 11 to  
Table 16).  
1. The master initiates data transfer by establishing a START  
condition when a high-to-low transition on the SDA line  
occurs while SCL is high (see Figure 4). The next byte is  
the slave address byte, which consists of the slave address  
(first 7 bits) followed by an R/ bit (see Table 6). When the  
W
R/ bit is high, the master reads from the slave device.  
W
When the R/ bit is low, the master writes to the slave  
W
device.  
After the dummy address and instruction bytes are sent, a  
repeat start is necessary. After the repeat start, another  
address byte is needed, except this time the R/ bit is logic  
W
The slave address of the part is determined by two three-  
state-configurable Address Pins AD0 and AD1. The state of  
these two pins is registered upon power-up and decoded  
into a corresponding I2C 7-bit address (see Table 5). The  
slave address corresponding to the transmitted address bits  
responds by pulling the SDA line low during the ninth  
clock pulse (this is termed the slave acknowledge bit).  
high. Following this address byte is the readback byte  
containing the information requested in the instruction  
byte. Read bits appear on the negative edges of the clock.  
Don’t cares may either be in a high or low state.  
The tolerance register can be read back individually (see  
Table 15) or consecutively (see Table 16). Refer to the Read  
Modes section for detailed information on the interpreta-  
tion of the tolerance bytes.  
At this stage, all other devices on the bus remain idle while  
the selected device waits for data to be written to, or read  
from, its serial register.  
5. After all data bits have been read or written, a STOP  
condition is established by the master. A STOP condition is  
defined as a low-to-high transition on the SDA line while  
SCL is high. In write mode, the master pulls the SDA line  
high during the tenth clock pulse to establish a STOP  
condition (see Figure 45). In read mode, the master issues a  
no acknowledge for the ninth clock pulse (that is, the SDA  
line remains high). The master then brings the SDA line  
low before the tenth clock pulse, and then raises SDA high  
to establish a STOP condition (see Figure 46).  
2. Writing: In the write mode, the last bit (R/ ) of the slave  
W
address byte is logic low. The second byte is the instruction  
byte. The first three bits of the instruction byte are the  
command bits (see Table 6). The user must choose whether  
to write to the RDAC register, EEPROM register, or  
activate the software write protect (see Table 7 to Table 10).  
The final five bits are all zeros (see Table 13 to Table 14).  
The slave again responds by pulling the SDA line low during  
the ninth clock pulse.  
A repeated write function gives the user flexibility to  
update the RDAC output a number of times after  
addressing and instructing the part only once. For  
example, after the RDAC has acknowledged its slave  
address and instruction bytes in the write mode, the RDAC  
output is updated on each successive byte until a STOP  
condition is received. If different instructions are needed,  
the write/read mode has to start again with a new slave  
address, instruction, and data byte. Similarly, a repeated  
read function of the RDAC is also allowed.  
The final byte is the data byte MSB first. Don’t cares can be  
left either high or low. In the case of the write protect  
mode, data is not storedꢀ rather, a logic high in the LSB  
enables write protect. Likewise, a logic low will disable  
write protect. The slave again responds by pulling the SDA  
line low during the ninth clock pulse.  
3. Storing/Restoring: In this mode, only the address and  
instruction bytes are necessary. The last bit (R/ ) of the  
W
address byte is logic low. The first three bits of the  
instruction byte are the command bits (see Table 6). The  
two choices are transfer data from RDAC to EEPROM  
Rev. 0 | Page 15 of 24  
 
AD5258  
I2C BYTE FORMATS  
Table 5. Device Address Lookup  
The following generic, write, read, and store/restore control  
registers for the AD5258 all refer to the device addresses listed  
in Table 5, and the mode/condition reference key (S, P, SA, MA,  
AD1 and AD0 are three-state address pins.  
Device Address  
0011000  
0011001  
0011010  
0101001  
0101010  
0101011  
1001100  
1001101  
1001110  
AD1  
0
NC  
1
0
NC  
1
0
NC  
1
AD0  
0
0
W
NA, , R, and X) listed below.  
S = Start Condition  
0
P = Stop Condition  
NC  
NC  
NC  
1
1
1
SA = Slave Acknowledge  
MA = Master Acknowledge  
NA = No Acknowledge  
W
= Write  
R = Read  
X = Don’t Care  
GENERIC INTERFACE  
Table 6. Generic Interface Format  
7-Bit Device Address  
R/W  
S
(See Table 5)  
SA C2 C1 C0 A4 A3 A2 A1 A0 SA D7 D6 D5 D4 D3 D2 D1 D0 SA  
Instruction Byte Data Byte  
P
Slave Address Byte  
Table 7. RDAC-to-EEPROM Interface Command Descriptions  
C2  
C1  
C0  
Command Description  
Operation between I2C and RDAC  
Operation between I2C and EEPROM  
0
0
0
0
0
1
0
1
0
Operation between I 2C and Write Protection  
Register. See Table 10.  
1
1
1
0
0
1
0
1
0
NOP  
Restore EEPROM to RDAC  
Store RDAC to EEPROM  
Rev. 0 | Page 16 of 24  
 
 
AD5258  
WRITE MODES  
Table 8. Writing to RDAC Register  
7-Bit Device Address  
S
(See Table 5)  
0
SA  
SA  
0
0
0
0
0
0
0
0
0
0
0
0
SA  
SA  
X
X
X
X
D5 D4 D3 D2 D1 D0 SA  
P
P
Slave Address Byte  
Instruction Byte  
Data Byte  
Table 9. Writing to EEPROM Register  
7-Bit Device Address  
S
(See Table 5)  
0
1
0
0
0
D5 D4 D3 D2 D1 D0 SA  
Data Byte  
Slave Address Byte  
Instruction Byte  
The wipers default value, prior to programming the EEPROM, is midscale.  
Table 10. Activating/Deactivating Software Write Protect  
7-Bit Device Address  
S
(See Table 5)  
0
SA  
0
1
0
0
0
0
0
0
SA  
0
0
0
0
0
0
0
WP SA  
P
Slave Address Byte  
Instruction Byte  
Data Byte  
In order to activate the write protection mode, the WP bit in Table 10 must be logic high. In order to deactivate the write protection, the  
command must be sent again except with the WP in logic zero state.  
READ MODES  
written to. For example, if the EEPROM was just written to,  
Read modes are referred to as traditional because the first two  
then the user can skip the two dummy bytes and proceed  
bytes for all three cases are “dummy” bytes which function to  
directly to the slave address byte followed by the EEPROM  
readback data.  
place the pointer towards the correct register. This is the reason  
for the repeat start. In theory, this step can be avoided if the  
user is interested in reading a register that was previously  
Table 11. Traditional Readback of RDAC Register Value  
7-Bit Device Address  
(See Table 5)  
7-Bit Device Address  
(See Table 5)  
S
0
SA  
0
0
0
0
0
0
0
0
SA  
S
1
SA  
X
X
D5 D4 D3 D2 D1 D0 NA P  
Read Back Data  
Slave Address Byte  
Instruction Byte  
Slave Address Byte  
Repeat start  
Table 12. Traditional Readback of Stored EEPROM Value  
7-Bit Device Address  
7-Bit Device Address  
S
(See Table 5)  
(See Table 5)  
0
SA  
0
0
1
0
0
0
0
0
SA  
S
1
SA  
X
X
D5 D4 D3 D2 D1 D0 NA P  
Read Back Data  
Slave Address Byte  
Instruction Byte  
Slave Address Byte  
Repeat start  
STORE/RESTORE MODES  
Table 13. Storing RDAC Value to EEPROM  
7-Bit Device Address  
S
(See Table 5)  
0 SA 1 1 0 0 0 0 0 0 SA P  
Instruction Byte  
Slave Address Byte  
Table 14. Restoring EEPROM to RDAC  
7-Bit Device Address  
S
(See Table 5)  
0 SA 1 0 1 0 0 0 0 0 SA P  
Instruction Byte  
Slave Address Byte  
Rev. 0 | Page 17 of 24  
 
 
AD5258  
TOLERANCE READBACK MODES  
Table 15. Traditional Readback of Tolerance (Individually)  
7-Bit Device Address  
(See Table 5)  
7-Bit Device Address  
(See Table 5)  
S
0 SA 0 0 1 1 1 1 1 0 SA S  
Instruction Byte  
1 SA D7 D6 D5 D4 D3 D2 D1 D0 NA P  
Sign + Integer Byte  
Slave Address Byte  
Slave Address Byte  
Repeat start  
7-Bit Device Address  
(See Table 5)  
7-Bit Device Address  
(See Table 5)  
S
0 SA 0 0 1 1 1 1 1 1 SA S  
Instruction Byte  
1 SA D7 D6 D5 D4 D3 D2 D1 D0 NA P  
Decimal Byte  
Slave Address Byte  
Slave Address Byte  
Repeat start  
Table 16.Traditional Readback of Tolerance (Consecutively)  
7-Bit Device Address  
(See Table 5)  
7-Bit Device Address  
S
0 SA 0 0 1 1 1 1 1 0 SA S  
Instruction Byte  
(See Table 5)  
1 SA D7 D6 D5 D4 D3 D2 D1 D0 MA D7 D6 D5 D4 D3 D2 D1 D0 NA P  
Slave Address Byte  
Slave Address Byte  
Sign + Integer Byte  
Decimal Byte  
Repeat start  
Calculating RAB Tolerance Stored in Read-Only Memory  
A
A
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
–6  
D1  
–7  
D0  
–8  
6
5
4
3
2
1
0
–1  
2
–2  
2
–3  
2
–4  
2
–5  
2
SIGN  
2
2
2
2
2
2
2
2
2
2
SIGN  
7 BITS FOR INTEGER NUMBER  
8 BITS FOR DECIMAL NUMBER  
Figure 40. Format of Stored Tolerance in Sign Magnitude Format with Bit Position Descriptions.  
(Unit is Percent. Only Data Bytes are Shown.)  
the second EEPROM location (increments from 11110 to  
11111) if read consecutively.  
The AD5258 features a patented RAB tolerance storage in the  
nonvolatile memory. The tolerance is stored in the memory  
during factory production and can be read by users at any time.  
The knowledge of stored tolerance allows users to accurately  
calculate RAB. This feature is valuable for precision, rheostat  
mode, and open-loop applications where knowledge of absolute  
resistance is critical.  
In the first memory location, the MSB is designated for the sign  
(0 = + and 1= –) and the seven LSBs are designated for the integer  
portion of the tolerance. In the second memory location, all eight  
data bits are designated for the decimal portion of tolerance. Note  
that the decimal portion has a limited accuracy of only 0.1%. For  
example, if the rated RAB = 10 kΩ and the data readback from  
Address 11110 shows 0001 1100, and Address 11111 shows  
0000 1111, then the tolerance can be calculated as  
The stored tolerance resides in the read-only memory and is  
expressed as a percentage. The tolerance is stored in two memory  
location bytes in sign magnitude binary form (see Figure 40).  
The two EEPROM address bytes are 11110 (sign + integer) and  
11111 (decimal number). The two bytes can be individually  
accessed with two separate commands (see Table 15). Alternatively,  
readback of the first byte followed by the second byte can be  
done in one command (see Table 16). In the latter case, the  
memory pointer will automatically increment from the first to  
MSB: 0 = +  
Next 7 MSB: 001 1100 = 28  
8 LSB: 0000 1111 = 15 × 2–8 = 0.06  
Tolerance = +28.06%  
Rounded Tolerance = +28.1% and therefore,  
RAB_ACTUAL = 12.810 kΩ  
Rev. 0 | Page 18 of 24  
 
 
 
 
AD5258  
Similarly, it is also good practice to bypass the power supplies  
with quality capacitors for optimum stability. Supply leads to  
the device should be bypassed with disc or chip ceramic  
capacitors of 0.01 µF to 0.1 µF. Low ESR 1 µF to 10 µF tantalum  
or electrolytic capacitors should also be applied at the supplies  
to minimize any transient disturbance and low frequency ripple  
(see Figure 43). The digital ground should also be joined  
remotely to the analog ground at one point to minimize the  
ground bounce.  
ESD PROTECTION OF DIGITAL PINS AND  
RESISTOR TERMINALS  
The AD5258 VDD, VLOGIC, and GND power supplies define the  
boundary conditions for proper 3-terminal and digital input  
operation. Supply signals present on Terminal A, Terminal B,  
and Terminal W that exceed VDD or GND are clamped by the  
internal forward biased ESD protection diodes (see Figure 41).  
Digital Input SCL and Digital Input SDA are clamped by ESD  
protection diodes with respect to VLOGIC and GND as shown in  
Figure 42.  
V
V
DD  
DD  
+
V
DD  
C2  
C1  
10µF  
0.1µF  
AD5258  
A
W
B
GND  
GND  
Figure 43. Power Supply Bypassing  
Figure 41. Maximum Terminal Voltages Set by VDD and GND  
MULTIPLE DEVICES ON ONE BUS  
V
LOGIC  
The AD5258 has two three-state configurable Address Pins  
AD0 and AD1. The state of these two pins is registered upon  
power-up and decoded into a corresponding I2C 7-bit address  
(see Table 5). This allows up to nine devices on the bus to be  
written to, or read from, independently. In the case that the pin  
is assigned to be floated, the static voltage will be VLOGIC/2.  
SCL  
SDA  
GND  
Figure 42. Maximum Terminal Voltages Set by VLOGIC and GND  
EVALUATION BOARD  
An evaluation board, along with all necessary software, is  
available to program the AD5258 from any PC running  
Windows® 98/2000/XP. The graphical user interface, as shown  
in Figure 44, is straightforward and easy to use. More detailed  
information is available in the user manual that comes with the  
board.  
POWER-UP SEQUENCE  
Because the ESD protection diodes limit the voltage compliance  
at Terminal A, Terminal B, and Terminal W (see Figure 41), it is  
important to power GND/VDD/VLOGIC before applying any  
voltage to Terminal A, Terminal B, and Terminal Wꢀ otherwise,  
the diode is forward biased such that VDD and VLOGIC are  
powered unintentionally and may affect the users circuit. The  
ideal power-up sequence is in the following order: GND, VDD  
,
VLOGIC, digital inputs, and then VA, VB, VW. The relative order of  
powering VA, VB, VW, and the digital inputs is not important as  
long as they are powered after GND/VDD/VLOGIC  
.
LAYOUT AND POWER SUPPLY BYPASSING  
It is good practice to employ compact, minimum lead length  
layout design. The leads to the inputs should be as direct as  
possible with minimum conductor length. Ground paths should  
have low resistance and low inductance.  
Figure 44. AD5258 Evaluation Board Software  
Rev. 0 | Page 19 of 24  
 
 
 
 
 
AD5258  
DISPLAY APPLICATIONS  
VDD will not affect that nodes bias because it is only on the  
order of microamps. VLOGIC is tied to the MCU’s 3.3 V digital  
supply because VLOGIC will draw the 35 mA which is needed  
when writing to the EEPROM. It would be impractical to try  
and source 35 mA through the 70 kΩ resistor, therefore, VLOGIC  
CIRCUITRY  
A special feature of the AD5258 is its unique separation of the  
VLOGIC and VDD supply pins. The reason for doing this is to  
provide greater flexibility in applications that do not always  
provide needed supply voltages.  
is not connected to the same node as VDD  
.
In particular, LCD panels often require a VCOM voltage in the  
range of 3 V to 5 V. The circuit in Figure 45 is the rare exception  
in which a 5 V supply is available to power the digital  
potentiometer.  
For this reason, VLOGIC and VDD are provided as two separate  
supply pins that can either be tied together or treated inde-  
pendentlyꢀ VLOGIC supplying the logic/EEPROM with power,  
and VDD biasing up the A, B, and W terminals for added  
flexibility.  
VCC (~3.3V)  
14.4V  
SUPPLIES POWER  
TO BOTH THE  
MICRO AND THE  
LOGIC SUPPLY OF  
THE DIGITAL POT  
VCC (~3.3V)  
5V  
14.4V  
R1  
70k  
R1  
70k  
C1  
1µF  
AD5258  
C1  
1µF  
AD5258  
R6  
R5  
V
V
R6  
R5  
DD  
10k10kΩ  
V
V
DD  
10k10kΩ  
U1  
AD8565  
LOGIC  
U1  
AD8565  
R2  
10kΩ  
LOGIC  
A
B
R2  
10kΩ  
A
B
3.5V < V  
COM  
< 4.5V  
SCL  
SDA  
GND  
+
3.5V < V  
< 4.5V  
COM  
SCL  
SDA  
GND  
MCU  
W
+
MCU  
W
R3  
25kΩ  
R3  
25kΩ  
Figure 46. Circuitry When a Separate Supply is Not Available for VDD  
Figure 45. VCOM Adjustment Application  
For a more detailed look at this application, refer to the article,  
“Simple VCOM Adjustment uses any Logic Supply Voltage” in  
the September 30, 2004, issue of EDN magazine.  
In the more common case shown in Figure 46, only analog 14.4 V  
and digital logic 3.3 V supplies are available. By placing discrete  
resistors above and below the digital pot, VDD can now be tapped  
off the resistor string itself. Based on the chosen resistor values,  
the voltage at VDD in this case equals 4.8 V, allowing the wiper to  
be safely operated all the way up to 4.8 V. The current draw of  
Rev. 0 | Page 20 of 24  
 
 
 
AD5258  
OUTLINE DIMENSIONS  
3.00 BSC  
10  
6
4.90 BSC  
3.00 BSC  
PIN 1  
1
5
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.27  
0.17  
SEATING  
PLANE  
0.23  
0.08  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187BA  
Figure 47. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
RAB ()  
Temperature  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
MSOP-10  
Package Option  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
Branding  
AD5258BRMZ11  
AD5258BRMZ1-R71  
AD5258BRMZ101  
AD5258BRMZ10-R71  
AD5258BRMZ501  
AD5258BRMZ50-R71  
AD5258BRMZ1001  
AD5258BRMZ100-R71  
AD5258EVAL2  
1 k  
1 k  
D4K  
D4K  
D4L  
D4L  
D4M  
D4M  
D4N  
D4N  
10 k  
10 k  
50 k  
50 k  
100 k  
100 k  
Evaluation Board  
1 Z = Pb-free part.  
2 The evaluation board is shipped with the 10 kRAB resistor option; however, the board is compatible with all available resistor value options.  
Rev. 0 | Page 21 of 24  
 
 
 
 
AD5258  
NOTES  
Rev. 0 | Page 22 of 24  
AD5258  
NOTES  
Rev. 0 | Page 23 of 24  
AD5258  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05029–0–3/05(0)  
Rev. 0 | Page 24 of 24  

相关型号:

AD5258BRMZ1

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ1-R7

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ1-R71

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ1-RL7

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ10

ADSP-BF506F EZ-KIT Lite® Evaluation System Manual
ADI

AD5258BRMZ10-R7

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ10-R71

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ100

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ100-R7

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ100-R71

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI

AD5258BRMZ100-RL7

IC 100K DIGITAL POTENTIOMETER, 2-WIRE SERIAL CONTROL INTERFACE, 64 POSITIONS, PDSO10, LEAD FREE, MO-187-BA, MSOP-10, Digital Potentiometer
ADI

AD5258BRMZ1001

Nonvolatile, I2C-Compatible 64-Position, Digital Potentiometer
ADI