AD5314BRMZ-REEL [ADI]

2.5 V to 5.5 V, 500 μA, Quad Voltage Output 8-/10-/12-Bit DACs in 10-Lead Packages; 2.5 V至5.5 V , 500 μA ,四路电压输出8位/ 10位/ 12位DAC,采用10引脚封装
AD5314BRMZ-REEL
型号: AD5314BRMZ-REEL
厂家: ADI    ADI
描述:

2.5 V to 5.5 V, 500 μA, Quad Voltage Output 8-/10-/12-Bit DACs in 10-Lead Packages
2.5 V至5.5 V , 500 μA ,四路电压输出8位/ 10位/ 12位DAC,采用10引脚封装

转换器 数模转换器 光电二极管
文件: 总24页 (文件大小:357K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V to 5.5 V, 500 μA, Quad Voltage Output  
8-/10-/12-Bit DACs in 10-Lead Packages  
AD5304/AD5314/AD5324  
Data Sheet  
FEATURES  
GENERAL DESCRIPTION  
The AD5304/AD5314/AD53241 are quad 8-, 10-, and 12-bit  
AD5304: 4 buffered 8-Bit DACs in 10-lead MSOP and  
buffered voltage output DACs in 10-lead MSOP and 10-lead  
LFCSP packages that operate from a single 2.5 V to 5.5 V supply,  
consuming 500 μA at 3 V. Their on-chip output amplifiers allow  
rail-to-rail output swing to be achieved with a slew rate of 0.7 V/μs.  
A 3-wire serial interface is used; it operates at clock rates up to  
30 MHz and is compatible with standard SPI, QSPI, MICROWIRE,  
and DSP interface standards.  
10-lead LFCSP  
A, W Version: 1 LSB INL, B Version: 0.625 LSB INL  
AD5314: 4 buffered 10-Bit DACs in 10-lead MSOP and  
10-lead LFCSP  
A, W Version: 4 LSB INL, B Version: 2.5 LSB INL  
AD5324: 4 buffered 12-Bit DACs in 10-lead MSOP and  
10-lead LFCSP  
A, W Version: 16 LSB INL, B Version: 10 LSB INL  
Low power operation: 500 μA @ 3 V, 600 μA @ 5 V  
2.5 V to 5.5 V power supply  
Guaranteed monotonic by design over all codes  
Power-down to 80 nA @ 3 V, 200 nA @ 5 V  
Double-buffered input logic  
The references for the four DACs are derived from one reference  
pin. The outputs of all DACs can be updated simultaneously using  
LDAC  
the software  
function. The parts incorporate a power-on  
reset circuit, and ensure that the DAC outputs power up to 0 V  
and remains there until a valid write takes place to the device.  
The parts contain a power-down feature that reduces the current  
consumption of the device to 200 nA @ 5 V (80 nA @ 3 V).  
Output range: 0 V to VREF  
Power-on reset to 0 V  
The low power consumption of these parts in normal operation  
makes them ideally suited to portable battery-operated equipment.  
The power consumption is 3 mW at 5 V, 1.5 mW at 3 V, reducing  
to 1 μW in power-down mode.  
LDAC  
Simultaneous update of outputs (  
function)  
Low power-, SPI®-, QSPI™-, MICROWIRE™-, and DSP-  
compatible 3-wire serial interface  
On-chip, rail-to-rail output buffer amplifiers  
Temperature range −40°C to +105°C  
Qualified for automotive applications  
APPLICATIONS  
Portable battery-powered instruments  
Digital gain and offset adjustment  
Programmable voltage and current sources  
Programmable attenuators  
1 Protected by U.S. Patent No. 5,969,657.  
Industrial process controls  
FUNCTIONAL BLOCK DIAGRAM  
V
REFIN  
DD  
AD5304/AD5314/AD5324  
LDAC  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
INPUT  
DAC  
STRING  
DAC A  
V
V
V
V
A
B
C
D
OUT  
OUT  
OUT  
OUT  
REGISTER  
REGISTER  
SCLK  
SYNC  
DIN  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC B  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC C  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC D  
POWER-ON RESET  
POWER-DOWN LOGIC  
GND  
Figure 1.  
Rev. H  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
AD5304/AD5314/AD5324  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Theory of Operation ...................................................................... 14  
Functional Description.............................................................. 14  
Power-On Reset.......................................................................... 14  
Serial Interface............................................................................ 14  
Power-Down Mode.................................................................... 16  
Microprocessor Interfacing....................................................... 16  
Applications Information.............................................................. 18  
Typical Application Circuit....................................................... 18  
Decoding Multiple AD5304/AD5314/AD5324s.................... 19  
Power Supply Bypassing and Grounding................................ 20  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 23  
Automotive Products................................................................. 23  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Characteristics........................................................................ 4  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 8  
Terminology .................................................................................... 12  
REVISION HISTORY  
8/03—Rev. C to Rev. D  
9/11—Rev. G to Rev. H  
Added A Version ................................................................Universal  
Changes to Features ..........................................................................1  
Changes to Specifications.................................................................2  
Changes to Absolute Maximum Ratings........................................4  
Changes to Ordering Guide.............................................................4  
Changes to Figure 6........................................................................ 11  
Added OCTALS Section to Table 2.............................................. 15  
Updated Outline Dimensions....................................................... 16  
Changes to Table 4............................................................................ 6  
5/11—Rev. F to Rev. G  
Added W Version ...............................................................Universal  
Added EPAD Notation to Figure 4................................................. 7  
Updated Outline Dimensions....................................................... 22  
Changes to Ordering Guide .......................................................... 23  
Added Automotive Products Section .......................................... 23  
9/06—Rev. E to Rev. F  
Updated Format..................................................................Universal  
Changes to Specifications Section.................................................. 3  
Changes to Table 5............................................................................ 7  
Updated Outline Dimensions ...................................................... 22  
Changes to Ordering Guide .......................................................... 23  
5/05—Rev. D to Rev. E  
Added 10-lead LFCSP package.........................................Universal  
Changes to Title ................................................................................ 1  
Changes to Ordering Guide ............................................................ 4  
Rev. H | Page 2 of 24  
 
Data Sheet  
AD5304/AD5314/AD5324  
SPECIFICATIONS  
VDD = 2.5 V to 5.5 V; VREF = 2 V; RL = 2 kΩ to GND; CL = 200 pF to GND; all specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
A, W Version2  
Min Typ  
B Version2  
Min Typ  
Parameter1  
DC PERFORMANCE3, 4  
Max  
Max  
Unit  
Test Conditions/Comments  
AD5304  
Resolution  
8
8
Bits  
Relative Accuracy  
Differential Nonlinearity  
0.15  
0.02  
1
0.25  
0.15  
0.02  
0.625 LSB  
0.25  
LSB  
Guaranteed monotonic by  
design over all codes  
AD5314  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
10  
0.5  
0.05  
10  
0.5  
0.05  
Bits  
LSB  
LSB  
4
0.5  
2.5  
0.5  
Guaranteed monotonic by  
design over all codes  
AD5324  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
12  
2
0.2  
12  
2
0.2  
Bits  
LSB  
LSB  
16  
1
10  
1
Guaranteed monotonic by  
design over all codes  
Offset Error  
Gain Error  
0.4  
0.15  
3
1
0.4  
0.15  
3
1
% of FSR See Figure 2 and Figure 3  
% of FSR See Figure 2 and Figure 3  
Lower Dead Band  
20  
60  
20  
60  
mV  
Lower dead band exists only  
if offset error is negative  
Offset Error Drift5  
Gain Error Drift5  
–12  
–5  
–12  
–5  
ppm of  
FSR/°C  
ppm of  
FSR/°C  
DC Power Supply Rejection  
Ratio5  
–60  
200  
–60  
200  
dB  
ΔVDD = 10%  
DC Crosstalk5  
μV  
RL = 2 kΩ to GND or VDD  
DAC REFERENCE INPUTS5  
VREF Input Range  
VREF Input Impedance  
0.25  
37  
VDD  
0.25  
37  
VDD  
V
45  
>10  
–90  
45  
>10  
–90  
kΩ  
MΩ  
dB  
Normal operation  
Power-down mode  
Frequency = 10 kHz  
Reference Feedthrough  
OUTPUT CHARACTERISTICS5  
Minimum Output Voltage6  
0.001  
0.001  
V
Measurement of the  
minimum and maximum  
V drive capability of the  
output amplifier  
Maximum Output Voltage6  
VDD – 0.001  
VDD – 0.001  
DC Output Impedance  
Short Circuit Current  
0.5  
25  
16  
0.5  
25  
16  
Ω
mA  
mA  
μs  
VDD = 5 V  
VDD = 3 V  
Coming out of power-  
down mode VDD = 5 V  
Power-Up Time  
2.5  
2.5  
5
5
μs  
Coming out of power-  
down mode VDD = 3 V  
Rev. H | Page 3 of 24  
 
 
 
 
 
AD5304/AD5314/AD5324  
Data Sheet  
A, W Version2  
Min Typ  
B Version2  
Min Typ  
Parameter1  
LOGIC INPUTS5  
Max  
Max  
Unit  
Test Conditions/Comments  
Input Current  
VIL, Input Low Voltage  
1
0.8  
0.6  
0.5  
1
0.8  
0.6  
0.5  
μA  
V
V
VDD = 5 V 10%  
VDD = 3 V 10%  
VDD = 2.5 V  
V
VIH, Input High Voltage  
2.4  
2.1  
2.0  
2.4  
2.1  
2.0  
V
V
V
VDD = 5 V 10%  
VDD = 3 V 10%  
VDD = 2.5 V  
Pin Capacitance  
POWER REQUIREMENTS  
VDD  
3
3
pF  
2.5  
5.5  
2.5  
5.5  
V
IDD (Normal Mode)7  
VDD = 4.5 V to 5.5 V  
VDD = 2.5 V to 3.6 V  
IDD (Power-Down Mode)  
VDD = 4.5 V to 5.5 V  
VDD = 2.5 V to 3.6 V  
600  
500  
900  
700  
600  
500  
900  
700  
μA  
μA  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
0.2  
0.08  
1
1
0.2  
0.08  
1
1
μA  
μA  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
1 See the Terminology section.  
2 Temperature range (A, B, W Version): −40°C to +105°C; typical at +25°C.  
3 DC specifications tested with the outputs unloaded.  
4 Linearity is tested using a reduced code range: AD5304 (Code 8 to Code 248); AD5314 (Code 28 to Code 995); AD5324 (Code 115 to Code 3981).  
5 Guaranteed by design and characterization, not production tested.  
6 For the amplifier output to reach its minimum voltage, offset error must be negative. For the amplifier output to reach its maximum voltage, VREF = VDD and offset plus  
gain error must be positive.  
7 IDD specification is valid for all DAC codes; interface inactive; all DACs active; load currents excluded.  
AC CHARACTERISTICS  
VDD = 2.5 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
A, B, W Version3  
Parameter1, 2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Output Voltage Settling Time  
AD5304  
AD5314  
VREF = VDD = 5 V  
6
7
8
8
9
10  
μs  
μs  
μs  
¼ scale to ¾ scale change (0x40 to 0xC0)  
¼ scale to ¾ scale change (0x100 to 0x300)  
¼ scale to ¾ scale change (0x400 to 0xC00)  
AD5324  
Slew Rate  
0.7  
12  
1
1
3
V/μs  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
kHz  
Major-Code Transition Glitch Energy  
Digital Feedthrough  
Digital Crosstalk  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
Total Harmonic Distortion  
1 LSB change around major carry  
200  
–70  
VREF = 2 V 0.1 V p-p  
VREF = 2.5 V 0.1 V p-p; frequency = 10 kHz  
dB  
1 See the Terminology section.  
2 Guaranteed by design and characterization, not production tested.  
3 Temperature range (A, B, W Version): −40°C to +105°C; typical at +25°C.  
Rev. H | Page 4 of 24  
 
Data Sheet  
AD5304/AD5314/AD5324  
TIMING CHARACTERISTICS  
VDD = 2.5 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Limit at TMIN, TMAX  
Parameter1, 2, 3  
VDD = 2.5 V to 3.6 V  
VDD = 3.6 V to 5.5 V  
Unit  
Test Conditions/Comments  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
40  
16  
16  
16  
5
33  
13  
13  
13  
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge setup time  
Data setup time  
Data hold time  
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time  
4.5  
0
4.5  
0
80  
33  
1 Guaranteed by design and characterization, not production tested.  
2 All input signals are specified with tr = tf = 5 ns (10% to 90 % of VDD) and timed from a voltage level of (VIL + VIH)/2.  
3 See Figure 2.  
t1  
SCLK  
t2  
t3  
t8  
t7  
t4  
SYNC  
DIN  
t6  
DB15  
t5  
DB0  
Figure 2. Serial Interface Timing Diagram  
Rev. H | Page 5 of 24  
 
 
AD5304/AD5314/AD5324  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter1  
Rating  
VDD to GND  
–0.3 V to +7 V  
Digital Input Voltage to GND  
Reference Input Voltage to GND  
VOUTA through VOUTD to GND  
Operating Temperature Range  
Industrial (A, B, W Version)  
Storage Temperature Range  
Junction Temperature (TJ max)  
10-Lead MSOP  
–0.3 V to VDD + 0.3 V  
–0.3 V to VDD + 0.3 V  
–0.3 V to VDD + 0.3 V  
–40°C to +105°C  
–65°C to +150°C  
150°C  
ESD CAUTION  
Power Dissipation  
(TJ max – TA)/ θJA  
206°C/W  
44°C/W  
θJA Thermal Impedance  
θJC Thermal Impedance  
10-Lead LFCSP  
Power Dissipation  
θJA Thermal Impedance  
Reflow Soldering  
(TJ max – TA)/ θJA  
84°C/W  
Peak Temperature (Pb-free)  
Peak Temperature (non Pb-free)  
Time at Peak Temperature  
260°C  
220°C  
10 sec to 40 sec  
1 Transient currents of up to 100 mA do not cause SCR latch-up.  
Rev. H | Page 6 of 24  
 
Data Sheet  
AD5304/AD5314/AD5324  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
V
10 SYNC  
DD  
AD5304/  
AD5314/  
AD5324  
2
3
4
5
V
V
V
A
B
C
9
8
7
6
SCLK  
DIN  
OUT  
OUT  
OUT  
TOP VIEW  
GND  
(Not to Scale)  
REFIN  
V
D
OUT  
V
1
2
3
4
5
10 SYNC  
DD  
AD5304/  
AD5314/  
AD5324  
V
V
V
A
B
C
9
8
7
6
SCLK  
DIN  
OUT  
OUT  
OUT  
NOTES  
1. THE EXPOSED PAD IS THE GROUND REFERENCE POINT  
FOR ALL CIRCUITRY ON THE PART. IT CAN BE  
GND  
TOP VIEW  
CONNECTED TO 0 V OR LEFT UNCONNECTED PROVIDED  
THERE IS A CONNECTION TO 0 V VIA THE GND PIN.  
(Not to Scale)  
REFIN  
V
D
OUT  
Figure 4. 10-Lead LFCSP Pin Configuration  
Figure 3. 10-Lead MSOP Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
5
6
7
8
VDD  
Power Supply Input. These parts can be operated from 2.5 V to 5.5 V and the supply can be decoupled to GND.  
Buffered Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Buffered Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Buffered Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.  
Reference Input Pin for All Four DACs. It has an input range from 0.25 V to VDD.  
Buffered Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Part.  
Serial Data Input. This device has a 16-bit shift register. Data is clocked into the register on the falling edge of the  
serial clock input. The DIN input buffer is powered down after each write cycle.  
VOUT  
VOUT  
VOUT  
REFIN  
VOUT  
A
B
C
D
GND  
DIN  
9
SCLK  
SYNC  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can  
be transferred at clock speeds up to 30 MHz. The SCLK input buffer is powered down after each write cycle.  
Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC goes low, it  
enables the input shift register and data is transferred in on the falling edges of the following 16 clocks. If SYNC is  
taken high before the 16th falling edge of SCLK, the rising edge of SYNC acts as an interrupt and the write  
sequence is ignored by the device.  
10  
Exposed  
Paddle1  
Ground Reference Point for All Circuitry on the Part. Can be connected to 0 V or left unconnected provided there is  
a connection to 0 V via the GND pin.  
1 For the 10-Lead LFCSP only.  
Rev. H | Page 7 of 24  
 
 
AD5304/AD5314/AD5324  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
0.3  
0.2  
T
V
= 25°C  
T = 25°C  
A
A
= 5V  
V
= 5V  
DD  
DD  
0.5  
0
0.1  
0
–0.1  
–0.2  
–0.3  
–0.5  
–1.0  
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
1000  
4000  
CODE  
CODE  
Figure 5. AD5304 Typical INL Plot  
Figure 8. AD5304 Typical DNL Plot  
3
2
0.6  
0.4  
T
V
= 25°C  
T = 25°C  
A
A
= 5V  
V
= 5V  
DD  
DD  
1
0.2  
0
0
–1  
–2  
–3  
–0.2  
–0.4  
–0.6  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
CODE  
CODE  
Figure 6. AD5314 Typical INL Plot  
Figure 9. AD5314 Typical DNL Plot  
12  
8
1.0  
0.5  
T
V
= 25°C  
T = 25°C  
A
V
A
= 5V  
= 5V  
DD  
DD  
4
0
0
–4  
–8  
–12  
–0.5  
–1.0  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
CODE  
CODE  
Figure 7. AD5324 Typical INL Plot  
Figure 10. AD5324 Typical DNL Plot  
Rev. H | Page 8 of 24  
 
 
 
 
Data Sheet  
AD5304/AD5314/AD5324  
0.50  
0.2  
0.1  
T
V
= 25°C  
A
T
V
= 25°C  
A
GAIN ERROR  
= 2V  
REF  
= 5V  
DD  
MAX INL  
0.25  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
MAX DNL  
MIN DNL  
–0.25  
–0.50  
MIN INL  
OFFSET ERROR  
0
1
2
3
4
5
0
1
2
3
4
5
6
V
(V)  
V
(V)  
REF  
DD  
Figure 11. AD5304 INL and DNL Error vs. VREF  
Figure 14. Offset Error and Gain Error vs. VDD  
0.5  
0.4  
5
4
3
2
1
0
V
V
= 5V  
= 3V  
DD  
5V SOURCE  
REF  
0.3  
MAX INL  
0.2  
3V SOURCE  
0.1  
MAX DNL  
MIN DNL  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
5V SINK  
3V SINK  
MIN INL  
–40  
0
40  
TEMPERATURE (°C)  
80  
120  
0
1
2
3
4
5
6
SINK/SOURCE CURRENT (mA)  
Figure 12. AD5304 INL Error and DNL Error vs. Temperature  
Figure 15. VOUT Source and Sink Current Capability  
1.0  
600  
500  
400  
300  
200  
100  
0
T
V
V
= 25°C  
= 5V  
V
V
= 5V  
= 2V  
A
DD  
REF  
DD  
= 2V  
REF  
0.5  
GAIN ERROR  
0
OFFSET ERROR  
–0.5  
–1.0  
–40  
0
40  
80  
120  
ZERO SCALE  
FULL SCALE  
TEMPERATURE (°C)  
CODE  
Figure 13. AD5304 Offset Error and Gain Error vs. Temperature  
Figure 16. Supply Current vs. DAC Code  
Rev. H | Page 9 of 24  
 
AD5304/AD5314/AD5324  
Data Sheet  
600  
T
= 25°C  
A
V
V
= 5V  
–40°C  
DD  
= 5V  
REF  
500  
CH1  
V
A
+25°C  
OUT  
400  
300  
200  
100  
0
+105°C  
SCLK  
CH2  
CH1 1V, CH2 5V, TIME BASE = 1µs/DIV  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
DD  
Figure 17. Supply Current vs. Supply Voltage  
Figure 20. Half-Scale Settling (¼ to ¾ Scale Code Change)  
0.5  
0.4  
0.3  
0.2  
0.1  
0
T
V
V
= 25°C  
A
= 5V  
DD  
= 2V  
REF  
V
CH1  
CH2  
DD  
–40°C  
+25°C  
V
A
OUT  
+105°C  
CH1 2V, CH2 200mV, TIME BASE = 200µs/DIV  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
DD  
Figure 18. Power-Down Current vs. Supply Voltage  
Figure 21. Power-On Reset to 0 V  
1000  
900  
800  
700  
600  
500  
400  
T
V
V
= 25°C  
A
= 5V  
T
= 25°C  
DD  
A
= 2V  
REF  
V
A
CH1  
CH2  
OUT  
V
= 5V  
DD  
SCLK  
V
= 3V  
DD  
CH1 500mV, CH2 5V, TIME BASE = 1µs/DIV  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
(V)  
3.5  
4.0  
4.5  
5.0  
V
LOGIC  
Figure 19. Supply Current vs. Logic Input Voltage  
Figure 22. Exiting Power-Down to Midscale  
Rev. H | Page 10 of 24  
 
Data Sheet  
AD5304/AD5314/AD5324  
0.02  
0.01  
0
V
= 5V  
= 25°C  
DD  
T
A
V
= 3V  
V
= 5V  
DD  
DD  
–0.01  
–0.02  
300  
350  
400  
450  
500  
550  
600  
0
1
2
3
4
5
6
I
(µA)  
DD  
V
(V)  
REF  
Figure 23. IDD Histogram with VDD = 3 V and VDD = 5 V  
Figure 26. Full-Scale Error vs. VREF  
2.50  
2.49  
2.48  
2.47  
150ns/DIV  
1µs/DIV  
Figure 24. AD5324 Major-Code Transition Glitch Energy  
Figure 27. DAC-to-DAC Crosstalk  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 25. Multiplying Bandwidth (Small-Signal Frequency Response)  
Rev. H | Page 11 of 24  
AD5304/AD5314/AD5324  
TERMINOLOGY  
Data Sheet  
Major-Code Transition Glitch Energy  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy or integral nonlinearity (INL)  
is a measure of the maximum deviation, in LSB, from a straight  
line passing through the endpoints of the DAC transfer function.  
Typical INL vs. code plots can be seen in Figure 5, Figure 6,  
and Figure 7.  
Major-code transition glitch energy is the energy of the impulse  
injected into the analog output when the code in the DAC register  
changes state. It is normally specified as the area of the glitch in  
nV-s and is measured when the digital code is changed by 1 LSB  
at the major carry transition (011 . . . 11 to 100 . . . 00 or 100 . . .  
00 to 011 . . . 11).  
Differential Nonlinearity  
Digital Feedthrough  
Differential nonlinearity (DNL) is the difference between the  
measured change and the ideal 1 LSB change between any two  
adjacent codes. A specified differential nonlinearity of 1 LSB  
maximum ensures monotonicity. This DAC is guaranteed mono-  
tonic by design. Typical DNL vs. code plots can be seen in Figure 8,  
Figure 9, and Figure 10.  
Digital feedthrough is a measure of the impulse injected into the  
analog output of the DAC from the digital input pins of the  
SYNC  
device when the DAC output is not being written to (  
held high). It is specified in nV-s and is measured with a worst-  
case change on the digital input pins (for example, from all 0s  
to all 1s or vice versa.)  
Offset Error  
Digital Crosstalk  
This is a measure of the offset error of the DAC and the output  
amplifier. It is expressed as a percentage of the full-scale range.  
This is the glitch impulse transferred to the output of one DAC  
at midscale in response to a full-scale code change (all 0s to all  
1s and vice versa) in the input register of another DAC. It is  
expressed in nV-s.  
Gain Error  
This is a measure of the span error of the DAC. It is the deviation  
in slope of the actual DAC transfer characteristic from the ideal  
expressed as a percentage of the full-scale range.  
DAC-to-DAC Crosstalk  
This is the glitch impulse transferred to the output of one DAC  
due to a digital code change and subsequent output change of  
another DAC. This includes both digital and analog crosstalk.  
It is measured by loading one of the DACs with a full-scale code  
Offset Error Drift  
This is a measure of the change in offset error with changes in  
temperature. It is expressed in (ppm of full-scale range)/°C.  
Gain Error Drift  
This is a measure of the change in gain error with changes in  
temperature. It is expressed in (ppm of full-scale range)/°C.  
LDAC  
change (all 0s to all 1s and vice versa) with the  
bit set low  
and monitoring the output of another DAC. The energy of the  
glitch is expressed in nV-s.  
Power Supply Rejection Ratio (PSRR)  
Multiplying Bandwidth  
This indicates how the output of the DAC is affected by changes  
in the supply voltage. PSRR is the ratio of the change in VOUT to  
a change in VDD for full-scale output of the DAC. It is measured  
in decibels. VREF is held at 2 V and VDD is varied 10ꢀ.  
The amplifiers within the DAC have a finite bandwidth. The  
multiplying bandwidth is a measure of this. A sine wave on the  
reference (with full-scale code loaded to the DAC) appears on  
the output. The multiplying bandwidth is the frequency at which  
the output amplitude falls to 3 dB below the input.  
DC Crosstalk  
This is the dc change in the output level of one DAC at midscale  
in response to a full-scale code change (all 0s to all 1s and vice  
versa) and output change of another DAC. It is expressed in  
microvolts.  
Total Harmonic Distortion (THD)  
This is the difference between an ideal sine wave and its attenuated  
version using the DAC. The sine wave is used as the reference for  
the DAC and the THD is a measure of the harmonics present on  
the DAC output. It is measured in decibels.  
Reference Feedthrough  
This is the ratio of the amplitude of the signal at the DAC output to  
the reference input when the DAC output is not being updated.  
It is expressed in decibels.  
Rev. H | Page 12 of 24  
 
Data Sheet  
AD5304/AD5314/AD5324  
GAIN ERROR  
PLUS  
OFFSET ERROR  
OUTPUT  
VOLTAGE  
IDEAL  
ACTUAL  
NEGATIVE  
OFFSET  
ERROR  
DAC CODE  
GAIN ERROR  
PLUS  
OFFSET ERROR  
DEAD BAND  
CODES  
ACTUAL  
OUTPUT  
VOLTAGE  
AMPLIFIER  
FOOTROOM  
(1mV)  
IDEAL  
NEGATIVE  
OFFSET  
ERROR  
POSITIVE  
OFFSET  
DAC CODE  
Figure 28. Transfer Function with Negative Offset  
Figure 29. Transfer Function with Positive Offset  
Rev. H | Page 13 of 24  
AD5304/AD5314/AD5324  
Data Sheet  
THEORY OF OPERATION  
FUNCTIONAL DESCRIPTION  
R
R
R
The AD5304/AD5314/AD5324 are quad, resistor-string DACs  
fabricated on a CMOS process with resolutions of 8, 10, and 12  
bits, respectively. Each contains four output buffer amplifiers and  
is written to via a 3-wire serial interface. They operate from single  
supplies of 2.5 V to 5.5 V, and the output buffer amplifiers provide  
rail-to-rail output swing with a slew rate of 0.7 V/ꢁs. The four  
DACs share a single reference input pin. The devices have pro-  
grammable power-down modes, in which all DACs can be turned  
off completely with a high impedance output.  
TO OUTPUT  
AMPLIFIER  
R
R
Figure 31. Resistor String  
Digital-to-Analog  
DAC Reference Inputs  
The architecture of one DAC channel consists of a resistor-string  
DAC followed by an output buffer amplifier. The voltage at the  
REFIN pin provides the reference voltage for the DAC. Figure 30  
shows a block diagram of the DAC architecture. Since the input  
coding to the DAC is straight binary, the ideal output voltage is  
given by  
There is a single reference input pin for the four DACs. The  
reference input is not buffered. The user can have a reference  
voltage as low as 0.25 V or as high as VDD because there is no  
restriction due to the headroom or footroom requirements of  
any reference amplifier. It is recommended to use a buffered  
reference in the external circuit (for example, REF192). The  
input impedance is typically 45 kΩ.  
V
REF D  
VOUT  
2N  
Output Amplifier  
where  
The output buffer amplifier is capable of generating rail-to-rail  
voltages on its output, giving an output range of 0 V to VDD when  
the reference is VDD. It is capable of driving a load of 2 kΩ to  
GND or VDD, in parallel with 500 pF to GND or VDD. The source  
and sink capabilities of the output amplifier can be seen in the  
plot in Figure 15.  
D = decimal equivalent of the binary code that is loaded to the  
DAC register:  
0–255 for AD5304 (8 bits)  
0–1023 for AD5314 (10 bits)  
0–4095 for AD5324 (12 bits)  
The slew rate is 0.7 V/ꢁs with a half-scale settling time to  
0.5 LSB (at eight bits) of 6 ꢁs.  
N = DAC resolution.  
REFIN  
POWER-ON RESET  
The AD5304/AD5314/AD5324 are provided with a power-on reset  
function, so that they power up in a defined state. The power-on  
state uses normal operation and an output voltage set to 0 V.  
INPUT  
REGISTER  
DAC  
REGISTER  
RESISTOR  
STRING  
V
A
OUT  
OUTPUT BUFFER  
AMPLIFIER  
Both input and DAC registers are filled with zeros and remain  
so until a valid write sequence is made to the device. This is  
particularly useful in applications where it is important to know  
the state of the DAC outputs while the device is powering up.  
Figure 30. DAC Channel Architecture  
Resistor String  
The resistor string section is shown in Figure 31. It is simply a  
string of resistors, each of value R. The digital code loaded to the  
DAC register determines at which node on the string the voltage  
is tapped off to be fed into the output amplifier. The voltage is  
tapped off by closing one of the switches connecting the string  
to the amplifier. Because it is a string of resistors, it is guaranteed  
monotonic.  
SERIAL INTERFACE  
The AD5304/AD5314/AD5324 are controlled over a versatile,  
3-wire serial interface that operates at clock rates up to 30 MHz  
and are compatible with SPI, QSPI, MICROWIRE, and DSP  
interface standards.  
Rev. H | Page 14 of 24  
 
 
 
Data Sheet  
AD5304/AD5314/AD5324  
BIT15  
(MSB)  
BIT0  
(LSB)  
A1 A0 PD LDAC D7 D6 D5 D4 D3 D2 D1 D0  
DATA BITS  
0
0
X
X
Figure 32. AD5304 Input Shift Register Contents  
BIT15  
(MSB)  
BIT0  
(LSB)  
A1 A0 PD LDAC D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
DATA BITS  
Figure 33. AD5314 Input Shift Register Contents  
BIT15  
(MSB)  
BIT0  
(LSB)  
A1 A0 PD LDAC D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DATA BITS  
Figure 34. AD5324 Input Shift Register Contents  
Input Shift Register  
SYNC  
The  
input is a level-triggered input that acts as a frame  
synchronization signal and chip enable. Data can be transferred  
SYNC  
The input shift register is 16 bits wide. Data is loaded into the  
device as a 16-bit word under the control of a serial clock input,  
SCLK. See Figure 2 for the timing diagram of this operation. The  
16-bit word consists of four control bits followed by 8, 10, or 12  
bits of DAC data, depending on the device type. Data is loaded  
MSB first (Bit 15) and the first two bits determine whether the  
data is for DAC A, DAC B, DAC C, or DAC D. Bit 13 and Bit 12  
into the device only while  
is low. To start the serial data  
SYNC  
SYNC  
transfer, take  
low, observing the minimum  
to SCLK  
SYNC  
falling edge setup time, t4. After  
goes low, serial data shifts  
into the device’s input shift register on the falling edges of SCLK  
for 16 clock pulses. Any data and clock pulses after the 16th falling  
edge of SCLK are ignored because the SCLK and DIN input buffers  
are powered down. No further serial data transfer occurs until  
PD  
control the operating mode of the DAC. Bit 13 is  
mines whether the part is in normal or power-down mode. Bit 12 is  
LDAC  
, and deter-  
SYNC  
is taken high and low again.  
, and controls when DAC registers and outputs are updated.  
Table 6. Address Bits  
th  
SYNC  
can be taken high after the falling edge of the 16 SCLK  
SYNC  
pulse, observing the minimum SCLK falling edge to  
rising edge time, t7.  
A1  
A0  
DAC Addressed  
0
0
1
1
0
1
0
1
DAC A  
DAC B  
DAC C  
DAC D  
After the end of the serial data transfer, data automatically transfers  
from the input shift register to the input register of the selected  
th  
SYNC  
DAC. If  
is taken high before the 16 falling edge of SCLK,  
the data transfer is aborted and the DAC input registers are not  
updated.  
Address and Control Bits  
When data has been transferred into three of the DAC input  
registers, all DAC registers and all DAC outputs are simultaneously  
PD  
0: All four DACs go into power-down mode, consuming  
only 200 nA @ 5 V. The DAC outputs enter a high  
impedance state.  
LDAC  
updated by setting  
DAC input register.  
low when writing to the remaining  
1: Normal operation.  
Low Power Serial Interface  
LDAC  
0: All four DAC registers and, therefore, all DAC outputs  
updated simultaneously on completion of the write  
sequence.  
To reduce the power consumption of the device even further, the  
interface fully powers up only when the device is being written  
SYNC  
to, that is, on the falling edge of  
. As soon as the 16-bit  
1: Only addressed input register is updated. There is  
no change in the content of the DAC registers.  
control word has been written to the part, the SCLK and DIN  
input buffers are powered down. They power up again only  
The AD5324 uses all 12 bits of DAC data; the AD5314 uses 10 bits  
and ignores the 2 LSB Bits. The AD5304 uses eight bits and ignores  
the last four bits. The data format is straight binary, with all 0s  
corresponding to 0 V output and all 1s corresponding to full-scale  
output (VREF − 1 LSB).  
SYNC  
following a falling edge of  
.
Rev. H | Page 15 of 24  
AD5304/AD5314/AD5324  
Data Sheet  
The bias generator, the output amplifier, the resistor string, and  
all other associated linear circuitry are shut down when the power-  
down mode is activated. However, the contents of the registers  
are unaffected when in power-down. The time to exit power-down  
is typically 2.5 ꢁs for VDD = 5 V and 5 ꢁs when VDD = 3 V. This is  
the time from the falling edge of the 16th SCLK pulse to when  
the output voltage deviates from its power down voltage. See  
Figure 22 for a plot.  
Double-Buffered Interface  
The AD5304/AD5314/AD5324 DACs have double-buffered inter-  
faces consisting of two banks of registers—input registers and  
DAC registers. The input register is directly connected to the input  
shift register and the digital code is transferred to the relevant input  
register on completion of a valid write sequence. The DAC  
register contains the digital code used by the resistor string.  
LDAC  
Access to the DAC register is controlled by the  
bit. When  
bit is set high, the DAC register is latched and hence  
the input register can change state without affecting the contents of  
LDAC  
AMPLIFIER  
LDAC  
the  
RESISTOR  
STRING DAC  
V
OUT  
the DAC register. However, when the  
bit is set low, all DAC  
registers are updated after a complete write sequence.  
POWER-DOWN  
CIRCUITRY  
This is useful if the user requires simultaneous updating of all  
DAC outputs. The user can write to three of the input registers  
Figure 35. Output Stage during Power-Down  
LDAC  
individually and then, by setting the  
bit low when  
MICROPROCESSOR INTERFACING  
AD5304/AD5314/AD5324 to ADSP-21xx  
writing to the remaining DAC input register, all outputs  
update simultaneously.  
Figure 36 shows a serial interface between the AD5304/AD5314/  
AD5324 and the ADSP-21xx family. The ADSP-21xx is set up  
to operate in the SPORT transmit alternate framing mode. The  
ADSP-21xx sport is programmed through the SPORT control  
register and must be configured as follows: internal clock operation,  
active-low framing, and 16-bit word length. Transmission is  
initiated by writing a word to the Tx register after the SPORT  
has been enabled. The data is clocked out on each rising edge of  
the DSPs serial clock and clocked into the AD5304/AD5314/  
AD5324 on the falling edge of the DACs SCLK.  
These parts contain an extra feature whereby the DAC register  
is not updated unless its input register has been updated since  
LDAC  
LDAC  
the last time that  
was brought low. Normally, when  
is brought low, the DAC registers are filled with the contents of  
the input registers. In the case of the AD5304/AD5314/AD5324,  
the part updates the DAC register only if the input register has  
been changed since the last time the DAC register was updated,  
thereby removing unnecessary digital crosstalk.  
POWER-DOWN MODE  
The AD5304/AD5314/AD5324 have low power consumption,  
dissipating only 1.5 mW with a 3 V supply and 3 mW with a  
5 V supply. Power consumption can be further reduced when  
the DACs are not in use by putting them into power-down mode,  
ADSP-21xx*  
AD5304/  
AD5314/  
AD5324*  
TFS  
DT  
SYNC  
DIN  
PD  
selected by a 0 on Bit 13 ( ) of the control word.  
PD  
SCLK  
SCLK  
When the  
bit is set to 1, all DACs work normally with a typical  
power consumption of 600 ꢁA at 5 V (500 ꢁA at 3 V). However, in  
power-down mode, the supply current falls to 200 nA at 5 V  
(80 nA at 3 V) when all DACs are powered down. Not only does  
the supply current drop, but also the output stage is internally  
switched from the output of the amplifier, making it open-circuit.  
This has the advantage that the output is three-stated while the  
part is in power-down mode, and provides a defined input  
condition for whatever is connected to the output of the DAC  
amplifier. The output stage is illustrated in Figure 35.  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 36. AD5304/AD5314/AD5324 to ADSP-21xx Interface  
Rev. H | Page 16 of 24  
 
 
 
Data Sheet  
AD5304/AD5314/AD5324  
AD5304/AD5314/AD5324 to 68HC11/68L11 Interface  
only in 8-bit bytes; thus only eight falling clock edges occur in  
the transmit cycle. To load data to the DAC, P3.3 is left low after  
the first eight bits are transmitted, and a second write cycle is  
initiated to transmit the second byte of data. P3.3 is taken high  
following the completion of this cycle. The 80C51/80L51 outputs  
the serial data in a format that has the LSB first. The AD5304/  
AD5314/AD5324 requires its data with the MSB as the first bit  
received. The 80C51/80L51 transmit routine takes this into  
account.  
Figure 37 shows a serial interface between the AD5304/AD5314/  
AD5324 and the 68HC11/68L11 microcontroller. SCK of the  
68HC11/68L11 drives the SCLK of the AD5304/AD5314/AD5324,  
while the MOSI output drives the serial data line (DIN) of the  
SYNC  
DAC. The  
signal is derived from a port line (PC7). The  
setup conditions for the correct operation of this interface are as  
follows: the 68HC11/68L11 is configured so that its CPOL bit is  
a 0 and its CPHA bit is a 1. When data is being transmitted to the  
SYNC  
DAC, the  
line is taken low (PC7). When the 68HC11/68L11  
80C51/80L51*  
AD5304/  
AD5314/  
AD5324*  
is configured as above, data appearing on the MOSI output is  
valid on the falling edge of SCK. Serial data from the 68HC11/  
68L11 is transmitted in 8-bit bytes with only eight falling clock  
edges occurring in the transmit cycle. Data is transmitted MSB  
first. To load data to the AD5304/ AD5314/AD5324, PC7 is left  
low after the first eight bits are transferred, a second serial write  
operation is performed to the DAC, and PC7 is taken high at  
the end of this procedure.  
P3.3  
TxD  
RxD  
SYNC  
SCLK  
DIN  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 38. AD5304/AD5314/AD5324 to 80C51/80L51 Interface  
AD5304/AD5314/AD5324 to MICROWIRE Interface  
68HC11/68L11*  
AD5304/  
AD5314/  
AD5324*  
Figure 39 shows an interface between the AD5304/AD5314/  
AD5324 and any MICROWIRE-compatible device. Serial data  
is shifted out on the falling edge of the serial clock, SK, and is  
clocked into the AD5304/AD5314/AD5324 on the rising edge  
of SK, which corresponds to the falling edge of the DACs SCLK.  
PC7  
SCK  
SYNC  
SCLK  
DIN  
MOSI  
MICROWIRE*  
AD5304/  
AD5314/  
AD5324*  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 37. AD5304/AD5314/AD5324 to 68HC11/68L11 Interface  
CS  
SK  
SO  
SYNC  
AD5304/AD5314/AD5324 to 80C51/80L51 Interface  
Figure 38 shows a serial interface between the AD5304/AD5314/  
AD5324 and the 80C51/80L51 microcontroller. The setup for  
the interface is as follows: TxD of the 80C51/80L51 drives SCLK  
of the AD5304/AD5314/AD5324, while RxD drives the serial  
SCLK  
DIN  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
SYNC  
data line of the part. The  
signal is again derived from a  
Figure 39. AD5304/AD5314/AD5324 to MICROWIRE Interface  
bit-programmable pin on the port. In this case, port line P3.3 is  
used. When data is to be transmitted to the AD5304/AD5314/  
AD5324, P3.3 is taken low. The 80C51/80L51 transmits data  
Rev. H | Page 17 of 24  
 
 
 
AD5304/AD5314/AD5324  
Data Sheet  
APPLICATIONS INFORMATION  
Bipolar Operation Using the AD5304/AD5314/AD5324  
TYPICAL APPLICATION CIRCUIT  
The AD5304/AD5314/AD5324 have been designed for single  
supply operation, but a bipolar output range is also possible  
using the circuit in Figure 41. This circuit gives an output voltage  
range of 5 V. Rail-to-rail operation at the amplifier output is  
achievable using an AD820 or an OP295 as the output amplifier.  
R2 = 10k  
The AD5304/AD5314/AD5324 can be used with a wide range  
of reference voltages where the devices offer full, one-quadrant  
multiplying capability over a reference range of 0 V to VDD  
.
More typically, these devices are used with a fixed, precision  
reference voltage. Suitable references for 5 V operation are the  
AD780 and REF192 (2.5 V references). For 2.5 V operation, a  
suitable external reference would be the AD589, a 1.23 V band  
gap reference. Figure 40 shows a typical setup for the AD5304/  
AD5314/AD5324 when using an external reference.  
+6V TO +16V  
+5V  
R1 = 10kΩ  
10µF  
0.1µF  
AD820/  
OP295  
±5V  
+5V  
1µF  
V
V
A
DD  
OUT  
V
= 2.5V TO 5.5V  
REF195  
DD  
AD5304  
V
IN  
–5V  
REFIN  
GND  
V
OUT  
V
V
V
B
C
D
OUT  
OUT  
OUT  
0.1µF  
1µF  
10µF  
GND  
AD5304/AD5314/  
AD5324  
V
IN  
V
V
V
A
B
C
D
V
REFIN  
OUT  
OUT  
OUT  
OUT  
OUT  
DIN SCLK SYNC  
EXTERNAL  
REFERENCE  
SCLK  
DIN  
AD790/REF192  
WITH V = 5V  
OR AD589 WITH  
V
SERIAL  
INTERFACE  
DD  
SYNC  
V
= 2.5V  
DD  
Figure 41. Bipolar Operation with the AD5304  
A0  
GND  
The output voltage for any input code can be calculated as follows:  
SERIAL  
INTERFACE  
N
(REFIN D /2 )(R1 R2)  
VOUT  
REFIN (R2/ R1)  
Figure 40. AD5304/AD5314/AD5324 Using External Reference  
R1  
If an output range of 0 V to VDD is required, the simplest solution is  
to connect the reference input to VDD. As this supply is not very  
accurate and can be noisy, the AD5304/AD5314/AD5324 can  
be powered from the reference voltage; for example, using a 5 V  
reference such as the REF195. The REF195 can output a steady  
supply voltage for the AD5304/AD5314/AD5324. The current  
required from the REF195 is 600 ꢁA supply current and approxi-  
mately 112 ꢁA into the reference input. This is with no load on  
the DAC outputs. When the DAC outputs are loaded, the REF195  
also needs to supply the current to the loads. The total current  
required (with a 10 kΩ load on each output) is  
where:  
D is the decimal equivalent of the code loaded to the DAC.  
N is the DAC resolution.  
REFIN is the reference voltage input:  
REFIN = 5 V, R1 = R2 = 10 kΩ  
V
OUT = (10 × D/2N) − 5 V  
712 ꢁA + 4 (5 V/10 kΩ) = 2.70 mA  
The load regulation of the REF195 is typically 2 ppm/mA, resulting  
in an error of 5.4 ppm (27 ꢁV) for the 2.7 mA current drawn from  
it. This corresponds to a 0.0014 LSB error at eight bits and  
0.022 LSB error at 12 bits.  
Rev. H | Page 18 of 24  
 
 
 
Data Sheet  
AD5304/AD5314/AD5324  
Opto-Isolated Interface for Process Control Applications  
AD5304  
SCLK  
DIN  
V
V
V
V
A
B
C
D
OUT  
OUT  
OUT  
OUT  
SYNC  
DIN  
The AD5304/AD5314/AD5324 have a versatile 3-wire serial  
inter-face, making them ideal for generating accurate voltages  
in process control and industrial applications. Due to noise,  
safety requirements, or distance, it might be necessary to isolate  
the AD5304/AD5314/AD5324 from the controller. This can  
easily be achieved by using opto-isolators, which provide isolation  
in excess of 3 kV. The actual data rate achieved is limited by the  
type of optocouplers chosen. The serial loading structure of the  
AD5304/AD5314/AD5324 makes them ideally suited for use in  
opto-isolated applications. Figure 42 shows an opto-isolated  
interface to the AD5304 where DIN, SCLK, and SYNC are driven  
from optocouplers. The power supply to the part also needs to  
be isolated. This is done by using a transformer. On the DAC  
side of the transformer, a 5 V regulator provides the 5 V supply  
required for the AD5304.  
V
V
DD  
CC  
SCLK  
1G 74HC139  
ENABLE  
AD5304  
1Y0  
1Y1  
1Y2  
1Y3  
V
V
V
V
A
B
C
D
OUT  
OUT  
OUT  
OUT  
1A  
1B  
SYNC  
DIN  
CODED  
ADDRESS  
SCLK  
DGND  
AD5304  
V
V
V
V
A
B
C
D
OUT  
OUT  
OUT  
OUT  
SYNC  
DIN  
SCLK  
AD5304  
V
V
V
V
A
B
C
D
OUT  
OUT  
OUT  
OUT  
SYNC  
DIN  
SCLK  
5V  
Figure 43. Decoding Multiple AD5304 Devices in a System  
REGULATOR  
10µF  
0.1µF  
POWER  
AD5304/AD5314/AD5324 as a Digitally Programmable  
Window Detector  
V
DD  
DD  
DD  
A digitally programmable upper/lower limit detector using two  
DACs in the AD5304/AD5314/AD5324 is shown in Figure 44.  
The upper and lower limits for the test are loaded to DAC A  
and DAC B, which, in turn, set the limits on the CMP04. If the  
signal at the VIN input is not within the programmed window,  
an LED indicates the fail condition. Similarly, DAC C and DAC D  
can be used for window detection on a second VIN signal.  
5V  
10k  
V
DD  
SCLK  
SCLK  
REFIN  
AD5304  
V
10kΩ  
V
A
B
C
D
OUT  
OUT  
OUT  
OUT  
SYNC  
SYNC  
V
V
V
0.1µF  
10µF  
V
1k  
1kΩ  
IN  
V
FAIL  
PASS  
V
DD  
V
REFIN  
10kΩ  
REF  
V
A
OUT  
1/2  
DIN  
DIN  
AD5304/AD5314/  
AD5324*  
1/2  
CMP04  
GND  
PASS/FAIL  
1/6 74HC05  
SYNC  
SYNC  
DIN  
DIN  
V
B
OUT  
Figure 42. AD5304 in an Opto-Isolated Interface  
SCLK  
SCLK  
GND  
DECODING MULTIPLE AD5304/AD5314/AD5324S  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
SYNC  
The  
pin on the AD5304/AD5314/AD5324 can be used  
Figure 44. Window Detection  
in applications to decode a number of DACs. In this application, all  
the DACs in the system receive the same serial clock and serial  
SYNC  
data, but  
can only be active to one of the devices at any one  
time, allowing access to four channels in this 16-channel system.  
The 74HC139 is used as a 2-to-4-line decoder to address any of the  
DACs in the system. To prevent timing errors, the enable input  
must be brought to its inactive state while the coded address  
inputs are changing state. Figure 43 shows a diagram of a typical  
setup for decoding multiple AD5304 devices in a system.  
Rev. H | Page 19 of 24  
 
 
 
 
AD5304/AD5314/AD5324  
Data Sheet  
the common ceramic types that provide a low impedance path  
to ground at high frequencies, to handle transient currents due  
to internal logic switching.  
POWER SUPPLY BYPASSING AND GROUNDING  
In any circuit where accuracy is important, careful consideration of  
the power supply and ground return layout helps to ensure the  
rated performance. The printed circuit board on which the  
AD5304/AD5314/AD5324 is mounted is designed so that the  
analog and digital sections are separated and confined to certain  
areas of the board. If the AD5304/AD5314/AD5324 are in a  
system where multiple devices require an AGND-to-DGND  
connection, the connection is made at one point only. The star  
ground point is established as close as possible to the device. The  
AD5304/AD5314/AD5324 has ample supply bypassing of 10 ꢁF in  
parallel with 0.1 ꢁF on the supply located as close to the package as  
possible, ideally right up against the device. The 10 ꢁF capacitors  
are the tantalum bead type. The 0.1 ꢁF capacitor has low effective  
series resistance (ESR) and effective series inductance (ESI), like  
The power supply lines of the AD5304/AD5314/AD5324 use as  
large a trace as possible to provide low impedance paths and reduce  
the effects of glitches on the power supply line. Fast switching  
signals such as clocks are shielded with digital ground to avoid  
radiating noise to other parts of the board, and are never run  
near the reference inputs. Avoid crossover of digital and analog  
signals. Traces on opposite sides of the board run at right angles  
to each other. This reduces the effects of feedthrough through  
the board. A microstrip technique is by far the best, but is not  
always possible with a double-sided board. In this technique,  
the component side of the board is dedicated to a ground plane  
while signal traces are placed on the solder side.  
Table 7. Overview of AD53xx Serial Devices  
Part No.  
SINGLES  
AD5300  
AD5310  
AD5320  
AD5301  
AD5311  
AD5321  
DUALS  
AD5302  
AD5312  
AD5322  
AD5303  
AD5313  
AD5323  
QUADS  
AD5304  
AD5314  
AD5324  
AD5305  
AD5315  
AD5325  
AD5306  
AD5316  
AD5326  
AD5307  
AD5317  
AD5327  
OCTALS  
AD5308  
AD5318  
AD5328  
Resolution  
No. of DACs  
DNL  
0.25  
0.5  
1.0  
0.25  
0.5  
1.0  
Interface  
Settling Time (ꢀs)  
Package  
Pins  
8
1
1
1
1
1
1
SPI  
SPI  
SPI  
2-Wire  
2-Wire  
2-Wire  
4
6
8
6
7
8
SOT-23, MSOP  
SOT-23, MSOP  
SOT-23, MSOP  
SOT-23, MSOP  
SOT-23, MSOP  
SOT-23, MSOP  
6, 8  
6, 8  
6, 8  
6, 8  
6, 8  
6, 8  
10  
12  
8
10  
12  
8
2
2
2
2
2
2
0.25  
0.5  
1.0  
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
SPI  
SPI  
SPI  
6
7
8
6
7
8
MSOP  
MSOP  
MSOP  
TSSOP  
TSSOP  
TSSOP  
8
8
8
16  
16  
16  
10  
12  
8
10  
12  
8
4
4
4
4
4
4
4
4
4
4
4
4
0.25  
0.5  
1.0  
0.25  
0.5  
1.0  
0.25  
0.5  
1.0  
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
2-Wire  
2-Wire  
2-Wire  
2-Wire  
2-Wire  
2-Wire  
SPI  
6
7
8
6
7
8
6
7
8
6
7
8
MSOP, LFCSP  
MSOP, LFCSP  
MSOP, LFCSP  
MSOP  
MSOP  
MSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
10  
10  
10  
10  
10  
10  
16  
16  
16  
16  
16  
16  
10  
12  
8
10  
12  
8
10  
12  
8
10  
12  
SPI  
SPI  
TSSOP  
TSSOP  
8
10  
12  
8
8
8
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6
7
8
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
Rev. H | Page 20 of 24  
 
Data Sheet  
AD5304/AD5314/AD5324  
Table 8. Overview of AD53xx Parallel Devices  
Part No.  
SINGLES  
AD5330  
AD5331  
AD5340  
AD5341  
Resolution  
DNL  
VREF Pins  
Settling Time (ꢀs)  
Additional Pin Functions  
Package  
Pins  
BUF  
GAIN  
HBEN  
CLR  
8
0.25  
1
1
1
1
6
7
8
8
TSSOP  
TSSOP  
TSSOP  
TSSOP  
20  
20  
24  
20  
10  
12  
12  
0.5  
1.0  
1.0  
DUALS  
AD5332  
AD5333  
AD5342  
AD5343  
QUADS  
AD5334  
AD5335  
AD5336  
AD5344  
8
0.25  
0.5  
2
2
2
1
6
7
8
8
TSSOP  
TSSOP  
TSSOP  
TSSOP  
20  
24  
28  
20  
10  
12  
12  
1.0  
1.0  
8
0.25  
0.5  
2
2
4
4
6
7
7
8
TSSOP  
TSSOP  
TSSOP  
TSSOP  
24  
24  
28  
28  
10  
10  
12  
0.5  
1.0  
Rev. H | Page 21 of 24  
AD5304/AD5314/AD5324  
OUTLINE DIMENSIONS  
Data Sheet  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 45. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
2.48  
2.38  
2.23  
3.10  
3.00 SQ  
0.50 BSC  
2.90  
6
10  
PIN 1 INDEX  
AREA  
EXPOSED  
PAD  
1.74  
1.64  
1.49  
0.50  
0.40  
0.30  
5
1
PIN 1  
INDICATOR  
TOP VIEW  
BOTTOM VIEW  
(R 0.15)  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 46. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm x 3 mm Body, Very Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
Rev. H | Page 22 of 24  
 
Data Sheet  
AD5304/AD5314/AD5324  
ORDERING GUIDE  
Model1, 2  
AD5304ARM  
AD5304ARM-REEL7  
AD5304ARMZ  
AD5304ARMZ-REEL7  
AD5304ACPZ-REEL7  
AD5304BRM  
AD5304BRM-REEL  
AD5304BRM-REEL7  
AD5304BRMZ  
AD5304BRMZ-REEL  
AD5304BRMZ-REEL7  
AD5304BCPZ-REEL7  
AD5314ACPZ-REEL7  
AD5314ARM  
AD5314ARM-REEL7  
AD5314ARMZ  
AD5314ARMZ-REEL7  
AD5314WARMZ-REEL7  
AD5314BCPZ-REEL7  
AD5314BRM  
AD5314BRM-REEL  
AD5314BRM-REEL7  
AD5314BRMZ  
AD5314BRMZ-REEL  
AD5314BRMZ-REEL7  
AD5324ACPZ-REEL7  
AD5324ARM  
AD5324ARM-REEL7  
AD5324ARMZ  
AD5324ARMZ-REEL7  
AD5324BCPZ-REEL7  
AD5324BRM  
AD5324BRM-REEL  
AD5324BRM-REEL7  
AD5324BRMZ  
AD5324BRMZ-REEL  
AD5324BRMZ-REEL7  
Temperature Range  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
Package Description  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead LFCSP_WD  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead LFCSP_WD  
10-Lead LFCSP_WD  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead LFCSP_WD  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead LFCSP_WD  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead LFCSP_WD  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
Package Option  
RM-10  
RM-10  
RM-10  
RM-10  
CP-10-9  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
CP-10-9  
CP-10-9  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
CP-10-9  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
CP-10-9  
RM-10  
RM-10  
RM-10  
RM-10  
CP-10-9  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
Branding  
DBA  
DBA  
D9W  
D9W  
DBA#  
DBB  
DBB  
DBB  
DBB#  
DBB#  
DBB#  
DBB#  
DCA#  
DCA  
DCA  
DCA#  
DCA#  
DCA#  
DCB#  
DCB  
DCB  
DCB  
DCB#  
DCB#  
DCB#  
DDA#  
DDA  
DDA  
D8F  
D8F  
DDB#  
DDB  
DDB  
DDB  
DDB#  
DDB#  
DDB#  
1 Z = RoHS Compliant Part; # denotes lead-free product can be top or bottom marked.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The AD5314WARMZ-REEL7 model is available with controlled manufacturing to support the quality and reliability requirements of  
automotive applications. Note that this automotive model may have specifications that differ from the commercial models; therefore  
designers should review the Specifications section of this data sheet carefully. Only the automotive grade product shown is available for  
use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and  
to obtain the specific Automotive Reliability reports for this model.  
Rev. H | Page 23 of 24  
 
AD5304/AD5314/AD5324  
NOTES  
Data Sheet  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00929-0-9/11(H)  
Rev. H | Page 24 of 24  
 
 
 
 
 
 
 
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY