AD5315BRM [ADI]

2.5 V to 5.5 V, 500 uA, 2-Wire Interface Quad Voltage Output, 8-/10-/12-Bit DACs; 2.5 V至5.5 V , 500微安, 2线接口四路电压输出, 8位/ 10位/ 12位DAC
AD5315BRM
型号: AD5315BRM
厂家: ADI    ADI
描述:

2.5 V to 5.5 V, 500 uA, 2-Wire Interface Quad Voltage Output, 8-/10-/12-Bit DACs
2.5 V至5.5 V , 500微安, 2线接口四路电压输出, 8位/ 10位/ 12位DAC

文件: 总20页 (文件大小:410K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V to 5.5 V, 500 A, 2-Wire Interface  
Quad Voltage Output, 8-/10-/12-Bit DACs  
AD5305/AD5315/AD5325*  
FEATURES  
GENERAL DESCRIPTION  
AD5305: 4 Buffered 8-Bit DACs in 10-Lead MSOP  
A Version: ؎1 LSB INL, B Version: ؎0.625 LSB INL  
AD5315: 4 Buffered 10-Bit DACs in 10-Lead MSOP  
A Version: ؎4 LSB INL, B Version: ؎2.5 LSB INL  
AD5325: 4 Buffered 12-Bit DACs in 10-Lead MSOP  
A Version: ؎16 LSB INL, B Version: ؎10 LSB INL  
Low Power Operation: 500 A @ 3 V, 600 A @ 5 V  
2-Wire (I2C® Compatible) Serial Interface  
2.5 V to 5.5 V Power Supply  
Guaranteed Monotonic by Design over All Codes  
Power-Down to 80 nA @ 3 V, 200 nA @ 5 V  
Three Power-Down Modes  
Double-Buffered Input Logic  
Output Range: 0 V to VREF  
The AD5305/AD5315/AD5325 are quad 8-, 10-, and 12-bit  
buffered voltage output DACs in a 10-lead MSOP that operate  
from a single 2.5 V to 5.5 V supply, consuming 500 µA at 3 V.  
Their on-chip output amplifiers allow rail-to-rail output swing  
with a slew rate of 0.7 V/µs. A 2-wire serial interface, which  
operates at clock rates up to 400 kHz, is used. This interface is  
SMBus compatible at VDD < 3.6 V. Multiple devices can be  
placed on the same bus.  
The references for the four DACs are derived from one reference  
pin. The outputs of all DACs may be updated simultaneously  
using the software LDAC function. The parts incorporate a  
power-on reset circuit, which ensures that the DAC outputs power  
up to 0 V and remain there until a valid write takes place to the  
device. There is also a software clear function that resets all input  
and DAC registers to 0 V. The parts contain a power-down  
feature that reduces the current consumption of the devices to  
200 nA @ 5 V (80 nA @ 3 V).  
Power-On Reset to 0 V  
Simultaneous Update of Outputs (LDAC Function)  
Software Clear Facility  
Data Readback Facility  
The low power consumption of these parts in normal operation  
makes them ideally suited to portable battery-operated equipment.  
The power consumption is 3 mW at 5 V, 1.5 mW at 3 V, reducing  
to 1 µW in power-down mode.  
On-Chip Rail-to-Rail Output Buffer Amplifiers  
Temperature Range –40؇C to +105؇C  
APPLICATIONS  
Portable Battery-Powered Instruments  
Digital Gain and Offset Adjustment  
Programmable Voltage and Current Sources  
Programmable Attenuators  
Industrial Process Control  
FUNCTIONAL BLOCK DIAGRAM  
V
REF IN  
DD  
LDAC  
DAC  
INPUT  
STRING  
DAC A  
V
V
V
V
A
B
C
D
BUFFER  
BUFFER  
OUT  
OUT  
OUT  
OUT  
REGISTER  
REGISTER  
DAC  
REGISTER  
INPUT  
REGISTER  
SCL  
SDA  
STRING  
DAC B  
INTERFACE  
LOGIC  
DAC  
REGISTER  
INPUT  
REGISTER  
STRING  
DAC C  
BUFFER  
BUFFER  
A0  
DAC  
REGISTER  
INPUT  
REGISTER  
STRING  
DAC D  
POWER-DOWN  
LOGIC  
POWER-ON  
RESET  
AD5305/AD5315/AD5325  
GND  
*Protected by U.S.Patent No. 5,969,657and 5,684,481.  
REV. F  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD5305/AD5315/AD5325–SPECIFICATIONS  
(VDD = 2.5 V to 5.5 V; VREF = 2 V; RL = 2 kto GND;  
CL = 200 pF to GND; all specifications TMIN to TMAX, unless otherwise noted.)  
A Version2  
Typ  
B Version2  
Typ  
Parameter1  
Min  
Max  
Min  
Max  
Unit  
Conditions/Comments  
DC PERFORMANCE3, 4  
AD5305  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
8
8
Bits  
LSB  
LSB  
0.15  
0.02  
1
0.25  
0.15  
0.02  
0.625  
0.25  
Guaranteed Monotonic by Design  
over All Codes  
AD5315  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
10  
0.5  
0.05  
10  
0.5  
0.05  
Bits  
LSB  
LSB  
4
0.5  
2.5  
0.5  
Guaranteed Monotonic by Design  
over All Codes  
AD5325  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
12  
2
0.2  
12  
2
0.2  
Bits  
LSB  
LSB  
16  
1
10  
1
Guaranteed Monotonic by Design  
over All Codes  
Offset Error  
Gain Error  
Lower Deadband  
0.4  
0.15  
20  
3
1
60  
0.4  
0.15  
20  
3
1
60  
% of FSR  
% of FSR  
mV  
Lower deadband exists only if  
offset error is negative.  
Offset Error Drift5  
Gain Error Drift5  
–12  
–5  
–60  
200  
–12  
–5  
–60  
200  
ppm of FSR/°C  
ppm of FSR/°C  
Power Supply Rejection Ratio5  
DC Crosstalk5  
dB  
µV  
VDD = 10%  
RL = 2 kto GND or VDD  
DAC REFERENCE INPUTS5  
VREF Input Range  
VREF Input Impedance  
0.25  
37  
VDD  
0.25  
37  
VDD  
V
45  
>10  
–90  
45  
>10  
–90  
kΩ  
MΩ  
dB  
Normal Operation  
Power-Down Mode  
Frequency = 10 kHz  
Reference Feedthrough  
OUTPUT CHARACTERISTICS5  
Minimum Output Voltage6  
0.001  
0.001  
V
This is a measure of the minimum  
and maximum drive capability  
of the output amplifier.  
Maximum Output Voltage6  
DC Output Impedance  
Short Circuit Current  
VDD – 0.001  
0.5  
25  
16  
2.5  
VDD – 0.001  
0.5  
25  
16  
2.5  
V
mA  
mA  
µs  
VDD = 5 V  
VDD = 3 V  
Coming out of Power-Down Mode.  
VDD = 5 V  
Power-Up Time  
5
5
µs  
Coming out of Power-Down Mode.  
VDD = 3 V  
LOGIC INPUTS (A0)5  
Input Current  
VIL, Input Low Voltage  
1
1
µA  
V
V
0.8  
0.6  
0.5  
0.8  
0.6  
0.5  
VDD = 5 V 10%  
VDD = 3 V 10%  
VDD = 2.5 V  
V
VIH, Input High Voltage  
2.4  
2.1  
2.0  
2.4  
2.1  
2.0  
V
V
V
VDD = 5 V 10%  
VDD = 3 V 10%  
VDD = 2.5 V  
Pin Capacitance  
3
8
3
pF  
LOGIC INPUTS (SCL, SDA)5  
VIH, Input High Voltage  
VIL, Input Low Voltage  
IIN, Input Leakage Current  
VHYST, Input Hysteresis  
CIN, Input Capacitance  
Glitch Rejection  
0.7 VDD  
–0.3  
VDD + 0.3 0.7 VDD  
VDD + 0.3  
0.3 VDD  
1
V
V
µA  
V
pF  
ns  
SMBus Compatible at VDD < 3.6 V  
SMBus Compatible at VDD < 3.6 V  
0.3 VDD  
1
–0.3  
0.05 VDD  
0.05 VDD  
8
8
50  
50  
Input filtering suppresses noise  
spikes of less than 50 ns.  
LOGIC OUTPUT (SDA)5  
VOL, Output Low Voltage  
0.4  
0.6  
1
0.4  
0.6  
1
V
V
µA  
pF  
ISINK = 3 mA  
ISINK = 6 mA  
Three-State Leakage Current  
Three-State Output Capacitance  
8
–2–  
REV. F  
AD5305/AD5315/AD5325  
A Version2  
Typ  
B Version2  
Typ  
Parameter1  
Min  
Max  
Min  
Max  
Unit  
Conditions/Comments  
POWER REQUIREMENTS  
VDD  
2.5  
5.5  
2.5  
5.5  
V
IDD (Normal Mode)7  
VDD = 4.5 V to 5.5 V  
VDD = 2.5 V to 3.6 V  
IDD (Power-Down Mode)  
VDD = 4.5 V to 5.5 V  
VIH = VDD and VIL = GND  
600  
500  
900  
700  
600  
500  
900  
700  
µA  
µA  
VIH = VDD and VIL = GND  
IDD = 4 µA (Max) During 0  
Readback on SDA  
IDD = 1.5 µA (Max) During 0  
Readback on SDA  
0.2  
1
1
0.2  
1
1
µA  
µA  
VDD = 2.5 V to 3.6 V  
0.08  
0.08  
NOTES  
1See the Terminology section.  
2Temperature range (A, B Version): –40°C to +105°C; typical at +25°C.  
3DC specifications tested with the outputs unloaded.  
4Linearity is tested using a reduced code range: AD5305 (Code 8 to 248); AD5315 (Code 28 to 995); AD5325 (Code 115 to 3981).  
5Guaranteed by design and characterization, not production tested.  
6For the amplifier output to reach its minimum voltage, offset error must be negative; to reach its maximum voltage, V REF = VDD and offset plus gain error must be  
positive.  
7IDD specification is valid for all DAC codes. Interface inactive. All DACs active and excluding load currents.  
Specifications subject to change without notice.  
(VDD = 2.5 V to 5.5 V; RL = 2 kto GND; CL = 200 pF to GND; all specifications TMIN to TMAX, unless  
AC CHARACTERISTICS1 otherwise noted.)  
A, B Version3  
Parameter2  
Min  
Typ  
Max  
Unit  
Conditions/Comments  
REF = VDD = 5 V  
1/4 Scale to 3/4 Scale Change (0x40 to 0xC0)  
1/4 Scale to 3/4 Scale Change (0x100 to 0x300)  
1/4 Scale to 3/4 Scale Change (0x400 to 0xC00)  
Output Voltage Settling Time  
AD5305  
AD5315  
AD5325  
Slew Rate  
Major-Code Transition Glitch Energy  
Digital Feedthrough  
Digital Crosstalk  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
Total Harmonic Distortion  
V
6
7
8
0.7  
12  
1
1
3
8
9
10  
µs  
µs  
µs  
V/µs  
nV-s  
nV-s  
nV-s  
nV-s  
kHz  
dB  
1 LSB Change around Major Carry  
200  
–70  
VREF = 2 V 0.1 V p-p  
VREF = 2.5 V 0.1 V p-p, Frequency = 10 kHz  
NOTES  
1Guaranteed by design and characterization, not production tested.  
2See the Terminology section.  
3Temperature range (A, B Version): –40°C to +105°C; typical at +25°C.  
Specifications subject to change without notice.  
REV. F  
–3–  
AD5305/AD5315/AD5325  
TIMING CHARACTERISTICS1, 2 (VDD = 2.5 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.)  
Limit at TMIN, TMAX  
(A, B Version)  
Parameter  
Unit  
Conditions/Comments  
fSCL  
t1  
t2  
t3  
t4  
400  
2.5  
0.6  
1.3  
0.6  
100  
0.9  
0
0.6  
0.6  
1.3  
300  
0
kHz max  
µs min  
µs min  
µs min  
µs min  
ns min  
µs max  
µs min  
µs min  
µs min  
µs min  
ns max  
ns min  
ns max  
ns min  
ns max  
ns min  
pF max  
SCL Clock Frequency  
SCL Cycle Time  
tHIGH, SCL High Time  
tLOW, SCL Low Time  
tHD,STA, Start/Repeated Start Condition Hold Time  
tSU,DAT, Data Setup Time  
tHD,DAT, Data Hold Time  
t53  
t6  
tHD,DAT, Data Hold Time  
t7  
t8  
t9  
t10  
tSU,STA, Setup Time for Repeated Start  
tSU,STO, Stop Condition Setup Time  
tBUF, Bus Free Time between a STOP and a START Condition  
tR, Rise Time of SCL and SDA when Receiving  
tR, Rise Time of SCL and SDA when Receiving (CMOS Compatible)  
tF, Fall Time of SDA when Transmitting  
tF, Fall Time of SDA when Receiving (CMOS Compatible)  
tF, Fall Time of SCL and SDA when Receiving  
tF, Fall Time of SCL and SDA when Transmitting  
Capacitive Load for Each Bus Line  
t11  
250  
0
300  
20 + 0.1CB  
400  
4
CB  
NOTES  
1See Figure 1.  
2Guaranteed by design and characterization; not production tested.  
3A master device must provide a hold time of at least 300 ns for the SDA signal (referred to VIH min of the SCL signal) in order to bridge the undefined region of  
SCL’s falling edge.  
4CB is the total capacitance of one bus line in pF. tR and tF measured between 0.3 VDD and 0.7 VDD  
Specifications subject to change without notice.  
.
SDA  
t9  
t3  
t10  
t11  
t4  
SCL  
t4  
t2  
t6  
t1  
t8  
t5  
t7  
START  
CONDITION  
REPEATED  
STOP  
CONDITION  
START  
CONDITION  
Figure 1. 2-Wire Serial Interface Timing Diagram  
–4–  
REV. F  
AD5305/AD5315/AD5325  
MSOP  
Power Dissipation . . . . . . . . . . . . . . . . . . . (TJ max – TA)/  
ABSOLUTE MAXIMUM RATINGS1, 2  
(TA = 25°C, unless otherwise noted.)  
JA  
JA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 206°C/W  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
SCL, SDA to GND . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
A0 to GND . . . . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Reference Input Voltage to GND . . . . . –0.3 V to VDD + 0.3 V  
VOUT A–D to GND . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Operating Temperature Range  
Industrial (A, B Version) . . . . . . . . . . . . . . –40°C to +105°C  
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature (TJ max) . . . . . . . . . . . . . . . . . . . 150°C  
JC Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 44°C/W  
Reflow Soldering  
Peak Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C  
Time at Peak Temperature . . . . . . . . . . . . . 10 sec to 40 sec  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating condi-  
tions for extended periods may affect device reliability.  
2Transient currents of up to 100 mA will not cause SCR latch-up.  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
Branding  
AD5305ARM  
AD5305ARM-REEL7  
AD5315ARM  
AD5315ARM-REEL7  
AD5325ARM  
AD5325ARM-REEL7  
AD5305BRM  
AD5305BRM-REEL  
AD5305BRM-REEL7  
AD5315BRM  
AD5315BRM-REEL  
AD5315BRM-REEL7  
AD5325BRM  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
DEA  
DEA  
DFA  
DFA  
DGA  
DGA  
DEB  
DEB  
DEB  
DFB  
DFB  
DFB  
DGB  
DGB  
DGB  
AD5325BRM-REEL  
AD5325BRM-REEL7  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD5305/AD5315/AD5325 feature proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
REV. F  
–5–  
AD5305/AD5315/AD5325  
PIN CONFIGURATION  
V
1
2
3
4
5
A0  
10  
9
DD  
AD5305/  
AD5315/  
AD5325  
SCL  
V
V
V
A
B
C
OUT  
OUT  
OUT  
SDA  
GND  
8
TOP VIEW  
(Not to Scale)  
7
6
REFIN  
V
D
OUT  
PIN FUNCTION DESCRIPTIONS  
Pin No. Mnemonic  
Function  
1
VDD  
Power Supply Input. These parts can be operated from 2.5 V to 5.5 V and the supply should be  
decoupled to GND.  
2
3
4
5
6
7
8
V
V
OUTA  
OUTB  
Buffered Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Buffered Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Buffered Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.  
VOUT  
REFIN  
OUTD  
C
Reference Input Pin for All Four DACs. It has an input range from 0.25 V to VDD  
.
V
Buffered Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Part.  
GND  
SDA  
Serial Data Line. This is used in conjunction with the SCL line to clock data into or out of the 16-bit  
input shift register. It is a bidirectional open-drain data line that should be pulled to the supply with an  
external pull-up resistor.  
9
SCL  
A0  
Serial Clock Line. This is used in conjunction with the SDA line to clock data into or out of the 16-bit  
input shift register. Clock rates of up to 400 kbit/s can be accommodated in the 2-wire interface.  
10  
Address Input. Sets the least significant bit of the 7-bit slave address.  
TERMINOLOGY  
Relative Accuracy  
Offset Error Drift  
This is a measure of the change in offset error with changes in  
For the DAC, relative accuracy or integral nonlinearity (INL) is  
a measure of the maximum deviation, in LSB, from a straight  
line passing through the endpoints of the DAC transfer function.  
Typical INL versus code plots can be seen in TPCs 1, 2, and 3.  
temperature. It is expressed in (ppm of full-scale range)/°C.  
Gain Error Drift  
This is a measure of the change in gain error with changes in  
temperature. It is expressed in (ppm of full-scale range)/°C.  
Differential Nonlinearity  
Power Supply Rejection Ratio (PSRR)  
Differential nonlinearity (DNL) is the difference between the  
measured change and the ideal 1 LSB change between any two  
adjacent codes. A specified differential nonlinearity of 1 LSB  
maximum ensures monotonicity. This DAC is guaranteed  
monotonic by design. Typical DNL versus code plots can be  
seen in TPCs 4, 5, and 6.  
This indicates how the output of the DAC is affected by changes  
in the supply voltage. PSRR is the ratio of the change in VOUT to  
a change in VDD for full-scale output of the DAC. It is measured  
in dB. VREF is held at 2 V and VDD is varied 10%.  
DC Crosstalk  
This is the dc change in the output level of one DAC at midscale  
in response to a full-scale code change (all 0s to all 1s and vice  
versa) and output change of another DAC. It is expressed in µV.  
Offset Error  
This is a measure of the offset error of the DAC and the output  
amplifier. It is expressed as a percentage of the full-scale range.  
Reference Feedthrough  
Gain Error  
This is the ratio of the amplitude of the signal at the DAC out-  
put to the reference input when the DAC output is not being  
updated. It is expressed in dB.  
This is a measure of the span error of the DAC. It is the devia-  
tion in slope of the actual DAC transfer characteristic from the  
ideal expressed as a percentage of the full-scale range.  
–6–  
REV. F  
AD5305/AD5315/AD5325  
Major-Code Transition Glitch Energy  
Major-code transition glitch energy is the energy of the impulse  
injected into the analog output when the code in the DAC  
register changes state. It is normally specified as the area of the  
glitch in nV-s and is measured when the digital code is changed by  
1 LSB at the major carry transition (011 . . . 11 to 100 . . . 00,  
or 100 . . . 00 to 011 . . . 11).  
GAIN ERROR  
PLUS  
OFFSET ERROR  
OUTPUT  
VOLTAGE  
IDEAL  
ACTUAL  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into the  
analog output of the DAC from the digital input pins of the  
device when the DAC output is not being updated. It is specified  
in nV-s and is measured with a worst-case change on the  
digital input pins, e.g., from all 0s to all 1s or vice versa.  
NEGATIVE  
OFFSET  
ERROR  
DAC CODE  
Digital Crosstalk  
This is the glitch impulse transferred to the output of one DAC  
at midscale in response to a full-scale code change (all 0s to all  
1s and vice versa) in the input register of another DAC. It is  
expressed in nV-s.  
DEAD BAND CODES  
AMPLIFIER  
FOOTROOM  
(1mV)  
DAC-to-DAC Crosstalk  
This is the glitch impulse transferred to the output of one DAC  
due to a digital code change and subsequent output change of  
another DAC. This includes both digital and analog crosstalk. It  
is measured by loading one of the DACs with a full-scale code  
change (all 0s to all 1s and vice versa) with the LDAC bit set  
low and monitoring the output of another DAC. The energy of  
the glitch is expressed in nV-s.  
NEGATIVE  
OFFSET  
ERROR  
Figure 2. Transfer Function with Negative Offset  
Multiplying Bandwidth  
The amplifiers within the DAC have a finite bandwidth. The  
multiplying bandwidth is a measure of this. A sine wave on the  
reference (with full-scale code loaded to the DAC) appears on  
the output. The multiplying bandwidth is the frequency at  
which the output amplitude falls to 3 dB below the input.  
GAIN ERROR  
PLUS  
OFFSET ERROR  
ACTUAL  
OUTPUT  
VOLTAGE  
Total Harmonic Distortion  
This is the difference between an ideal sine wave and its attenuated  
version using the DAC. The sine wave is used as the reference for  
the DAC and the THD is a measure of the harmonics present  
on the DAC output. It is measured in dB.  
IDEAL  
POSITIVE  
OFFSET  
DAC CODE  
Figure 3. Transfer Function with Positive Offset  
REV. F  
–7–  
AD5305/AD5315/AD5325–Typical Performance Characteristics  
12  
3
1.0  
T
V
= 25؇C  
A
T
V
= 25؇C  
T
= 25؇C  
A
A
= 5V  
DD  
= 5V  
V
= 5V  
DD  
8
DD  
2
0.5  
4
0
1
0
0
–0.5  
–1.0  
–1  
–2  
–3  
–4  
–8  
–12  
0
4000  
0
1000  
2000  
3000  
50  
100  
150  
CODE  
200  
250  
200  
400  
CODE  
600  
800  
1000  
0
CODE  
TPC 3. AD5325 Typical INL Plot  
TPC 1. AD5305 Typical INL Plot  
TPC 2. AD5315 Typical INL Plot  
0.3  
1.0  
0.6  
T
V
= 25؇C  
A
T
V
= 25؇C  
T
V
= 25؇C  
A
A
= 5V  
DD  
= 5V  
= 5V  
DD  
DD  
0.4  
0.2  
0.2  
0.1  
0.5  
0
0
0
–0.5  
–1.0  
–0.1  
–0.2  
–0.3  
–0.2  
–0.4  
–0.6  
0
0
1000  
2000  
3000  
4000  
0
50  
100  
CODE  
150  
200  
250  
200  
400  
600  
CODE  
800  
1000  
CODE  
TPC 6. AD5325 Typical DNL Plot  
TPC 4. AD5305 Typical DNL Plot  
TPC 5. AD5315 Typical DNL Plot  
0.50  
0.5  
1.0  
V
T
= 5V  
= 25؇C  
V
V
= 5V  
= 3V  
V
V
= 5V  
= 2V  
REF  
0.4  
0.3  
0.2  
0.1  
DD  
DD  
DD  
OFFSET ERROR  
A
REF  
MAX INL  
0.5  
0.25  
0
MAX INL  
MAX DNL  
MAX DNL  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
MIN DNL  
MIN DNL  
MIN INL  
GAIN ERROR  
–0.5  
–0.25  
–0.50  
MIN INL  
3
–1.0  
0
1
2
4
5
؊40  
0
40  
80  
120  
؊40  
0
40  
80  
120  
ؠ
ؠ
V
(V)  
TEMPERATURE ( C)  
TEMPERATURE ( C)  
REF  
TPC 7. AD5305 INL and DNL  
Error vs. VREF  
TPC 8. AD5305 INL and DNL  
Error vs. Temperature  
TPC 9. AD5305 Offset Error and  
Gain Error vs. Temperature  
–8–  
REV. F  
AD5305/AD5315/AD5325  
0.2  
0.1  
5
4
600  
ؠ
T
V
V
= 25 C  
= 5V  
A
ؠ
T
V
= 25 C  
A
DD  
5V SOURCE  
3V SOURCE  
= 2V  
500  
400  
300  
200  
100  
0
REF  
=2V  
REF  
GAIN ERROR  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
3
2
1
0
OFFSET ERROR  
3V SINK  
5V SINK  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
ZERO SCALE  
FULL SCALE  
V
(V)  
SINK/SOURCE CURRENT (mA)  
CODE  
DD  
TPC 10. Offset Error and  
Gain Error vs. VDD  
TPC 11. VOUT Source and  
Sink Current Capability  
TPC 12. Supply Current vs.  
DAC Code  
600  
500  
0.5  
0.4  
0.3  
0.2  
0.1  
0
750  
650  
ؠ
T
V
= 25؇C  
؊40 C  
A
ؠ
= 5V  
+25 C  
DD  
ؠ
+105 C  
400  
300  
200  
100  
0
DECREASING  
INCREASING  
ؠ
؊40 C  
ؠ
؉25 C  
550  
450  
V
= 3V  
DD  
ؠ
؉105 C  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
V (V)  
DD  
4.5  
5.0  
5.5  
0
1.0  
2.0  
3.0  
(V)  
4.0  
5.0  
V
V
DD  
LOGIC  
TPC 13. Supply Current vs.  
Supply Voltage  
TPC 14. Power-Down Current  
vs. Supply Voltage  
TPC 15. Supply Current vs. Logic  
Input Voltage for SDA and SCL  
Voltage Increasing and Decreasing  
T
V
V
= 25؇C  
T
V
V
= 25؇C  
A
T
V
V
= 25؇C  
A
A
= 5V  
= 5V  
= 5V  
DD  
DD  
DD  
= 5V  
= 2V  
REF  
= 2V  
REF  
REF  
CH1  
CH1  
CH2  
CH1  
CH2  
V
A
V
V
A
OUT  
DD  
OUT  
V
A
SCL  
OUT  
SCL  
CH2  
CH1 2V, CH2 200mV, TIME BASE = 200s/DIV  
CH1 500mV, CH2 5V, TIME BASE = 1s/DIV  
CH1 1V, CH2 5V, TIME BASE = 1s/DIV  
TPC 16. Half-Scale Settling (1/4 to  
3/4 Scale Code Change)  
TPC 17. Power-On Reset to 0 V  
TPC 18. Exiting Power-Down  
to Midscale  
REV. F  
–9–  
AD5305/AD5315/AD5325  
2.50  
2.49  
10  
0
–10  
–20  
–30  
V
= 3V  
V
= 5V  
DD  
DD  
2.48  
2.47  
–40  
–50  
–60  
300  
350  
400  
450  
(A)  
500  
550  
600  
10  
100  
1k  
10k  
100k  
1M  
10M  
1s/DIV  
I
DD  
FREQUENCY (Hz)  
TPC 19. IDD Histogram with  
VDD = 3 V and VDD = 5 V  
TPC 20. AD5325 Major-Code  
Transition Glitch Energy  
TPC 21. Multiplying Bandwidth  
(Small-Signal Frequency Response)  
0.02  
0.01  
V
= 5V  
DD  
T
= 25؇C  
A
0
–0.01  
–0.02  
0
1
2
3
4
5
6
V
(V)  
50ns/DIV  
REF  
TPC 22. Full-Scale Error vs. VREF  
TPC 23. DAC-to-DAC Crosstalk  
FUNCTIONAL DESCRIPTION  
where  
The AD5305/AD5315/AD5325 are quad resistor-string DACs  
fabricated on a CMOS process with resolutions of 8, 10, and 12  
bits, respectively. Each contains four output buffer amplifiers  
and is written to via a 2-wire serial interface. They operate from  
single supplies of 2.5 V to 5.5 V, and the output buffer amplifiers  
provide rail-to-rail output swing with a slew rate of 0.7 V/µs.  
The four DACs share a single reference input pin. The devices  
have three programmable power-down modes, in which all  
DACs may be turned off completely with a high impedance  
output, or the outputs may be pulled low by on-chip resistors.  
D = decimal equivalent of the binary code, which is loaded to  
the DAC register:  
0–255 for AD5305 (8 bits)  
0–1023 for AD5315 (10 bits)  
0–4095 for AD5325 (12 bits)  
N = DAC resolution  
REFIN  
Digital-to-Analog Section  
The architecture of one DAC channel consists of a resistor-string  
DAC followed by an output buffer amplifier. The voltage at the  
REFIN pin provides the reference voltage for the DAC. Figure 4  
shows a block diagram of the DAC architecture. Since the input  
coding to the DAC is straight binary, the ideal output voltage is  
given by  
INPUT  
REGISTER  
DAC  
RESISTOR  
STRING  
V
A
OUT  
REGISTER  
OUTPUT BUFFER  
AMPLIFIER  
Figure 4. DAC Channel Architecture  
VREF × D  
VOUT  
=
2N  
–10–  
REV. F  
AD5305/AD5315/AD5325  
Resistor String  
SERIAL INTERFACE  
The resistor string section is shown in Figure 5. It is simply a  
string of resistors, each of value R. The digital code loaded to  
the DAC register determines at what node on the string the  
voltage is tapped off to be fed into the output amplifier. The  
voltage is tapped off by closing one of the switches connecting  
the string to the amplifier. Because it is a string of resistors, it is  
guaranteed monotonic.  
The AD5305/AD5315/AD5325 are controlled via an I2C  
compatible serial bus. The DACs are connected to this bus as  
slave devices (i.e., no clock is generated by the AD5305/AD5315/  
AD5325 DACs). This interface is SMBus compatible at VDD  
< 3.6 V.  
The AD5305/AD5315/AD5325 have a 7-bit slave address. The  
6 MSB are 000110 and the LSB is determined by the state of  
the A0 pin. The facility to make hardwired changes to A0 allows  
the user to use up to two of these devices on one bus.  
R
The 2-wire serial bus protocol operates as follows:  
R
1. The master initiates data transfer by establishing a START  
condition, which is when a high-to-low transition on the  
SDA line occurs while SCL is high. The following byte is the  
address byte, which consists of the 7-bit slave address fol-  
lowed by an R/W bit (this bit determines whether data will  
be read from or written to the slave device).  
TO OUTPUT  
R
AMPLIFIER  
R
R
The slave whose address corresponds to the transmitted  
address responds by pulling SDA low during the ninth clock  
pulse (this is termed the acknowledge bit). At this stage, all  
other devices on the bus remain idle while the selected device  
waits for data to be written to or read from its shift register.  
Figure 5. Resistor String  
2. Data is transmitted over the serial bus in sequences of nine  
clock pulses (eight data bits followed by an acknowledge bit).  
The transitions on the SDA line must occur during the low  
period of SCL and remain stable during the high period of SCL.  
DAC Reference Inputs  
There is a single reference input pin for the four DACs. The  
reference input is unbuffered. The user can have a reference  
voltage as low as 0.25 V and as high as VDD since there is no  
restriction due to headroom and footroom of any reference  
amplifier.  
3. When all data bits have been read or written, a STOP condi-  
tion is established. In write mode, the master will pull the  
SDA line high during the 10th clock pulse to establish a  
STOP condition. In read mode, the master will issue a No  
Acknowledge for the ninth clock pulse (i.e., the SDA line  
remains high). The master will then bring the SDA line low  
before the 10th clock pulse and then high during the 10th  
clock pulse to establish a STOP condition.  
It is recommended to use a buffered reference in the external  
circuit (e.g., REF192). The input impedance is typically 45 k.  
Output Amplifier  
The output buffer amplifier is capable of generating rail-to-rail  
voltages on its output, which gives an output range of 0 V to  
VDD when the reference is VDD. It is capable of driving a load of  
2 kto GND or VDD, in parallel with 500 pF to GND or VDD  
The source and sink capabilities of the output amplifier can be  
seen in the plot in TPC 11.  
Read/Write Sequence  
.
In the case of the AD5305/AD5315/AD5325, all write access  
sequences and most read sequences begin with the device address  
(with R/W = 0) followed by the pointer byte. This pointer byte  
specifies the data format and determines which DAC is being  
accessed in the subsequent read/write operation. (See Figure 6.)  
In a write operation, the data follows immediately. In a read  
operation, the address is resent with R/W = 1 and then the data  
is read back. However, it is also possible to perform a read  
operation by sending only the address with R/W = 1. The  
previously loaded pointer settings are then used for the read-  
back operation. See Figure 7 for a graphical explanation of the  
interface.  
The slew rate is 0.7 V/µs with a half-scale settling time to 0.5 LSB  
(at eight bits) of 6 µs.  
POWER-ON RESET  
The AD5305/AD5315/AD5325 are provided with a power-on  
reset function, so that they power up in a defined state. The  
power-on state is  
Normal operation  
Output voltage set to 0 V  
Both input and DAC registers are filled with zeros and remain  
so until a valid write sequence is made to the device. This is  
particularly useful in applications where it is important to know  
the state of the DAC outputs while the device is powering up.  
MSB  
LSB  
DACD DACC DACB DACA  
0
0
X
X
Figure 6. Pointer Byte  
REV. F  
–11–  
AD5305/AD5315/AD5325  
Pointer Byte Bits  
The following is an explanation of the individual bits that make  
up the pointer byte.  
CLR  
0: All DAC registers and input registers are filled with  
zeros on completion of the write sequence.  
1: Normal operation.  
X
Don’t care bits.  
LDAC 0: All four DAC registers and, therefore, all DAC outputs  
simultaneously updated on completion of the write  
sequence.  
0
Reserved bits, must be set to 0.  
DACD  
DACC  
DACB  
DACA  
1: The following data bytes are for DAC D.  
1: The following data bytes are for DAC C.  
1: The following data bytes are for DAC B.  
1: The following data bytes are for DAC A.  
1: Only addressed input register is updated. There is no  
change in the contents of the DAC registers.  
Default Readback Condition  
All pointer byte bits power up to 0. Therefore, if the user initiates a  
readback without writing to the pointer byte first, no single DAC  
channel has been specified. In this case, the default readback  
bits are all 0, except for the CLR bit, which is a 1.  
Input Shift Register  
The input shift register is 16 bits wide. Data is loaded into the  
device as two data bytes on the serial data line, SDA, under the  
control of the serial clock input, SCL. The timing diagram for  
this operation is shown in Figure 1. The two data bytes consist  
of four control bits followed by 8, 10, or 12 bits of DAC data,  
depending on the device type. The first two bits loaded are PD1  
and PD0 bits that control the mode of operation of the device.  
See the Power-Down Modes section for a complete description.  
Bit 13 is CLR, Bit 12 is LDAC, and the remaining bits are left-  
justified DAC data bits, starting with the MSB. See Figure 7.  
Multiple-DAC Write Sequence  
Because there are individual bits in the pointer byte for each DAC,  
it is possible to write the same data and control bits to 2, 3, or 4  
DACs simultaneously by setting the relevant bits to 1.  
Multiple-DAC Readback Sequence  
If the user attempts to read back data from more than one DAC  
at a time, the part will read back the default, power-on reset  
conditions, i.e., all 0s except for CLR, which is 1.  
DATA BYTES (WRITE AND READBACK)  
MOST SIGNIFICANT DATA BYTE  
LEAST SIGNIFICANT DATA BYTE  
8-BIT AD5305  
MSB  
PD1  
8-BIT AD5305  
LSB  
D4  
MSB  
D3  
LSB  
0
PD0  
PD0  
D7  
D6  
D8  
D5  
D7  
D9  
D2  
D4  
D6  
D1  
D3  
D5  
D0  
0
0
0
0
CLR LDAC  
10-BIT AD5315  
D9  
LSB  
D6  
10-BIT AD5315  
D2 D1  
LSB  
0
MSB  
PD1  
MSB  
D5  
D0  
D2  
LDAC  
CLR  
CLR  
MSB  
LSB  
D8  
MSB  
D7  
LSB  
D0  
12-BIT AD5325  
D11  
12-BIT AD5325  
D4 D3  
D1  
PD1 PD0  
D10  
LDAC  
Figure 7. Data Formats for Write and Readback  
–12–  
REV. F  
AD5305/AD5315/AD5325  
WRITE OPERATION  
SDA low. This address byte is followed by the pointer byte,  
which is also acknowledged by the DAC. Two bytes of data are  
then written to the DAC, as shown in Figure 8. A STOP condi-  
tion follows.  
When writing to the AD5305/AD5315/AD5325 DACs, the user  
must begin with an address byte (R/W = 0), after which the DAC  
will acknowledge that it is prepared to receive data by pulling  
SCL  
0
0
0
1
1
0
A0  
R/W  
X
X
LSB  
SDA  
START  
COND  
BY  
MASTER  
ACK  
BY  
AD53x5  
MSB  
ACK  
BY  
AD53x5  
ADDRESS BYTE  
POINTER BYTE  
SCL  
MSB  
MOST SIGNIFICANT DATA BYTE  
LSB  
MSB  
LEAST SIGNIFICANT DATA BYTE  
LSB  
SDA  
ACK  
BY  
ACK  
BY  
STOP  
COND  
BY  
AD53x5  
AD53x5  
MASTER  
Figure 8. Write Sequence  
REV. F  
–13–  
AD5305/AD5315/AD5325  
READ OPERATION  
However, if the master sends an ACK and continues clocking  
SCL (no STOP is sent), the DAC will retransmit the same two  
bytes of data on SDA. This allows continuous readback of data  
from the selected DAC register.  
When reading data back from the AD5305/AD5315/AD5325  
DACs, the user begins with an address byte (R/W = 0), after which  
the DAC will acknowledge that it is prepared to receive data by  
pulling SDA low. This address byte is usually followed by the  
pointer byte, which is also acknowledged by the DAC. Following  
this, there is a repeated start condition by the master and the  
address is resent with R/W = 1. This is acknowledged by the DAC  
indicating that it is prepared to transmit data. Two bytes of data  
are then read from the DAC, as shown in Figure 9. A STOP  
condition follows.  
Alternatively, the user may send a START followed by the address  
with R/W = 1. In this case, the previously loaded pointer settings  
are used and readback of data can commence immediately.  
SCL  
0
0
0
1
1
0
A0  
R/W  
X
X
LSB  
SDA  
START  
COND  
BY  
MASTER  
ACK MSB  
BY  
ACK  
BY  
AD53x5  
ADDRESS BYTE  
POINTER BYTE  
AD53x5  
SCL  
0
SDA  
0
0
0
1
1
A0  
R/W  
MSB  
LSB  
REPEATED  
START  
COND  
ACK  
ACK  
BY  
MASTER  
BY  
DATA BYTE  
ADDRESS BYTE  
AD53x5  
BY  
MASTER  
SCL  
SDA  
LSB  
MSB  
NO  
ACK  
BY  
STOP  
COND  
BY  
LEAST SIGNIFICANT DATA BYTE  
MASTER  
MASTER  
NOTE: DATA BYTES ARE THE SAME AS THOSE IN THE WRITE SEQUENCE EXCEPT THAT DON’T CARES ARE READ BACK AS 0s.  
Figure 9. Readback Sequence  
–14–  
REV. F  
AD5305/AD5315/AD5325  
DOUBLE-BUFFERED INTERFACE  
input condition for whatever is connected to the output of the  
DAC amplifier. There are three different options. The output is  
connected internally to GND through either a 1 kresistor or a  
100 kresistor, or it is left open-circuited (three-state). Resistor  
tolerance = 20%. The output stage is illustrated in Figure 10.  
The AD5305/AD5315/AD5325 DACs have double-buffered  
interfaces consisting of two banks of registers—input registers and  
DAC registers. The input register is directly connected to the input  
shift register and the digital code is transferred to the relevant input  
register on completion of a valid write sequence. The DAC  
register contains the digital code used by the resistor string.  
Access to the DAC register is controlled by the LDAC bit. When  
the LDAC bit is set high, the DAC register is latched and, there-  
fore, the input register may change state without affecting the  
contents of the DAC register. However, when the LDAC bit is  
set low, the DAC register becomes transparent and the contents  
of the input register are transferred to it.  
RESISTOR  
STRING DAC  
AMPLIFIER  
V
OUT  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
This is useful if the user requires simultaneous updating of all  
DAC outputs. The user may write to three of the input registers  
individually and then, by setting the LDAC bit low when writing  
to the remaining DAC input register, all outputs will update  
simultaneously.  
Figure 10. Output Stage during Power-Down  
The bias generator, the output amplifiers, the resistor string,  
and all other associated linear circuitry are shut down when the  
power-down mode is activated. However, the contents of the  
DAC registers are unchanged when in power-down. The time to  
exit power-down is typically 2.5 µs for VDD = 5 V and 5 µs  
when VDD = 3 V. This is the time from the rising edge of the  
eighth SCL pulse to when the output voltage deviates from its  
power-down voltage. See TPC 18 for a plot.  
These parts contain an extra feature whereby the DAC register  
is not updated unless its input register has been updated since  
the last time that LDAC was brought low. Normally, when LDAC  
is brought low, the DAC registers are filled with the contents of  
the input registers. In the case of the AD5305/AD5315/AD5325,  
the part will update the DAC register only if the input register  
has been changed since the last time the DAC register was  
updated, thereby removing unnecessary digital crosstalk.  
APPLICATIONS  
Typical Application Circuit  
The AD5305/AD5315/AD5325 can be used with a wide range  
of reference voltages where the devices offer full, one-quadrant  
multiplying capability over a reference range of 0 V to VDD. More  
typically, these devices are used with a fixed, precision reference  
voltage. Suitable references for 5 V operation are the AD780 and  
REF192 (2.5 V references). For 2.5 V operation, a suitable exter-  
nal reference would be the AD589, a 1.23 V band gap reference.  
Figure 11 shows a typical setup for the AD5305/AD5315/AD5325  
when using an external reference. Note that A0 can be high or low.  
POWER-DOWN MODES  
The AD5305/AD5315/AD5325 have very low power consump-  
tion, dissipating typically 1.5 mW with a 3 V supply and 3 mW  
with a 5 V supply. Power consumption can be further reduced  
when the DACs are not in use by putting them into one of three  
power-down modes, which are selected by Bits 15 and 14 (PD1  
and PD0) of the data byte. Table I shows how the state of the  
bits corresponds to the mode of operation of the DAC.  
Table I. PD1/PD0 Operating Modes  
PD1 PD0 Operating Mode  
V
= 2.5V TO 5.5V  
DD  
10F  
0.1F  
AD5305/  
AD5315/  
AD5325  
0
0
1
1
0
1
0
1
Normal Operation  
Power-Down (1 kLoad to GND)  
Power-Down (100 kLoad to GND)  
Power-Down (Three-State Output)  
V
IN  
V
V
A
B
OUT  
V
REFIN  
OUT  
EXT  
REF  
OUT  
1F  
When both bits are set to 0, the DAC works normally with its  
normal power consumption of 600 µA at 5 V. However, for the  
three power-down modes, the supply current falls to 200 nA at  
5 V (80 nA at 3 V). Not only does the supply current drop, but  
the output stage is also internally switched from the output of  
the amplifier to a resistor network of known values. This has an  
advantage in that the output impedance of the part is known  
while the part is in power-down mode and provides a defined  
V
V
C
D
OUT  
AD780/REF192  
SCL  
SDA  
WITH V = 5V  
DD  
OUT  
OR AD589 WITH  
V
= 2.5V  
DD  
A0  
GND  
SERIAL  
INTERFACE  
Figure 11. AD5305/AD5315/AD5325 Using External Reference  
REV. F  
–15–  
AD5305/AD5315/AD5325  
If an output range of 0 V to VDD is required, the simplest solution  
is to connect the reference input to VDD. As this supply may not be  
very accurate and may be noisy, the AD5305/AD5315/AD5325  
may be powered from the reference voltage; for example, using  
a 5 V reference such as the REF195. The REF195 will output  
a steady supply voltage for the AD5305/AD5315/AD5325. The  
typical current required from the REF195 is 600 µA supply cur-  
rent and approximately 112 µA into the reference input. This is  
with no load on the DAC outputs. When the DAC outputs are  
loaded, the REF195 also needs to supply the current to the loads.  
The total current required (with a 10 kload on each output) is  
Multiple Devices on One Bus  
Figure 13 shows two AD5305 devices on the same serial bus.  
Each has a different slave address since the state of the A0 pin is  
different. This allows each of eight DACs to be written to or  
read from independently.  
V
A0  
DD  
AD5305  
SCL  
PULL-UP  
RESISTORS  
SDA  
MICRO-  
CONTROLLER  
712 µA + 4 5V / 10 kΩ = 2.70 mA  
(
)
SCL  
SDA  
A0  
The load regulation of the REF195 is typically 2 ppm/mA, which  
results in an error of 5.4 ppm (27 µV) for the 2.7 mA current  
drawn from it. This corresponds to a 0.0014 LSB error at eight  
bits and 0.022 LSB error at 12 bits.  
AD5305  
Figure 13. Multiple AD5305 Devices on One Bus  
Bipolar Operation Using the AD5305/AD5315/AD5325  
AD5305/AD5315/AD5325 as a Digitally Programmable Window  
Detector  
The AD5305/AD5315/AD5325 have been designed for single-  
supply operation, but a bipolar output range is also possible using  
the circuit in Figure 12. This circuit will give an output voltage  
range of 5 V. Rail-to-rail operation at the amplifier output is  
achievable using an AD820 or an OP295 as the output amplifier.  
A digitally programmable upper/lower limit detector using two  
of the DACs in the AD5305/AD5315/AD5325 is shown in  
Figure 14. The upper and lower limits for the test are loaded to  
DACs A and B, which, in turn, set the limits on the CMP04. If  
the signal at the VIN input is not within the programmed window,  
an LED will indicate the fail condition. Similarly, DACs C and  
D can be used for window detection on a second VIN signal.  
R2 = 10k⍀  
+5V  
6V TO 12V  
R1 = 10k⍀  
5V  
AD820/  
OP295  
10F  
0.1F  
؎5V  
+5V  
1k  
0.1F  
10F  
1k⍀  
V
IN  
V
V
A
DD  
OUT  
AD5305  
V
AD1585  
–5V  
PASS  
FAIL  
V
IN  
V
B
C
V
DD  
OUT  
OUT  
REFIN  
V
REF  
REFIN  
GND  
1F  
V
V
A
B
OUT  
OUT  
1/2  
AD5305/  
AD5315/  
V
D
OUT  
1/2  
CMP04  
A0  
PASS/FAIL  
*
AD5325  
GND SCL SDA  
DIN  
SDA  
SCL  
SCL  
V
OUT  
1/6 74HC05  
GND  
2-WIRE  
SERIAL  
INTERFACE  
*
ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 12. Bipolar Operation with the AD5305  
Figure 14. Window Detection  
The output voltage for any input code can be calculated as  
follows:  
Coarse and Fine Adjustment Using the AD5305/AD5315/  
AD5325  
N
Two of the DACs in the AD5305/AD5315/AD5325 can be  
paired together to form a coarse and fine adjustment function,  
as shown in Figure 15. DAC A is used to provide the coarse  
adjustment while DAC B provides the fine adjustment. Varying  
the ratio of R1 and R2 will change the relative effect of the  
coarse and fine adjustments. With the resistor values and exter-  
nal reference shown, the output amplifier has unity gain for the  
DAC A output, so the output range is 0 V to 2.5 V – 1 LSB. For  
DAC B, the amplifier has a gain of 7.6 × 10–3, giving DAC B  
a range equal to 19 mV. Similarly, DACs C and D can be paired  
together for coarse and fine adjustment.  
REFIN × D / 2  
×
(
)
VOUT  
=
REFIN × R2 / R1  
(
)
  
R1 + R2 / R1  
(
)
where  
D is the decimal equivalent of the code loaded to the DAC.  
N is the DAC resolution.  
REFIN is the reference voltage input.  
with  
REFIN= 5 V, R1 = R2 = 10 k:  
VOUT = 10 × D / 2N – 5 V  
The circuit is shown with a 2.5 V reference, but reference volt-  
ages up to VDD may be used. The op amps indicated will allow  
a rail-to-rail output swing.  
(
)
–16–  
REV. F  
AD5305/AD5315/AD5325  
V
= 5V  
to the device. The AD5305/AD5315/AD5325 should have ample  
supply bypassing of 10 µF in parallel with 0.1 µF on the supply  
located as close to the package as possible, ideally right up against  
the device. The 10 µF capacitors are the tantalum bead type.  
The 0.1 µF capacitor should have low effective series resistance  
(ESR) and effective series inductance (ESI), like the common  
ceramic types that provide a low impedance path to ground at  
high frequencies, to handle transient currents due to internal  
logic switching.  
DD  
R3  
R4  
390  
51.2k⍀  
10F  
0.1F  
5V  
V
IN  
V
V
OUT  
DD  
EXT  
REF  
V
REFIN  
V
A
OUT  
AD820/  
OP295  
OUT  
R1  
1F  
1/2  
GND  
390⍀  
AD5305/  
AD5315/  
AD5325  
*
AD780/REF192  
WITH V = 5V  
V
B
DD  
OUT  
The power supply lines of the AD5305/AD5315/AD5325 should  
use as large a trace as possible to provide low impedance paths  
and reduce the effects of glitches on the power supply line. Fast  
switching signals such as clocks should be shielded with digital  
ground to avoid radiating noise to other parts of the board, and  
should never be run near the reference inputs. A ground line  
routed between the SDA and SCL lines will help reduce crosstalk  
between them (not required on a multilayer board as there will  
be a separate ground plane, but separating the lines will help).  
R2  
51.2k⍀  
GND  
*
ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 15. Coarse/Fine Adjustment  
POWER SUPPLY DECOUPLING  
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure  
the rated performance. The printed circuit board on which the  
AD5305/AD5315/AD5325 is mounted should be designed so  
that the analog and digital sections are separated and confined  
to certain areas of the board. If the AD5305/AD5315/AD5325  
is in a system where multiple devices require an AGND-to-DGND  
connection, the connection should be made at one point only.  
The star ground point should be established as close as possible  
Avoid crossover of digital and analog signals. Traces on oppo-  
site sides of the board should run at right angles to each other.  
This reduces the effects of feedthrough through the board. A  
microstrip technique is by far the best, but is not always possible  
with a double-sided board. In this technique, the component  
side of the board is dedicated to ground plane while signal traces  
are placed on the solder side.  
REV. F  
–17–  
AD5305/AD5315/AD5325  
Table II. Overview of All AD53xx Serial Devices  
No. of  
DACs  
Settling  
Time (s)  
Part No.  
Resolution  
DNL  
Interface  
Package  
Pins  
SINGLES  
AD5300  
AD5310  
AD5320  
8
10  
12  
1
1
1
0.25  
0.5  
1.0  
SPI®  
SPI  
SPI  
4
6
8
SOT-23, MSOP  
SOT-23, MSOP  
SOT-23, MSOP  
6, 8  
6, 8  
6, 8  
AD5301  
AD5311  
AD5321  
8
10  
12  
1
1
1
0.25  
0.5  
1.0  
2-Wire  
2-Wire  
2-Wire  
6
7
8
SOT-23, MSOP  
SOT-23, MSOP  
SOT-23, MSOP  
6, 8  
6, 8  
6, 8  
DUALS  
AD5302  
AD5312  
AD5322  
8
10  
12  
2
2
2
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6
7
8
MSOP  
MSOP  
MSOP  
8
8
8
AD5303  
AD5313  
AD5323  
8
10  
12  
2
2
2
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6
7
8
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
QUADS  
AD5304  
AD5314  
AD5324  
8
10  
12  
4
4
4
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6
7
8
MSOP  
MSOP  
MSOP  
10  
10  
10  
AD5305  
AD5315  
AD5325  
8
10  
12  
4
4
4
0.25  
0.5  
1.0  
2-Wire  
2-Wire  
2-Wire  
6
7
8
MSOP  
MSOP  
MSOP  
10  
10  
10  
AD5306  
AD5316  
AD5326  
8
10  
12  
4
4
4
0.25  
0.5  
1.0  
2-Wire  
2-Wire  
2-Wire  
6
7
8
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
AD5307  
AD5317  
AD5327  
8
10  
12  
4
4
4
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6
7
8
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
OCTALS  
AD5308  
AD5318  
AD5328  
8
10  
12  
8
8
8
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6
7
8
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
Visit www.analog.com/support/standard_linear/selection_guides/AD53xx.html for more information.  
Table III. Overview of AD53xx Parallel Devices  
VREF Pins Settling Time (s) Additional Pin Functions  
BUF GAIN HBEN CLR  
Part No.  
Resolution  
DNL  
Package Pins  
SINGLES  
AD5330  
AD5331  
AD5340  
AD5341  
8
0.25  
0.5  
1.0  
1.0  
1
1
1
1
6
7
8
8
TSSOP  
TSSOP  
TSSOP  
TSSOP  
20  
20  
24  
20  
10  
12  
12  
DUALS  
AD5332  
AD5333  
AD5342  
AD5343  
8
0.25  
0.5  
1.0  
1.0  
2
2
2
1
6
7
8
8
TSSOP  
TSSOP  
TSSOP  
TSSOP  
20  
24  
28  
20  
10  
12  
12  
QUADS  
AD5334  
AD5335  
AD5336  
AD5344  
8
0.25  
0.5  
0.5  
1.0  
2
2
4
4
6
7
7
8
TSSOP  
TSSOP  
TSSOP  
TSSOP  
24  
24  
28  
28  
10  
10  
12  
–18–  
REV. F  
AD5305/AD5315/AD5325  
OUTLINE DIMENSIONS  
10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
3.00 BSC  
10  
6
4.90 BSC  
3.00 BSC  
PIN 1  
1
5
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8؇  
0؇  
0.15  
0.00  
0.27  
0.17  
SEATING  
PLANE  
0.23  
0.08  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187BA  
REV. F  
–19–  
AD5305/AD5315/AD5325  
Revision History  
Location  
Page  
10/04—Data Sheet changed from REV. E to REV. F.  
Changes to Figure 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Changes to Pointer Byte Bits section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Changes to Figure 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
8/03—Data Sheet changed from REV. D to REV. E.  
Added A Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Universal  
Changes to FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Changes to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Changes to TPC 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Added OCTALS SECTION to Table II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
4/01—Data Sheet changed from REV. C to REV. D.  
Edit to Features section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edit to Figure 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Edits to RIGHT/LEFT and DOUBLE sections of Pointer Byte Bits section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Edit to Input Shift Register section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Edit to Multiple-DAC Readback Sequence section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Edits to Figure 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Edits to WRITE OPERATION section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Edits to Figure 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Edits to READ OPERATION section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Edits to Figure 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Edits to POWER-DOWN MODES section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Edits to Figure 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C  
Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
–20–  
REV. F  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY