AD5391 [ADI]

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs; 8 / 16通道, 3 V / 5 V ,串行输入,单电源, 12位/ 14位电压输出DAC
AD5391
型号: AD5391
厂家: ADI    ADI
描述:

8-/16-Channel, 3 V/5 V, Serial Input, Single- Supply, 12-/14-Bit Voltage Output DACs
8 / 16通道, 3 V / 5 V ,串行输入,单电源, 12位/ 14位电压输出DAC

文件: 总44页 (文件大小:1446K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-/16-Channel, 3 V/5 V, Serial Input, Single-  
Supply, 12-/14-Bit Voltage Output DACs  
AD5390/AD5391/AD5392  
FEATURES  
INTEGRATED FUNCTIONS  
AD5390: 16-channel, 14-bit voltage output DAC  
AD5391: 16-channel, 12-bit voltage output DAC  
AD5392: 8-channel, 14-bit voltage output DAC  
Guaranteed monotonic  
Channel monitor  
Simultaneous output update via LDAC  
Clear function to user-programmable code  
Amplifier boost mode to optimize slew rate  
User-programmable offset and gain adjust  
Toggle mode enables square wave generation  
Thermal monitor  
INL: 1 LSB max (AD5391)  
3 LSB max (AD5390-5/AD5392-5)  
4 LSB max (AD5390-3/AD5392-3)  
On-chip 1.25 V/2.5 V, 10 ppm/°C reference  
Temperature range: −40°C to +85°C  
Rail-to-rail output amplifier  
Power-down mode  
APPLICATIONS  
Instrumentation and industrial control  
Power amplifier control  
Level setting (ATE)  
Package types:  
Control systems  
64-lead LFCSP (9 mm × 9 mm)  
52-lead LQFP (10 mm × 10 mm)  
User interfaces:  
Microelectromechanical systems (MEMs)  
Variable optical attenuators (VOAs)  
Optical transceivers (MSA 300, XFP)  
Serial SPI®-, QSPI-, MICROWIRE-, and DSP-compatible  
(featuring data readback)  
I2C®-compatible interface  
FUNCTIONAL BLOCK DIAGRAM  
DV  
DD  
(×  
2)  
DGND (  
×
2)  
AV  
DD  
(
×2)  
AGND (  
×
2)  
DAC_GND (  
×2)  
REF_GND  
REFOUT/REFIN SIGNAL_GND (  
×2)  
1.25V/2.5V  
REFERENCE  
AD5390  
2
SPI/I C  
INPUT  
REG  
0
DAC  
REG  
0
14  
14  
14  
14  
14  
14  
DAC 0  
DCEN/AD1  
VOUT 0  
14  
14  
m REG0  
c REG0  
DIN/SDA  
SCLK/SCL  
SYNC/AD0  
SDO  
R
R
STATE  
R
R
INTERFACE MACHINE  
CONTROL  
LOGIC  
AND  
CONTROL  
LOGIC  
INPUT  
REG  
1
DAC  
REG  
1
14  
14  
DAC 1  
VOUT 1  
VOUT 2  
VOUT 3  
VOUT 4  
VOUT 5  
VOUT 6  
14  
14  
m REG1  
c REG1  
BUSY  
PD  
INPUT  
REG  
6
DAC  
REG  
6
14  
14  
14  
14  
14  
14  
14  
14  
DAC 6  
CLR  
POWER-ON  
RESET  
14  
14  
RESET  
m REG6  
c REG6  
R
R
R
R
V
0
V 15  
IN  
IN  
INPUT  
DAC  
REG  
7
REG  
7
DAC 7  
VOUT 7  
VOUT 8  
14  
14  
MON_IN1  
MON_IN2  
m REG7  
c REG7  
MUX  
×
2
VOUT 15  
LDAC  
MON_OUT  
Figure 1.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD5390/AD5391/AD5392  
TABLE OF CONTENTS  
General Description......................................................................... 3  
AD5390-5/AD5391-5/AD5392-5 Specifications.......................... 4  
AD5390-5/AD5391-5/AD5392-5 AC Characteristics................. 6  
AD5390-3/AD5391-3/AD5392-3 Specifications.......................... 7  
AD5390-3/AD5391-3/AD5392-3 AC Characteristics................. 9  
I2C Write Operation ....................................................................... 28  
4-Byte Mode................................................................................ 28  
3-Byte Mode................................................................................ 29  
2-Byte Mode................................................................................ 30  
AD539x On-Chip Special Function Registers........................ 31  
Control Register Write............................................................... 33  
Hardware Functions....................................................................... 35  
Reset Function............................................................................ 35  
Asynchronous Clear Function.................................................. 35  
Timing Characteristics: Serial SPI-, QSPI-, Microwire-, and  
DSP-Compatible Interface............................................................. 10  
Timing Characteristics: I2C Serial Interface................................ 13  
Absolute Maximum Ratings.......................................................... 14  
ESD Caution................................................................................ 14  
Pin Configuraton and Function Descriptions............................ 15  
Terminology .................................................................................... 18  
Typical Performance Characteristics ........................................... 19  
Functional Description .................................................................. 23  
DAC Architecture—General..................................................... 23  
Data Decoding—AD5390/AD5392......................................... 24  
Data Decoding—AD5391 ......................................................... 24  
Interfaces.......................................................................................... 25  
DSP-, SPI-, and MICROWIRE-Compatible Serial Interface 25  
I2C Serial Interface.......................................................................... 27  
I2C Data Transfer........................................................................ 27  
START and STOP Conditions .................................................. 27  
Repeated START Condition...................................................... 27  
Acknowledge Bit (ACK) ............................................................ 27  
and  
Functions...................................................... 35  
LDAC  
BUSY  
Power-On Reset.......................................................................... 35  
Power-Down ............................................................................... 35  
Microprocessor Interfacing....................................................... 35  
Application Information................................................................ 37  
Power Supply Decoupling ......................................................... 37  
Typical Configuration Circuit .................................................. 37  
AD539x Monitor Function ....................................................... 38  
Toggle Mode Function............................................................... 38  
Thermal Monitor Function....................................................... 38  
Outline Dimensions....................................................................... 40  
Ordering Guide .......................................................................... 41  
REVISION HISTORY  
10/04: Data Sheet Changed from Rev. 0 to Rev. A  
Changes to Figure 37...................................................................... 36  
Changes to Figure 38...................................................................... 36  
Changes to Ordering Guide.......................................................... 41  
Changes to Features.......................................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Table 3............................................................................ 6  
Changes to Table 4............................................................................ 7  
Changes to Figure 36...................................................................... 35  
4/04—Revision 0: Initial Version  
Rev. A | Page 2 of 44  
AD5390/AD5391/AD5392  
GENERAL DESCRIPTION  
with SPI, QSPI, MICROWIRE, and DSP interface standards  
and an I2C-compatible interface supporting a 400 kHz data  
transfer rate.  
The AD5390/AD5391 are complete single-supply, 16-channel,  
14-bit and 12-bit DACs, respectively. The AD5392 is a complete  
single-supply, 8-channel, 14-bit DAC. Devices are available both  
in 64-lead LFCSP and 52-lead LQFP packages. All channels  
have an on-chip output amplifier with rail-to-rail operation. All  
devices include an internal 1.25/2.5 V, 10 ppm/°C reference, an  
on-chip channel monitor function that multiplexes the analog  
outputs to a common MON_OUT pin for external monitoring,  
and an output amplifier boost mode that optimizes the output  
amplifier slew rate.  
An input register followed by a DAC register provides double-  
buffering, allowing DAC outputs to be updated independently  
or simultaneously using the  
input. Each channel has a  
LDAC  
programmable gain and offset adjust register, letting the user  
fully calibrate any DAC channel.  
Power consumption is typically 0.25 mA per channel.  
The AD5390/AD5391/AD5392 contain a 3-wire serial interface  
with interface speeds in excess of 30 MHz that are compatible  
Table 1. Additional High Channel Count, Low Voltage, Single-Supply DACs in Portfolio  
Output  
Channels  
Linearity  
Error (LSB) Package Description  
Model  
Resolution AVDD Range  
Package Option  
ST-100  
ST-100  
BC-100  
BC-100  
ST-100  
ST-100  
ST-100  
ST-100  
ST-100  
AD5380BST-5  
AD5380BST-3  
AD5384BBC-5 14 Bits  
AD5384BBC-3 14 Bits  
AD5381BST-5  
AD5381BST-3  
AD5382BST-5  
AD5382BST-3  
AD5383BST-5  
AD5383BST-3  
14 Bits  
14 Bits  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
40  
40  
40  
40  
40  
40  
32  
32  
32  
32  
4
4
4
4
1
1
4
4
1
1
100-Lead LQFP  
100-Lead LQFP  
100-Lead CSPBGA  
100-Lead CSPBGA  
100-Lead LQFP  
100-Lead LQFP  
100-Lead LQFP  
100-Lead LQFP  
100-Lead LQFP  
100-Lead LQFP  
12 Bits  
12 Bits  
14 Bits  
14 Bits  
12 Bits  
12 Bits  
ST-100  
Rev. A | Page 3 of 44  
 
AD5390/AD5391/AD5392  
AD5390-5/AD5391-5/AD5392-5 SPECIFICATIONS  
AVDD = 4.5 V to 5.5 V; DVDD = 2.7 V to 5.5 V; AGND = DGND = 0 V; REFIN = 2.5 V external.  
All specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
AD5390-5  
1
AD5391-5  
1
Parameter  
AD5392-51  
Unit  
Test Conditions/Comments  
ACCURACY  
Resolution  
14  
12  
1
1
Bits  
Relative Accuracy  
Differential Nonlinearity  
Zero-Scale Error  
Offset Error  
3
−1/+2  
4
LSB max  
LSB max  
mV max  
Guaranteed monotonic over temperature.  
Measured at code 32 in the linear region.  
4
4
4
mV max  
Offset Error TC  
Gain Error  
5
5
µV/°C typ  
% FSR max  
% FSR max  
ppm FSR/°C typ  
LSB max  
0.024  
0.06  
2
0.024  
0.06  
2
At 25°C TMIN to TMAX.  
Gain Temperature Coefficient2  
DC Crosstalk  
REFERENCE INPUT/OUTPUT  
Reference Input  
2
0.5  
0.5  
2
Reference Input Voltage  
2.5  
2.5  
V
1% for specified performance,  
AVDD = 2 × REFIN + 50 mV.  
DC Input Impedance  
Input Current  
1
1
1
1
MΩ min  
µA max  
Typically 100 MΩ.  
Typically 30 nA.  
Reference Range  
1 V to  
1 V to AVDD/2  
V min/max  
AVDD/2  
Reference Output 3  
Enabled via internal/external bit in control  
register. REF select bit in control register  
selects the reference voltage.  
Output Voltage  
Reference TC  
2.495/2.505 2.495/2.505  
V min/max  
V min/max  
ppm max  
ppm max  
kΩ typ  
At ambient, optimized for 2.5 V operation.  
At ambient when 1.25 V reference is selected.  
Temperature range: 25°C to 85°C.  
1.22/1.28  
1.22/1.28  
10  
15  
10  
15  
Temperature range: −40°C to +85°C.  
Output Impedance  
2.2  
2.2  
OUTPUT CHARACTERISTICS  
Output Voltage Range4  
Short-Circuit Current  
Load Current  
2
0/AVDD  
40  
1
0/AVDD  
40  
1
V min/max  
mA max  
mA max  
Capacitive Load Stability  
RL = ∞  
200  
1,000  
0.5  
200  
1,000  
0.5  
pF max  
pF max  
Ω max  
RL = 5 kΩ  
DC Output Impedance  
MONITOR OUTPUT PIN  
Output Impedance  
500  
100  
500  
100  
Ω typ  
nA typ  
Three-State Leakage Current  
LOGIC INPUTS  
2
DVDD = 2.7 V to 5.5 V.  
VIH, Input High Voltage  
VIL, Input Low Voltage  
Input Current  
2
2
V min  
0.8  
10  
10  
0.8  
10  
10  
V max  
µA max  
pF max  
Total for all pins. TA = TMIN to TMAX  
.
Pin Capacitance  
Rev. A | Page 4 of 44  
 
 
 
AD5390/AD5391/AD5392  
AD5390-5  
1
AD5391-5  
1
Parameter  
AD5392-51  
Unit  
Test Conditions/Comments  
LOGIC INPUTS (SCL, SDA Only)  
VIH, Input High Voltage  
VIL, Input Low Voltage  
IIN, Input Leakage Current  
VHYST, Input Hysteresis  
CIN, Input Capacitance  
Glitch Rejection  
0.7 DVDD  
0.3 DVDD  
1
0.05 DVDD  
8
50  
0.7 DVDD  
0.3 DVDD  
1
0.05 DVDD  
8
50  
V min  
SMBus-compatible at DVDD < 3.6 V.  
SMBus-compatible at DVDD < 3.6 V.  
V max  
µA max  
V min  
pF typ  
ns max  
Input filtering suppresses noise spikes of  
<50 ns.  
LOGIC OUTPUTS (BUSY, SDO)  
Output Low Voltage  
2
0.4  
DVDD − 1  
0.4  
DVDD − 1  
V max  
V min  
DVDD = 5 V 10%, sinking 200 µA.  
DVDD = 5 V 10%, SDO only, sourcing  
200 µA.  
Output High Voltage  
Output Low Voltage  
Output High Voltage  
0.4  
DVDD − 0.5  
0.4  
DVDD − 0.5  
V max  
V min  
DVDD = 2.7 V to 3.6 V, sinking 200 µA.  
DVDD = 2.7 V to 3.6 V SDO only, sourcing  
200 µA.  
High Impedance Leakage Current  
High Impedance Output  
Capacitance  
1
5
1
5
µA max  
pF typ  
LOGIC OUTPUT (SDA)  
2
VOL, Output Low Voltage  
0.4  
0.6  
1
0.4  
0.6  
1
V max  
V max  
µA max  
pF typ  
ISINK = 3 mA.  
ISINK = 6 mA.  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
AVDD  
8
8
4.5/5.5  
2.7/5.5  
4.5/5.5  
2.7/5.5  
V min/max  
V min/max  
DVDD  
Power Supply Sensitivity  
∆Midscale/∆AVDD  
AIDD  
2
−85  
−85  
dB typ  
0.375  
0.375  
mA/channel  
max  
Outputs unloaded; boost off;  
0.25 mA/channel typ.  
AIDD  
0.475  
0.475  
mA/channel  
max  
Outputs unloaded; boost on;  
0.325 mA/channel typ.  
DIDD  
1
1
20  
35  
1
1
20  
35  
mA max  
µA max  
µA max  
mW max  
VIH = DVDD, VIL = DGND.  
Typically 200 nA.  
Typically 3 µA.  
AD5390/AD5391 with outputs unloaded;  
AVDD = DVDD = 5 V; boost off.  
AIDD (Power-Down)  
DIDD (Power-Down)  
Power Dissipation  
20  
20  
mW max  
AD5392 with outputs unloaded;  
AVDD = DVDD = 5 V, boost off.  
1 AD539x-5 products are calibrated with a 2.5 V reference. Temperature range for all versions: 40°C to +85°C.  
2 Guaranteed by characterization, not production tested.  
3 Programmable either to 1.25 V typ or 2.5 V typ via the AD539x control register. Operating the AD539x-5 products with a reference of 1.25 V leads to a degradation in  
performance accuracy.  
4 Accuracy guaranteed from VOUT = 10 mV to AVDD 50 mV.  
Rev. A | Page 5 of 44  
AD5390/AD5391/AD5392  
AD5390-5/AD5391-5/AD5392-5 AC CHARACTERISTICS  
AVDD = 4.5 V to 5.5 V; DVDD = 2.7 V to 5.5 V; AGND = DGND = 0 V.  
Table 3. AD5390-5/AD5391-5/AD5392-5 AC Characteristics1  
Parameter  
All  
1
Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Output Voltage Settling Time  
AD5390/AD5392  
8
10  
6
µs typ  
µs max  
µs typ  
¼ scale to ¾ scale change settling to 1 LSB.  
¼ scale to ¾ scale change settling to 1 LSB.  
AD5391  
8
3
2
12  
15  
100  
1
0.8  
0.1  
µs max  
V/µs typ  
V/µs typ  
nV-s typ  
mV typ  
dB typ  
nV-s typ  
nV-s typ  
nV-s typ  
Slew rate2  
Boost mode on.  
Boost mode off.  
Digital-to-Analog Glitch Energy  
Glitch Impulse Peak Amplitude  
Channel-to-Channel Isolation  
DAC-to-DAC Crosstalk  
Digital Crosstalk  
Digital Feedthrough  
See Terminology section.  
See Terminology section.  
Effect of input bus activity on DAC output under test.  
Output Noise (0.1 Hz to 10 Hz)  
15  
40  
µV p-p typ  
µV p-p typ  
External reference midscale loaded to DAC.  
Internal reference midscale loaded to DAC.  
Output Noise Spectral Density  
@ 1 kHz  
@ 10 kHz  
150  
100  
nV/(Hz)1/2 typ  
nV/(Hz)1/2 typ  
1 Guaranteed by characterization, not production tested.  
2 The slew rate can be adjusted via the current boost control bit in the DAC control register.  
Rev. A | Page 6 of 44  
 
 
 
AD5390/AD5391/AD5392  
AD5390-3/AD5391-3/AD5392-3 SPECIFICATIONS  
AVDD = 2.7 V to 3.6 V; DVDD = 2.7 V to 5.5 V; AGND = DGND = 0 V; REFIN = 1.25 V external. All specifications TMIN to TMAX, unless  
otherwise noted.  
Table 4.  
AD5390-31  
AD5392-3  
AD5391-3  
1
Parameter  
1
Unit  
Test Conditions/Comments  
ACCURACY  
Resolution  
14  
12  
1
1
Bits  
Relative Accuracy  
Differential Nonlinearity  
Zero-Scale Error  
Offset Error  
4
−1/+2  
4
LSB max  
LSB max  
mV max  
Guaranteed monotonic over temperature.  
Measured at code 64 in the linear region.  
At 25°C.  
4
4
4
mV max  
Offset Error TC  
Gain Error  
5
5
µV/°C typ  
% FSR max  
% FSR max  
ppm FSR/°C typ  
mV max  
0.024  
0.1  
2
0.024  
0.1  
2
TMIN to TMAX  
.
Gain Temperature Coefficient  
DC Crosstalk  
2
0.5  
0.5  
REFERENCE INPUT/OUTPUT  
Reference Input2  
Reference Input Voltage  
DC Input Impedance  
Input Current  
Reference Range  
Reference Output3  
1.25  
1
1
1.25  
1
1
V
1% for specified performance.  
Typically 100 MΩ.  
Typically 30 nA.  
MΩ min  
µA max  
V min/max  
1 V to AVDD/2  
1 V to AVDD/2  
Enabled via internal/external bit in control  
register. REF select bit in control register  
selects the reference voltage.  
Output Voltage  
Reference TC  
1.245/1.255  
2.47/2.53  
10  
15  
2.2  
1.245/1.255  
2.47/2.53  
10  
15  
2.2  
V min/max  
V min/max  
ppm max  
ppm max  
kΩ typ  
At ambient. Optimized for 1.25 V operation.  
At ambient when 2.5 V reference is selected.  
Temperature range: 25°C to 85°C.  
Temperature range: −40°C to +85°C.  
Output Impedance  
OUTPUT CHARACTERISTICS  
Output Voltage Range4  
Short-Circuit Current  
Load Current  
2
0/AVDD  
40  
1
0/AVDD  
40  
1
V min/max  
mA max  
mA max  
Capacitive Load Stability  
RL = ∞  
RL = 5 kΩ  
200  
1,000  
0.5  
200  
1,000  
0.5  
pF max  
pF max  
Ω max  
DC Output Impedance  
MONITOR OUTPUT PIN  
Output Impedance  
Three-State Leakage Current  
LOGIC INPUTS  
2
500  
100  
500  
100  
Ω typ  
nA typ  
2
DVDD = 2.7 V to 5.5 V.  
VIH, Input High Voltage  
VIL, Input Low Voltage  
Input Current  
2
2
V min  
0.8  
10  
10  
0.8  
10  
10  
V max  
µA max  
pF max  
Total for all pins. TA = TMIN to TMAX  
.
Pin Capacitance  
Logic Inputs (SCL, SDA Only)  
VIH, Input High Voltage  
VIL, Input Low Voltage  
IIN, Input Leakage Current  
VHYST, Input Hysteresis  
0.7 DVDD  
0.3 DVDD  
1
0.7 DVDD  
0.3 DVDD  
1
V min  
V max  
µA max  
V min  
SMBus-compatible at DVDD < 3.6 V.  
SMBus-compatible at DVDD < 3.6 V.  
0.05 DVDD  
0.05 DVDD  
Rev. A | Page 7 of 44  
 
 
AD5390/AD5391/AD5392  
AD5390-31  
AD5392-3  
AD5391-3  
1
Parameter  
1
Unit  
Test Conditions/Comments  
Glitch Rejection  
50  
50  
ns max  
Input filtering suppresses noise spikes <50 ns.  
Logic Outputs (BUSY, SDO)  
Output Low Voltage  
2
0.4  
DVDD − 0.5  
0.4  
DVDD − 0.5  
V max  
V min  
DVDD = 2.7 V to 5.5 V, sinking 200 µA.  
DVDD = 2.7 V to 3.6 V, SDO only,  
sourcing 200 µA.  
Output High Voltage  
DVDD − 0.1  
DVDD − 0.1  
V min  
DVDD = 4.5 V to 5.5 V, SDO only,  
sourcing 200 µA.  
High Impedance Leakage  
Current  
High Impedance Output  
Capacitance  
1
5
1
5
µA max  
pF typ  
Logic Output (SDA)  
2
VOL, Output Low Voltage  
0.4  
0.6  
1
0.4  
0.6  
1
V max  
V max  
µA max  
pF typ  
ISINK = 3 mA.  
ISINK = 6 mA.  
Three-State Leakage Current  
Three-State Output  
Capacitance  
8
8
POWER REQUIREMENTS  
AVDD  
DVDD  
2.7/3.6  
2.7/5.5  
2.7/3.6  
2.7/5.5  
V min/max  
V min/max  
Power Supply Sensitivity  
∆Midscale/∆AVDD  
AIDD  
2
−85  
−85  
dB typ  
0.375  
0.375  
mA/channel  
max  
Outputs unloaded; boost off;  
0.25 mA/channel typ.  
AIDD  
0.475  
0.475  
mA/channel  
max  
Outputs unloaded; boost on;  
0.325 mA/channel typ.  
DIDD  
1
1
20  
21  
1
1
20  
21  
mA max  
µA max  
µA max  
mW max  
VIH = DVDD, VIL = DGND.  
AIDD (Power-Down)  
DIDD (Power-Down)  
Power Dissipation  
AD5390/AD5391 with outputs unloaded;  
AVDD = DVDD = 3 V; boost off.  
12  
12  
mW max  
AD5392 with outputs unloaded;  
AVDD = DVDD = 3 V; boost off.  
1 AD539x-3 products are calibrated with a 1.25 V reference. Temperature range for all versions: −40°C to +85°C.  
2 Guaranteed by characterization, not production tested.  
3 Programmable either to 1.25 V typ or 2.5 V typ via the AD539x control register. Operating the AD539x-3 products with a reference of 2.5 V leads to a degradation in  
performance accuracy.  
4 Accuracy guaranteed from VOUT = 39 mV to AVDD − 50 mV.  
Rev. A | Page 8 of 44  
AD5390/AD5391/AD5392  
AD5390-3/AD5391-3/AD5392-3 AC CHARACTERISTICS  
AVDD = 2.7 V to 3.6 V; DVDD = 2.7 V to 5.5 V; AGND = DGND = 0 V; CL = 200 pF to AGND.  
Table 5. AD5390-3/AD5391-3/AD5392-3 AC Characteristics1  
Parameter  
All  
Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Output Voltage Settling Time  
AD5390/AD5392  
8
10  
6
µs typ  
µs max  
µs typ  
¼ scale to ¾ scale change settling to 1 LSB.  
¼ scale to ¾ scale change settling to 1 LSB.  
AD5391  
8
3
2
µs max  
Slew Rate2  
V/µs typ  
V/µs typ  
nV-s typ  
mV typ  
dB typ  
nV-s typ  
nV-s typ  
nV-s typ  
µV p-p typ  
µV p-p typ  
Boost mode on.  
Boost mode off.  
Digital-to-Analog Glitch Energy  
Glitch Impulse Peak Amplitude  
Channel-to-Channel Isolation  
DAC-to-DAC Crosstalk  
Digital Crosstalk  
Digital Feedthrough  
12  
15  
100  
1
0.8  
0.1  
15  
40  
See Terminology section.  
See Terminology section.  
Effect of input bus activity on DAC output under test.  
External reference midscale loaded to DAC.  
Internal reference midscale loaded to DAC.  
OUTPUT NOISE (0.1 Hz to 10 Hz)  
Output Noise Spectral Density  
@ 1 kHz  
@ 10 kHz  
150  
100  
nV/(Hz)1/2 typ  
nV/(Hz)1/2 typ  
1 Guaranteed by design and characterization, not production tested.  
2 The slew rate can be programmed via the current boost control bit in the AD539x control registers.  
Rev. A | Page 9 of 44  
 
 
AD5390/AD5391/AD5392  
TIMING CHARACTERISTICS:  
SERIAL SPI-, QSPI-, MICROWIRE-, AND DSP-COMPATIBLE INTERFACE  
DVDD = 2 V to 5.5 V; AVDD = 2.7 V to 5.5 V; AGND = DGND = 0 V. All specifications TMIN to TMAX, unless otherwise noted.  
Table 6. 3-Wire Serial Interface1  
Parameter2, 3  
Limit at TMIN, TMAX  
Unit  
Description  
t1  
t2  
t3  
t4  
33  
13  
13  
13  
13  
33  
10  
50  
5
4.5  
30  
670  
20  
20  
100  
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
ns min  
ns min  
ns max  
ns min  
ns min  
µs typ  
µs typ  
ns min  
µs max  
ns max  
ns min  
ns min  
ns min  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC falling edge to SCLK falling edge setup time  
24th SCLK falling edge to SYNC falling edge  
Minimum SYNC low time  
4
t5  
t6  
4
t7  
Minimum SYNC high time  
t7A  
t8  
t9  
Minimum SYNC high time in readback mode  
Data setup time  
Data hold time  
24th SCLK falling edge to BUSY falling edge  
BUSY pulse width low (single channel update)  
24th SCLK falling edge to LDAC falling edge  
LDAC pulse width low  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t17  
t18  
t19  
t20  
t21  
t22  
t23  
4
4
BUSY rising edge to DAC output response time  
BUSY rising edge to LDAC falling edge  
LDAC falling edge to DAC output response time  
DAC output settling time, AD5390/AD5392  
DAC output settling time, AD5391  
CLR pulse width low  
100  
8
6
20  
12  
20  
5
CLR pulse activation time  
5
4
SCLK rising edge to SDO valid  
SCLK falling edge to SYNC rising edge  
SYNC rising edge to SCLK rising edge  
SYNC rising edge to LDAC falling edge  
4
4
8
20  
1 Guaranteed by design and characterization, not production tested.  
2 All input signals are specified with tr = tf = 5 ns (10% to 90% of VCC) and timed from a voltage level of 1.2 V.  
3 See Figure 2, Figure 3, Figure 4, and Figure 5.  
4 Standalone mode only.  
5 Daisy-chain mode only.  
Rev. A | Page 10 of 44  
 
 
 
 
 
AD5390/AD5391/AD5392  
t1  
SCLK  
SYNC  
24  
48  
t22  
t3  
t2  
t7  
t21  
t4  
t8  
t9  
DB23  
DB0 DB23  
DB0  
DIN  
SDO  
INPUT WORD FOR DAC N  
INPUT WORD FOR DAC N+1  
t20  
DB23  
DB0  
t23  
UNDEFINED  
INPUT WORD FOR DAC N  
t13  
LDAC  
Figure 2. Serial Interface Timing Diagram (Daisy-Chain Mode)  
t1  
SCLK  
SYNC  
24  
24  
1
2
t3  
t2  
t4  
t5  
t7  
t6  
t8  
t9  
DB23  
DIN  
DB0  
t10  
BUSY  
t11  
t13  
t12  
1
LDAC  
t17  
t14  
t15  
1
V
OUT  
t13  
t17  
2
2
LDAC  
t16  
V
OUT  
t18  
CLR  
t19  
V
OUT  
1
2
LDAC ACTIVE DURING BUSY  
LDAC ACTIVE DURING BUSY  
Figure 3. Serial Interface Timing Diagram (Standalone Mode)  
Rev. A | Page 11 of 44  
 
AD5390/AD5391/AD5392  
SCLK  
24  
48  
t7A  
SYNC  
DB0  
DB23'  
DB23  
DB0  
DB23  
DIN  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
SDO  
DB0  
UNDEFINED  
SELECTED REGISTER DATA  
CLOCKED OUT  
Figure 4. Serial Interface Timing Diagram (Data Readback Mode)  
I
200µA  
OL  
TO  
OUTPUT  
PIN  
V
V
OR  
OH (MIN)  
OL (MAX)  
C
50pF  
L
I
OH  
200µA  
Figure 5. Load Circuit for Digital Output Timing  
Rev. A | Page 12 of 44  
 
AD5390/AD5391/AD5392  
TIMING CHARACTERISTICS: I2C SERIAL INTERFACE  
Guaranteed by design and characterization, not production tested. DVDD = 2.7 V to 5.5 V; AVDD = 2.7 V to 5.5 V; AGND = DGND = 0 V.  
All specifications TMIN to TMAX, unless otherwise noted.  
Table 7.  
Parameter1  
Limit at TMIN, TMAX  
Unit  
Description  
FSCL  
t1  
t2  
t3  
t4  
400  
2.5  
0.6  
1.3  
0.6  
100  
0.9  
0
0.6  
0.6  
1.3  
300  
0
300  
0
300  
20 + 0.1 CB  
400  
kHz max  
µs min  
µs min  
µs min  
µs min  
ns min  
µs max  
µs min  
µs min  
µs min  
µs min  
ns max  
ns min  
ns max  
ns min  
ns max  
ns min  
pF max  
SCL clock frequency  
SCL cycle time  
tHIGH, SCL high time  
tLOW, SCL low time  
tHD, STA, start/repeated start condition hold time  
tSU, DAT, data setup time  
tHD, DAT data hold time  
t5  
t6  
2
tHD, DAT data hold time  
t7  
t8  
t9  
t10  
tSU, STA setup time for repeated start  
tSU, STO stop condition setup time  
tBUF, bus free time between a stop and a start condition  
tF, fall time of SDA when transmitting  
tR, rise time of SCL and SDA when receiving (CMOS-compatible)  
tF, fall time of SDA when transmitting  
tF, fall time of SDA when receiving (CMOS-compatible)  
tF, fall time of SCL and SDA when receiving  
tF, fall time of SCL and SDA when transmitting  
Capacitive load for each bus line  
t11  
3
CB  
1 See Figure 6.  
2 A master device must provide a hold time of at least 300 ns for the SDA signal (referred to the VIH MIN of the SCL signal)  
to bridge the undefined region of SCL’s falling edge.  
3 CB is the total capacitance of one bus line in pF; tR and tF measured between 0.3 DVDD and 0.7 DVDD  
.
SDA  
t9  
t11  
t4  
t3  
t10  
SCL  
t4  
t6  
t2  
t5  
t7  
t8  
t1  
REPEATED  
START  
CONDITION  
STOP  
CONDITION  
START  
CONDITION  
Figure 6. I2C Interface Timing Diagram  
Rev. A | Page 13 of 44  
 
 
 
 
AD5390/AD5391/AD5392  
ABSOLUTE MAXIMUM RATINGS  
Transient currents of up to 100 mA do not cause SCR latch-up.  
TA = 25°C, unless otherwise noted.  
Table 8.  
Parameter  
AVDD to AGND  
DVDD to DGND  
Digital Inputs to DGND  
Digital Outputs to DGND  
VREF to AGND  
Stresses above absolute maximum ratings may cause permanent  
damage to the device. This is a stress rating only; functional  
operation of the device at these or any other conditions above  
those listed in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating conditions  
for extended periods may affect device reliability.  
Rating  
−0.3 V to +7 V  
−0.3 V to +7 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to DVDD + 0.3 V  
−0.3 V to +7 V  
REFOUT to AGND  
−0.3 V to +7 V  
AGND to DGND  
VOUTX to AGND  
−0.3 V to +0.3 V  
−0.3 V to AVDD + 0.3 V  
Operating Temperature Range  
Commercial (B Version)  
Storage Temperature Range  
Junction Temperature (TJ max)  
64-Lead LFCSP Package, θJA  
52-lLad LQFP Package, θJA  
−40°C to +85°C  
−65°C to +150°C  
150°C  
22°C/W  
38°C/W  
Reflow Soldering Peak  
Temperature  
230°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 14 of 44  
 
AD5390/AD5391/AD5392  
PIN CONFIGURATON AND FUNCTION DESCRIPTIONS  
52 51 50 49 48 47 46 45 44 43 42 41 40  
CLR  
NC  
1
2
39 LDAC  
38 BUSY  
37 RESET  
1
2
48 NC  
47 BUSY  
46 RESET  
45 NC  
44 NC  
43 NC  
42 NC  
41 NC  
40 NC  
39 NC  
38 NC  
PIN 1  
INDICATOR  
NC  
NC  
3
NC  
NC  
3
PIN 1  
INDICATOR  
4
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
REF_GND  
REFOUT/REFIN  
SIGNAL_GND 1  
DAC_GND 1  
NC  
NC  
NC  
NC  
AV  
4
NC  
5
5
NC  
AD5390/  
6
NC  
6
AD5390/  
7
REF_GND  
REFOUT/REFIN  
SIGNAL_GND 1  
DAC_GND 1  
AD5391  
7
8
AD5391  
TOP VIEW  
(Not to Scale)  
9
8
AV  
1
2
DD  
DD  
10  
11  
12  
13  
14  
15  
TOP VIEW  
9
VOUT 0  
VOUT 1  
VOUT 2  
VOUT 3  
VOUT 4  
AGND 2  
AV  
DD  
1
(Not to Scale)  
10  
11  
12  
13  
VOUT 15  
VOUT 0  
VOUT 1  
VOUT 2  
VOUT 3  
37 AV  
2
DD  
36 AGND 2  
35 VOUT 15  
34 VOUT 14  
33 VOUT 13  
VOUT 14  
VOUT 13  
VOUT 4 16  
SIGNAL_GND 2  
14 15 16 17 18 19 20 21 22 23 24 25 26  
NC = NO CONNECT  
NC = NO CONNECT  
Figure 7. AD5390/AD5391 LFCSP Pin Configuration  
Figure 9. AD5390/AD5391 LQFP Pin Configuration  
52 51 50 49 48 47 46 45 44 43 42 41 40  
CLR  
1
2
39 LDAC  
NC  
NC  
38 BUSY  
37 RESET  
36 NC  
1
2
48 NC  
47 BUSY  
46 RESET  
45 NC  
44 NC  
43 NC  
42 NC  
41 NC  
40 NC  
39 NC  
38 NC  
37 NC  
36 NC  
35 NC  
34 NC  
33 NC  
PIN 1  
INDICATOR  
NC  
3
NC  
NC  
PIN 1  
INDICATOR  
3
REF_GND  
4
4
NC  
5
35  
34  
33  
32  
31  
30  
29  
28  
REFOUT/REFIN  
SIGNAL_GND 1  
DAC_GND 1  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
5
NC  
6
NC  
6
AD5392  
7
REF_GND  
REFOUT/REFIN  
SIGNAL_GND 1  
DAC_GND 1  
7
AD5392  
TOP VIEW  
TOP VIEW  
8
9
(Not to Scale)  
8
AV  
1
DD  
10  
11  
12  
13  
14  
15  
9
VOUT 0  
VOUT 1  
VOUT 2  
VOUT 3  
VOUT 4  
(Not to Scale)  
AV  
1
DD  
10  
11  
12  
13  
VOUT 0  
VOUT 1  
VOUT 2  
VOUT 3  
VOUT 4 16  
27 SIGNAL_GND 2  
14 15 16 17 18 19 20 21 22 23 24 25 26  
NC = NO CONNECT  
NC = NO CONNECT  
Figure 8. AD5392 LFCSP Pin Configuration  
Figure 10. AD5392 LQFP Pin Configuration  
Rev. A | Page 15 of 44  
 
AD5390/AD5391/AD5392  
Table 9. Pin Function Descriptions  
Mnemonic  
Function  
VOUTX  
Buffered Analog Outputs for Channel X. Each analog output is driven by a rail-to-rail output amplifier operating at a gain  
of 2. Each output is capable of driving an output load of 5 kΩ to ground. Typical output impedance is 0.5 Ω.  
SIGNAL_GND (1, Analog Ground Reference Points for each group of eight output channels. All SIGNAL_GND pins are tied together  
2)  
internally and should be connected to the AGND plane as close as possible to the AD539x.  
DAC_GND (1, 2)  
Each group of eight channels contains a DAC_GND pin. This is the ground reference point for the internal 14-bit DACs.  
These pins should be connected to the AGND plane.  
AGND (1, 2)  
AVDD (1, 2)  
Analog Ground Reference Point. Each group of eight channels contains an AGND pin. All AGND pins should be  
connected externally to the AGND plane.  
Analog Supply Pins. Each group of eight channels has a separate AVDD pin. These pins should be decoupled with 0.1 uF  
ceramic capacitors and 10 µF tantalum capacitors. Operating range is 5 V 10%.  
DGND  
DVDD  
Ground for All Digital Circuitry.  
Logic Power Supply. Guaranteed operating range is 2.7 V to 5.5 V. Recommended that these pins be decoupled with  
0.1 µF ceramic capacitors and 10 µF tantalum capacitors to DGND.  
REF_GND  
Ground Reference Point for the Internal Reference. Connect to AGND.  
REFOUT/REFIN  
The AD539x contains a common REFOUT/REFIN pin. When the internal reference is selected, this pin is the reference  
output. If the application necessitates the use of an external reference, it can be applied to this pin and the internal  
reference disabled via the control register. The default for this pin is a reference input.  
MON_OUT  
Analog Output Pin. When the monitor function is enabled on the AD5390/AD5391, the MON_OUT acts as the output of  
a 16-to-1 channel multiplexer, which can be programmed to multiplex any channel output to the MON_OUT pin. When  
the monitor function is enabled on the AD5392, the MON_OUT acts as the output of an 8-to-1 channel multiplexer that  
can be programmed to multiplex any channel output to the MON_OUT pin. The MON_OUT pin output impedance is  
typically 500 Ω and is intended to drive a high input impedance such as that exhibited by SAR ADC inputs.  
MON_IN (1, 2)  
Monitor Input Pins. The AD539x contains two monitor input pins to which the user can connect input signals (within the  
maximum ratings of the device) for monitoring purposes. Any of the signals applied to the MON_IN pins along with the  
output channels can be switched to the MON_OUT pin via software. An external ADC, for example, can be used to  
monitor these signals.  
SYNC/AD0  
DCEN/AD1  
Serial Interface Pin.This is the frame synchronization input signal for the serial interface. When taken low, the internal  
counter is enabled to count the required number of clocks before the addressed register is updated.  
In I2C mode, AD0 acts as a hardware address pin.  
Interface Control Pin. Operation is determined by the interface select bit SPI/I2C.  
Serial Interface Mode: Daisy-Chain Select Input (level-sensitive, active high). When high, this pin enables daisy-chain  
operation to allow a number of devices to be cascaded together.  
I2C Mode: This pin acts as a hardware address pin used in conjunction with AD0 to determine the software address for  
this device on the I2C bus.  
SDO  
Serial Data Output. Three-statable CMOS output. SDO can be used for daisy-chaining a number of devices together. Data  
is clocked out on SDO on the rising edge of SCLK and is valid on the falling edge of SCLK.  
BUSY  
Digital CMOS Output. BUSY goes low during internal calculations of the data (x2) loaded to the DAC data register. During  
this time, the user can continue writing new data to further the x1, c, and m registers (these are stored in a FIFO), but no  
further updates to the DAC registers and DAC outputs can take place. If LDAC is taken low while BUSY is low this event is  
stored. BUSY also goes low during power-on reset and when the RESET pin is low. During this time the interface is  
disabled and any events on LDAC are ignored. A CLR operation also brings BUSY low.  
LDAC  
Load DAC Logic Input (active low). If LDAC is taken low while BUSY is inactive (high), the contents of the input registers  
are transferred to the DAC registers and the DAC outputs are updated. If LDAC is taken low while BUSY is active and  
internal calculations are taking place, the LDAC event is stored and the DAC registers are updated when BUSY goes  
inactive. However, any events on LDAC during power-on reset or RESET are ignored.  
CLR  
Asynchronous Clear Input. The CLR input is falling edge sensitive. While CLR is low, all LDAC pulses are ignored. When  
CLR is activated, all channels are updated with the data contained in the CLR code register. BUSY is low for a duration of  
20 µs (AD5390/91) and 15 µs (AD5392) while all channels are being updated with the CLR code.  
RESET  
Asynchronous Digital Reset Input (falling edge sensitive). The function of this pin is equivalent to that of the power-on  
reset generator. When this pin is taken low, the state machine initiates a reset sequence to digitally reset the x1, m, c, and  
x2 registers to their default power-on values. This sequence takes 270 µs max. This falling edge of RESET initiates the  
RESET process and BUSY goes low for the duration, returning high when RESET is complete. While BUSY is low, all  
interfaces are disabled and all LDAC pulses are ignored. When BUSY returns high, the part resumes normal operation  
and the status of the RESET pin is ignored until the next falling edge is detected.  
Rev. A | Page 16 of 44  
AD5390/AD5391/AD5392  
Mnemonic  
Function  
PD  
Power-Down (level-sensitive, active high). Used to place the device in low power mode, in which the device consumes  
1 µA analog current and 20 µA digital current. In power-down mode, all internal analog circuitry is placed in low power  
mode; the analog output is configured as high impedance outputs or provides a 100 kΩ load to ground, depending on  
how the power-down mode is configured. The serial interface remains active during power-down.  
SPI/I2C  
Interface Select Input Pin. When this input is low, I2C mode is selected. When this input is high, SPI mode is selected.  
SCLK/SCL  
Interface CLOCK Input Pin. In SPI-compatible serial interface mode, this pin acts as a serial clock input. It operates at  
clock speeds up to 50 MHz.  
I2C mode: In I2C mode, this pin performs the SCL function, clocking data into the device. Data transfer rate in I2C mode is  
compatible with both 100 kHz and 400 kHz operating modes.  
DIN/SDA  
Interface Data Input Pin.  
SPI/I2C = 1: This pin acts as the serial data input. Data must be valid on the falling edge of SCLK.  
SPI/I2C = 0, I2C mode: In I2C mode, this pin is the serial data pin (SDA) operating as an open drain input/output.  
Rev. A | Page 17 of 44  
AD5390/AD5391/AD5392  
TERMINOLOGY  
Relative Accuracy  
Output Voltage Settling Time  
Relative accuracy or endpoint linearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after  
adjusting for zero-scale error and full-scale error and is  
expressed in least significant bits (LSBs).  
This is the amount of time it takes for the output of a DAC to  
settle to a specified level for a 1/4 to 3/4 full-scale input change  
and measured from the rising edge of  
.
BUSY  
Digital-to-Analog Glitch Energy  
This is the amount of energy injected into the analog output at  
the major code transition. It is specified as the area of the glitch  
in nV-s. It is measured by toggling the DAC register data  
between 0x1FFF and 0x2000.  
Differential Nonlinearity  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity.  
DAC-to-DAC Crosstalk  
DAC-to-DAC crosstalk is defined as the glitch impulse that  
appears at the output of one DAC due to both the digital change  
and subsequent analog output change at another DAC. The  
victim channel is loaded with midscale, and DAC-to-DAC  
crosstalk is specified in nV-s.  
Zero-Scale Error  
Zero-scale error is the error in the DAC output voltage when all  
0s are loaded into the DAC register. Ideally, with all 0s loaded to  
the DAC and m = all 1s, c = 2n1, VOUT(Zero Scale) = 0 V.  
Zero-scale error is a measure of the difference between VOUT  
(actual) and VOUT (ideal) expressed in mV. It is mainly caused  
by offsets in the output amplifier.  
Digital Crosstalk  
The glitch impulse transferred to the output of one converter  
due to a change in the DAC register code of another converter  
is defined as the digital crosstalk and is specified in nV-s.  
Offset Error  
Offset error is a measure of the difference between VOUT  
(actual) and VOUT (ideal) expressed in mV in the linear region  
of the transfer function. Offset error is measured on the  
AD539x-5 with code 32 loaded in the DAC register and with  
code 64 loaded in the DAC register on the AD539x-3.  
Digital Feedthrough  
When the device is not selected, high frequency logic activity on  
the devices digital inputs can be capacitively coupled both  
across and through the device to show up as noise on the  
VOUT pins. It can also be coupled along the supply and ground  
lines. This noise is digital feedthrough.  
Gain Error  
Gain error is specified in the linear region of the output range  
between VOUT = 10 mV and VOUT = AVDD 50 mV. It is the  
deviation in slope of the DAC transfer characteristic from ideal  
and is expressed in % FSR with the DAC output unloaded.  
Output Noise Spectral Density  
This is a measure of internally generated random noise. Ran-  
dom noise is characterized as a spectral density (voltage per  
Hz). It is measured by loading all DACs to midscale and  
measuring noise at the output. It is measured in nV/(Hz)1/2 in  
a 1 Hz bandwidth at 10 kHz.  
DC Crosstalk  
This is the dc change in the output level of one DAC at midscale  
in response to a full-scale code (all 0s to all 1s and vice versa)  
and the output change of all other DACs. It is expressed in LSBs.  
DC Output Impedance  
This is the effective output source resistance. It is dominated by  
package lead resistance.  
Rev. A | Page 18 of 44  
 
AD5390/AD5391/AD5392  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.0  
1.00  
0.75  
0.50  
0.25  
0
AV = DV = 5.5V  
DD DD  
VREF = 2.5V  
= 25°C  
1.5  
1.0  
T
A
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.25  
–0.50  
–0.75  
–1.00  
0
4096  
8192  
12288  
16384  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
INPUT CODE  
INPUT CODE  
Figure 11. AD5390-5/AD5392-5 Typical INL Plot  
Figure 14. Typical AD5391-5 INL Plot  
2.0  
1.5  
1.00  
0.75  
0.50  
0.25  
0
AV = DV = 3V  
DD DD  
VREF = 1.25V  
T
= 25°C  
A
1.0  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.25  
–0.50  
–0.75  
–1.00  
0
4096  
8192  
12288  
16384  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
INPUT CODE  
INPUT CODE  
Figure 12. AD5390-3/AD5392-5 INL Plot  
Figure 15. Typical AD5391-3 INL Plot  
40  
14  
12  
10  
8
AV = 5.5V  
REFIN = 2.5V  
DD  
AV = 5V  
DD  
REFOUT = 2.5V  
T
= 25°C  
TEMP. RANGE = 25°C TO 85°C  
SAMPLE SIZE = 162  
35  
30  
25  
20  
15  
10  
5
A
6
4
2
0
0
–2  
–1  
0
1
2
–5.0 –4.0 –3.0 –2.0 –1.0  
0
1.0 2.0 3.0 4.0 5.0  
INL ERROR DISTRIBUTION (LSB)  
–4.5 –3.5 –2.5 –1.5 –0.5 0.5 1.5 2.5 3.5 4.5  
REFERENCE DRIFT (ppm/°C)  
Figure 13. AD5390/AD5392 INL Histogram Plot  
Figure 16. AD539x REFOUT Temperature Coefficient  
Rev. A | Page 19 of 44  
 
AD5390/AD5391/AD5392  
6
5
FULL SCALE  
WR  
BUSY  
AV = DV = 5V  
DD  
DD  
VREF = 2.5V  
3/4 SCALE  
T
= 25°C  
4
A
MIDSCALE  
3
AV = DV = 5V  
DD DD  
VREF = 2.5V  
2
1/4 SCALE  
T
= 25°C  
A
EXITS SOFT PD  
TO MIDSCALE  
VOUT  
1
ZERO SCALE  
0
–1  
–40 –20 –10  
–5  
–2  
0
2
5
10  
20  
40  
CURRENT (mA)  
Figure 20. AD539x-5 Source and Sink Capability  
Figure 17. AD539x Exiting Soft Power-Down  
0.20  
0.15  
0.10  
0.05  
0
AV = 5V  
DD  
VREF = 2.5V  
PD  
T
= 25°C  
A
ERROR AT ZERO SINKING CURRENT  
–0.05  
–0.10  
–0.15  
–0.20  
(V –VOUT) AT FULL-SCALE SOURCING CURRENT  
DD  
AV = DV = 5V  
DD  
DD  
VREF = 2.5V  
VOUT  
T
= 25°C  
A
EXITS HARDWARE PD  
TO MIDSCALE  
0
0.25  
0.50  
0.75  
1.00  
/I  
1.25  
1.50  
1.75  
2.00  
I
(mA)  
SOURCE SINK  
Figure 18. AD539x Exiting Hardware Power-Down  
Figure 21. Headroom at Rails vs. Source/Sink Current  
2.539  
2.538  
2.537  
2.536  
2.535  
2.534  
2.533  
2.532  
2.531  
2.530  
2.529  
2.528  
2.527  
2.526  
2.525  
2.524  
2.523  
AV = DV = 5V  
DD DD  
VREF = 2.5V  
AV = DV = 5V  
VREF = 2.5V  
DD  
DD  
T
= 25°C  
A
14ns/SAMPLE NUMBER  
1 LSB CHANGE AROUND MIDSCALE  
GLITCH IMPULSE = 10nV-s  
T
= 25°C  
A
POWER SUPPLY RAMP RATE = 10ms  
VOUT  
AV  
DD  
0
50 100 150 200 250 300 350 400 450 500 550  
SAMPLE NUMBER  
Figure 19. AD539x Power-Up Transient  
Figure 22. AD539x-5 Glitch Impulse Energy  
Rev. A | Page 20 of 44  
AD5390/AD5391/AD5392  
1.254  
1.253  
1.252  
1.251  
1.250  
1.249  
1.248  
1.247  
1.246  
1.245  
DV = 5.5V  
DD  
AV = DV = 3V  
DD DD  
VREF = 1.25V  
V
V
T
= DV  
IH  
IL  
A
DD  
= DGND  
= 25  
10  
8
T
= 25°C  
A
°C  
14ns/SAMPLE NUMBER  
1 LSB CHANGE AROUND MIDSCALE  
GLITCH IMPULSE = 5nV-s  
6
4
2
0
0.4  
0.5  
0.6  
DI (mA)  
0.7  
0.8  
0.9  
0
50 100 150 200 250 300 350 400 450 500 550  
SAMPLE NUMBER  
DD  
Figure 23. AD539x-3 Glitch Impulse  
Figure 26. AD539x DIDD Histogram  
2.456  
AV = DV = 5V  
DD DD  
VREF = 2.5V  
T
= 25°C  
AV = DV = 5V  
VREF = 2.5V  
2.455  
2.454  
2.453  
2.452  
2.451  
2.450  
2.449  
A
DD  
DD  
14ns/SAMPLE NUMBER  
T
= 25°C  
A
VOUT  
0
50 100 150 200 250 300 350 400 450 500 550  
SAMPLE NUMBER  
Figure 24. AD539x Slew Rate Boost Off  
Figure 27. AD539x Adjacent Channel Crosstalk  
600  
500  
400  
300  
200  
100  
0
AV = 5V  
DD  
T
= 25°C  
A
REFOUT DECOUPLED  
WITH 100nF CAPACITOR  
AV = DV = 5V  
DD  
DD  
VOUT  
VREF = 2.5V  
= 25°C  
T
A
REFOUT = 2.5V  
REFOUT = 1.25V  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 25. AD539x Slew Rate Boost On  
Figure 28. AD539x REFOUT Noise Spectral Density  
Rev. A | Page 21 of 44  
AD5390/AD5391/AD5392  
6
5
AV = DV = 5V  
AV = DV = 3V  
DD DD  
VREF = 1.25V  
DD  
DD  
T
= 25°C  
A
DAC LOADED WITH MIDSCALE  
EXTERNAL REFERENCE  
Y AXIS = 5µV/DIV  
T
= 25°C  
A
X AXIS = 100ms/DIV  
4
3/4 SCALE  
FULL SCALE  
3
MIDSCALE  
2
1
0
ZERO SCALE  
–5  
1/4 SCALE  
–1  
–40 –20 –10  
–2  
0
2
5
10  
20  
40  
CURRENT (mA)  
Figure 29. 0.1 Hz to 10 Hz Output Noise Plot  
Figure 30. AD539x-3 Source and Sink Current Capability  
Rev. A | Page 22 of 44  
AD5390/AD5391/AD5392  
FUNCTIONAL DESCRIPTION  
The digital input transfer function for each DAC can be  
represented as  
DAC ARCHITECTURE—GENERAL  
The AD5390/AD5391 are complete single-supply, 16-channel,  
voltage output DACs offering a resolution of 14 bits and 12 bits,  
respectively. The AD5392 is a complete single-supply, 8-channel,  
voltage output DAC offering 14-bit resolution. All devices are  
available in 64-lead LFCSP and 52-lead LQFP packages and  
feature serial interfaces. This family includes an internal select-  
able 1.25 V/2.5 V, 10 ppm/°C reference that can be used to drive  
the buffered reference inputs (alternatively, an external refer-  
ence can be used to drive these inputs). All channels have an on-  
chip output amplifier with rail-to-rail output capable of driving  
a 5 kΩ in parallel with a 200 pF load.  
x2 =  
where:  
(
(m + 2)/2n  
)
× x1+  
(
c 2n1  
)
x2 is the data-word loaded to the resistor-string DAC.  
x1 is the 12-bit and 14-bit data-word written to the DAC input  
register.  
m is the 12-bit and 14-bit gain coefficient (default is all 0x3FFE  
on the AD5390/AD5392 and 0xFFE on the AD5391). The LSB  
of the gain coefficient is zero.  
The architecture of a single DAC channel consists of a 12-bit  
and 14-bit resistor-string DAC followed by an output buffer  
amplifier operating at a gain of 2. This resistor-string archi-  
tecture guarantees DAC monotonicity. The 12-bit and 14-bit  
binary digital code loaded to the DAC register deter-mines at  
what node on the string the voltage is tapped off before being  
fed to the output amplifier. Each channel on these devices con-  
tains independent offset and gain control registers, allowing the  
user to digitally trim offset and gain.  
n = DAC resolution (n = 14 for the AD5390/AD5392 and  
n = 12 for the AD5391).  
c is the 12-bit and 14-bit offset coefficient (default is 0x2000 on  
the AD5390/AD5392 and 0x800 on the AD5391).  
The complete transfer function for these devices can be  
represented as  
VOUT = 2×VREF × x2/2n  
AVDD  
VREF  
x1 INPUT  
REG  
where:  
DAC  
REG  
14-BIT  
DAC  
INPUT  
DATA  
m REG  
c REG  
x2  
x2 is the data-word loaded to the resistor-string DAC.  
VOUT  
R
R
V
REF is the reference voltage applied to the REFIN/REFOUT pin  
on the DAC when an external reference is used, 2.5 V for  
specified performance on the AD539x-5 products and 1.25 V  
on the AD539x-3 products.  
Figure 31. AD5390/92 Single-Channel Architecture  
These registers let the user calibrate out errors in the complete  
signal chain including the DAC using the internal m and c  
registers, which hold the correction factors. All channels are  
double-buffered, allowing synchronous updating of all channels  
using the  
pin. Figure 31 shows a block diagram of a  
LDAC  
single channel on the AD5390/AD5391/AD5392.  
Rev. A | Page 23 of 44  
 
 
AD5390/AD5391/AD5392  
DATA DECODING—AD5391  
DATA DECODING—AD5390/AD5392  
The AD5391contains an internal 12-bit data bus. The input  
data is decoded depending on the value loaded to the REG1  
and REG0 bits of the input serial register. The input data from  
the serial input register is loaded into the addressed DAC input  
register, offset (c) register, or gain (m) register. The format data  
and the offset (c) and gain (m) register contents are shown in  
Table 14 to Table 16.  
The AD5390/AD5392 contain an internal 14-bit data bus. The  
input data is decoded depending on the data loaded to the  
REG1 and REG0 bits of the input serial register. This is shown  
in Table 10.  
Data from the serial input register is loaded into the addressed  
DAC input register, offset (c) register, or gain (m) register. The  
format data, and the offset (c) and gain (m) register contents are  
shown in Table 11 to Table 13.  
Table 14. AD5391 DAC Data Format (REG1 = 1, REG0 = 1)  
DB11 to DB0  
DAC Output (V)  
2 VREF × (4095/4096)  
2 VREF × (4094/4096)  
2 VREF × (2049/4096)  
2 VREF × (2048/4096)  
2 VREF × (2047/4096)  
2 VREF × (1/4096)  
0
Table 10. Register Selection  
1111  
1111  
1000  
1000  
0111  
0000  
0000  
1111  
1111  
0000  
0000  
1111  
0000  
0000  
1111  
1110  
0001  
0000  
1111  
0001  
0000  
REG1  
REG0  
Register Selected  
1
1
0
0
1
0
1
0
Input data register (x1)  
Offset register (c)  
Gain register (m)  
Special function registers (SFRs)  
Table 11. AD5390/AD5392 DAC Data Format  
(REG1 = 1, REG0 = 1)  
DB13 to DB0  
Table 15. AD5391 Offset Data Format (REG1 = 1, REG0 = 0)  
DB11 to DB0  
DAC Output (V)  
Offset (LSB)  
+2048  
+2047  
+1  
+0  
–1  
11 1111  
11 1111  
10 0000  
10 0000  
01 1111  
00 0000  
00 0000  
1111  
1111  
1110  
0001  
0000  
1111  
0001  
0000  
2 VREF × (16383/16384)  
2 VREF × (16382/16384)  
2 VREF × (8193/16384)  
2 VREF × (8192/16384)  
2 VREF × (8191/16384)  
2 VREF × (1/16384)V  
0
1111  
1111  
1000  
1000  
0111  
0000  
0000  
1111  
1111  
0000  
0000  
1111  
0000  
0000  
1111  
1110  
0001  
0000  
1111  
0001  
0000  
1111  
0000  
0000  
1111  
0000  
0000  
–2047  
–2048  
Table 12. AD5390/AD5392 Offset Data Format  
(REG1 = 1, REG0 = 0)  
Table 16. AD5391 Gain Data Format (REG1 = 0, REG0 = 1)  
DB11 to DB0  
Gain Factor  
DB13 to DB0  
Offset (LSB)  
+8192  
+8191  
+1  
1111  
1011  
0111  
0011  
1111  
1111  
1111  
1111  
0000  
1110  
1110  
1110  
1110  
0000  
1
111111  
111111  
100000  
1111  
1111  
0000  
0000  
1111  
0000  
0000  
1111  
1110  
0001  
0000  
1111  
0001  
0000  
0.75  
0.5  
0.25  
0
100000  
+0  
0000  
011111  
–1  
000000  
000000  
–8191  
–8192  
Table 13. AD5390/AD5392 Gain Data Format  
(REG1 = 0, REG0 = 1)  
DB13 to DB0  
Gain Factor  
11 1111  
10 1111  
01 1111  
00 1111  
1111  
1111  
1111  
1111  
0000  
1110  
1110  
1110  
1110  
0000  
1
0.75  
0.5  
0.25  
0
00 0000  
Rev. A | Page 24 of 44  
 
 
 
 
 
 
AD5390/AD5391/AD5392  
INTERFACES  
Logic 1 pin to configure this mode of operation. The serial  
interface control pins are described in Table 17.  
The AD5390/AD5391/AD5392 contain a serial interface that  
can be programmed to be either DSP-, SPI-, and MICROWIRE-  
compatible, or I2C-compatible. The SPI/  
the interface mode.  
pin is used to select  
Table 17. Serial Interface Control Pins  
2
I C  
Pin  
Description  
SYNC, DIN, SCLK Standard 3-wire interface pins.  
To minimize both the power consumption of the device and  
the on-chip digital noise, the interface powers up fully only  
when the device is being written to—that is, on the falling  
DCEN  
SDO  
Selects standalone mode or daisy-chain  
mode.  
Data out pin for daisy-chain mode.  
edge of  
.
SYNC  
Figure 2 to Figure 4 show timing diagrams for a serial write to  
the AD5390/AD5391/AD5392 in both standalone and daisy-  
chain mode. The 24-bit data-word format for the serial interface  
is shown in Table 18 to Table 20. Descriptions of the bits follow  
in Table 21.  
DSP-, SPI-, AND MICROWIRE-COMPATIBLE SERIAL  
INTERFACE  
The serial interface can be operated with a minimum of three  
wires in standalone mode or four wires in daisy-chain mode.  
Daisy-chaining allows many devices to be cascaded together to  
2
increase system channel count. The SPI/  
pin is tied to a  
I C  
Table 18. AD5390 16-Channel, 14-Bit DAC Serial Input Register Configuration  
MSB  
LSB  
A
/B  
W
R/  
0
0
A3  
A2  
A1  
A0  
REG1  
REG0  
DB13  
DB12  
DB11  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
Table 19. AD5391 16-Channel, 12-Bit DAC Serial Input Register Configuration  
MSB  
LSB  
A
/B  
W
R/  
0
0
A3  
A2  
A1  
A0  
REG1  
REG0  
DB11  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
X
X
Table 20. AD5392 8-Channel, 14-Bit DAC Serial Input Register Configuration  
MSB  
LSB  
DB0  
A
/B  
W
R/  
0
0
0
A2  
A1  
A0  
REG1  
REG0  
DB13  
DB12  
DB11  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
Table 21. Serial Input Register Configuration Bit Descriptions  
Bit  
Description  
A/B  
When toggle mode is enabled, this bit selects whether the data write is to the A or B register. With toggle mode  
disabled, this bit should be set to zero to select the A data register.  
R/W  
The read or write control bit.  
A3 to A0  
REG1 and REG0  
DB13 to DB0  
X
Used to address the input channels.  
Select the register to which data is written, as outlined in Table 10.  
Contain the input data-word.  
Don’t care condition.  
Rev. A | Page 25 of 44  
 
 
 
 
 
AD5390/AD5391/AD5392  
If  
is taken high before 24 clocks are clocked into the part,  
Standalone Mode  
SYNC  
it is considered a bad frame and the data is discarded.  
By connecting the daisy-chain enable (DCEN) pin low,  
standalone mode is enabled. The serial interface works with  
both a continuous and a noncontinuous serial clock. The first  
The serial clock can be either a continuous or a gated clock. A  
continuous SCLK source can be used only if the  
can be  
SYNC  
falling edge of  
starts the write cycle and resets a counter  
SYNC  
held low for the correct number of clock cycles. In gated clock  
mode, a burst clock containing the exact number of clock cycles  
that counts the number of serial clocks to ensure that the  
correct number of bits is shifted into the serial shift register.  
must be used and  
taken high after the final clock to latch  
SYNC  
Any further edges on  
except for a falling edge are  
SYNC  
the data.  
ignored until 24 bits are clocked in. Once 24 bits have been  
shifted in, the SCLK is ignored. For another serial transfer to  
take place, the counter must be reset by the falling edge of  
Readback Mode  
Readback mode is invoked by setting the R/ bit = 1 in the  
W
.
SYNC  
serial input register write sequence. With R/ = 1, Bits A3 to A0  
W
in association with Bits REG1 and REG0 select the register to be  
read. The remaining data bits in the write sequence are don’t  
care bits. During the next SPI write, the data appearing on the  
SDO output contains the data from the previously addressed  
register. For a read of a single register, the NOP command can  
be used in clocking out the data from the selected register on  
SDO.  
Daisy-Chain Mode  
For systems that contain several devices, the SDO pin can be  
used to daisy-chain the devices together. This daisy-chain mode  
can be useful in system diagnostics and for reducing the  
number of serial interface lines.  
By connecting the DCEN pin high, daisy-chain mode is  
enabled. The first falling edge of  
starts the write cycle.  
SYNC  
The SCLK is continuously applied to the input shift register  
when is low. If more than 24 clock pulses are applied,  
The readback diagram in Figure 32 shows the readback  
sequence. For example, to read back the m register of Channel 0  
on the AD539x, the following sequence should be implemented.  
First, write 0x404XXX to the AD539x input register. This  
configures the AD539x for read mode with the m register of  
Channel 0 selected. Note that all Data Bits DB13 to DB0 are  
don’t care bits. Follow this with a second write, a NOP  
condition, and 0x000000. During this write, the data from the m  
register is clocked out on the DOUT line—that is, data clocked  
out contains the data from the m register in Bits DB13 to DB0,  
and the top 10 bits contain the address information as  
SYNC  
the data ripples out of the shift register and appears on the SDO  
line. This data is clocked out on the rising edge of SCLK and is  
valid on the falling edge. By connecting the SDO of the first  
device to the DIN input on the next device in the chain, a  
multidevice interface is constructed. For each device in the  
system, 24 clock pulses are required. Therefore, the total  
number of clock cycles must equal 24N where N is the total  
number of AD539x devices in the chain.  
previously written. In readback mode, the  
signal must  
SYNC  
When the serial transfer to all devices is complete,  
is  
SYNC  
frame the data. Data is clocked out on the rising edge of SCLK  
and is valid on the falling edge of the SCLK signal. If the SCLK  
idles high between the write and read operations of a readback,  
then the first bit of data is clocked out on the falling edge of  
taken high. This latches the input data in each device in the  
daisy chain and prevents any further data from being clocked  
into the input shift register.  
.
SYNC  
SCLK  
24  
48  
SYNC  
DIN  
DB23  
DB0  
DB23  
DB0  
INPUT WORD SPECIFIES REGISTER TO BE READ  
NOP CONDITION  
SDO  
DB23  
DB0  
DB23  
DB0  
UNDEFINED  
SELECTED REGISTER DATA CLOCKED OUT  
Figure 32. AD539x Readback Operation  
Rev. A | Page 26 of 44  
 
AD5390/AD5391/AD5392  
I2C SERIAL INTERFACE  
The AD5390/AD5391/AD5392 products feature an I2C-  
compatible 2-wire interface consisting of a serial data line  
(SDA) and a serial clock line (SCL). SDA and SCL facilitate  
communication between the DACs and the master at rates up  
to 400 kHz. Figure 4 shows the 2-wire interface timing diagram.  
REPEATED START CONDITION  
A repeated START (Sr) condition may indicate a change of data  
direction on the bus. Sr may be used when the bus master is  
writing to several I2C devices and does not want to relinquish  
control of the bus.  
When selecting the I2C operating mode by configuring the  
ACKNOWLEDGE BIT (ACK)  
pin to Logic 0, the device is connected to the I2C bus  
2
SPI/  
I C  
The acknowledge bit (ACK) is the ninth bit attached to any  
8-bit data-word. An ACK is always generated by the receiving  
device. The AD539x devices generate an ACK when receiving  
an address or data by pulling SDA low during the ninth clock  
period.  
as a slave device (that is, no clock is generated by the device).  
The AD5390/AD5391/AD5392 have a 7-bit slave address  
1010 1(AD1)(AD0). The five MSBs are hard-coded and the  
two LSBs are determined by the state of the AD1 and AD0  
pins. The hardware configuration facility for the AD1 and AD0  
pins allows four of these devices to be configured on the bus.  
Monitoring the ACK allows for detection of unsuccessful data  
transfers. An unsuccessful data transfer occurs if a receiving  
device is busy or if a system fault has occurred. In the event of  
an unsuccessful data transfer, the bus master should reattempt  
communication.  
I2C DATA TRANSFER  
One data bit is transferred during each SCL clock cycle. The  
data on SDA must remain stable during the high period of the  
SCL clock pulse. Changes in SDA while SCL is high are control  
signals that configure START and STOP Conditions. Both SDA  
and SCL are pulled high by the external pull-up resistors when  
the I2C bus is not busy.  
AD539x SLAVE ADDRESSES  
A bus master initiates communication with a slave device by  
issuing a START condition followed by the 7-bit slave address.  
When idle, the AD539x device waits for a START condition  
followed by its slave address. The LSB of the address word is the  
START AND STOP CONDITIONS  
A master device initiates communication by issuing a START  
condition. A START condition is a high-to-low transition on  
SDA with SCL high. A STOP condition is a low-to-high  
transition on SDA, while SCL is high. A START condition from  
the master signals the beginning of a transmission to the  
AD539x. The STOP condition frees the bus. If a repeated  
START condition (Sr) is generated instead of a STOP condition,  
the bus remains active.  
read/write (R/ ) bit. The AD539x devices are receive devices  
W
only, and R/ = 0 when communicating with them. After  
W
receiving the proper address 1010 1(AD1) (AD0), the AD539x  
issues an ACK by pulling SDA low for one clock cycle. The  
AD539x has four user-programmable addresses determined by  
the AD1 and AD0 bits.  
Rev. A | Page 27 of 44  
 
AD5390/AD5391/AD5392  
I2C WRITE OPERATION  
in the DAC to be addressed and is also acknowledged by the  
DAC. Address Bits A3 to A0 address all channels on the  
AD5390/AD5391. Address Bits A2 to A0 address all channels on  
the AD5392. Address Bit A3 is a zero on the AD5392. Two bytes  
of data then are written to the DAC, as shown in Figure 33. A  
STOP condition follows. This lets the user update a single  
channel within the AD539x at any time and requires four bytes  
of data to be transferred from the master.  
There are three specific modes in which data can be written to  
the AD539x family of DACs.  
4-BYTE MODE  
When writing to the AD539x DACs, begin with an address byte  
(R/W = 0), after which the DAC acknowledges that it is pre-  
pared to receive data by pulling SDA low. The address byte is  
followed by the pointer byte; this addresses the specific channel  
SCL  
AD1  
AD0  
R/W  
0
0
0
0
A3  
A2  
A1  
A0  
1
0
1
0
1
SDA  
START  
CONDITION  
BY  
ACK  
BY  
CONVERTER  
MSB  
ACK  
BY  
CONVERTER  
ADDRESS BYTE  
POINTER BYTE  
MASTER  
SCL  
SDA  
REG1 REG0 MSB  
MOST SIGNIFICANT DATA BYTE  
LSB  
MSB  
LSB  
ACK  
BY  
ACK  
BY  
CONVERTER  
STOP  
CONDITION  
BY  
LEAST SIGNIFICANT DATA BYTE  
CONVERTER  
MASTER  
Figure 33. The 4-Byte Mode I2C Write Operation  
Rev. A | Page 28 of 44  
 
 
AD5390/AD5391/AD5392  
AD5390/AD5391. Address Bits A2 to A0 address all channels on  
the AD5392. Address Bit A3 is a zero on the AD5392. This is  
then followed by the two data bytes. REG1 and REG0 determine  
the register to be updated.  
3-BYTE MODE  
The 3-byte mode lets the user update more than one channel in  
a write sequence without having to write the device address byte  
each time. The device address byte is required only once and  
subsequent channel updates require the pointer byte and the  
data bytes. In 3-byte mode, the user begins with an address byte  
If a STOP condition is not sent following the data bytes,  
another channel can be updated by sending a new pointer  
byte followed by the data bytes. This mode requires only three  
bytes to be sent to update any channel once the device has  
been addressed initially and reduces the software overhead in  
updating the AD539x channels. A STOP condition at any time  
exits this mode. Figure 34 shows a typical configuration.  
(R/ = 0) after which the DAC acknowledges that it is  
W
prepared to receive data by pulling SDA low. The address byte is  
followed by the pointer byte; this addresses the specific channel  
in the DAC to be addressed and is also acknowledged by the  
DAC. Address Bits A3 to A0 address all channels on the  
SCL  
1
0
1
0
1
AD1  
AD0  
R/W  
0
0
0
0
A3  
A2  
A1  
A0  
SDA  
START  
CONDITION  
BY  
ACK  
BY  
CONVERTER  
MSB  
ACK  
BY  
CONVERTER  
ADDRESS BYTE  
POINTER BYTE FOR CHANNEL N  
MASTER  
SCL  
SDA  
REG1 REG0 MSB  
LSB  
MSB  
LSB  
ACK  
BY  
ACK  
BY  
MOST SIGNIFICANT DATA BYTE  
LEAST SIGNIFICANT DATA BYTE  
CONVERTER  
CONVERTER  
DATA FOR CHANNEL N  
SCL  
SDA  
0
0
0
0
A3  
A2  
A1  
A0  
MSB  
ACK  
BY  
CONVERTER  
POINTER BYTE FOR CHANNEL NEXT CHANNEL  
SCL  
SDA  
REG1 REG0 MSB  
MOST SIGNIFICANT DATA BYTE  
LSB  
MSB  
LSB  
ACK  
BY  
ACK  
BY  
CONVERTER  
STOP  
CONDITION  
BY  
LEAST SIGNIFICANT DATA BYTE  
CONVERTER  
MASTER  
DATA FOR CHANNEL NEXT CHANNEL  
Figure 34. The 3-Byte Mode I2C Write Operation  
Rev. A | Page 29 of 44  
 
 
AD5390/AD5391/AD5392  
2-BYTE MODE  
The REG0 and REG1 bits in the data byte determine the register  
to be updated. In this mode, following the initialization, only the  
two data bytes are required to update a channel. The channel  
address automatically increments from Address 0 to the final  
address and then returns to the normal 3-byte mode of opera-  
tion. This mode allows transmission of data to all channels in  
one block and reduces the software overhead in configuring all  
channels. A STOP condition at any time exits this mode. Toggle  
mode of operation is not supported in 2-byte mode. Figure 35  
shows a typical configuration.  
The 2-byte mode lets the user update channels sequentially  
following initialization of this mode. The device address byte is  
required only once and the address pointer is configured for  
autoincrement or burst mode.  
The user must begin with an address byte (R/ = 0), after  
W
which the DAC acknowledges that it is prepared to receive data  
by pulling SDA low. The address byte is followed by a specific  
pointer byte (0xFF), which initiates the burst mode of  
operation. The address pointer initializes to Channel 0 and the  
data following the pointer is loaded to Channel 0. The address  
pointer automatically increments to the next address.  
.
SCL  
1
0
1
0
1
AD1  
AD0  
R/W  
A7=1 A6=1 A5=1  
MSB  
A4=1 A3=1 A2=1  
POINTER BYTE  
A1=1 A0=1  
SDA  
START  
CONDITION  
BY  
ACK  
BY  
ACK  
BY  
ADDRESS BYTE  
CONVERTER  
CONVERTER  
MASTER  
SCL  
SDA  
REG1 REG0 MSB  
MOST SIGNIFICANT DATA BYTE  
LSB  
MSB  
LSB  
ACK  
BY  
ACK  
BY  
LEAST SIGNIFICANT DATA BYTE  
CONVERTER  
CONVERTER  
CHANNEL 0 DATA  
SCL  
SDA  
REG1 REG0 MSB  
MOST SIGNIFICANT DATA BYTE  
LSB  
MSB  
LSB  
ACK  
BY  
ACK  
BY  
LEAST SIGNIFICANT DATA BYTE  
CONVERTER  
CONVERTER  
CHANNEL 1 DATA  
SCL  
SDA  
REG1 REG0 MSB  
MOST SIGNIFICANT DATA BYTE  
LSB  
MSB  
LSB  
ACK  
BY  
ACK  
BY  
STOP  
CONDITION  
BY  
LEAST SIGNIFICANT DATA BYTE  
CONVERTER  
CONVERTER  
MASTER  
CHANNEL N DATA FOLLOWED BY STOP  
Figure 35. 2-Byte Mode I2C Write Operation  
Rev. A | Page 30 of 44  
 
 
AD5390/AD5391/AD5392  
Soft Power-Down  
REG1 = REG0 = 0, A3–A0 =1000  
DB13–DB0 = Don’t Care.  
AD539x ON-CHIP SPECIAL FUNCTION REGISTERS  
The AD539x family of parts contains a number of special  
function registers (SFRs) as shown in Table 22. SFRs are  
addressed with REG1 = 0 and REG0 = 0 and are decoded using  
Address Bits A3–A0.  
Executing this instruction performs a global power-down,  
which puts all channels into a low power mode, reducing analog  
current to 1 µA maximum and digital power consumption to  
20 µA maximum. In power-down mode, the output amplifier  
can be configured as a high impedance output or can provide a  
100 kΩ load to ground. The contents of all internal registers are  
retained in power-down mode.  
Table 22. SFR Register Functions (REG1 = 0, REG0 = 0)  
R/ W  
A3  
A2  
A1  
A0  
Function  
X
0
0
0
0
0
1
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
1
1
0
1
0
0
1
0
0
0
0
1
1
0
1
0
0
1
0
0
0
1
NOP (no operation)  
Write CLR code  
Soft CLR  
Soft power-down  
Soft power-up  
Control register write  
Control register read  
Monitor channel  
Soft reset  
Soft Power-Up  
REG1 = REG0 = 0, A3–A0 =1001  
DB13–DB0 = Don’t Care.  
This instruction is used to power up the output amplifiers and  
the internal references. The time to exit power-down mode is  
8 µs. The hardware power-down and software functions are  
internally combined in a digital OR function.  
SFR Commands  
NOP (No Operation)  
REG1 = REG0 = 0, A3–A0 = 0000  
Soft Reset  
REG1 = REG0 = 0, A5–A0 = 001111  
DB13–DB0 = Don’t Care.  
Performs no operation, but is useful in readback mode to clock  
This instruction is used to implement a software reset. All  
internal registers are reset to their default values, which  
correspond to m at full scale and c at zero scale. The contents  
of the DAC registers are cleared, setting all analog outputs to  
0 V. The soft reset activation time is 135 µs maximum.  
out data on SDO for diagnostic purposes.  
outputs a low  
BUSY  
during a NOP operation.  
Write CLR Code  
REG1 = REG0 = 0, A3–A0 = 0001  
DB13–DB0 = Contain the CLR data.  
Monitor Channel  
REG1 = REG0 = 0, A3–A0 = 01010  
DB13–DB8 = Contain data to address the channel to be  
monitored.  
Bringing the  
line low or exercising the soft clear function  
CLR  
loads the contents of the DAC registers with the data contained  
in the user-configurable CLR register and sets VOUT0 to  
VOUT15, accordingly. This can be very useful not only for  
setting up a specific output voltage in a clear condition but for  
calibration purposes. For calibration, the user can load full scale  
or zero scale to the clear code register and then issue a hardware  
or software clear to load this code to all DACs, removing the  
need for individual writes to all DACs. Default on power-up is  
all zeros.  
A monitor function is provided on all devices. This feature,  
consisting of a multiplexer addressed via the interface, allows  
any channel output to be routed to the MON_OUT pin for  
monitoring using an external ADC. In addition to monitoring  
all output channels, two external inputs are also provided,  
allowing the user to monitor signals external to the AD539x.  
The channel monitor function must be enabled in the control  
register before any channels are routed to the MON_OUT pin.  
On the AD5390 and AD5392 14-bit parts, DB13 to DB8 contain  
the channel address for the monitored channel. On the AD5391  
12-bit part, DB11 to DB6 contain the channel address for the  
channel to be monitored. Selecting Address 63 three-states the  
MON_OUT pin.  
Soft CLR  
REG1 = REG0 = 0, A3–A0 = 0010  
DB13–DB0 = Don’t Care.  
Executing this instruction performs the CLR, which is  
functionally the same as that provided by the external CLR pin.  
The DAC outputs are loaded with the data in the CLR code  
register. The time taken to execute fully the SOFT CLR is  
20 µs on the AD5390/AD5391 and 15 µs on the AD5392, and is  
The channel monitor decoding for the AD5390/AD5392 is  
shown in Table 23 and the monitor decoding for the AD5391 is  
shown in Table 24.  
indicated by the  
low time.  
BUSY  
Rev. A | Page 31 of 44  
 
 
AD5390/AD5391/AD5392  
Table 23. AD5390/AD5392 Channel Monitor Decoding  
MON_OUT  
REG1 REG0 A3 A2 A1 A0 DB13 DB12 DB11 DB10 DB9 DB8 DB7 to DB0 (AD5390)  
MON_OUT  
(AD5392)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
VOUT 0  
VOUT 1  
VOUT 2  
VOUT 3  
VOUT 4  
VOUT 5  
VOUT 6  
VOUT 7  
VOUT 0  
VOUT 1  
VOUT 2  
VOUT 3  
VOUT 4  
VOUT 5  
VOUT 6  
VOUT 7  
VOUT 8  
VOUT 9  
VOUT 10  
VOUT 11  
VOUT 12  
VOUT 13  
VOUT 14  
VOUT 15  
MON_IN1  
MON_IN2  
Three-state  
MON_IN1  
MON_IN2  
Three-state  
Table 24. AD5391 Channel Monitor Decoding  
MON_OUT  
(AD5391)  
REG1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
REG0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A3  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A2  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DB11  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DB10  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
DB9  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
.
DB8  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
.
DB7  
DB6  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
.
DB5 to DB0  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
.
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
VOUT 0  
VOUT 1  
VOUT 2  
VOUT 3  
VOUT 4  
VOUT 5  
VOUT 6  
VOUT 7  
VOUT 8  
VOUT 9  
VOUT 10  
VOUT 11  
VOUT 12  
VOUT 13  
VOUT 14  
VOUT 15  
MON_IN1  
MON_IN2  
Undefined  
Undefined  
Undefined  
Three-state  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
0
1
Rev. A | Page 32 of 44  
 
 
AD5390/AD5391/AD5392  
CONTROL REGISTER WRITE  
Table 25 shows the control register contents for the AD5390 and the AD5392. Table 26 provides bit descriptions. Note that  
REG1 = REG0 = 0, A3–A0 = 1100, and DB13–DB0 contain the control register data.  
Table 25. AD5390/AD5392 Control Register Contents  
MSB  
LSB  
CR13  
CR12  
CR11  
CR10  
CR9  
CR8  
CR7  
CR6  
CR5  
CR4  
CR3  
CR2  
CR1  
CR0  
Table 26. AD5390 and AD5392 Bit Descriptions  
Bit  
Description  
CR13  
Power-Down Status. This bit is used to configure the output amplifier state in power–down mode.  
CR13 = 1: Amplifier output is high impedance (default on power-up).  
CR13 = 0: Amplifier output is 100 kΩ to ground.  
CR12  
CR11  
REF Select. This bit selects the operating internal reference for the AD539x. CR12 is programmed as follows:  
CR12 = 1: Internal reference is 2.5 V (AD5390/AD5392-5 default). Recommended operating reference for AD539x-5.  
CR12 = 0: Internal reference is 1.25 V (AD5390/AD5392-3 default). Recommended operating reference for AD5390-3 and  
AD5392-3.  
Current Boost Control. This bit is used to boost the current in the output amplifier, thus altering its slew rate and is  
configured as follows:  
CR11 = 1: Boost mode on. This maximizes the bias current in the output amplifier, optimizing its slew rate but increasing  
the power dissipation.  
CR11 = 0: Boost mode off (default on power-up). This reduces the bias current in the output amplifier and reduces the  
overall power consumption.  
CR10  
CR9  
Internal/External Reference. This bit determines if the DAC uses its internal reference or an external reference.  
CR10 = 1: Internal reference enabled. Reference output depends on data loaded to CR12.  
CR10 = 0: External reference selected (default on power-up).  
Channel Monitor Enable (see Table 23).  
CR9 = 1: Monitor enabled. This enables the channel monitor function. Following a write to the monitor channel in the SFR  
register, the selected channel output is routed to the MON_OUT pin.  
CR9 = 0: Monitor disabled (default on power-up). When monitor is disabled, the MON_OUT pin is three-stated.  
CR8  
Thermal Monitor Function. This function is used to monitor the internal die temperature of the AD5390/AD5392, when  
enabled. The thermal monitor powers down the output amplifiers when the temperature exceeds 130°C. This function  
can be used to protect the device in cases where the power dissipation of the device may be exceeded, if a number of  
output channels are simultaneously short circuited. A soft power-up re-enables the output amplifiers, if the die  
temperature has dropped below 130°C.  
CR8 = 1: Thermal monitor enabled.  
CR8 = 0: Thermal monitor disabled (default on power-up).  
CR7 to CR4  
CR3 to CR2  
Don’t Care.  
Toggle Function Enable. This function lets the user toggle the output between two codes loaded to the A and B register  
for each DAC. Control Register Bits CR3 and CR2 are used to enable individual groups of eight channels for operation in  
toggle mode on the AD5390 and AD5392, as follows:  
CR3 Group 1 Channels 8 to 15  
CR2 Group 0 Channels 0 to 7  
CR2 is the only active bit on the AD5392. Logic 1 written to any bit enables a group of channels, and Logic 0 disables a  
group. LDAC is used to toggle between the two registers.  
CR1 and CR0  
Don’t care.  
Rev. A | Page 33 of 44  
 
 
 
 
AD5390/AD5391/AD5392  
Table 27 shows the control register contents of the AD5391. Table 28 provides bit descriptions. Note that REG1 = REG0 = 0,  
A3–A0 = 1100, and DB13–DB0 contain the control register data.  
Table 27. AD5391 Control Register Contents  
MSB  
LSB  
CR11  
CR10  
CR9  
CR8  
CR7  
CR6  
CR5  
CR4  
CR3  
CR2  
CR1  
CR0  
Table 28. AD5391 Bit Descriptions  
Bit  
Description  
CR11  
Power-Down Status. This bit is used to configure the output amplifier state in power-down mode.  
CR11 = 1: Amplifier output is high impedance (default on power-up).  
CR11 = 0: Amplifier output is 100 kΩ to ground.  
CR10  
CR9  
REF Select. This bit selects the operating internal reference for the AD5391. CR10 is programmed as follows:  
CR10 = 1: Internal reference is 2.5 V (AD5391-5 default). Recommended operating reference for AD5391-5.  
CR10 = 0: Internal reference is 1.25 V (AD5391-3 default). Recommended operating reference for AD5391-3.  
Current Boost Control. This bit is used to boost the current in the output amplifier, thus altering its slew rate. This bit is  
configured as follows:  
CR9 = 1: Boost mode on. This maximizes the bias current in the output amplifier, optimizing its slew rate but increasing  
the power dissipation.  
CR9 = 0: Boost mode off (default on power-up). This reduces the bias current in the output amplifier and reduces the overall  
power consumption.  
CR8  
CR7  
Internal/External Reference. This bits determines if the DAC uses its internal reference or an external reference.  
CR8 = 1: Internal reference enabled. Reference output depends on data loaded to CR10.  
CR8 = 0: External reference selected (default on power-up).  
Channel Monitor Enable (see Table 24).  
CR7 = 1: Monitor enabled. This enables the channel monitor function. Following a write to the monitor channel in  
the SFR register, the selected channel output is routed to the MON_OUT pin.  
CR7 = 0: Monitor disabled (default on power-up). When monitor is disabled, the MON_OUT pin is three-stated.  
CR6  
Thermal Monitor Function. This function is used to monitor the internal die temperature of the AD5391, when enabled.  
The thermal monitor powers down the output amplifiers when the temperature exceeds 130°C. This function can be  
used to protect the device in cases where the power dissipation of the device may be exceeded, if a number of output  
channels are simultaneously short circuited. A soft power-up re-enables the output amplifiers if the die temperature  
has dropped below 130°C.  
CR6 = 1: Thermal monitor enabled.  
CR6 = 0: Thermal monitor disabled (default on power-up).  
CR5 to CR2  
CR1 to CR0  
Don’t care.  
Toggle Function Enable. This function lets the user toggle the output between two codes loaded to the A and B register for  
each DAC. Control Register Bits CR3 and CR2 are used to enable individual groups of eight channels for operation in toggle  
mode on the AD5391, as follows:  
CR1 Group 1 Channels 8-15  
CR0 Group 0 Channels 0 to 7  
Logic 1 written to any bit enables a group of channels, and Logic 0 disables a group. LDAC is used to toggle between  
the two registers.  
Rev. A | Page 34 of 44  
 
 
AD5390/AD5391/AD5392  
HARDWARE FUNCTIONS  
RESET FUNCTION  
POWER-ON RESET  
Bringing the  
registers to their power-on reset state.  
sensitive input. The default corresponds to m at full scale and  
c at zero scale. The contents of all DAC registers are cleared  
setting the outputs to 0 V. This sequence takes 270 µs maximum.  
line low resets the contents of all internal  
The AD539x products contain a power-on reset generator and  
state machine. The power-on reset resets all registers to a  
predefined state, and the analog outputs are configured as high  
RESET  
is a negative edge-  
RESET  
impedance outputs. The  
pin goes low during the power-  
BUSY  
on reset sequence, preventing data writes to the device.  
The falling edge of  
initiates the reset process.  
goes  
RESET  
BUSY  
POWER-DOWN  
low for the duration, returning high when  
is complete.  
RESET  
is low, all interfaces are disabled and all  
The AD539x products contain a global power-down feature that  
puts all channels into a low power mode, reducing the analog  
power consumption to 1 µA maximum and the digital power  
consumption to 20 µA maximum. In power-down mode, the  
output amplifier can be configured as a high impedance output  
or provide a 100 kΩ load to ground. The contents of all internal  
registers are retained in power-down mode. When exiting  
power-down, the settling time of the amplifier elapses before  
the outputs settle to their correct value.  
While  
BUSY  
LDAC  
pulses are ignored. When  
normal operation, and the status of the  
until the next falling edge is detected.  
returns high, the part resumes  
BUSY  
pin is ignored  
RESET  
ASYNCHRONOUS CLEAR FUNCTION  
is negative-edge-triggered and  
goes low for the  
CLR  
BUSY  
duration of the  
execution. Bringing the  
line low clears  
CLR  
CLR  
the contents of the DAC registers to the data contained in the  
user-configurable register and sets the analog outputs  
MICROPROCESSOR INTERFACING  
AD539x to MC68HC11  
CLR  
accordingly. This function can be used in system calibration to  
load zero scale and full scale to all channels together. The  
The serial peripheral interface (SPI) on the MC68HC11 is  
configured for master mode (MSTR = 1), clock polarity bit  
(CPOL) = 0, and the clock phase bit (CPHA) = 1. The SPI is  
configured by writing to the SPI control register (SPCR)—see  
the 68HC11 User Manual. SCK of the MC68HC11 drives the  
SCLK of the AD539x, the MOSI output drives the serial data  
line (DIN) of the AD539x, and the MISO input is driven from  
execution time for a  
is 20 µs on the AD5390/AD5391 and  
CLR  
15 µs on the AD5392.  
AND  
FUNCTIONS  
LDAC  
BUSY  
is a digital CMOS output indicating the status of the  
BUSY  
AD539x devices.  
goes low during internal calculations  
BUSY  
DOUT. The  
signal is derived from a port line (PC7). When  
SYNC  
of x2 data. If  
is taken low while  
is low, this event  
LDAC  
BUSY  
data is being transmitted to the AD539x, the  
line is taken  
SYNC  
is stored. The user can hold the  
input permanently low  
LDAC  
and, in this case, the DAC outputs update immediately after  
goes high. also goes low during a power-on reset  
low (PC7). Data appearing on the MOSI output is valid on the  
falling edge of SCK. Serial data from the MC8HC11 is  
transmitted in 8-bit bytes with only eight falling clock edges  
occurring in the transmit cycle.  
BUSY  
BUSY  
and when a falling edge is detected on the  
this time, all interfaces are disabled and any events on  
are ignored.  
pin. During  
RESET  
LDAC  
DV  
DD  
AD539x  
SER/PAR  
RESET  
The AD539x products contain an extra feature whereby a DAC  
register is not updated unless its x2 register has been written to  
MC68HC11  
since the last time  
was brought low. Normally, when  
LDAC  
MISO  
SDO  
DIN  
is brought low, the DAC registers are filled with the  
LDAC  
MOSI  
contents of the x2 registers. However, these devices update the  
DAC register only if the x2 data has changed, thereby removing  
unnecessary digital crosstalk.  
SCK  
PC7  
SCLK  
SYNC  
2
SPI/1 C  
Figure 36. AD539x-MC68HC11 Interface  
Rev. A | Page 35 of 44  
 
AD5390/AD5391/AD5392  
DV  
DD  
AD539x to PIC16C6x/7x  
AD539x  
The PIC16C6x/7x synchronous serial port (SSP) is configured  
as an SPI master with the clock polarity bit = 0. This is done by  
writing to the synchronous serial port control register  
SER/PAR  
8xC51  
RESET  
2
SPI/1 C  
(SSPCON). See the PIC16/17 Microcontroller User Manual.  
DV  
DD  
In Figure 27, I/O port RA1 is used to pulse  
and enable  
SYNC  
the serial port of the AD539x. This microcontroller transfers  
only eight bits of data during each serial transfer operation;  
therefore, three consecutive read/write operations are needed,  
depending on the mode. Figure 37 shows the connection  
diagram.  
SDO  
RxD  
DIN  
TxD  
P1.1  
SCLK  
SYNC  
DV  
DD  
Figure 38. AD539x to 8051 Interface  
AD539x  
PIC16C6x/7x  
SER/PAR  
AD539x to ADSP2101/ADSP2103  
RESET  
Figure 39 shows a serial interface between the AD539x and the  
ADSP2101/ADSP2103. The ADSP2101/ADSP2103 should be  
set up to operate in the SPORT transmit alternate framing  
mode. The ADSP2101/ADSP2103 SPORT is programmed  
through the SPORT control register and should be configured  
as follows: internal clock operation, active low framing, and  
16-bit word length. Transmission is initiated by writing a word  
to the Tx register after the SPORT has been enabled.  
2
SPI/1 C  
SDI/RC4  
SDO/RC5  
SCK/RC3  
RA1  
SDO  
DIN  
SCLK  
SYNC  
Figure 37. AD539x to PIC16C6X/7X Interface  
DV  
DD  
AD539x  
ADSP2101/  
ADSP2103  
AD539x to 8051  
RESET  
The AD539x requires a clock synchronized to the serial data.  
The 8051 serial interface must, therefore, be operated in mode 0.  
In this mode, serial data enters and exits through RxD and a  
shift clock is output on TxD. Figure 38 shows how the 8051 is  
connected to the AD539x. Because the AD539x shifts data out  
on the rising edge of the shift clock and latches data in on the  
falling edge, the shift clock must be inverted. The AD539x  
requires its data with the MSB first. Because the 8051 outputs  
the LSB first, the transmit routine must take this into account.  
2
SPI/I C  
DR  
SDO  
DIN  
DT  
SCK  
SCLK  
TFS  
RFS  
SYNC  
Figure 39. AD539x to ADSP2101/ADSP2103 Interface  
Rev. A | Page 36 of 44  
 
 
 
AD5390/AD5391/AD5392  
APPLICATION INFORMATION  
reference. The reference should be decoupled at the  
REFOUT/REFIN pin of the device with a 0.1 µF capacitor.  
POWER SUPPLY DECOUPLING  
In any circuit where accuracy is important, careful  
AV  
DV  
DD  
DD  
consideration of the power supply and ground return layout  
helps to ensure the rated performance. The printed circuit  
board on which the AD539x is mounted should be designed so  
that the analog and digital sections are separated and confined  
to certain areas of the board. If the AD539x is in a system where  
multiple devices require an AGND-to-DGND connection, the  
connection should be made at one point only. The star ground  
point should be established as close as possible to the device.  
0.1µF  
10µF  
0.1µF  
AV  
DV  
DD  
DD  
REFOUT/REFIN  
VOUT 0  
0.1µF  
AD539x  
For supplies with multiple pins (AVDD, AVCC), it is recom-  
mended to tie those pins together. The AD539x should have  
ample supply bypassing of 10 µF in parallel with 0.1 µF on each  
supply located as close to the package as possible—ideally right  
up against the device. The 10 µF capacitors are the tantalum  
bead type. The 0.1 µF capacitor should have low effective series  
resistance (ESR) and effective series inductance (ESI), such as  
the common ceramic types that provide a low impedance path  
to ground at high frequencies, to handle transient currents due  
to internal logic switching.  
REF_GND  
VOUT 31  
DAC_GND SIGNAL_GND AGND DGND  
Figure 40. Typical Configuration with External Reference  
Figure 41 shows a typical configuration when using the internal  
reference. On power-up, the AD539x defaults to an external  
reference; therefore, the internal reference needs to be config-  
ured and turned on via a write to the AD539x control register.  
On the AD5390/AD5392 Control Register Bit CR12 lets the  
user choose the reference voltage; Bit CR10 is used to select the  
internal reference. It is recommended to use the 2.5 V reference  
when AVDD = 5 V, and the 1.25 V reference when AVDD = 3 V. On  
the AD5391, Control Register Bit CR10 lets the user choose the  
reference voltage; Bit CR8 is used to select the internal  
reference.  
The power supply lines of the AD539x should use as large a  
trace as possible to provide low impedance paths and reduce  
the effects of glitches on the power supply line. Fast switching  
signals such as clocks should be shielded with digital ground  
to avoid radiating noise to other parts of the board, and should  
never be run near the reference inputs. A ground line routed  
between the DIN and SCLK lines helps reduce crosstalk  
between them (not required on a multilayer board, because  
there is a separate ground plane, but separating the lines helps).  
AV  
DV  
DD  
DD  
0.1µF  
Avoid crossover of digital and analog signals. Traces on opposite  
sides of the board should run at right angles to each other. This  
reduces the effects of feedthrough through the board. A micro-  
strip technique is by far the best, but not always possible with a  
double-sided board. In this technique, the component side of  
the board is dedicated to ground plane, while signal traces are  
placed on the soldered side.  
10µF  
0.1µF  
ADR431/  
ADR421  
AV  
DV  
DD  
DD  
REFOUT/REFIN  
VOUT 0  
0.1µF  
AD539x  
REF_GND  
VOUT 31  
DAC_GND SIGNAL_GND AGND DGND  
TYPICAL CONFIGURATION CIRCUIT  
Figure 40 shows a typical configuration for the AD539x-5 when  
configured for use with an external reference. In the circuit  
shown, all AGND, SIGNAL_GND, and DAC_GND pins are tied  
together to a common AGND. AGND and DGND are  
Figure 41. Typical Configuration with Internal Reference  
connected together at the AD539x device. On power-up, the  
AD539x defaults to external reference operation. All AVDD lines  
are connected together and driven from the same 5 V source. It  
is recommended to decouple close to the device with a 0.1 µF  
ceramic and a 10 µF tantalum capacitor. In this application, the  
reference for the AD539x-5 is provided externally from either  
an ADR421 or ADR431 2.5 V reference. Suitable external  
references for the AD539x-3 include the ADR280 1.2 V  
Rev. A | Page 37 of 44  
 
 
 
AD5390/AD5391/AD5392  
To configure the AD539x for toggle mode of operation, the  
sequence of events is as follows:  
Digital connections have been omitted for clarity. The AD539x  
contains an internal power-on reset circuit with a 10 ms brown-  
out time. If the power supply ramp rate exceeds 10 ms, the user  
should reset the AD539x as part of the initialization process to  
ensure the calibration data is loaded correctly into the device.  
1. Enable toggle mode for the required channels via the  
control register.  
2. Load data to A registers.  
3. Load data to B registers.  
AD539x MONITOR FUNCTION  
4. Apply  
.
LDAC  
The AD5390 contains a channel monitor function consisting of  
a multiplexer addressed via the interface, allowing any channel  
output to be routed to this pin for monitoring using an external  
ADC. The channel monitor function must be enabled in the  
control register before any channels are routed to the  
MON_OUT pin.  
The  
is used to switch between the A and B registers in  
LDAC  
determining the analog output. The first  
configures the  
LDAC  
output to reflect the data in the A registers. This mode offers  
significant advantages, if the user wants to generate a square  
wave at the output on all channels as might be required to drive  
a liquid-crystal-based, variable optical attenuator. Configuring  
the AD5390, for example, the user writes to the control register  
and sets CR3 = 1 and CR2 = 1, enabling the two groups of eight  
for toggle mode operation. The user must then load data to all  
Table 23 and Table 24 contain the decoding information  
required to route any channel on the AD5390, AD5391, and  
AD5392 to the MON_OUT pin. Selecting Channel Address 63  
three-states the MON_OUT pin. The AD539x family also  
contains two monitor input pins called MON_IN1 and  
MON_IN2. The user can connect external signals to these  
pins, which under software control can be multiplexed to  
MON_OUT for monitoring purposes. Figure 42 shows a typical  
monitoring circuit implemented using a 12-bit SAR ADC in a  
6-lead SOT package. The external reference input is connected  
to MON_IN1 to allow it to be easily monitored. The controller  
output port selects the channel to be monitored, and the input  
port reads the converted data from the ADC.  
16 A registers and B registers. Toggling the  
sets the out-  
LDAC  
put values to reflect the data in the A and B registers, and the  
frequency of the determines the frequency of the square  
LDAC  
wave output. The first  
loads the contents of the A regis-  
LDAC  
ters to the DAC registers. Toggle mode is disabled via the  
control register; the first following the disabling of the  
LDAC  
toggle mode updates the outputs with the data contained in the  
A registers.  
THERMAL MONITOR FUNCTION  
The AD539x family has a temperature shutdown function to  
protect the chip in case multiple outputs are shorted. The short-  
circuit current of each output amplifier is typically 40 mA.  
Operating the AD539x at 5 V leads to a power dissipation of  
200 mW/shorted amplifier. With five channels shorted, this  
leads to an extra watt of power dissipation. For the 52-lead  
LQFP, the θJA is typically 44°C/W.  
AV  
DD  
DIN  
REFOUT/REFIN  
AD780/  
ADR431  
OUTPUT PORT  
SYNC  
SCLK  
AD5390  
MON_IN1  
AV  
DD  
AD7476 CS  
SCLK  
INPUT PORT  
MON_OUT  
VIN  
VOUT 0  
SDATA  
GND  
CONTROLLER  
AGND  
VOUT 15  
DAC_GND SIGNAL GND  
The thermal monitor is enabled by the user using CR8 in the  
AD5390/AD5392 control register and by CR6 in the AD5391  
control register. The output amplifiers on the AD539x are  
automatically powered down if the die temperature exceeds  
approximately 130°C. After a thermal shutdown has occurred,  
the user can re-enable the part by executing a soft power-up if  
the temperature has dropped below 130°C or by turning off the  
thermal monitor function via the control register.  
Figure 42. Typical Channel Monitoring Circuit  
TOGGLE MODE FUNCTION  
The toggle mode function allows an output signal to be  
generated using the LDAC control signal that switches between  
two DAC data registers. This function is configured using the  
SFR control register, as follows. A write with REG1 = REG0 = 0,  
A3–A0 = 1100 specifies a control register write. The toggle  
mode function is enabled in groups of eight channels using Bits  
CR3 and CR2 in the AD5390/AD5392 control register and  
using Bits CR1 and CR0 in the AD5391 control register. (See  
the Control Register Write section.) Figure 43 shows a block  
diagram of the toggle mode implementation. Each DAC  
channel on the AD539x contains an A and a B data register.  
Note that the B registers can be loaded only when toggle mode  
is enabled.  
DATA  
REGISTER  
A
DAC  
REGISTER  
VOUT  
14-BIT DAC  
DATA  
REGISTER  
B
INPUT  
REGISTER  
INPUT  
DATA  
LDAC  
CONTROL INPUT  
A/B  
Figure 43. Toggle Mode Function  
Rev. A | Page 38 of 44  
 
 
 
AD5390/AD5391/AD5392  
Power Amplifier Control  
0.1µF  
Multistage power amplifier designs require a large number of  
setpoints in the operation and control of the output stage. The  
AD539x are ideal for these applications because of their small  
size (LFCSP package) and the integration of 8 and 16 channels,  
offering 12- and 14-bit resolution. Figure 44 shows a typical  
transmitter architecture, in which the AD539x DACs can be  
used in the following control circuits: IBIAS control, average  
power control (APC), peak power control (PPC), transmit gain  
control (TGC), and audio level control (ALC). DACs are also  
required for variable voltage attenuators, phase shifter control,  
and dc-setpoint control in the overall amplifier design.  
2.5V  
REFERENCE  
2R  
4R  
±10V  
RANGE  
R
R
±5V  
RANGE  
R
VOUT 3  
VOUT 0  
1/4 OP747/  
1/4 OP4177  
1/4 OP747/  
1/4 OP4177  
R
4R  
AD539x-5  
2R  
0V–5V  
RANGE  
0V–10V  
RANGE  
VOUT 1  
VOUT 4  
1/4 OP747/  
1/4 OP4177  
I SINK  
R
VOUT 2  
R
1/4 OP747/  
1/4 OP4177  
PHASE  
SHIFT  
I
BIAS  
R1  
Figure 45. Output Configurations for Process  
Control Applications  
Optical Transceivers  
POWER  
AMPLIFIER  
AUDIO  
SOURCE  
50  
LOAD  
EXCITER  
The AD539x-3 family of products are ideally suited to optical  
transceiver applications. In 300 pin MSA applications, for  
example, digital-to-analog converters are required to control the  
laser power, APD bias, modulator amplitude and diagnostic  
information is required as analog outputs from the module. The  
AD539x offering a combination of 8/16 channels, resolution of  
12/14-bits in a 64 lead LFCSP package, operating from a supply  
voltage of 2.7 V to 5.5 V supply with internal reference and  
featuring I2C-compatible and SPI interface, make it an ideal  
component for use in these applications. Figure 46 shows a  
typical configuration in an optical transceiver application.  
ALC  
PPC  
APC  
TGC  
Figure 44. Multistage Power Amplifier Control  
Process Control Applications  
The AD539x-5 family is ideal for process control applications  
because it offers a combination of 8 and 16 channels and 12-bit  
and 14-bit resolution. These applications generally require  
output voltage ranges of 0 V to 5 V 5 V, 0 V to 10 V 10 V, and  
current sink and source functions. The AD539x-5 products  
operate from a single 5 V supply and, therefore, require external  
signal conditioning to achieve the output ranges described here.  
Figure 45 shows configurations to achieve these output ranges.  
The key advantages of using AD539x products in these  
3V  
CONTROLLER  
SDA  
SCL  
DV  
AV  
DD  
DD  
SDA  
2
I
C
BUS  
SCL  
VLSRBIAS  
VLSRPWRMON  
REFOUT/REFIN  
AD539x-3  
PIN/APD IRXP  
AND TIA  
VXLOPMON  
AV  
DD  
REFIN  
IMODMON  
IMPD  
IBIASMON  
I
BIAS  
10G LDD  
AND  
LASER  
AIN  
MUX  
12-BIT  
ADC  
IMOD  
AD7994  
applications are small package size, pin compatibility with the  
ability to upgrade from 12 to 14 bits, integrated on-chip 2.5 V  
reference with 10 ppm/°C maximum temperature coefficient,  
and excellent accuracy specifications. The AD539x family  
contains an offset and gain register for each channel, so users  
can perform system-level calibration on a per-channel basis.  
TIAs  
Figure 46. Optical Transceiver using the AD539x-3  
Rev. A | Page 39 of 44  
 
 
 
AD5390/AD5391/AD5392  
OUTLINE DIMENSIONS  
0.30  
0.25  
0.18  
9.00  
BSC SQ  
0.60 MAX  
PIN 1  
0.60 MAX  
INDICATOR  
49  
48  
64  
1
PIN 1  
INDICATOR  
6.35  
6.20 SQ*  
6.05  
TOP  
8.75  
BSC SQ  
BOTTOM  
VIEW  
VIEW  
0.45  
0.40  
0.35  
33  
32  
16  
17  
7.50 REF  
0.80 MAX  
0.65 TYP  
1.00  
0.85  
0.80  
12° MAX  
0.05 MAX  
0.02 NOM  
0.50 BSC  
*
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 47. 64-Lead Lead Frame Chip Scale Package [LFCSP]  
9 mm x 9 mm Body (CP-64-2)  
(Dimensions shown in millimeters)  
0.75  
0.60  
0.45  
12.00 BSC  
1.60  
MAX  
SQ  
52  
40  
39  
1
SEATING  
PLANE  
PIN 1  
TOP VIEW  
(PINS DOWN)  
10.00  
BSC SQ  
10°  
6°  
2°  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
VIEW A  
13  
27  
14  
26  
3.5°  
0°  
0.38  
0.32  
0.22  
0.15  
0.05  
0.65  
BSC  
SEATING  
PLANE  
0.10 MAX  
COPLANARITY  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026BCC  
Figure 48. 52-Lead Low Profile Quad Flat Package [LQFP]  
(ST-52)  
(Dimensions shown in millimeters)  
Rev. A | Page 40 of 44  
 
AD5390/AD5391/AD5392  
ORDERING GUIDE  
Temperature  
Range  
Output  
Channels Error (LSBs)  
Linearity  
Package  
Description  
Package  
Option  
Model  
Resolution AVDD  
2.7 V to 3.6 V  
AD5390BCP-3  
14-bit  
14-bit  
14-bit  
14-bit  
14-bit  
14-bit  
14-bit  
14-bit  
14-bit  
14-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
14-bit  
14-bit  
14-bit  
14-bit  
14-bit  
14-bit  
14-bit  
14-bit  
14-bit  
14-bit  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
8
4
4
4
3
3
3
4
4
3
3
1
1
1
1
1
1
1
1
1
1
4
4
4
3
3
3
4
4
3
3
64-lead LFCSP  
64-lead LFCSP  
64-lead LFCSP  
64-lead LFCSP  
64-lead LFCSP  
64-lead LFCSP  
52-lead LQFP  
52-lead LQFP  
52-lead LQFP  
52-lead LQFP  
64-lead LFCSP  
64-lead LFCSP  
64-lead LFCSP  
64-lead LFCSP  
64-lead LFCSP  
64-lead LFCSP  
52-lead LQFP  
52-lead LQFP  
52-lead LQFP  
52-lead LQFP  
64-lead LFCSP  
64-lead LFCSP  
64-lead LFCSP  
64-lead LFCSP  
64-lead LFCSP  
64-lead LFCSP  
52-lead LQFP  
52-lead LQFP  
52-lead LQFP  
52-lead LQFP  
CP-64-2  
CP-64-2  
CP-64-2  
CP-64-2  
CP-64-2  
CP-64-2  
ST-52  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
AD5390BCP-3-REEL  
AD5390BCP-3-REEL7  
AD5390BCP-5  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
2.7 V to 3.6 V  
2.7 V to 3.6 V  
4.5 V to 5.5 V  
4.5 V to 5.5 V  
AD5390BCP-5-REEL  
AD5390BCP-5-REEL7  
AD5390BST-3  
AD5390BST-3-REEL  
AD5390BST-5  
ST-52  
ST-52  
AD5390BST-5-REEL  
AD5391BCP-3  
ST-52  
CP-64-2  
CP-64-2  
CP-64-2  
CP-64-2  
CP-64-2  
CP-64-2  
ST-52  
AD5391BCP-3-REEL  
AD5391BCP-3-REEL7  
AD5391BCP-5  
AD5391BCP-5-REEL  
AD5391BCP-5-REEL7  
AD5391BST-3  
AD5391BST-3-REEL  
AD5391BST-5  
ST-52  
ST-52  
AD5391BST-5-REEL  
AD5392BCP-3  
ST-52  
CP-64-2  
CP-64-2  
CP-64-2  
CP-64-2  
CP-64-2  
CP-64-2  
ST-52  
AD5392BCP-3-REEL  
AD5392BCP-3-REEL7  
AD5392BCP-5  
8
8
8
AD5392BCP-5-REEL  
AD5392BCP-5-REEL7  
AD5392BST-3  
8
8
8
AD5392BST-3-REEL  
AD5392BST-5  
8
ST-52  
8
ST-52  
AD5392BST-5-REEL  
Eval–AD5390EB  
8
ST-52  
AD5390  
Evaluation Board  
Eval–AD5391EB  
Eval–AD5392EB  
AD5391  
Evaluation Board  
AD5392  
Evaluation Board  
Rev. A | Page 41 of 44  
 
AD5390/AD5391/AD5392  
NOTES  
Rev. A | Page 42 of 44  
AD5390/AD5391/AD5392  
NOTES  
Rev. A | Page 43 of 44  
AD5390/AD5391/AD5392  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03773-0--10/04(A)  
Rev. A | Page 44 of 44  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY