AD5410ACPZ [ADI]

Single Channel, 16-Bit, Serial Input, Current Source DAC; 单通道, 16位,串行输入,电流源DAC
AD5410ACPZ
型号: AD5410ACPZ
厂家: ADI    ADI
描述:

Single Channel, 16-Bit, Serial Input, Current Source DAC
单通道, 16位,串行输入,电流源DAC

转换器 数模转换器
文件: 总30页 (文件大小:290K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single Channel, 16-Bit, Serial Input,  
Current Source DAC  
Preliminary Technical Data  
AD5410/AD5420  
FEATURES  
GENERAL DESCRIPTION  
The AD5410/AD5420 is a low-cost, precision, fully integrated  
12/16-bit converter offering a programmable current source  
output designed to meet the requirements of industrial process  
control applications.The output current range is programmable  
to 4mA to 20 mA, 0mA to 20mA or an over range function of  
0mA to 24mA. The output is open circuit protected and can  
drive inductive loads of 1H. The device is specified to operate  
with a power supply range from 10.8 V to 40V  
AD5410/AD5420AREZ) or 10.8V to 60V  
(AD5410/AD5420ACPZ). Output loop compliance is 0 V to  
AVDD – 2.5 V.  
The flexible serial interface is SPI and MICROWIRE  
compatible and can be operated in 3-wire mode to minimize the  
digital isolation required in isolated applications.  
The device also includes a power-on-reset function ensuring  
that the device powers up in a known state and an  
asynchronous CLEAR pin which sets the output to the low end  
of the selected current range.  
12/16-Bit Resolution and Monotonicity  
Current Output Ranges: 4–20mA, 0–20mA or 0–24mA  
0.1% typ Total Unadjusted Error (TUE)  
5ppm/°C Output Drift  
Flexible Serial Digital Interface  
On-Chip Output Fault Detection  
On-Chip Reference (10 ppm/°C Max)  
Asynchronous CLEAR Function  
Power Supply (AVDD) Range  
10.8V to 60 V; AD5410/AD5420ACPZ  
10.8V to 40V; AD5410/AD5420AREZ  
Output Loop Compliance to AVDD – 2.5 V  
Temperature Range: -40°C to +85°C  
TSSOP and LFCSP Packages  
APPLICATIONS  
Process Control  
Actuator Control  
PLC  
The total output error is typically ±0.1% FSR.  
Table 1. Related Devices  
Part Number  
Description  
AD5422  
Single Channel, 16-Bit, Serial  
Input Current Source and  
Voltage Output DAC  
AD5412  
AD5410  
Single Channel, 12-Bit, Serial  
Input Current Source and  
Voltage Output DAC  
Single Channel, 12-Bit, Serial  
Input Current Source DAC  
Rev. PrE  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
AD5410/AD5420  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
RESET register............................................................................ 22  
Status register.............................................................................. 22  
Features............................................................................................ 23  
fault alert...................................................................................... 23  
Asynchronous Clear (CLEAR)................................................. 23  
Internal Reference ...................................................................... 23  
External current setting resistor............................................... 23  
Digital Power Supply.................................................................. 23  
External boost function............................................................. 23  
digital Slew rate control............................................................. 24  
IOUT Filtering Capacitors (LFCSP PAckage)............................ 25  
Applications Information.............................................................. 26  
driving inductive loads.............................................................. 26  
Transient voltage protection ..................................................... 26  
Layout Guidelines....................................................................... 26  
Galvanically Isolated Interface ................................................. 26  
Microprocessor Interfacing....................................................... 26  
Thermal and supply considerations......................................... 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
AC Performance Characteristics................................................ 6  
Timing Characteristics ................................................................ 7  
Absolute Maximum Ratings............................................................ 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 11  
Terminology .................................................................................... 16  
Theory of Operation ...................................................................... 17  
Architecture................................................................................. 17  
Serial Interface ............................................................................ 17  
power-up state............................................................................. 21  
Transfer Function....................................................................... 21  
Data Register............................................................................... 21  
Control Register.......................................................................... 21  
REVISION HISTORY  
PrE – Preliminary Version. May 2, 2008  
Rev. PrE | Page 2 of 30  
Preliminary Technical Data  
FUNCTIONAL BLOCK DIAGRAM  
DVCC  
AD5410/AD5420  
DVCC  
CAP1*  
CAP2*  
AVDD  
SELECT  
AD5410/AD5420  
CLEAR  
SELECT  
R2  
R3  
BOOST  
CLEAR  
INPUT SHIFT  
REGISTER  
AND  
CONTROL  
LOGIC  
LATCH  
SCLK  
SDIN  
16  
/
12/16-Bit  
DAC  
I
OUT  
SDO  
FAULT  
R
SET  
R1  
POWER  
ON  
VREF  
RESET  
DGND*  
REFIN  
AGND  
REFOUT  
*LFCSP Package  
Figure 1.  
Rev. PrE | Page 3 of 30  
AD5410/AD5420  
SPECIFICATIONS  
Preliminary Technical Data  
AVDD = 10.8V to 40V/60V1, AGND = DGND = 0 V, REFIN= +5 V external; DVCC = 2.7 V to 5.5 V, RL = 300, HL = 50mH;  
all specifications TMIN to TMAX, 0 to 24 mA range unless otherwise noted.  
Table 2.  
Parameter  
Value2  
0 to 24  
0 to 20  
4 to 20  
Unit  
mA  
mA  
mA  
Test Conditions/Comments  
Output Current Ranges  
ACCURACY  
Resolution  
12  
Bits  
AD5410  
16  
Bits  
AD5420  
Total Unadjusted Error (TUE)  
TUE TC3  
Relative Accuracy (INL)  
±0.3  
±5  
±0.024  
±0.012  
±1  
±0.05  
±5  
±0.05  
% FSR max  
ppm/°C typ  
% FSR max  
% FSR max  
LSB max  
% FSR max  
ppm FSR/°C typ  
% FSR max  
Over temperature, supplies, and time, typically 0.1% FSR  
AD5410  
AD5420  
Guaranteed monotonic  
Differential Nonlinearity (DNL)  
Offset Error  
Offset Error Drift  
Gain Error  
@ 25°C, error at other temperatures obtained using gain  
TC  
Gain TC3  
Full-Scale Error  
±±  
0.05  
ppm FSR/°C max  
% FSR max  
@ 25°C, error at other temperatures obtained using gain  
TC  
Full-Scale TC3  
±±  
ppm FSR/°C  
OUTPUT CHARACTERISTICS3  
Current Loop Compliance Voltage  
Output Current Drift vs. Time  
AVDD - 2.5  
V max  
TBD  
TBD  
1200  
1
ppm FSR/500 hr typ  
ppm FSR/1000 hr typ  
Ω max  
Resistive Load  
Inductive Load  
H max  
DC PSRR  
1
µA/V max  
Output Impedance  
REFERENCE INPUT/OUTPUT  
Reference Input3  
50  
MΩ typ  
Reference Input Voltage  
DC Input Impedance  
Reference Range  
5
30  
4 to 5  
V nom  
kΩ min  
V min to V max  
±1% for specified performance  
Typically 40 kΩ  
Reference Output  
Output Voltage  
Reference TC  
Output Noise (0.1 Hz to 10 Hz)3  
Noise Spectral Density3  
Output Voltage Drift vs. Time3  
4.99± to 5.002  
±10  
1±  
120  
±40  
±50  
TBD  
5
V min to V max  
ppm/°C max  
µV p-p typ  
nV/√Hz typ  
ppm/500 hr typ  
ppm/1000 hr typ  
nF max  
@ 25°C  
@ 10 kHz  
Capacitive Load  
Load Current  
mA typ  
Short Circuit Current  
Line Regulation3  
7
10  
TBD  
TBD  
mA typ  
ppm/V typ  
ppm/mA  
Load Regulation3  
Thermal Hysteresis3  
DIGITAL INPUTS3  
VIH, Input High Voltage  
VIL, Input Low Voltage  
ppm  
DVCC = 2.7 V to 5.5 V, JEDEC compliant  
2
0.±  
V min  
V max  
Rev. PrE | Page 4 of 30  
Preliminary Technical Data  
AD5410/AD5420  
Parameter  
Value2  
Unit  
Test Conditions/Comments  
Input Current  
±1  
10  
µA max  
pF typ  
Per pin  
Per pin  
Pin Capacitance  
DIGITAL OUTPUTS 3  
SDO  
VOL, Output Low Voltage  
VOH, Output High Voltage  
High Impedance Leakage  
Current  
0.4  
DVCC − 0.5  
±1  
V max  
V min  
µA max  
sinking 200 µA  
sourcing 200 µA  
High Impedance Output  
Capacitance  
5
pF typ  
FAULT  
VOL, Output Low Voltage  
VOL, Output Low Voltage  
VOH, Output High Voltage  
0.4  
0.6  
3.6  
V max  
V typ  
V min  
10kpull-up resistor to DVCC  
@ 2.5 mA  
10kpull-up resistor to DVCC  
POWER REQUIREMENTS  
AVDD  
10.± to 60  
10.± to 40  
V min to V max  
V min to V max  
AD5410/AD5420ACPZ  
AD5410/AD5420AREZ  
DVCC  
Input Voltage  
Output Voltage  
Output Load Current  
Short Circuit Current  
AIDD  
2.7 to 5.5  
4.5  
5
20  
TBD  
1
TBD  
TBD  
TBD  
V min to V max  
V typ  
mA typ  
mA typ  
mA  
mA max  
mW typ  
mW typ  
mW typ  
Internal supply disabled  
DVCC can be overdriven up to 5.5V  
DICC  
VIH = DVCC, VIL = GND, TBD mA typ  
AVDD = 40V  
AVDD = 60V  
Power Dissipation  
AVDD = 15V  
1 Maximum supply for the AD5410/AD5420BREZ is 40V, Maximum supply for the AD5410/AD5420BCPZ is 60V  
2 Temperature range: -40°C to +±5°C; typical at +25°C.  
3 Guaranteed by design and characterization, not production tested.  
Rev. PrE | Page 5 of 30  
AD5410/AD5420  
Preliminary Technical Data  
AC PERFORMANCE CHARACTERISTICS  
AVDD = 10.8V to 40V/60V1, AGND = DGND = 0 V, REFIN= +5 V external; DVCC = 2.7 V to 5.5 V, RL = 300, HL = 50mH;  
all specifications TMIN to TMAX, 0 to 24 mA range unless otherwise noted.  
Table 3.  
Parameter2  
Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Output Current Settling Time  
TBD  
TBD  
TBD  
µs typ  
µs typ  
dB  
To 0.1% FSR , L = 1H  
To 0.1% FSR , L < 1mH  
200mV 50/60 Hz sinewave  
AC PSRR  
superimposed on power supply voltage  
1 Maximum supply for the AD5410/AD5420BREZ is 40V, Maximum supply for the AD5410/AD5420BCPZ is 60V  
2 Guaranteed by design and characterization, not production tested.  
Rev. PrE | Page 6 of 30  
Preliminary Technical Data  
AD5410/AD5420  
TIMING CHARACTERISTICS  
AVDD = 10.8V to 40V/60V1, AGND = DGND = 0 V, REFIN= +5 V external; DVCC = 2.7 V to 5.5 V, RL = 300, HL = 50mH;  
all specifications TMIN to TMAX, 0 to 24 mA range unless otherwise noted.  
Table 4.  
Parameter2, 3, 4  
Limit at TMIN, TMAX  
Unit  
Description  
Write Mode  
t1  
t2  
t3  
t4  
t5  
t5  
t6  
t7  
33  
13  
13  
13  
40  
5
5
5
40  
20  
5
ns min  
ns min  
ns min  
ns min  
ns min  
µs min  
ns min  
ns min  
ns min  
ns min  
µs max  
SCLK cycle time  
SCLK low time  
SCLK high time  
LATCH delay time  
LATCH high time  
LATCH high time (After a write to the CONTROL register)  
Data setup time  
Data hold time  
LATCH low time  
t±  
t9  
t10  
CLEAR pulsewidth  
CLEAR activation time  
Readback Mode  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t1±  
±2  
33  
33  
13  
40  
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns max  
SCLK cycle time  
SCLK low time  
SCLK high time  
LATCH delay time  
LATCH high time  
Data setup time  
Data hold time  
LATCH low time  
5
40  
40  
33  
t19  
t20  
Serial output delay time (CL SDO5 = 15pF)  
LATCH rising edge to SDO tri-state  
Daisychain Mode  
t21  
t22  
t23  
t24  
t25  
t26  
t27  
t2±  
t29  
±2  
33  
33  
13  
40  
5
5
40  
40  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
SCLK cycle time  
SCLK low time  
SCLK high time  
LATCH delay time  
LATCH high time  
Data setup time  
Data hold time  
LATCH low time  
Serial output delay time (CL SDO5 = 15pF)  
1 Maximum supply for the AD5410/AD5420AREZ is 40V, Maximum supply for the AD5410/AD5420ACPZ is 60V  
2 Guaranteed by characterization. Not production tested.  
3 All input signals are specified with tR = tF = 5 ns (10% to 90% of DVCC) and timed from a voltage level of 1.2 V.  
4 See Figure 2, Figure 3, and Figure 4.  
5 CL SDO = Capacitive load on SDO output.  
Rev. PrE | Page 7 of 30  
AD5410/AD5420  
Preliminary Technical Data  
t1  
SCLK  
1
2
24  
t3  
t2  
t4  
t5  
LATCH  
t7  
t8  
t6  
SDIN  
DB23  
DB0  
t9  
CLEAR  
t10  
OUTPUT  
Figure 2. Write Mode Timing Diagram  
t11  
2
1
9
23  
SCLK  
1
2
24  
22  
24  
8
t13  
t12  
t14  
t15  
LATCH  
SDIN  
t17  
t18  
t16  
DB23  
DB0  
DB23  
DB0  
NOP CONDITION  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
t20  
t19  
SDO  
X
X
X
X
DB15  
DB0  
UNDEFINED DATA  
FIRST 8 BITS ARE  
DON’T CARE BITS  
SELECTED REGISTER  
DATA CLOCKED OUT  
Figure 3. Readback Mode Timing Diagram  
t21  
26  
48  
25  
SCLK  
1
2
24  
t23  
t22  
t24  
t25  
LATCH  
SDIN  
t27  
t28  
t26  
DB23  
DB0  
DB23  
DB0  
INPUT WORD FOR DAC N  
UNDEFINED  
INPUT WORD FOR DAC N-1  
t29  
DB23  
DB0  
SDO  
DB23  
DB0  
INPUT WORD FOR DAC N  
Figure 4. Daisychain Mode Timing Diagram  
Rev. PrE | Page ± of 30  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
AD5410/AD5420  
TA = 25°C unless otherwise noted.  
Transient currents of up to 100 mA do not cause SCR latch-up.  
Table 5.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
AVDD to AGND, DGND  
DVCC to AGND, DGND  
Digital Inputs to AGND, DGND  
−0.3V to 60V  
−0.3 V to +7 V  
−0.3 V to DVCC + 0.3 V or 7 V  
(whichever is less)  
−0.3 V to DVCC + 0.3 V or 7V  
(whichever is less)  
−0.3 V to +7 V  
−0.3V to AVDD  
-0.3V to +0.3V  
Digital Outputs to AGND, DGND  
ESD CAUTION  
REFIN/REFOUT to AGND, DGND  
IOUT to AGND, DGND  
AGND to DGND  
Operating Temperature Range  
Industrial  
−40°C to +±51°C  
−65°C to +150°C  
125°C  
Storage Temperature Range  
Junction Temperature (TJ max)  
24-Lead TSSOP Package  
θJA Thermal Impedance  
40-Lead LFCSP Package  
θJA Thermal Impedance  
Power Dissipation  
42°C/W  
1 Power dissipated on chip must be de-rated to keep junction temperature  
below 125°C. Assumption is max power dissipation condition is sourcing  
24mA into Ground from AVDD with a 3mA on-chip current.  
2±°C/W  
(TJ max – TA)/ θJA  
JEDEC Industry Standard  
J-STD-020  
Lead Temperature  
Soldering  
Rev. PrE | Page 9 of 30  
Preliminary Technical Data  
AD5410/AD5420  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AV  
NC  
NC  
GND  
1
2
3
4
5
6
7
8
9
24  
23  
22  
DD  
40 39 38 37 36 35 34 33 32 31  
DV  
CC  
NC  
FAULT  
GND  
1
2
3
4
5
6
7
8
9
30  
29  
NC  
AD5420  
FAULT  
GND  
CAP2  
21 NC  
20 BOOST  
28 CAP1  
GND  
27  
26  
25  
24  
23  
22  
BOOST  
GND  
TOP VIEW  
(Not to Scale)  
CLEAR  
LATCH  
SCLK  
SDIN  
IOUT  
AD5420  
TOP VIEW  
(Not to Scale)  
I
19  
18  
CLEAR  
LATCH  
SCLK  
SDIN  
OUT  
NC  
NC  
NC  
17 NC  
DVCC SELECT  
NC  
DV  
16  
SDO  
SELECT  
CC  
NC 10  
21 NC  
SDO 10  
15 REFIN  
14 REFOUT  
11 12 13 14 15 16 17 18 19 20  
11  
12  
AGND  
GND  
R
13  
SET  
Figure 5. TSSOP Pin Configuration  
Figure 6. LFCSP Pin Configuration  
Table 6. Pin Function Descriptions  
TSSOP Pin No. LFCSP Pin No. Mnemonic  
Description  
1,4,5,12  
2
3
3,4,15,14,37  
39  
2
GND  
DVCC  
FAULT  
These pins must be connected to 0V.  
Digital Supply Pin. Voltage ranges from 2.7 V to 5.5 V.  
Fault alert, This pin is asserted low when an open circuit is detected in current mode or  
an over temperature is detected. Open drain output, must be connected to a pull-up  
resistor.  
17,1±,21,22, 23 1,10,11,19,  
20,21,22,24,25,  
NC  
No Connection.  
30,31,32,33,34,  
35,3±,40  
6
7
±
5
6
7
CLEAR  
LATCH  
SCLK  
Active High Input. Asserting this pin will set the current output to the bottom of the  
selected range.  
Positive edge sensitive latch, a rising edge will parallel load the input shift register data  
into the DAC register, also updating the output.  
Serial Clock Input. Data is clocked into the shift register on the rising edge of SCLK. This  
operates at clock speeds up to 30 MHz.  
9
10  
±
9
SDIN  
SDO  
Serial Data Input. Data must be valid on the rising edge of SCLK.  
Serial Data Output. Used to clock data from the serial register in daisy-chain or readback  
mode. Data is clocked out on the falling edge of SCLK. See Figure 3 and Figure 4.  
11  
N/A  
12  
13  
AGND  
DGND  
Ground reference pin for analog circuitry.  
Ground reference pin for digital circuitry. (AGND and DGND are internally connected in  
TSSOP package).  
13  
16  
RSET  
An external, precision, low drift 15kcurrent setting resistor can be connected to this  
pin to improve the IOUT temperature drift performance. Refer to Features section.  
14  
15  
17  
1±  
REFOUT  
REFIN  
Internal Reference Voltage Output. REFOUT = 5 V ± 2 mV.  
External Reference Voltage Input. Reference input range is 4 V to 5 V. REFIN = 5 V for  
specified performance.  
16  
23  
DVCC  
SELECT  
This pin when connected to GND disables the internal supply and an external supply  
must be connected to the DVCC pin. Leave this pin unconnected to enable the internal  
supply. Refer to features section.  
19  
20  
26  
27  
IOUT  
BOOST  
Current output pin.  
Optional external transistor connection. Connecting an external transistor will reduce  
the power dissipated in the AD5410/AD5420. Refer to the features section.  
N/A  
N/A  
24  
Paddle  
2±  
29  
36  
Paddle  
CAP1  
CAP2  
AVDD  
Connection for optional output filtering capacitor. Refer to Features section.  
Connection for optional output filtering capacitor. Refer to Features section.  
Positive Analog Supply Pin. Voltage ranges from 10.±V to 40V/60V.  
Ground reference for analog circuitry.  
AGND  
Rev. PrE | Page 10 of 30  
Preliminary Technical Data  
AD5410/AD5420  
TYPICAL PERFORMANCE CHARACTERISTICS  
Figure 7. Integral Non Linearity vs. Code  
Figure 8.Differential Non Linearity vs. Code  
Figure 9. Total Unadjusted Error vs. Code  
Figure 10. Integral Non Linearity vs. Temperature  
Figure 11. Differential Non Linearity vs. Temperature  
Figure 12. Integral Non Linearity vs. Supply  
Rev. PrE | Page 11 of 30  
AD5410/AD5420  
Preliminary Technical Data  
Figure 13. Differential Non Linearity vs. Supply Voltage  
Figure 16. Total Unadjusted Error vs. Reference Voltage  
Figure 17. Total Unadjusted Error vs. Supply Voltage  
Figure 18. Offset Error vs. Temperature  
Figure 14. Integral Non Linearity vs. Reference Voltage  
Figure 15. Differential Non Linearity vs. Reference Voltage  
Rev. PrE | Page 12 of 30  
Preliminary Technical Data  
AD5410/AD5420  
Figure 19. Gain Error vs. Temperature  
Figure 21. IOUT vs. Time on Power-up  
Figure 20. Voltage Compliance vs. Temperature  
Figure 22. IOUT vs. Time on Output Enabled  
Figure 23. DICC vs.Logic Input Voltage  
Figure 24. AIDD vs AVDD  
Rev. PrE | Page 13 of 30  
AD5410/AD5420  
Preliminary Technical Data  
Figure 25. DVCC Output Voltage vs. DICC Load Current  
Figure 28. Refout Output Noise (100kHz Bandwidth)  
Figure 26. Refout Turn-on Transient  
Figure 29. Refout Line Transient  
Figure 27. Refout Output Noise (0.1Hz to 10Hz Bandwidth)  
Figure 30. Refout Load Transient  
Rev. PrE | Page 14 of 30  
Preliminary Technical Data  
AD5410/AD5420  
Figure 31. Refout Histogram of Thermal Hysteresis  
Figure 32. Refout Voltage vs. Load Current  
Rev. PrE | Page 15 of 30  
AD5410/AD5420  
TERMINOLOGY  
Preliminary Technical Data  
Total Unadjusted Error  
Relative Accuracy or Integral Nonlinearity (INL)  
Total unadjusted error (TUE) is a measure of the output error  
taking all the various errors into account, namely INL error,  
offset error, gain error, and output drift over supplies,  
temperature, and time. TUE is expressed in % FSR.  
For the DAC, relative accuracy, or integral nonlinearity (INL), is  
a measure of the maximum deviation, in LSBs, from a straight  
line passing through the endpoints of the DAC transfer  
function. A typical INL vs. code plot can be seen in Figure 7  
Current Loop Voltage Compliance  
The maximum voltage at the IOUT pin for which the output  
currnet will be equal to the programmed value.  
Differential Nonlinearity (DNL)  
Differential nonlinearity (DNL) is the difference between the  
measured change and the ideal 1 LSB change between any two  
adjacent codes. A specified differential nonlinearity of 1 LSB  
maximum ensures monotonicity. This DAC is guaranteed  
monotonic by design. A typical DNL vs. code plot can be seen  
in Figure 8.  
Power Supply Rejection Ratio (PSRR)  
PSRR indicates how the output of the DAC is affected by  
changes in the power supply voltage.  
Reference TC  
Monotonicity  
Reference TC is a measure of the change in the reference output  
voltage with a change in temperature. It is expressed in ppm/°C.  
A DAC is monotonic if the output either increases or remains  
constant for increasing digital input code. The AD5724R/  
AD5734R/AD5754R are monotonic over their full operating  
temperature range.  
Line Regulation  
Line regulation is the change in reference output voltage due to  
a specified change in supply voltage. It is expressed in ppm/V.  
Full-Scale Error  
Load Regulation  
Full-Scale error is a measure of the output error when full-scale  
code is loaded to the DAC register. Ideally, the output should be  
full-scale − 1 LSB. Full-scale error is expressed in percent of  
full-scale range (% FSR).  
Load regulation is the change in reference output voltage due to  
a specified change in load current. It is expressed in ppm/mA.  
Thermal Hysteresis  
Zero-Scale TC  
Thermal hysteresis is the change of reference output voltage  
after the device is cycled through temperatures from +25°C to  
−40°C to +85°C and back to +25°C. This is a typical value from  
a sample of parts put through such a cycle. See Table TBDfor a  
histogram of thermal hysteresis.  
This is a measure of the change in zero-scale error with a change in  
temperature. Zero-scale error TC is expressed in ppm FSR/°C.  
Gain Error  
This is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from ideal  
expressed in % FSR. A plot of gain error vs. temperature can be  
seen in Table TBD  
VO _ HYS = VO (25°C) VO _TC  
VO (25°C) VO _TC  
VO _ HYS (ppm) =  
×106  
Gain TC  
VO (25°C)  
This is a measure of the change in gain error with changes in  
temperature. Gain Error TC is expressed in ppm FSR/°C.  
where:  
VO(25°C) = VO at 25°C  
VO_TC = VO at 25°C after temperature cycle  
Rev. PrE | Page 16 of 30  
AD5410/AD5420  
Preliminary Technical Data  
THEORY OF OPERATION  
The AD5410/AD5420 is a precision digital to current loop  
output converter designed to meet the requirements of  
industrial process control applications. It provides a high  
precision, fully integrated, low cost single-chip solution for  
generating current loop outputs. The current ranges available  
are; 0 to 20mA, 0 to 24mA and 4 to 20mA, The desired output  
configuration is user selectable via the CONTROL register.  
Reference Buffers  
The AD5410/AD5420 can operate with either an external or  
internal reference. The reference input has an input range of 4 V  
to 5 V, 5 V for specified performance. This input voltage is then  
buffered before it is applied to the DAC.  
SERIAL INTERFACE  
The AD5410/AD5420 is controlled over a versatile 3-wire serial  
interface that operates at clock rates up to 30 MHz. It is  
compatible with SPI®, QSPI™, MICROWIRE™, and DSP  
standards.  
ARCHITECTURE  
The DAC core architecture of the AD5410/AD5420 consists of  
two matched DAC sections. A simplified circuit diagram is  
shown in Figure 33. The 4 MSBs of the 12/16-bit data word are  
decoded to drive 15 switches, E1 to E15. Each of these switches  
connects 1 of 15 matched resistors to either ground or the  
reference buffer output. The remaining 8/12 bits of the data-  
word drive switches S0 to S11 of a 8/12-bit voltage mode R-2R  
ladder network.  
Input Shift Register  
The input shift register is 24 bits wide. Data is loaded into the  
device MSB first as a 24-bit word under the control of a serial  
clock input, SCLK. Data is clocked in on the rising edge of  
SCLK. The input register consists of 8 control bits and 16 data  
bits as shown in  
V
OUT  
2R  
S1  
2R  
2R  
E1  
2R  
E2  
2R  
2R  
2R  
S0  
E15  
S7/S11  
V
REF  
8/12-BIT R-2R LADDER  
FOUR MSBs DECODED INTO  
15 EQUAL SEGMENTS  
Figure 33. DAC Ladder Structure  
The voltage output from the DAC core is converted to a current  
(see diagram, Figure 34) which is then mirrored to the supply  
rail so that the application simply sees a current source output  
with respect to ground.  
AVDD  
R2  
R3  
T2  
A2  
12/16-BIT  
DAC  
T1  
A1  
I
OUT  
R1  
Figure 34. Voltage to Current conversion circuitry  
Rev. PrE | Page 17 of 30  
AD5410/AD5420  
Preliminary Technical Data  
Table 7. The 24 bit word is unconditionally latched on the rising  
edge of LATCH. Data will continue to be clocked in irrespective  
of the state of LATCH, on the rising edge of LATCH the data  
that is present in the input register will be latched, in other  
words the last 24 bits to be clocked in before the rising edge of  
LATCH will be the data that is latched. The timing diagram for  
this operation is shown in Figure 2.  
Rev. PrE | Page 1± of 30  
Preliminary Technical Data  
AD5410/AD5420  
Table 7. Input Shift Register Format  
MSB  
LSB  
D22 D21 D20 D19 D1± D17 D16 D15 D14 D13 D12 D11 D10 D9 D± D7 D6 D5 D4 D3 D2 D1 D0  
ADDRESS WORD DATA WORD  
D23  
AD5410/  
CONTROLLER  
Table 8. Address Word Functions  
AD5420*  
Address  
Word  
Function  
DATA OUT  
SERIAL CLOCK  
CONTROL OUT  
SDIN  
SCLK  
00000000  
00000001  
00000010  
No Operation (NOP)  
DATA Register  
Readback register value as per Read Address  
(See Table 10)  
LATCH  
DATA IN  
SDO  
01010101  
01010110  
CONTROL Register  
RESET Register  
SDIN  
AD5410/  
AD5420*  
Standalone Operation  
The serial interface works with both a continuous and noncon-  
tinuous serial clock. A continuous SCLK source can only be  
used if LATCH is taken high after the correct number of data  
bits have been clocked in. In gated clock mode, a burst clock  
containing the exact number of clock cycles must be used, and  
LATCH must be taken high after the final clock to latch the  
data. The first rising edge of SCLK that clocks in the MSB of the  
dataword marks the beginning ot the write cycle. Exactly 24  
rising clock edges must be applied to SCLK before LATCH is  
brought high. If LATCH is brought high before the 24th rising  
SCLK edge, the data written will be invalid. If more than 24  
rising SCLK edges are applied before LATCH is brought high,  
the input data will also be invalid.  
SCLK  
LATCH  
SDO  
SDIN  
AD5410/  
AD5420*  
SCLK  
LATCH  
SDO  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 35. Daisy Chaining the AD5410/AD5420  
Rev. PrE | Page 19 of 30  
AD5410/AD5420  
Preliminary Technical Data  
Daisy-Chain Operation  
must be used, and LATCH must be taken high after the final  
clock to latch the data. See Figure 4 for a timing diagram.  
For systems that contain several devices, the SDO pin can be  
used to daisy chain several devices together as shown in Figure  
35. This daisy-chain mode can be useful in system diagnostics  
and in reducing the number of serial interface lines. Daisychain  
mode is enabled by setting the DCEN bit of the CONTROL  
register. The first rising edge of SCLK that clocks in the MSB of  
the dataword marks the beginning of the write cycle. SCLK is  
continuously applied to the input shift register. If more than 24  
clock pulses are applied, the data ripples out of the shift register  
and appears on the SDO line. This data is valid on the rising  
edge of SCLK having been clocked out on the previous falling  
SCLK edge. By connecting the SDO of the first device to the  
SDIN input of the next device in the chain, a multidevice  
interface is constructed. Each device in the system requires 24  
clock pulses. Therefore, the total number of clock cycles must  
equal 24 × N, where N is the total number of AD5410/AD5420  
devices in the chain. When the serial transfer to all devices is  
complete, LATCH is taken high. This latches the input data in  
each device in the daisy chain. The serial clock can be a  
continuous or a gated clock.  
Readback Operation  
Readback mode is invoked by setting the address word and read  
address as shown in Table 9 and Table 10 when writing to the  
input register. The next write to the AD5410/AD5420 should be  
a NOP command which will clock out the data from the  
previously addressed register as shown in Figure 3.  
By default the SDO pin is disabled, after having addressed the  
AD5410/AD5420 for a read operation, a rising edge on LATCH  
will enable the SDO pin in anticipation of data being clocked  
out, after the data has been clocked out on SDO, a rising edge  
on LATCH will disable (tri-state) the SDO pin once again.  
To read back the data register for example, the following  
sequence should be implemented:  
1. Write 0x020001 to the AD5410/AD5420 input register.  
This configures the part for read mode with the data  
register selected.  
2. Follow this with a second write, a NOP condition, 0x000000  
During this write, the data from the register is clocked out  
on the SDO line.  
A continuous SCLK source can only be used if LATCH is taken  
high after the correct number of clock cycles. In gated clock  
mode, a burst clock containing the exact number of clock cycles  
Table 9. Input Shift Register Contents for a read operation  
MSB  
LSB  
D23  
D22  
D21  
D20  
D19  
D18  
D17  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Read  
Address  
0
0
0
0
0
0
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Table 10. Read Address Decoding  
Read Address  
Function  
00  
01  
10  
Read Status Register  
Read Data Register  
Read Control Register  
Rev. PrE | Page 20 of 30  
Preliminary Technical Data  
AD5410/AD5420  
POWER-UP STATE  
On power-up of the AD5410/AD5420, the power-on-reset  
circuit ensures that all registers are loaded with zero-code, as  
such the output will be disabled (tri-state).  
20mA  
IOUT  
=
=
× D  
× D  
2N  
24mA  
2N  
TRANSFER FUNCTION  
IOUT  
For the 0 to 20mA, 0 to 24mA and 4 to 20mA current output  
ranges the output current is respectively expressed as;  
16mA  
2N  
IOUT  
=
× D + 4mA  
where:  
D is the decimal equivalent of the code loaded to the DAC.  
N is the bit resolution of the DAC.  
DATA REGISTER  
The DATA register is addressed by setting the control word of the input shift register to 0x01. The data to be written to the DATA register  
is entered in positions D15 to D4 for the AD5410 and D15 to D0 for the AD5420 as shown in Table 11 and Table 12.  
Table 11. Programming the AD5410 Data Register  
MSB  
LSB  
D0  
X
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D8  
D7  
D7  
D6  
D6  
D5  
D5  
D4  
D4  
D3  
D2  
D1  
12-BIT DATA WORD  
X
X
X
Table 12. Programming the AD5420 Data Register  
MSB  
LSB  
D0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D3  
D2  
D1  
16-BIT DATA WORD  
CONTROL REGISTER  
The CONTROL register is addressed by setting the control word of the input shift register to 0x55. The data to be written to the  
CONTROL register is entered in positions D15 to D0 as shown in Table 13. The CONTROL register functions are shown in Table 14.  
Table 13. Programming the CONTROL Register  
MSB  
LSB  
D0  
R0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0
0
REXT  
OUTEN  
SR CLOCK  
SR STEP  
SREN  
DCEN  
R2  
R1  
Table 14. Control Register Functions  
Option  
Description  
Table 15. Output Range Options  
REXT  
Setting this bit selects the external current  
setting resistor, Further details in Features  
section  
Output enable. This bit must be set to enable  
the output.  
R2  
R1  
R0  
Output Range Selected  
4 to 20 mA Current Range  
0 to 20 mA Current Range  
0 to 24 mA Current Range  
1
0
1
1
1
0
OUTEN  
1
1
1
SR CLOCK  
SR STEP  
SREN  
See Features Section. Digital Slew Rate Control  
See Features Section. Digital Slew Rate Control  
Digital Slew Rate Control enable  
Daisychain enable  
DCEN  
R2,R1,R0  
Output range select. See Table 15  
Rev. PrE | Page 21 of 30  
AD5410/AD5420  
Preliminary Technical Data  
RESET REGISTER  
The RESET register is addressed by setting the control word of the input shift register to 0x56. The data to be written to the RESET  
register is entered in positions D15 to D0 as shown in Table 16. The RESET register options are shown in Table 16 and Table 17.  
Table 16. Programming the CONTROL 2 Register  
MSB  
LSB  
D0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
RESET  
Table 17. Control 2 register Functions  
Option Description  
RESET  
Setting this bit performs a reset operation, restoring the AD5410/AD5420 to its initial power on state  
STATUS REGISTER  
The STATUS register is a read only register. The STATUS register functionality is shown in Table 18 and Table 19.  
Table 18. Decoding the STATUS Register  
MSB  
LSB  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8 D7  
D6 D5  
D4  
D3  
D2  
D1  
D0  
IOUT FAULT  
SLEW ACTIVE  
OVER TEMP  
Table 19. STATUS Register Functions  
Option  
Description  
IOUT FAULT  
SLEW ACTIVE  
OVER TEMP  
This bit will be set if a fault is detected on the IOUT pin.  
This bit will be set while the output value is slewing (slew rate control enabled)  
This bit will be set if the AD5410/AD5420 core temperature exceeds approx. 150°C.  
Rev. PrE | Page 22 of 30  
Preliminary Technical Data  
AD5410/AD5420  
FEATURES  
FAULT ALERT  
EXTERNAL CURRENT SETTING RESISTOR  
Referring to Figure 34, R1 is an internal sense resistor as part of  
the voltage to current conversion circuitry. The stability of the  
output current over temperature is dependent on the stability of  
the value of R1. As a method of improving the stability of the  
output current over temperature an external precision 15klow  
drift resistor can be connected to the RSET pin of the  
AD5410/AD5420 to be used instead of the internal resistor R1.  
The external resistor is selected via the CONTROL 1 register.  
See Table 13.  
The AD5410/AD5420 is equipped with a FAULT pin, this is an  
open-drain output allowing several AD5410/AD5420 devices to  
be connected together to one pull-up resistor for global fault  
detection. The FAULT pin is forced active by any one of the  
following fault scenarios;  
1) The Voltage at IOUT attempts to rise above the  
compliance range, due to an open-loop circuit or  
insufficient power supply voltage. The IOUT current is  
controlled by a PMOS transistor and internal  
amplifier as shown in Figure 34. The internal circuitry  
that develops the fault output avoids using a  
DIGITAL POWER SUPPLY  
By default, the DVCC pin accepts a power supply of 2.7V to 5.5V,  
alternatively, via the DVCC SELECT pin an internal 4.5V power  
supply may be output on the DVCC pin for use as a digital power  
supply for other devices in the system or as a termination for  
pull-up resistors. This facility offers the advantage of not having  
to bring a digital supply across an isolation barrier. The internal  
power supply is enabled by leaving the DVCC SELECT pin  
unconnected. To disable the internal supply DVCC SELECT  
should be tied to 0V. DVCC is capable of supplying up to 5mA  
of current, for a load regulation graph see Figure TBD.  
comparator with “window limits” since this would  
require an actual output error before the FAULT  
output becomes active. Instead, the signal is generated  
when the internal amplifier in the output stage has less  
than approxiamately one volt of remaining drive  
capability (when the gate of the output PMOS  
transistor nearly reaches ground). Thus the FAULT  
output activates slightly before the compliance limit is  
reached. Since the comparison is made within the  
feedback loop of the output amplifier, the output  
accuracy is maintained by its open-loop gain and an  
output error does not occur before the FAULT output  
becomes active.  
EXTERNAL BOOST FUNCTION  
The addition of an external boost transistor as shown in Figure  
36 will reduce the power dissipated in the AD5410/AD5420 by  
reducing the current flowing in the on-chip output transistor  
(dividing it by the current gain of the external circuit). A  
2) If the core temperature of the AD5410/AD5420  
exceeds approx. 150°C.  
discrete NPN transistor with a breakdown voltage, BVCEO  
,
The OPEN CCT and OVER TEMP bits of the STATUS register  
are used in conjunction with the FAULT pin to inform the user  
which one of the fault conditions caused the FAULT pin to be  
asserted. See Table 18 and Table 19.  
greater than 60V can be used.  
The external boost capability has been developed for those  
users who may wish to use the AD5410/AD5420 at the  
extremes of the supply voltage, load current and temperature  
range. The boost transistor can also be used to reduce the  
amount of temperature induced drift in the part. This will  
minimise the temperature induced drift of the on-chip voltage  
reference, which improves drift and linearity.  
ASYNCHRONOUS CLEAR (CLEAR)  
CLEAR is an active high clear that clears the Current output to  
the bottom of its programmed range. It is necessary to maintain  
CLEAR high for a minimum amount of time (see Figure 2) to  
complete the operation. When the CLEAR signal is returned  
low, the output remains at the cleared value. The pre-clear value  
can be restored by pulsing the LATCH signal low without  
clocking any data. A new value cannot be programmed until the  
CLEAR pin is returned low.  
MJD31C  
OR  
2N3053  
BOOST  
AD5410/  
AD5420  
I
OUT  
INTERNAL REFERENCE  
1k  
R
LOAD  
0.022  
F
The AD5410/AD5420 contains an integrated +5V voltage  
reference with initial accuracy of 2mV max and a temperature  
drift coefficient of 10 ppm max. The reference voltage is  
buffered and externally available for use elsewhere within the  
system. See Figure 32 for a load regulation graph of the  
Integrated reference.  
Figure 36. External Boost Configuration  
Rev. PrE | Page 23 of 30  
AD5410/AD5420  
Preliminary Technical Data  
DIGITAL SLEW RATE CONTROL  
Table 21. Slew Rate Step Size Options  
The Slew Rate Control feature of the AD5410/AD5420 allows  
the user to control the rate at which the output current changes.  
With the slew rate control feature disabled the output currrent  
will change at a rate limited by the output drive circuitry and  
the attached load. If the user wishes to reduce the slew rate this  
can be achieved by enabling the slew rate control feature.With  
the feature enabled via the SREN bit of the CONTROL register,  
(See Table 13) the output, instead of slewing directly between  
two values, will step digitally at a rate defined by two  
parameters accessible via the CONTROL register as shown in  
Table 13. The parameters are SR CLOCK and SR STEP. SR  
CLOCK defines the rate at which the digital slew will be  
updated SR STEP defines by how much the output value will  
change at each update. Together both parameters define the rate  
of change of the output current.Table 20 and Table 21 outline  
the range of values for both the SR CLOCK and SR STEP  
parameters.  
SR STEP  
AD5410 Step  
Size (LSBs)  
AD5420 Step  
Size (LSBs)  
1
000  
001  
010  
011  
100  
101  
110  
111  
1
2
4
16  
¼
½
1
2
4
±
16  
32  
64  
12±  
±
The time it will take for the output current to slew over a given  
output range can be expressed as follows.  
OutputChange  
SlewTime =  
StepSize×UpdateClockFrequency× LSBSize  
Where:  
Table 20. Slew Rate Update Clock Options  
Slew Time is expressed in seconds  
Output Change is expressed in Amps  
SR CLOCK  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Update Clock Frequency (Hz)  
257732  
19±413  
152439  
131579  
115741  
69444  
37594  
25773  
20161  
16026  
102±±  
±27±  
When the slew rate control feature is enabled, all output  
changes will change at the programmed slew rate, i.e. if the  
CLEAR pin is asserted the output will slew to the clear value at  
the programmed slew rate. The output can be halted at its  
current value with a write to the CONTROL register. To avoid  
halting the output slew, the SLEW ACTIVE bit can be read to  
check that the slew has completed before writing to the  
AD5410/AD5420 registers. See Table 18. The update clock  
frequency for any given value will be the same for all output  
ranges. The step size however will vary across output ranges for  
a given value of step size as the LSB size will be different for  
each output range. Table 22 shows the range of programmable  
slew times for a full-scale change on any of the output ranges.  
The values were obtained using the Slew Time equation above.  
6±97  
5525  
4237  
3300  
Rev. PrE | Page 24 of 30  
Preliminary Technical Data  
AD5410/AD5420  
Table 22. Programmable Slew Time values in seconds for a full scale change on any output range.  
Step Size (LSBs)  
1
2
4
8
16  
32  
64  
128  
0.25  
0.33  
0.43  
0.50  
0.57  
0.9  
1.7  
2.5  
3.3  
4.1  
6.4  
7.9  
9.5  
12  
0.13  
0.17  
0.21  
0.25  
0.2±  
0.47  
0.±7  
1.3  
0.06  
0.0±  
0.11  
0.12  
0.14  
0.24  
0.44  
0.64  
0.±1  
1.0  
0.03  
0.04  
0.05  
0.06  
0.07  
0.12  
0.22  
0.32  
0.41  
0.51  
0.±0  
1.0  
0.016  
0.021  
0.027  
0.031  
0.035  
0.06  
0.11  
0.16  
0.20  
0.26  
0.40  
0.49  
0.59  
0.74  
0.97  
1.24  
0.00±  
0.010  
0.013  
0.016  
0.01±  
0.03  
0.05  
0.0±  
0.10  
0.13  
0.20  
0.25  
0.30  
0.37  
0.4±  
0.62  
0.004  
0.005  
0.007  
0.00±  
0.009  
0.015  
0.03  
0.0020  
0.0026  
0.0034  
0.0039  
0.0044  
0.007  
0.014  
0.020  
0.025  
0.03  
257732  
198413  
152439  
131579  
115741  
69444  
37594  
25773  
20161  
16026  
10288  
8278  
0.04  
1.6  
0.05  
2.0  
0.06  
3.2  
1.6  
0.10  
0.05  
4.0  
2.0  
0.12  
0.06  
4.±  
2.4  
1.2  
0.15  
0.07  
6897  
5.9  
3.0  
1.5  
0.19  
0.09  
5525  
15  
7.7  
3.9  
1.9  
0.24  
0.12  
4237  
20  
9.9  
5.0  
2.5  
0.31  
0.16  
3300  
alternative to the Digital Slew Rate Control feature or in  
addition to it as a means of smoothing out the steps caused by  
the digital code increments.  
IOUT FILTERING CAPACITORS (LFCSP PACKAGE)  
C
1
Two capacitors may be placed between the pins CAP1, CAP2  
and AVDD as shown in Figure 37.  
C
2
AVDD  
AVDD  
R3  
CAP1  
CAP2  
C1  
C2  
AVDD  
BOOST  
R2  
CAP1  
CAP2  
AD5410/  
AD5420  
DAC  
12.5K  
40K  
I
OUT  
I
OUT  
GND  
R1  
Figure 37. IOUT Filtering Capacitors  
Figure 38. IOUT Filter Ciruitry  
These two pins are only available on the LFCSP package.The  
capacitors form a filter on the current output circuitry as shown  
in Figure 38, reducing the bandwidth and the rate of change of  
the output current. These capacitors can be used as an  
Rev. PrE | Page 25 of 30  
AD5410/AD5420  
Preliminary Technical Data  
APPLICATIONS INFORMATION  
ceramic types, which provide a low impedance path to ground  
at high frequencies to handle transient currents due to internal  
logic switching.  
DRIVING INDUCTIVE LOADS  
When driving inductive or poorly defined loads connect a  
0.01µF capacitor between IOUT and GND. This will ensure  
stability with loads beyond 50mH. There is no maximum  
capacitance limit. The capacitive component of the load may  
cause slower settling, The digital Slew Rate Control feature may  
also prove useful in this situation.  
The power supply lines of the AD5410/AD5420 should use as  
large a trace as possible to provide low impedance paths and  
reduce the effects of glitches on the power supply line. Fast  
switching signals such as clocks should be shielded with digital  
ground to avoid radiating noise to other parts of the board and  
should never be run near the reference inputs. A ground line  
routed between the SDIN and SCLK lines helps reduce crosstalk  
between them (not required on a multilayer board that has a  
separate ground plane, but separating the lines helps). It is  
essential to minimize noise on the REFIN line because it  
couples through to the DAC output.  
TRANSIENT VOLTAGE PROTECTION  
The AD5410/AD5420 contains ESD protection diodes which  
prevent damage from normal handling. The industrial control  
environment can, however, subject I/O circuits to much higher  
transients. In order to protect the AD5410/AD5420 from  
excessively high voltage transients , external power diodes and a  
surge current limiting resistor may be required, as shown in  
Figure 39. The constraint on the resistor value is that during  
normal operation the output level at IOUT must remain within  
its voltage compliance limit of AVDD – 2.5V and the two  
protection diodes and resistor must have appropriate power  
ratings. Further protection can be provided with Transient  
Voltage Suppressors or Transorbs, these are available as both  
unidirectional (protects against positive high voltage transients)  
and bidirectional (protects against both positive and negative  
high voltage transients) and are available in a wide range of  
standoff and breakdown voltage ratings. It is recommended that  
all field connected nodes are protected.  
Avoid crossover of digital and analog signals. Traces on  
opposite sides of the board should run at right angles to each  
other. This reduces the effects of feed through the board. A  
microstrip technique is by far the best, but not always possible  
with a double-sided board. In this technique, the component  
side of the board is dedicated to ground plane, while signal  
traces are placed on the solder side.  
GALVANICALLY ISOLATED INTERFACE  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled to protect and isolate the controlling circuitry from  
any hazardous common-mode voltages that might occur. The  
iCoupler® family of products from Analog Devices provides  
voltage isolation in excess of 2.5 kV. The serial loading structure  
of the AD5410/AD5420 make it ideal for isolated interfaces  
because the number of interface lines is kept to a minimum.  
Figure 40 shows a 4-channel isolated interface to the  
AV  
DD  
AV  
DD  
R
P
AD5410/  
AD5420  
I
OUT  
AGND  
R
LOAD  
AD5410/AD5420 using an ADuM1400. For further  
information, visit http://www.analog.com/icouplers.  
Figure 39. Output Transient Voltage Protection  
LAYOUT GUIDELINES  
Controller  
ADuM1400 *  
V
V
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure  
the rated performance. The printed circuit board on which the  
AD5410/AD5420 is mounted should be designed so that the  
analog and digital sections are separated and confined to certain  
areas of the board. If the AD5410/AD5420 is in a system where  
multiple devices require an AGND-to-DGND connection, the  
connection should be made at one point only. The star ground  
point should be established as close as possible to the device.  
OA  
IA  
To SCLK  
Serial Clock Out  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
V
V
V
V
IB  
IC  
ID  
OB  
OC  
To SDIN  
Serial Data Out  
SYNC Out  
ENCODE  
ENCODE  
ENCODE  
V
V
To LATCH  
To CLEAR  
OD  
Control out  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 40. Isolated Interface  
The AD5410/AD5420 should have ample supply bypassing of  
10 µF in parallel with 0.1 µF on each supply located as close to  
the package as possible, ideally right up against the device. The  
10 µF capacitors are the tantalum bead type. The 0.1 µF  
capacitor should have low effective series resistance (ESR) and  
low effective series inductance (ESI) such as the common  
MICROPROCESSOR INTERFACING  
Microprocessor interfacing to the AD5410/AD5420 is via a serial  
bus that uses protocol compatible with microcontrollers and  
DSP processors. The communications channel is a 3-wire  
(minimum) interface consisting of a clock signal, a data signal,  
Rev. PrE | Page 26 of 30  
Preliminary Technical Data  
AD5410/AD5420  
and a latch signal. The AD5410/AD5420 require a 24-bit data-  
word with data valid on the rising edge of SCLK.  
be controlled or AVDD should be reduced. The conditions will  
depend on the device and package.  
For all interfaces, the DAC output update is initiated on the  
rising edge of LATCH. The contents of the registers can be read  
using the readback function.  
At maximum ambient temperature of 85°C the  
AD5410/AD5420AREZ (24-lead TSSOP) can dissipate 950mW  
and the AD5410/AD5420ACPZ (40-lead LFCSP) can dissipate  
1.42W.  
To ensure the junction temperature does not exceed 125°C  
while driving the maximum current of 24mA directly into  
ground (also adding an on-chip current of 3mA), AVDD should  
be reduced from the maximum rating to ensure the package is  
not required to dissipate more power than stated above. See  
Table 23, Figure 41 and Figure 42.  
THERMAL AND SUPPLY CONSIDERATIONS  
The AD5410/AD5420 is designed to operate at a maximum  
junction temperature of 125°C. It is important that the device is  
not operated under conditions that will cause the junction  
temperature to exceed this value . Excessive junction  
temperature can occur if the AD5410/AD5420 is operated from  
the maximum AVDD and driving the maximum current (24mA)  
directly to ground. In this case the ambient temperature should  
2.5  
65  
60  
TSSOP  
LFCSP  
2
55  
TSSOP  
50  
45  
40  
35  
30  
25  
LFCSP  
1.5  
1
0.5  
0
40  
45  
50  
55  
60  
65  
70  
75  
80  
85  
25  
35  
45  
55  
65  
75  
85  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
Figure 41. Maximum Power Dissipation Vs Ambient Temperature  
Figure 42. Maximum Supply Voltage Vs Ambient Temperature  
Table 23. Thermal and Supply considerations for each package  
TSSOP  
LFCSP  
Maximum allowed power dissipation  
when operating at an ambient  
temperature of ±5°C  
T
maxT  
125 85  
T
maxT  
A
125 85  
J
A
J
=
= 950mW  
=
= 1.42W  
Θ
42  
Θ
28  
JA  
JA  
Maximum allowed ambient  
temperature when operating from a  
supply of 40V/60V and driving 24mA  
directly to ground.  
T
maxP × Θ  
= 125 −  
(
40 × 0.027  
)
× 42 = 79°C  
T maxP × Θ = 125−  
(
60× 0.027  
)
× 28 = 79°C  
J
D
JA  
J
D
JA  
Maximum allowed supply voltage  
when operating at an ambient  
temperature of ±5°C and driving 24mA  
directly to ground.  
T
maxT  
125 85  
T
maxT  
A
125 85  
J
A
J
=
= 35V  
=
= 53V  
AI  
× Θ  
0.027 × 42  
AI  
× Θ  
JA  
0.027 × 28  
DD  
JA  
DD  
Rev. PrE | Page 27 of 30  
AD5410/AD5420  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
5.02  
5.00  
4.95  
7.90  
7.80  
7.70  
24  
13  
12  
4.50  
4.40  
4.30  
3.25  
3.20  
3.15  
EXPOSED  
PAD  
(Pins Up)  
6.40 BSC  
1
BOTTOM VIEW  
TOP VIEW  
1.05  
1.00  
0.80  
1.20 MAX  
8°  
0°  
0.20  
0.09  
0.15  
0.05  
0.30  
0.19  
0.65  
BSC  
0.75  
0.60  
0.45  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-153-ADT  
Figure 43. 24-Lead Thin Shrink Small Outline Package, Exposed Pad [TSSOP_EP]  
(RE-24)  
Dimensions shown in millimeters  
6.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
31  
40  
1
30  
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
4.25  
4.10 SQ  
3.95  
5.75  
BCS SQ  
EXPOSED  
PAD  
(BOT TOM VIEW)  
0.50  
0.40  
0.30  
21  
10  
11  
20  
0.25 MIN  
4.50  
REF  
12° MAX  
0.80 MAX  
0.65 TYP  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 44. 40-Lead Lead Frame Chip Scale Package  
(CP-40)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD5410AREZ  
AD5410ACPZ  
AD5420AREZ  
AD5420ACPZ  
Resolution  
12 Bits  
12 Bits  
16 Bits  
16 Bits  
AVDD max  
40V  
60V  
40V  
60V  
Temperature Range Package Description Package Option  
-40°C to ±5°C  
-40°C to ±5°C  
-40°C to ±5°C  
-40°C to ±5°C  
24 Lead TSSOP_EP  
40 Lead LFCSP  
24 Lead TSSOP_EP  
40 Lead LFCSP  
RE-24  
CP-40  
RE-24  
CP-40  
Rev. PrE | Page 2± of 30  
Preliminary Technical Data  
AD5410/AD5420  
Rev. PrE | Page 29 of 30  
AD5410/AD5420  
NOTES  
Preliminary Technical Data  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR07027-0-5/08(PrE)  
Rev. PrE | Page 30 of 30  

相关型号:

AD5410ACPZ-REEL7

SERIAL INPUT LOADING, 40 us SETTLING TIME, 12-BIT DAC, QCC40, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD-2, LFCSP-40
ROCHESTER

AD5410ACPZ-REEL7

Single-Channel, 12-Bit, Serial Input, 4 mA to 20 mA, Current Source DAC, HART Connectivity
ADI

AD5410AREZ

Single Channel, 16-Bit, Serial Input, Current Source DAC
ADI

AD5410AREZ-REEL7

Single-Channel, 12-Bit, Serial Input, 4 mA to 20 mA, Current Source DAC, HART Connectivity
ADI

AD5410BREZ

IC SERIAL INPUT LOADING, 12-BIT DAC, PDSO24, MO-153ADT, TSSOP-24, Digital to Analog Converter
ADI

AD5410_08

Single Channel, 16-Bit, Serial Input, Current Source DAC
ADI

AD5412

Single Channel, 16-Bit, Serial Input, Current Source DAC
ADI

AD5412ACPZ

Single Channel, 12/16-Bit, Serial Input, Current Source & Voltage Output DAC
ADI

AD5412ACPZ-REEL

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
ADI

AD5412ACPZ-REEL7

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
ADI

AD5412AREZ

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
ADI

AD5412AREZ-REEL7

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
ADI