AD5421_11 [ADI]

16-Bit, Serial Input, Loop-Powered, 4 mA to 20 mA DAC; 16位,串行输入,环路供电4 mA至20 mA DAC
AD5421_11
型号: AD5421_11
厂家: ADI    ADI
描述:

16-Bit, Serial Input, Loop-Powered, 4 mA to 20 mA DAC
16位,串行输入,环路供电4 mA至20 mA DAC

文件: 总32页 (文件大小:757K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
16-Bit, Serial Input,  
Loop-Powered, 4 mA to 20 mA DAC  
AD5421  
FEATURES  
GENERAL DESCRIPTION  
16-bit resolution and monotonicity  
Pin selectable NAMUR-compliant ranges  
4 mA to 20 mA  
3.8 mA to 21 mA  
3.2 mA to 24 mA  
The AD5421 is a complete, loop-powered, 4 mA to 20 mA  
digital-to-analog converter (DAC) designed to meet the needs  
of smart transmitter manufacturers in the industrial control  
industry. The DAC provides a high precision, fully integrated,  
low cost solution in a compact TSSOP package.  
NAMUR-compliant alarm currents  
Downscale alarm current = 3.2 mA  
Upscale alarm current = 22.8 mA/24 mA  
Total unadjusted error (TUE): 0.05% maximum  
INL error: 0.0035% FSR maximum  
Output TC: 3 ppm/°C typical  
Quiescent current: 300 μA maximum  
Flexible SPI-compatible serial digital interface  
with Schmitt triggered inputs  
The AD5421 includes a regulated voltage output that is used to  
power itself and other devices in the transmitter. This regulator  
provides a regulated 1.8 V to 12 V output voltage. The AD5421  
also contains 1.22 V and 2.5 V references, thus eliminating the  
need for a discrete regulator and voltage reference.  
The AD5421 can be used with standard HART® FSK protocol  
communication circuitry without any degradation in specified  
performance. The high speed serial interface is capable of opera-  
ting at 30 MHz and allows for simple connection to commonly  
used microprocessors and microcontrollers via a SPI-compatible,  
3-wire interface.  
On-chip fault alerts via FAULT pin or alarm current  
Automatic readback of fault register on each write cycle  
Slew rate control function  
Gain and offset adjust registers  
On-chip reference TC: 4 ppm/°C maximum  
Selectable regulated voltage output  
Loop voltage range: 5.5 V to 52 V  
Temperature range: −40°C to +105°C  
TSSOP package  
The AD5421 is guaranteed monotonic to 16 bits. It provides  
0.0015% integral nonlinearity, 0.0012% offset error, and  
0.0006% gain error under typical conditions.  
The AD5421 is available in a 28-lead TSSOP and is specified over  
the extended industrial temperature range of −40°C to +105°C.  
HART compatible  
APPLICATIONS  
Industrial process control  
4 mA to 20 mA loop-powered transmitters  
Smart transmitters  
FUNCTIONAL BLOCK DIAGRAM  
IODV  
DD  
DV  
V
REG_SEL0 REG_SEL1 REG_SEL2 REG  
REG  
OUT IN  
DD  
LOOP  
LOOP  
VOLTAGE  
MONITOR  
VOLTAGE  
REGULATOR  
DRIVE  
FAULT  
SYNC  
SCLK  
SDIN  
SDO  
INPUT  
R
SET  
24k  
REGISTER  
CONTROL  
LOGIC  
16  
16-BIT  
DAC  
GAIN/OFFSET  
ADJUSTMENT  
REGISTERS  
LDAC  
RANGE0  
RANGE1  
TEMPERATURE  
SENSOR  
11.5kΩ  
52Ω  
LOOP–  
ALARM_CURRENT_DIRECTION  
VREF  
AD5421  
R
/R  
INT EXT  
REFOUT2 REFOUT1  
REFIN  
C
R
R
COM  
IN  
EXT1 EXT2  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
 
AD5421  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
On-Chip ADC ............................................................................ 21  
Voltage Regulator ....................................................................... 21  
Loop Current Slew Rate Control.............................................. 21  
Power-On Default ...................................................................... 21  
HART Communications ........................................................... 22  
Serial Interface ................................................................................ 24  
Input Shift Register .................................................................... 24  
Register Readback ...................................................................... 24  
DAC Register .............................................................................. 25  
Control Register ......................................................................... 26  
Fault Register .............................................................................. 27  
Offset Adjust Register................................................................ 28  
Gain Adjust Register.................................................................. 28  
Applications Information.............................................................. 30  
Determining the Expected Total Error ................................... 30  
Thermal and Supply Considerations....................................... 31  
Outline Dimensions....................................................................... 32  
Ordering Guide .......................................................................... 32  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Performance Characteristics................................................ 7  
Timing Characteristics ................................................................ 7  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 12  
Terminology .................................................................................... 18  
Theory of Operation ...................................................................... 19  
Fault Alerts .................................................................................. 19  
External Current Setting Resistor ............................................ 20  
Loop Current Range Selection.................................................. 20  
Connection to Loop Power Supply .......................................... 20  
REVISION HISTORY  
2/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 32  
 
AD5421  
SPECIFICATIONS  
Loop voltage = 24 V; REFIN = 2.5 V external; RL = 250 Ω; external NMOS connected; all loop current ranges; all specifications  
TMIN to TMAX, unless otherwise noted.  
Table 1.  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ACCURACY, INTERNAL RSET  
Resolution  
16  
Bits  
Total Unadjusted Error (TUE)2  
−0.126  
−0.041  
−0.22  
−0.12  
+0.126  
+0.041  
+0.22  
% FSR  
% FSR  
% FSR  
% FSR  
ppm FSR  
% FSR  
% FSR  
LSB  
% FSR  
% FSR  
ppm FSR/°C  
% FSR  
% FSR  
ppm FSR/°C  
% FSR  
% FSR  
ppm FSR/°C  
mA  
C grade  
C grade, TA = 25°C  
B grade  
B grade, TA = 25°C  
Drift after 1000 hours at TA = 125°C  
C grade  
0.0064  
0.011  
210  
0.0015  
0.006  
+0.12  
TUE Long-Term Stability  
Relative Accuracy (INL)  
−0.0035  
−0.08  
−1  
−0.056  
−0.008  
+0.0035  
+0.08  
+1  
+0.056  
+0.008  
B grade  
Guaranteed monotonic  
Differential Nonlinearity (DNL)  
Offset Error  
0.0008  
0.0058  
0.0065  
TA = 25°C  
TA = 25°C  
TA = 25°C  
Offset Error TC3  
Gain Error  
1
4
5
−0.107  
−0.035  
+0.107  
+0.035  
Gain Error TC3  
Full-Scale Error  
−0.126  
−0.041  
+0.126  
+0.041  
Full-Scale Error TC3  
Downscale Alarm Current  
Upscale Alarm Current  
3.19  
22.77  
3.21  
22.83  
mA  
4 mA to 20 mA and 3.8 mA to 21 mA  
ranges  
23.97  
24.03  
mA  
3.2 mA to 24 mA range  
Assumes ideal resistor  
ACCURACY, EXTERNAL RSET (24 kΩ)  
Resolution  
16  
Bits  
Total Unadjusted Error (TUE)2  
−0.048  
−0.027  
−0.12  
−0.06  
+0.048  
+0.027  
+0.12  
% FSR  
% FSR  
% FSR  
% FSR  
ppm FSR  
% FSR  
% FSR  
LSB  
% FSR  
% FSR  
ppm FSR/°C  
% FSR  
% FSR  
ppm FSR/°C  
% FSR  
% FSR  
ppm FSR/°C  
mA  
C grade  
C grade, TA = 25°C  
B grade  
B grade, TA = 25°C  
Drift after 1000 hours at TA = 125°C  
C grade  
0.002  
0.003  
40  
0.0015  
+0.06  
TUE Long-Term Stability  
Relative Accuracy (INL)  
−0.0035  
−0.08  
−1  
−0.021  
−0.007  
+0.0035  
+0.08  
+1  
+0.021  
+0.007  
0.006  
B grade  
Guaranteed monotonic  
Differential Nonlinearity (DNL)  
Offset Error  
0.0012  
0.5  
TA = 25°C  
TA = 25°C  
TA = 25°C  
Offset Error TC3  
Gain Error  
−0.03  
−0.023  
+0.03  
+0.023  
0.0006  
0.0017  
Gain Error TC3  
Full-Scale Error  
1
1
−0.047  
−0.028  
+0.047  
+0.028  
Full-Scale Error TC3  
Downscale Alarm Current  
Upscale Alarm Current  
3.19  
22.79  
3.21  
22.81  
mA  
4 mA to 20 mA and 3.8 mA to 21 mA  
ranges  
23.99  
24.01  
mA  
3.2 mA to 24 mA range  
Rev. 0 | Page 3 of 32  
 
 
AD5421  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
OUTPUT CHARACTERISTICS3  
Loop Compliance Voltage4  
LOOP− + 5.5  
LOOP− + 12.5  
V
V
REGOUT < 5.5 V, loop current = 24 mA  
REGOUT = 12 V, loop current = 24 mA  
Loop Current Long-Term Stability  
100  
15  
ppm FSR  
Drift after 1000 hours at TA = 125°C,  
loop current = 12 mA, internal RSET  
Drift after 1000 hours at TA = 125°C,  
loop current = 12 mA, external RSET  
Loop current = 12 mA, load current  
from REGOUT = 5 mA  
ppm FSR  
μA/mA  
Loop Current Error vs. REGOUT Load  
Current  
1.2  
Resistive Load  
Inductive Load  
Power Supply Sensitivity  
Output Impedance  
Output TC  
0
2
kΩ  
See Figure 19 for a load line graph  
Stable operation  
Loop current = 12 mA  
50  
mH  
μA/V  
MΩ  
0.1  
12  
400  
3
1
ppm FSR/°C Loop current = 12 mA, internal RSET  
ppm FSR/°C Loop current = 12 mA, external RSET  
Output Noise  
0.1 Hz to 10 Hz  
500 Hz to 10 kHz  
50  
0.2  
nA p-p  
mV rms  
HART bandwidth; measured across  
500 Ω load  
Noise Spectral Density  
195  
256  
nA/√Hz  
nA/√Hz  
At 1 kHz  
At 10 kHz  
REFERENCE INPUT (REFIN PIN)3  
Reference Input Voltage5  
DC Input Impedance  
REFERENCE OUTPUTS  
REFOUT1 Pin  
2.5  
800  
V
MΩ  
For specified performance  
75  
Output Voltage  
Temperature Coefficient  
2.498  
2.5  
1.5  
2
7.5  
245  
70  
200  
10  
4
2.503  
4
10  
V
TA = 25°C  
C grade  
B grade  
ppm/°C  
ppm/°C  
μV p-p  
nV/√Hz  
nV/√Hz  
ppm  
nF  
Output Noise (0.1 Hz to 10 Hz)3  
Noise Spectral Density3  
At 1 kHz  
At 10 kHz  
Drift after 1000 hours at TA = 125°C  
Stable operation  
Output Voltage Drift vs. Time3  
Capacitive Load3  
Load Current3, 6  
mA  
Short-Circuit Current3  
Power Supply Sensitivity3  
Thermal Hysteresis3  
6.5  
2
285  
5
0.1  
0.1  
mA  
Short circuit to COM  
12  
μV/V  
ppm  
ppm  
mV/mA  
Ω
First temperature cycle  
Second temperature cycle  
Measured at 0 mA and 1 mA loads  
Load Regulation3  
Output Impedance  
REFOUT2 Pin  
Output Voltage  
Output Impedance  
REGOUT OUTPUT  
0.2  
1.28  
1.18  
1.8  
1.227  
72  
V
kΩ  
TA = 25°C  
Voltage regulator output  
See Table 10  
Output Voltage  
12  
+4  
V
Output Voltage TC3  
Output Voltage Accuracy  
Externally Available Current3, 6  
110  
2
ppm/°C  
%
mA  
−4  
3.15  
Assuming 4 mA flowing in the loop  
and during HART communications  
Short-Circuit Current  
Line Regulation3  
23  
500  
10  
8
mA  
mV/V  
mV/V  
mV/mA  
Internal NMOS  
External NMOS  
Load Regulation3  
Rev. 0 | Page 4 of 32  
AD5421  
Parameter1  
Min  
Typ  
50  
10  
Max  
Unit  
mH  
μF  
Test Conditions/Comments  
Inductive Load  
Capacitive Load  
ADC ACCURACY  
Die Temperature  
VLOOP Input  
Stable operation  
Stable operation  
2
5
1
°C  
%
DVDD OUTPUT  
Can be overdriven up to 5.5 V  
Output Voltage  
Externally Available Current3, 6  
3.17  
3.15  
3.3  
3.48  
V
mA  
Assuming 4 mA flowing in the loop  
and during HART communications  
Short-Circuit Current  
Load Regulation  
DIGITAL INPUTS3  
7.7  
11  
mA  
mV/mA  
Measured at 0 mA and 3 mA loads  
SCLK, SYNC, SDIN, LDAC  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Hysteresis  
0.7 × IODVDD  
V
V
V
V
V
μA  
pF  
0.25 × IODVDD  
+0.015  
0.21  
0.63  
1.46  
IODVDD = 1.8 V  
IODVDD = 3.3 V  
IODVDD = 5.5 V  
Per pin  
Input Current  
Pin Capacitance  
−0.015  
5
Per pin  
DIGITAL OUTPUTS3  
SDO Pin  
Output Low Voltage, VOL  
Output High Voltage, VOH  
High Impedance Leakage  
Current  
0.4  
V
V
μA  
IODVDD − 0.5  
−0.01  
+0.01  
High Impedance Output  
Capacitance  
5
pF  
FAULT Pin  
Output Low Voltage, VOL  
Output High Voltage, VOH  
FAULT THRESHOLDS  
ILOOP Under  
ILOOP Over  
Temp 140°C  
0.4  
V
V
IODVDD − 0.5  
ILOOP – 0.01% FSR  
ILOOP + 0.01% FSR  
133  
mA  
mA  
°C  
Fault removed when temperature  
≤ 125°C  
Temp 100°C  
90  
°C  
Fault removed when temperature  
≤ 85°C  
VLOOP 6V  
VLOOP 12V  
0.3  
0.6  
V
V
Fault removed when VLOOP ≥ 0.4 V  
Fault removed when VLOOP ≥ 0.7 V  
POWER REQUIREMENTS  
REGIN  
IODVDD  
5.5  
1.71  
52  
5.5  
300  
V
V
μA  
With respect to LOOP−  
With respect to COM  
Quiescent Current  
260  
1 Temperature range: −40°C to +105°C; typical at +25°C.  
2 Total unadjusted error is the total measured error (offset error + gain error + linearity error + output drift over temperature) after factory calibration of the AD5421.  
System level total error can be reduced using the offset and gain registers.  
3 Guaranteed by design and characterization; not production tested.  
4 The voltage between LOOP− and REGIN must be 5.5 V or greater.  
5 The AD5421 is factory calibrated with an external 2.5 V reference connected to REFIN.  
6 This is the current that the output is capable of sourcing. The load current originates from the loop and, therefore, contributes to the total current consumption figure.  
Rev. 0 | Page 5 of 32  
 
 
 
 
 
 
 
 
 
AD5421  
Loop voltage = 24 V; REFIN = REFOUT1 (2.5 V internal reference); RL = 250 Ω; external NMOS connected; all loop current ranges;  
all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
C Grade  
Typ  
Parameter1, 2  
Min  
Max  
Unit  
Test Conditions/Comments  
ACCURACY, INTERNAL RSET  
Total Unadjusted Error (TUE)3  
−0.157  
−0.117  
−0.004  
−0.004  
−0.04  
+0.157  
+0.117  
+0.004  
+0.004  
+0.04  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
0.0172  
TA = 25°C  
TA = 25°C  
TA = 25°C  
Relative Accuracy (INL)  
Offset Error  
0.0015  
0.0025  
−0.025  
+0.025  
Offset Error TC  
Gain Error  
1
5
6
ppm FSR/°C  
% FSR  
% FSR  
ppm FSR/°C  
% FSR  
% FSR  
−0.128  
−0.093  
+0.128  
+0.093  
0.0137  
0.0172  
TA = 25°C  
Gain Error TC  
Full-Scale Error  
−0.157  
−0.117  
+0.157  
+0.117  
TA = 25°C  
Full-Scale Error TC  
ppm FSR/°C  
ACCURACY, EXTERNAL RSET (24 kΩ)  
Total Unadjusted Error (TUE)3  
Assumes ideal resistor  
TA = 25°C  
−0.133  
−0.133  
−0.004  
−0.004  
−0.029  
−0.029  
+0.133  
+0.133  
+0.004  
+0.004  
+0.029  
+0.029  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
0.0252  
0.0015  
0.0038  
Relative Accuracy (INL)  
Offset Error  
TA = 25°C  
TA = 25°C  
Offset Error TC  
Gain Error  
0.5  
ppm FSR/°C  
% FSR  
−0.11  
+0.11  
−0.106  
0.0197  
+0.106  
% FSR  
ppm FSR/°C  
% FSR  
% FSR  
ppm FSR/°C  
TA = 25°C  
TA = 25°C  
Gain Error TC  
Full-Scale Error  
2
2
−0.133  
−0.133  
+0.133  
+0.133  
0.0252  
Full-Scale Error TC  
1 Temperature range: −40°C to +105°C; typical at +25°C.  
2 Specifications guaranteed by design and characterization; not production tested.  
3 Total unadjusted error is the total measured error (offset error + gain error + linearity error + output drift over temperature) after factory calibration of the AD5421.  
System level total error can be reduced using the offset and gain registers.  
Rev. 0 | Page 6 of 32  
 
 
 
AD5421  
AC PERFORMANCE CHARACTERISTICS  
Loop voltage = 24 V; REFIN = 2.5 V external; RL = 250 Ω; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Loop Current Settling Time  
Loop Current Slew Rate  
AC Loop Voltage Sensitivity  
50  
400  
1.3  
μs  
μA/μs  
μA/V  
To 0.1% FSR, CIN = open circuit  
CIN = open circuit  
1200 Hz to 2200 Hz, 5 V p-p, RL = 3 kΩ  
1 Temperature range: −40°C to +105°C; typical at +25°C.  
TIMING CHARACTERISTICS  
Loop voltage = 24 V; REFIN = 2.5 V external; RL = 250 Ω; all specifications TMIN to TMAX  
.
Table 4.  
Parameter1, 2, 3  
Limit at TMIN, TMAX Unit  
Description  
t1  
t2  
t3  
t4  
33  
17  
17  
17  
10  
25  
5
ns min  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC falling edge to SCLK falling edge setup time  
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time  
ns min  
ns min  
ns min  
ns min  
μs min  
ns min  
ns min  
μs min  
ns min  
ns max  
ns min  
ns max  
t5  
t6  
t7  
t8  
t9  
Data setup time  
Data hold time  
SYNC rising edge to LDAC falling edge  
LDAC pulse width low  
5
25  
10  
70  
0
t10  
t11  
t12  
t13  
SCLK rising edge to SDO valid (CL SDO = 30 pF)  
SYNC falling edge to SCLK rising edge setup time  
SYNC rising edge to SDO tristate (CL SDO = 30 pF)  
70  
1 Guaranteed by design and characterization; not production tested.  
2 All input signals are specified with tR = tF = 5 ns (10% to 90% of DVDD) and timed from a voltage level of 1.2 V.  
3 See Figure 2 and Figure 3.  
Table 5. SPI Watchdog Timeout Periods  
Parameter1  
T0  
0
0
0
0
1
1
1
1
T1  
0
0
1
1
0
0
1
1
T2  
0
1
0
1
0
1
0
1
Min  
43  
87  
436  
873  
1746  
2619  
3493  
4366  
Typ  
50  
100  
Max  
59  
117  
Unit  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
500  
582  
1000  
2000  
3000  
4000  
5000  
1163  
2326  
3489  
4652  
5814  
1 Specifications guaranteed by design and characterization; not production tested.  
Rev. 0 | Page 7 of 32  
 
 
 
 
AD5421  
Timing Diagrams  
t1  
t12  
SCLK  
8
9
1
10  
11  
t2  
12  
22  
24  
2
23  
t3  
D15  
t8  
D15  
SDIN  
D23  
D16  
D14  
D13  
D2  
D1  
D0  
t13  
t4  
t7  
D14  
t11  
D13  
D2  
D1  
D0  
t5  
SDO  
t6  
SYNC  
t9  
t10  
LDAC  
Figure 2. Serial Interface Timing Diagram  
8
9
1
8
9
24  
SCLK  
SDIN  
1
24  
D16  
D23  
D15  
D0  
D23  
D16  
D15  
D0  
INPUT WORD SPECIFIES REGISTER TO BE READ  
UNDEFINED DATA  
NOP OR REGISTER ADDRESS  
D15  
D0  
SDO  
SPECIFIED REGISTER DATA CLOCKED OUT  
SYNC  
Figure 3. Readback Timing Diagram  
Rev. 0 | Page 8 of 32  
 
 
 
AD5421  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. Transient currents of up  
to 100 mA do not cause SCR latch-up.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 6.  
Parameter  
Rating  
REGIN to COM  
REGOUT to COM  
−0.3 V to +60 V  
−0.3 V to +14 V  
Digital Inputs to COM  
−0.3 V to DVDD + 0.3 V  
RANGE0, RANGE1, RINT/REXT  
,
or +7 V (whichever is less)  
ALARM_CURRENT_DIRECTION,  
REG_SEL0, REG_SEL1, REG_SEL2  
Digital Inputs to COM  
SCLK, SDIN, SYNC, LDAC  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
−0.3 V to IODVDD + 0.3 V  
or +7 V (whichever is less)  
Digital Outputs to COM  
SDO, FAULT  
REFIN to COM  
REFOUT1, REFOUT2  
VLOOP to COM  
LOOP− to COM  
DVDD to COM  
IODVDD to COM  
REXT1, CIN to COM  
REXT2 to COM  
DRIVE to COM  
−0.3 V to IODVDD + 0.3 V  
or +7 V (whichever is less)  
Table 7. Thermal Resistance  
Package Type  
28-Lead TSSOP_EP (RE-28-2)  
θJA  
θJC  
Unit  
−0.3 V to +7 V  
−0.3 V to +4.7 V  
−0.3 V to +60 V  
−5 V to +0.3 V  
−0.3 V to +7 V  
−0.3 V to +7 V  
−0.3 V to +4.3 V  
−0.3 V to +0.3 V  
−0.3 V to +11 V  
32  
9
°C/W  
ESD CAUTION  
Operating Temperature Range (TA)  
Industrial  
Storage Temperature Range  
−40°C to +105°C  
−65°C to +150°C  
125°C  
Junction Temperature (TJ MAX  
Power Dissipation  
)
(TJ MAX − TA)/θJA  
Lead Temperature,  
Soldering (10 sec)  
JEDEC Industry Standard  
J-STD-020  
ESD  
Human Body Model  
3 kV  
Field Induced Charged Device  
Model  
1.5 kV  
Machine Model  
200 V  
Rev. 0 | Page 9 of 32  
 
AD5421  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
IODV  
DD  
REG  
REG  
OUT  
IN  
SDO  
SCLK  
SYNC  
SDIN  
3
DRIVE  
4
V
LOOP  
AD5421  
TOP VIEW  
(Not to Scale)  
5
LOOP–  
6
LDAC  
FAULT  
R
R
C
EXT2  
EXT1  
IN  
7
8
DV  
DD  
9
ALARM_CURRENT_DIRECTION  
REFOUT1  
REFOUT2  
REFIN  
10  
11  
12  
13  
14  
R
/R  
INT EXT  
RANGE0  
RANGE1  
COM  
REG_SEL0  
REG_SEL1  
REG_SEL2  
COM  
NOTES  
1. THE EXPOSED PADDLE SHOULD BE CONNECTED TO THE SAME  
POTENTIAL AS THE COM PIN AND TO A COPPER PLANE FOR  
OPTIMUM THERMAL PERFORMANCE.  
Figure 4. Pin Configuration  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
IODVDD  
Digital Interface Supply Pin. Digital thresholds are referenced to the voltage applied to this pin. A voltage  
from 1.71 V to 5.5 V can be applied to this pin.  
2
3
4
SDO  
Serial Data Output. Used to clock data from the input shift register. Data is clocked out on the rising edge of  
SCLK and is valid on the falling edge of SCLK.  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of SCLK. This input operates  
at clock speeds up to 30 MHz.  
Frame Synchronization Input, Active Low. This is the frame synchronization signal for the serial interface.  
When SYNC is low, data is transferred on the falling edge of SCLK. The input shift register data is latched on  
the rising edge of SYNC.  
SCLK  
SYNC  
5
6
SDIN  
LDAC  
Serial Data Input. Data must be valid on the falling edge of SCLK.  
Load DAC Input, Active Low. This pin is used to update the DAC register and, consequently, the output  
current. If LDAC is tied permanently low, the DAC register is updated on the rising edge of SYNC. If LDAC  
is held high during the write cycle, the input register is updated, but the output update is delayed until  
the falling edge of LDAC. The LDAC pin should not be left unconnected.  
7
FAULT  
DVDD  
ALARM_  
CURRENT_  
Fault Alert Output Pin, Active High. This pin is asserted high when a fault is detected. Detectable faults are  
loss of SPI interface control, communication error (PEC), loop current out of range, insufficient loop voltage,  
and overtemperature. For more information, see the Fault Alerts section.  
8
9
3.3 V Digital Power Supply Output. This pin should be decoupled to COM with 100 nF and 1 μF capacitors.  
Alarm Current Direction Select. This pin is used to select whether the alarm current is upscale  
(22.8 mA/24 mA) or downscale (3.2 mA). Connecting this pin to DVDD selects an upscale alarm current  
(22.8 mA/24 mA); connecting this pin to COM selects a downscale alarm current (3.2 mA). For more  
information, see the Power-On Default section.  
DIRECTION  
10  
RINT/REXT  
Current Setting Resistor Select. When this pin is connected to DVDD, the internal current setting resistor is  
selected. When this pin is connected to COM, the external current setting resistor is selected. An external  
resistor can be connected between the REXT1 and REXT2 pins.  
11, 12  
13, 14  
RANGE0,  
RANGE1  
COM  
Digital Input Pins. These two pins select the loop current range (see the Loop Current Range Selection  
section).  
Ground Reference Pin for the AD5421.  
15, 16, 17 REG_SEL2,  
REG_SEL1,  
These three pins together select the regulator output (REGOUT) voltage (see the Voltage Regulator section).  
REG_SEL0  
18  
19  
20  
REFIN  
REFOUT2  
REFOUT1  
Reference Voltage Input. VREFIN = 2.5 V for specified performance.  
Internal Reference Voltage Output (1.22 V).  
Internal Reference Voltage Output (2.5 V).  
Rev. 0 | Page 10 of 32  
 
AD5421  
Pin No.  
Mnemonic  
Description  
21  
CIN  
External Capacitor Connection and HART FSK Input. An external capacitor connected from CIN to COM  
implements an output slew rate control function (see the Loop Current Slew Rate Control section). HART FSK  
signaling can also be coupled through a capacitor to this pin (see the HART Communications section).  
22, 23  
REXT1, REXT2  
Connection for External Current Setting Resistor. A precision 24 kΩ resistor can be connected between these  
pins for improved performance.  
24  
25  
LOOP−  
VLOOP  
Loop Current Return Pin.  
Voltage Input Pin. Voltage input range is 0 V to 2.5 V. The voltage applied to this pin is digitized to eight bits,  
which are available in the fault register. This pin can be used for general-purpose voltage monitoring, but  
it is intended for monitoring of the loop supply voltage. Connecting the loop voltage to this pin via a 20:1  
resistor divider allows the AD5421 to monitor and feed back the loop voltage. The AD5421 also generates  
an alert if the loop voltage is close to the minimum operating value (see the Loop Voltage Fault section).  
26  
27  
DRIVE  
REGIN  
Gate Connection for External Depletion Mode MOSFET. For more information, see the Connection to Loop  
Power Supply section.  
Voltage Regulator Input. The loop voltage can be connected directly to this pin. Or, to reduce on-chip power  
dissipation, an external pass transistor can be connected at this pin to stand off the loop voltage. For more  
information, see the Connection to Loop Power Supply section. The REGIN pin should be decoupled to the  
LOOP− pin with a 100 nF capacitor.  
28  
REGOUT  
Voltage Regulator Output. Pin selectable values are from 1.8 V to 12 V via the REG_SEL0, REG_SEL1, and  
REG_SEL2 pins (see the Voltage Regulator section).  
EPAD  
Exposed Pad  
The exposed paddle should be connected to the same potential as the COM pin and to a copper plane for  
optimum thermal performance.  
Rev. 0 | Page 11 of 32  
AD5421  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.015  
0.010  
0.005  
0
EXT V  
EXT V  
, INT R  
SET  
REF  
, EXT R  
REF  
SET  
INT V  
INT V  
, INT R  
REF  
SET  
, EXT R  
REF  
SET  
–0.2  
V
= 24V  
LOOP  
EXT NMOS  
–0.4  
–0.6  
–0.8  
–1.0  
R
T
= 250  
LOAD  
= 25°C  
–0.005  
V
= 24V  
LOOP  
4mA TO 20mA RANGE  
= 250  
A
4mA TO 20mA RANGE  
EXT V  
EXT R  
R
LOAD  
EXT NMOS  
REF  
SET  
–0.010  
0
10k  
20k  
30k  
40k  
50k  
60k  
–40  
–15  
10  
35  
60  
85  
DAC CODE  
TEMPERATURE (°C)  
Figure 5. Integral Nonlinearity Error vs. Code  
Figure 8. Offset Error vs. Temperature  
1.0  
0.8  
0.03  
0.02  
0.6  
0.01  
0.4  
0
0.2  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
0
V
= 24V  
LOOP  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
4mA TO 20mA RANGE  
= 250Ω  
R
V
= 24V  
LOAD  
LOOP  
EXT NMOS  
EXT NMOS  
R
= 250Ω  
LOAD  
= 25°C  
EXT V  
EXT V  
INT V  
, INT R  
SET  
REF  
T
A
, EXT R  
REF  
SET  
4mA TO 20mA RANGE  
EXT V  
EXT R  
, INT R  
REF  
SET  
REF  
INT V  
, EXT R  
REF  
SET  
SET  
0
10k  
20k  
30k  
40k  
50k  
60k  
–40  
–15  
10  
35  
60  
85  
DAC CODE  
TEMPERATURE (°C)  
Figure 6. Differential Nonlinearity Error vs. Code  
Figure 9. Gain Error vs. Temperature  
0.01  
0
0.0012  
0.0010  
0.0008  
0.0006  
0.0004  
0.0002  
0
R
= 250  
LOAD  
= 25°C  
T
A
4mA TO 20mA RANGE  
MAX INL  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
EXT V  
, INT R  
SET  
REF  
V
= 24V  
LOOP  
EXT V  
, EXT R  
REF  
SET  
4mA TO 20mA RANGE  
INT V  
INT V  
, INT R  
REF  
SET  
R
= 250Ω  
LOAD  
V
V
V
V
V
V
EXT, R  
EXT, R  
EXT, R  
INT, R  
INT, R  
INT, R  
EXT, NMOS EXT, 24V  
, EXT R  
–0.0002  
–0.0004  
–0.0006  
–0.0008  
REF  
REF  
REF  
REF  
REF  
REF  
SET  
SET  
SET  
REF  
SET  
EXT, NMOS INT, 24V  
EXT, NMOS INT, 52V  
INT, NMOS EXT, 24V  
INT, NMOS INT, 24V  
INT, NMOS INT, 52V  
MIN INL  
SET  
SET  
SET  
0
10k  
20k  
30k  
40k  
50k  
60k  
–40  
–15  
10  
35  
60  
85  
DAC CODE  
TEMPERATURE (°C)  
Figure 7. Total Unadjusted Error vs. Code  
Figure 10. Integral Nonlinearity Error vs. Temperature  
Rev. 0 | Page 12 of 32  
 
AD5421  
0.5  
0.4  
0.0006  
0.0004  
0.0002  
0
MAX INL  
0.3  
MAX DNL  
0.2  
V
= 24V  
0.1  
LOOP  
4mA TO 20mA RANGE  
= 250Ω  
R
0
LOAD  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
MIN INL  
–0.0002  
–0.0004  
–0.0006  
MIN DNL  
R
= 250Ω  
LOAD  
= 25°C  
T
A
3.8mA TO 21mA RANGE  
EXT V  
REF  
EXT R  
SET  
–40  
–15  
10  
35  
60  
85  
0
10  
20  
30  
40  
50  
60  
TEMPERATURE (°C)  
LOOP SUPPLY VOLTAGE (V)  
Figure 11. Differential Nonlinearity Error vs. Temperature  
Figure 14. Integral Nonlinearity Error vs. Loop Supply Voltage  
0.04  
0.0029  
0.03  
0.02  
0.0027  
0.0025  
0.0023  
0.0021  
0.0019  
0.01  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
V
= 24V  
LOOP  
4mA TO 20mA RANGE  
= 250Ω  
R
LOAD  
EXT NMOS  
R
= 250Ω  
LOAD  
= 25°C  
EXT V  
, INT R  
SET  
, EXT R  
REF  
REF  
T
A
EXT V  
SET  
0.0017 3.8mA TO 21mA RANGE  
INT V  
INT V  
, INT R  
REF  
REF  
SET  
EXT V  
REF  
EXT R  
, EXT R  
SET  
SET  
0.0015  
–40  
–15  
10  
35  
60  
85  
0
10  
20  
30  
40  
50  
60  
TEMPERATURE (°C)  
LOOP SUPPLY VOLTAGE (V)  
Figure 12. Total Unadjusted Error vs. Temperature  
Figure 15. Total Unadjusted Error vs. Loop Supply Voltage  
0.04  
0.03  
0.0024  
0.0022  
0.0020  
0.0018  
0.0016  
0.0014  
0.0012  
0.0010  
R
= 250Ω  
LOAD  
= 25°C  
T
A
3.8mA TO 21mA RANGE  
EXT V  
REF  
EXT R  
0.02  
SET  
0.01  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
V
= 24V  
LOOP  
4mA TO 20mA RANGE  
= 250Ω  
R
LOAD  
EXT NMOS  
EXT V  
, INT R  
SET  
, EXT R  
REF  
REF  
EXT V  
SET  
INT V  
INT V  
, INT R  
REF  
REF  
SET  
, EXT R  
SET  
–40  
–15  
10  
35  
60  
85  
0
10  
20  
30  
40  
50  
60  
TEMPERATURE (°C)  
LOOP SUPPLY VOLTAGE (V)  
Figure 13. Full-Scale Error vs. Temperature  
Figure 16. Offset Error vs. Loop Supply Voltage  
Rev. 0 | Page 13 of 32  
AD5421  
0.0015  
0.0010  
0.0005  
0
4.70  
4.65  
4.60  
4.55  
4.50  
4.45  
4.40  
4.35  
R
= 250Ω  
R
= 250  
LOAD  
= 25°C  
LOAD  
T
3.2mA TO 24mA RANGE  
EXT V  
A
3.8mA TO 21mA RANGE  
REF  
EXT V  
I
= 24mA  
LOOP  
REF  
EXT R  
SET  
–0.0005  
–0.0010  
–0.0015  
–0.0020  
–0.0025  
0
10  
20  
30  
40  
50  
60  
–40  
–20  
0
20  
40  
60  
80  
100  
LOOP SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 17. Gain Error vs. Loop Supply Voltage  
Figure 20. Compliance Voltage Headroom vs. Temperature  
0.0030  
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
7
6
5
4
3
2
1
0
V
= 24V  
LOOP  
EXT NMOS  
= 250  
R
LOAD  
T
= 25°C  
= 20mA  
A
I
LOOP  
R
= 250Ω  
LOAD  
= 25°C  
T
A
0
3.8mA TO 21mA RANGE  
EXT V  
REF  
EXT R  
SET  
–0.0005  
0
10  
20  
30  
40  
50  
60  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
LOOP SUPPLY VOLTAGE (V)  
REG  
LOAD CURRENT (mA)  
OUT  
Figure 18. Full-Scale Error vs. Loop Supply Voltage  
Figure 21. Loop Current Error vs. REGOUT Load Current  
2000  
1750  
1500  
1250  
1000  
750  
8
T
= 25°C  
A
EXT V  
REF  
= 24mA  
6
4
I
LOOP  
EXT R  
SET  
2
0
–2  
–4  
–6  
–8  
OPERATING AREA  
V
= 24V  
LOOP  
500  
EXT NMOS  
EXT V  
REF  
I
= 4mA  
LOOP  
250  
R
= 250Ω  
LOAD  
T
= 25°C  
A
0
0
10  
20  
30  
40  
50  
0
1
2
3
4
5
6
7
8
9
10  
LOOP SUPPLY VOLTAGE (V)  
TIME (Seconds)  
Figure 19. Load Resistance Load Line vs. Loop Supply Voltage  
(Voltage Between LOOP− and REGIN  
Figure 22. Loop Current Noise, 0.1 Hz to 10 Hz Bandwidth  
)
Rev. 0 | Page 14 of 32  
 
AD5421  
1.0  
0.8  
0.244  
0.242  
0.240  
0.238  
0.236  
0.234  
0.232  
0.230  
0.228  
0.226  
V
= 24V  
I
R
T
= 4mA  
1.33mV p-p  
LOOP  
EXT NMOS  
INT V  
LOOP  
IODV = 1.8V  
DD  
= 5000.2mV rms  
T
= 25°C  
LOAD  
= 25°C  
A
A
REF  
0.6  
DECREASING  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
INCREASING  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
0
0.5  
1.0  
1.5  
2.0  
TIME (Seconds)  
DIGITAL LOGIC VOLTAGE (V)  
Figure 23. Loop Current Noise, 500 Hz to 10 kHz Bandwidth  
(HART Bandwidth)  
Figure 26. IODVDD Current vs. Digital Logic Voltage, Increasing and  
Decreasing, IODVDD = 1.8 V  
6
0.60  
IODV = 3.3V  
DD  
T
= 25°C  
FALLING  
5
A
0.55  
0.50  
0.45  
0.40  
DECREASING  
4
INCREASING  
V
= 24V  
LOOP  
EXT NMOS  
= 250Ω  
R
3
2
1
0
LOAD  
= 25°C  
= OPEN CIRCUIT  
T
A
C
IN  
RISING  
–30  
–40  
–20  
–10  
0
10  
20  
30  
40  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
TIME (µs)  
DIGITAL LOGIC VOLTAGE (V)  
Figure 24. Full-Scale Loop Current Step  
Figure 27. IODVDD Current vs. Digital Logic Voltage, Increasing and  
Decreasing, IODVDD = 3.3 V  
6
5
4
3
2
1
1.3  
IODV = 5V  
DD  
T
= 25°C  
A
FALLING  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
DECREASING  
V
= 24V  
LOOP  
EXT NMOS  
= 250  
INCREASING  
R
LOAD  
= 25°C  
= 22nF  
T
A
C
IN  
RISING  
–0.5  
0
–1.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
1
2
3
4
5
6
TIME (ms)  
DIGITAL LOGIC VOLTAGE (V)  
Figure 25. Full-Scale Loop Current Step, CIN = 22 nF  
Figure 28. IODVDD Current vs. Digital Logic Voltage, Increasing and  
Decreasing, IODVDD = 5 V  
Rev. 0 | Page 15 of 32  
 
AD5421  
REG  
LOAD CURRENT (mA)  
0
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
OUT  
0.10  
V
= 24V  
0
0.05  
0.15  
0.20  
V
0.25  
LOOP  
EXT NMOS  
= 25°C  
–5  
0
1.85  
T
= 24V  
A
LOOP  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–5  
EXT NMOS  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
T
= 25°C  
A
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
0
1
2
3
4
5
1.76  
0
DV  
LOAD CURRENT (mA)  
DD  
2
4
6
8
10  
12  
REG  
LOAD CURRENT (mA)  
OUT  
Figure 32. DVDD Output Voltage vs. Load Current  
Figure 29. REGOUT Voltage vs. Load Current  
263.5  
4
3
T
= 25°C  
A
263.0  
262.5  
262.0  
261.5  
261.0  
260.5  
260.0  
259.5  
259.0  
258.5  
2
1
0
–1  
–2  
–3  
–4  
V
= 24V  
LOOP  
EXT NMOS  
T
= 25°C  
A
0
10  
20  
30  
40  
50  
60  
0
1
2
3
4
5
6
7
8
9
10  
LOOP SUPPLY VOLTAGE (V)  
TIME (Seconds)  
Figure 30. Quiescent Current vs. Loop Supply Voltage  
Figure 33. REFOUT1 Voltage Noise, 0.1 Hz to 10 Hz Bandwidth  
266  
265  
264  
263  
262  
261  
260  
259  
258  
257  
1
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 24V  
LOOP  
EXT NMOS  
V
V
= IODV  
= COM  
= 25°C  
IH  
IL  
A
DD  
0
T
–1  
–2  
–3  
–4  
V
= 24V  
LOOP  
EXT NMOS  
T
= 25°C  
A
–5  
–40  
–20  
0
20  
40  
60  
80  
100  
0
1
2
3
4
5
6
7
TEMPERATURE (°C)  
REFOUT1 LOAD CURRENT (mA)  
Figure 31. Quiescent Current vs. Temperature  
Figure 34. REFOUT1 Voltage vs. Load Current  
Rev. 0 | Page 16 of 32  
AD5421  
2.5012  
2.5010  
2.5008  
2.5006  
2.5004  
2.5002  
2.5000  
2.4998  
2.4996  
2.4994  
250  
200  
150  
100  
50  
60 DEVICES SHOWN  
V
= 24V  
LOOP  
EXT NMOS  
= 250Ω  
R
LOAD  
I
= 3.2mA  
LOOP  
0
–40  
–40  
–20  
0
20  
40  
60  
80  
100  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
DIE TEMPERATURE (°C)  
Figure 35. REFOUT1 Voltage vs. Temperature, 60 Devices Shown  
(C Grade Device)  
Figure 37. On-Chip ADC Code vs. Die Temperature  
30  
250  
200  
150  
100  
50  
V
= 24V  
LOOP  
MEAN TC = 1.5ppm/°C  
EXT NMOS  
= 25°C  
T
A
25  
20  
15  
10  
5
0
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
V
PIN INPUT VOLTAGE (V)  
LOOP  
TEMPERATURE COEFFICIENT (ppm/°C)  
Figure 36. REFOUT1 Temperature Coefficient Histogram  
(C Grade Device)  
Figure 38. On-Chip ADC Code vs. VLOOP Pin Input Voltage  
Rev. 0 | Page 17 of 32  
AD5421  
TERMINOLOGY  
Total Unadjusted Error  
Loop Compliance Voltage Headroom  
Total unadjusted error (TUE) is a measure of the total output  
error. TUE consists of INL error, offset error, gain error, and  
output drift over temperature, in the case of maximum TUE.  
TUE is expressed in % FSR.  
Loop compliance voltage headroom is the minimum voltage  
between the LOOP− and REGIN pins for which the output  
current is equal to the programmed value.  
Output Temperature Coefficient (TC)  
Output TC is a measure of the change in the output current  
at 12 mA with changes in temperature and is expressed in  
ppm FSR/°C.  
Relative Accuracy or Integral Nonlinearity (INL) Error  
Relative accuracy, or integral nonlinearity (INL) error, is a  
measure of the maximum deviation in the output current from  
a straight line passing through the endpoints of the transfer  
function. INL error is expressed in % FSR.  
Voltage Reference Thermal Hysteresis  
Voltage reference thermal hysteresis is the difference in output  
voltage measured at +25°C compared to the output voltage  
measured at +25°C after cycling the temperature from +25°C to  
−40°C to +105°C and back to +25°C. The hysteresis is specified  
for the first and second temperature cycles and is expressed in mV.  
Differential Nonlinearity (DNL) Error  
Differential nonlinearity (DNL) error is the difference between  
the measured change and the ideal 1 LSB change between any  
two adjacent codes. A specified differential nonlinearity of  
1 LSB maximum ensures monotonicity.  
Voltage Reference Temperature Coefficient (TC)  
Voltage reference TC is a measure of the change in the reference  
output voltage with a change in temperature. The voltage refer-  
ence TC is calculated using the box method, which defines the  
TC as the maximum change in the reference output voltage over  
a given temperature range. Voltage reference TC is expressed in  
ppm/°C as follows:  
Offset Error  
Offset error is a measure of the output error when zero code is  
loaded to the DAC register and is expressed in % FSR.  
Offset Error Temperature Coefficient (TC)  
Offset error TC is a measure of the change in offset error with  
changes in temperature and is expressed in ppm FSR/°C.  
VREF_MAX VREF_MIN  
Gain Error  
6
TC =  
× 10  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer function from the ideal  
and is expressed in % FSR.  
V
REF_NOM ×Temp_Range  
where:  
VREF_MAX is the maximum reference output voltage measured  
over the total temperature range.  
VREF_MIN is the minimum reference output voltage measured  
over the total temperature range.  
VREF_NOM is the nominal reference output voltage, 2.5 V.  
Temp_Range is the specified temperature range  
(−40°C to +105°C).  
Gain Error Temperature Coefficient (TC)  
Gain error TC is a measure of the change in gain error with  
changes in temperature and is expressed in ppm FSR/°C.  
Full-Scale Error  
Full-scale error is a measure of the output error when full-scale  
code is loaded to the DAC register and is expressed in % FSR.  
Full-Scale Error Temperature Coefficient (TC)  
Full-scale error TC is a measure of the change in full-scale error  
with changes in temperature and is expressed in ppm FSR/°C.  
Rev. 0 | Page 18 of 32  
 
AD5421  
THEORY OF OPERATION  
The AD5421 is an integrated device designed for use in loop-  
powered, 4 mA to 20 mA smart transmitter applications. In a  
single chip, the AD5421 provides a 16-bit DAC and current  
amplifier for digital control of the loop current, a voltage  
regulator to power the entire transmitter, a voltage reference,  
fault alert functions, a flexible SPI-compatible serial interface,  
gain and offset adjust registers, as well as other features and  
functions. The features of the AD5421 are described in the  
following sections.  
In the case of data readback, if the AD5421 is addressed with a  
32-bit frame, it generates the 8-bit frame check sequence and  
appends it to the end of the 24-bit data stream to create a 32-bit  
data stream.  
UPDATE ON SYNC HIGH  
SYNC  
SCLK  
MSB  
D23  
LSB  
D0  
FAULT ALERTS  
SDIN  
24-BIT DATA  
The AD5421 provides a number of fault alert features. All  
faults are signaled to the controller via the FAULT pin and the  
fault register. In the case of a loss of communication between  
the AD5421 and the microcontroller (SPI fault), the AD5421  
programs the loop current to an alarm value. If the controller  
detects that the FAULT pin is set high, it should then read the  
fault register to determine the cause of the fault.  
24-BIT DATA TRANSFER—NO ERROR CHECKING  
UPDATE AFTER SYNC HIGH  
ONLY IF ERROR CHECK PASSED  
SYNC  
SCLK  
SDIN  
MSB  
D31  
LSB  
D8  
SPI Fault  
D7  
D0  
8-BIT FCS  
24-BIT DATA  
The SPI fault is asserted if there is no valid communication to  
any register of the AD5421 for more than a user-defined period.  
The user can program the time period using the SPI watchdog  
timeout bits of the control register. The SPI fault bit of the fault  
register indicates the fault on the SPI bus. Because this fault is  
caused by a loss of communication between the controller and  
the AD5421, the loop current is also forced to the alarm value.  
FAULT PIN GOES HIGH  
IF ERROR CHECK FAILS  
FAULT  
32-BIT DATA TRANSFER WITH ERROR CHECKING  
Figure 39. PEC Timing  
Current Loop Fault  
The current loop (ILOOP) fault is asserted when the actual loop  
current is not within 0.01% FSR of the programmed loop  
current. If the measured loop current is less than the programmed  
loop current, the ILOOP Under bit of the fault register is set. If the  
measured loop current is greater than the programmed loop  
current, the ILOOP Over bit of the fault register is set. The FAULT  
pin is set to logic high in either case.  
The direction of the alarm current (downscale or upscale)  
is selected via the ALARM_CURRENT_DIRECTION pin.  
Connecting this pin to DVDD selects an upscale alarm current  
(22.8 mA/24 mA); connecting this pin to COM selects a  
downscale alarm current (3.2 mA).  
Packet Error Checking  
To verify that data has been received correctly in noisy environ-  
ments, the AD5421 offers the option of error checking based on  
an 8-bit cyclic redundancy check (CRC). Packet error checking  
(PEC) is enabled by writing to the AD5421 with a 32-bit serial  
frame, where the least significant eight bits are the frame check  
sequence (FCS). The device controlling the AD5421 should  
generate the 8-bit FCS using the following polynomial:  
An ILOOP Over condition occurs when the value of the load current  
sourced from the AD5421 (via REGOUT, REFOUT1, REFOUT2,  
or DVDD) is greater than the loop current that is programmed  
to flow in the loop. An ILOOP Under condition occurs when there  
is insufficient compliance voltage to support the programmed  
loop current, caused by excessive load resistance or low loop  
supply voltage.  
C(x) = x8 + x2 + x + 1  
Overtemperature Fault  
The 8-bit FCS is appended to the end of the data-word, and  
There are two overtemperature alert bits in the fault register:  
Temp 100°C and Temp 140°C. If the die temperature of the  
AD5421 exceeds either 100°C or 140°C, the appropriate bit is  
set. If the Temp 140°C bit is set in the fault register, the FAULT  
pin is set to logic high.  
SYNC  
32 data bits are sent to the AD5421 before  
is taken high.  
If the check is valid, the data is accepted. If the check fails, the  
FAULT pin is asserted and the PEC bit of the fault register is set.  
After the fault register is read, the PEC bit is reset low and the  
FAULT pin returns low.  
Rev. 0 | Page 19 of 32  
 
 
 
AD5421  
Loop Voltage Fault  
LOOP CURRENT RANGE SELECTION  
There are two loop voltage alert bits in the fault register:  
VLOOP 12V and VLOOP 6V. If the voltage between the VLOOP and  
COM pins falls below 0.6 V (corresponding to a 12 V loop  
supply value), the VLOOP 12V bit is set; this bit is cleared when  
the voltage returns above 0.7 V. Similarly, if the voltage between  
the VLOOP and COM pins falls below 0.3 V (corresponding to a  
6 V loop supply value), the VLOOP 6V bit is set; this bit is cleared  
when the voltage returns above 0.4 V. If the VLOOP 6V bit is set in  
the fault register, the FAULT pin is set to logic high.  
To select the loop current range, connect the RANGE0  
and RANGE1 pins to the COM and DVDD pins, as shown  
in Table 9.  
Table 9. Selecting the Loop Current Range  
RANGE1 Pin  
RANGE0 Pin  
Loop Current Range  
COM  
COM  
4 mA to 20 mA  
COM  
DVDD  
DVDD  
DVDD  
COM  
DVDD  
3.8 mA to 21 mA  
3.2 mA to 24 mA  
3.8 mA to 21 mA  
Figure 40 illustrates how a resistor divider enables the monitor-  
ing of the loop supply with the VLOOP input. The recommended  
resistor divider consists of a 1 MΩ and a 19 MΩ resistor that  
provide a 20:1 ratio, allowing the 2.5 V input range of the VLOOP  
pin to monitor loop supplies up to 50 V. With a 20:1 divider ratio,  
the preset VLOOP 6V and VLOOP 12V alert bits of the fault register  
generate loop supply faults according to their stated values. If  
another divider ratio is used, the fault bits generate faults at values  
that are not equal to 6 V and 12 V.  
CONNECTION TO LOOP POWER SUPPLY  
The AD5421 is powered from the 4 mA to 20 mA current loop.  
Typically, the power supply is located far from the transmitter  
device and has a value of 24 V. The AD5421 can be connected  
directly to the loop power supply and can tolerate a voltage up  
to a maximum of 52 V (see Figure 41).  
REG  
IN  
V
LOOP  
AD5421  
REG  
IN  
DRIVE  
R
AD5421  
V
L
19M  
1MΩ  
LOOP  
LOOP–  
COM  
V
LOOP  
R
L
LOOP–  
COM  
Figure 41. Direct Connection of the AD5421 to Loop Power Supply  
Figure 41 shows how the AD5421 is connected directly to the  
loop power supply. An alternative power connection is shown  
in Figure 42, which shows a depletion mode N-channel MOSFET  
connected between the AD5421 and the loop power supply. The  
use of this device keeps the voltage drop across the AD5421 at  
approximately 12 V, limiting the worst-case on-chip power dissi-  
pation to 288 mW (12 V × 24 mA = 288 mW). If the AD5421 is  
connected directly to the loop supply as shown in Figure 41, the  
potential worst-case on-chip power dissipation for a 24 V loop  
power supply is 576 mW (24 V × 24 mA = 576 mW). The power  
dissipation changes in proportion to the loop power supply voltage.  
Figure 40. Resistor Divider Connection at VLOOP Pin  
EXTERNAL CURRENT SETTING RESISTOR  
The 24 kΩ resistor RSET, shown in Figure 1, converts the DAC  
output voltage to a current, which is then mirrored with a gain  
of 221 to the LOOP− pin. The stability of the loop current over  
temperature is dependent on the temperature coefficient of RSET  
.
Table 1 and Table 2 outline the performance specifications of  
the AD5421 with both the internal RSET resistor and an external,  
24 kΩ RSET resistor. Using the internal RSET resistor, a total unad-  
justed error of better than 0.126% FSR can be expected. Using  
an external resistor gives improved performance of 0.048% FSR.  
This specification assumes an ideal resistor; the actual performance  
depends on the absolute value and temperature coefficient of  
the resistor used. For more information, see the Determining  
the Expected Total Error section.  
T1  
DN2540  
BSP129  
200k  
REG  
IN  
V
LOOP  
AD5421  
DRIVE  
R
L
LOOP–  
COM  
Figure 42. MOSFET Connecting the AD5421 to Loop Power Supply  
Rev. 0 | Page 20 of 32  
 
 
 
 
 
 
 
AD5421  
Taking five time constants as the required time to reach the final  
value, CSLEW can be determined for a desired response time, t,  
as follows:  
ON-CHIP ADC  
The AD5421 contains an on-chip ADC used to measure and  
feed back to the fault register either the temperature of the die  
or the voltage between the VLOOP and COM pins. The select ADC  
input bit (Bit D8) of the control register selects the parameter  
to be converted. A conversion is initiated with command byte  
00001000 (necessary only if auto fault readback is disabled). This  
command byte powers on the ADC and performs the conversion.  
A read of the fault register returns the conversion result. If auto  
readback of the fault register is required, the ADC must first be  
powered up by setting the on-chip ADC bit (Bit D7) of the  
control register.  
t
CSLEW  
=
5 × RDAC  
where:  
t is the desired time for the output current to reach its final  
value.  
R
DAC is the resistance of the DAC core, either 15.22 kΩ or  
16.11 kΩ, depending on the selected loop current range.  
For a response time of 5 ms,  
5ms  
VOLTAGE REGULATOR  
CSLEW  
=
68 nF  
5 × 15,220  
The on-chip voltage regulator provides a regulated voltage out-  
put to supply the AD5421 and the remainder of the transmitter  
circuitry. The output voltage range is from 1.8 V to 12 V and is  
selected by the states of three digital input pins (see Table 10).  
The regulator output is accessed at the REGOUT pin.  
For a response time of 10 ms,  
10 ms  
CSLEW  
=
133nF  
5 × 15,220  
The responses for both of these configurations are shown  
in Figure 44.  
Table 10. Setting the Voltage Regulator Output  
Regulated Output  
REG_SEL2 REG_SEL1 REG_SEL0 Voltage (V)  
6
C
= 68nF  
SLEW  
COM  
COM  
COM  
COM  
DVDD  
DVDD  
DVDD  
COM  
COM  
DVDD  
DVDD  
COM  
COM  
DVDD  
COM  
DVDD  
COM  
DVDD  
COM  
DVDD  
COM  
1.8  
2.5  
3.0  
3.3  
5.0  
9.0  
12.0  
5
4
3
2
1
0
C
= 267nF  
SLEW  
= 133nF  
C
SLEW  
LOOP CURRENT SLEW RATE CONTROL  
The rate of change of the loop current can be controlled by  
connecting an external capacitor between the CIN pin and  
COM. This reduces the rate of change of the loop current.  
The output resistance of the DAC (RDAC) together with the  
CSLEW capacitor generate a time constant that determines the  
response of the loop current (see Figure 43).  
–2  
2
6
10  
TIME (ms)  
14  
18  
22  
Figure 44. 4 mA to 20 mA Step with Slew Rate Control  
The CIN pin can also be used as a coupling input for HART  
FSK signaling. The HART signal must be ac-coupled to the CIN  
input. The capacitor through which the HART signal is coupled  
must be considered in the preceding calculations, where the  
total capacitance is CSLEW + CHART. For more information, see  
the HART Communications section.  
R
DAC  
V-TO-I  
CIRCUITRY  
LOOP–  
C
IN  
C
SLEW  
Figure 43. Slew Capacitor Circuit  
POWER-ON DEFAULT  
The resistance of the DAC is typically 15.22 kΩ for the 4 mA  
to 20 mA and 3.8 mA to 21 mA loop current ranges. The DAC  
resistance changes to 16.11 kΩ when the 3.2 mA to 24 mA loop  
current range is selected.  
The AD5421 powers on with all registers loaded with their default  
values and with the loop current in the alarm state set to 3.2 mA  
or 22.8 mA/24 mA (depending on the state of the ALARM_  
CURRENT_DIRECTION pin and the selected range). The  
AD5421 remains in this state until it is programmed with new  
values. The SPI watchdog timer is enabled by default with a  
timeout period of 1 sec. If there is no communication with the  
AD5421 within 1 sec of power-on, the FAULT pin is set.  
The time constant of the circuit is expressed as  
τ = RDAC × CSLEW  
Rev. 0 | Page 21 of 32  
 
 
 
 
 
 
 
AD5421  
Output Noise During Silence and Analog Rate of Change  
HART COMMUNICATIONS  
The AD5421 has a direct influence on two important specifi-  
cations relating to the HART communications protocol: output  
noise during silence and analog rate of change. Figure 23 shows  
the measurement of the AD5421 output noise in the HART  
extended bandwidth; the noise measurement is 0.2 mV rms,  
within the required 2.2 mV rms value.  
The AD5421 can be interfaced to a Highway Addressable  
Remote Transducer (HART) modem to enable HART digital  
communications over the 2-wire loop connection. Figure 45  
shows how the modem frequency shift keying (FSK) output is  
connected to the AD5421.  
To meet the analog rate of change specification, the rate of  
change of the 4 mA to 20 mA current must be slow enough so  
that it does not interfere with the HART digital signaling. This  
is determined by forcing a full-scale loop current change  
through a 500 Ω load resistor and applying the resulting voltage  
signal to the HART digital filter (HCF_TOOL-31). The peak  
amplitude of the signal at the filter output must be less than  
150 mV. To achieve this, the rate of change of the loop current  
must be restricted to less than approximately 1.3 mA/ms.  
200k  
100nF  
REG  
IN  
V
LOOP  
AD5421  
DRIVE  
R
L
LOOP–  
COM  
C
IN  
C
C
HART  
SLEW  
The output of the AD5421 naturally slews at approximately  
880 mA/ms, a rate that is far too great to comply with the  
HART specifications. To reduce the slew rate, a capacitor can be  
connected from the CIN pin to COM, as described in the Loop  
Current Slew Rate Control section. To reduce the slew rate  
enough so that the HART specification is met, a capacitor value  
in the region of 4.7 μF is required, resulting in a full-scale  
transition time of 500 ms. Many applications will regard this  
time as too slow, in which case the slew rate will need to be  
digitally controlled by writing a sequence of codes to the DAC  
register so that the output response follows the desired curve.  
HART  
MODEM  
HART_OUT  
HART_IN  
Figure 45. Connecting a HART Modem to the AD5421  
To achieve a 1 mA p-p FSK current signal on the loop, the voltage  
at the CIN pin must be 111 mV p-p. Assuming a 500 mV p-p  
output from the HART modem, this means that the signal must  
be attenuated by a factor of 4.5. The following equation can be  
used to calculate the values of the CHART and CSLEW capacitors.  
Figure 46 shows a digitally controlled full-scale step and the  
resulting filter output. In Figure 46, it can be seen that the peak  
amplitude of the filter output signal is less than the required  
150 mV, and the transition time is approximately 30 ms.  
CHART + CSLEW  
4.5 =  
CHART  
From this equation, the ratio of CHART to CSLEW is 1 to 3.5. This  
ratio of the capacitor values sets the amplitude of the HART  
FSK signal on the loop. The absolute values of the capacitors set  
the response time of the loop current, as well as the bandwidth  
presented to the HART signal connected at the CIN pin. The  
bandwidth must pass frequencies from 500 Hz to 10 kHz. The  
two capacitors and the internal impedance, RDAC, form a high-  
pass filter. The 3 dB frequency of this high-pass filter should be  
less than 500 Hz and can be calculated as follows:  
150  
100  
50  
12  
10  
8
0
6
–50  
–100  
–150  
4
1
f3dB  
=
2× π× RDAC  
×
(
CHART + CSLEW  
)
2
To achieve a 500 Hz high-pass 3 dB frequency cutoff, the com-  
bined values of CHART and CSLEW should be 21 nF. To ensure the  
correct HART signal amplitude on the current loop, the final  
values for the capacitors are CHART = 4.7 nF and CSLEW = 16.3 nF.  
0
–50  
–30  
–10  
10  
30  
50  
TIME (ms)  
Figure 46. Digitally Controlled Full-Scale Step and Resulting HART Digital  
Filter Output Signal  
Rev. 0 | Page 22 of 32  
 
 
 
 
AD5421  
Figure 47 shows the circuit diagram for this measurement. The  
47 nF and 168 nF capacitor values for CHART and CSLEW provide  
adequate filtering of the digital steps, ensuring that they do not  
cause interference.  
REG  
IN  
V
LOOP  
AD5421  
100nF  
R
L
LOOP–  
C
COM  
IN  
168nF  
47nF  
FROM HART MODEM  
Figure 47. Circuit Diagram for Figure 46  
Rev. 0 | Page 23 of 32  
 
AD5421  
SERIAL INTERFACE  
The AD5421 is controlled by a versatile, 3-wire serial interface  
that operates at clock rates up to 30 MHz. It is compatible with  
the SPI, QSPI™, MICROWIRE®, and DSP standards. Figure 2  
shows the timing diagram. The interface operates with either  
a continuous or noncontinuous gated burst clock.  
The address/command byte decoding is described in Table 11.  
Table 11. Address/Command Byte Functions  
Address/Command Byte  
Function  
00000001  
00000010  
00000011  
00000100  
Write to DAC register  
Write to control register  
Write to offset adjust register  
Write to gain adjust register  
Load DAC  
SYNC  
The write sequence begins with a falling edge of the  
signal; data is clocked in on the SDIN data line on the falling  
SYNC  
edge of SCLK. On the rising edge of  
, the 24 bits of data  
00000101  
are latched; the data is transferred to the addressed register and  
the programmed function is executed (either a change in DAC  
output or mode of operation).  
00000110  
00000111  
00001000  
00001001  
10000001  
10000010  
10000011  
10000100  
Force alarm current  
Reset  
Initiate VLOOP/temp measurement  
No operation  
If packet error checking on the SPI interface is required using  
cyclic redundancy codes, an additional eight bits must be written  
to the AD5421, creating a 32-bit serial interface. In this case, 32  
Read DAC register  
Read control register  
Read offset adjust register  
Read gain adjust register  
Read fault register  
SYNC  
bits are written to the AD5421 before  
is brought high.  
INPUT SHIFT REGISTER  
10000101  
The input shift register is 24 bits wide (32 bits wide if CRC error  
checking of the data is required). Data is loaded into the device  
MSB first as a 24-/32-bit word under the control of a serial clock  
input, SCLK. The input shift register consists of an 8-bit address/  
command byte, a 16-bit data-word, and an optional 8-bit CRC,  
as shown in Table 12 and Table 13.  
REGISTER READBACK  
To read back a register, Bit D11 of the control register must be set  
to Logic 1 to disable the automatic readback of the fault register.  
Table 12. Input Shift Register  
MSB  
LSB  
D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Address/command byte  
Data-word  
Table 13. Input Shift Register with CRC  
MSB  
LSB  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Address/command byte  
Data-word  
CRC  
Rev. 0 | Page 24 of 32  
 
 
 
 
AD5421  
For the 3.8 mA to 21 mA output range, the loop current can be  
expressed as follows:  
DAC REGISTER  
The DAC register is a read/write register and is addressed  
as described in Table 11. The data programmed to the DAC  
register determines the loop current, as shown in the Ideal  
Output Transfer Function section and in Table 15.  
17.2 mA  
216  
ILOOP  
=
⎟ × D + 3.8mA  
For the 3.2 mA to 24 mA output range, the loop current can be  
expressed as follows:  
Ideal Output Transfer Function  
The transfer function describing the relationship between the  
data programmed to the DAC register and the loop current is  
expressed by the following three equations.  
20.8 mA  
216  
ILOOP  
=
⎟ × D + 3.2mA  
where D is the decimal value of the DAC register.  
For the 4 mA to 20 mA output range, the loop current can be  
expressed as follows:  
16 mA  
216  
ILOOP  
=
⎟ × D + 4 mA  
Table 14. DAC Register Bit Map  
MSB  
LSB  
D0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
16-bit data  
Table 15. Relationship of DAC Register Code to Ideal Loop Current (Gain = 65,536; Offset = 0)  
Ideal Loop Current (mA)  
DAC Register Code  
0x0000  
0x0001  
4 mA to 20 mA Range  
3.8 mA to 21 mA Range  
3.2 mA to 24 mA Range  
4
3.8  
3.80026  
3.2  
3.2003  
4.00024  
0x7FFF  
0x8000  
11.9997  
12  
12.39974  
12.4  
13.5997  
13.6  
0xFFFE  
0xFFFF  
19.9995  
19.9997  
20.99947  
20.99974  
23.9994  
23.9997  
Rev. 0 | Page 25 of 32  
 
 
 
AD5421  
CONTROL REGISTER  
The control register is a read/write register and is addressed as described in Table 11. The data programmed to the control register  
determines the mode of operation of the AD5421.  
Table 16. Control Register Bit Map  
MSB  
LSB  
D0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
SPI watchdog timeout SPI  
Auto fault  
Alarm on Set min Select  
On-chip Power down  
VLOOP  
fault  
alert  
Reserved  
watchdog readback  
timer  
SPI fault  
loop  
ADC  
ADC  
internal  
T0  
T1  
T2  
current  
input  
reference  
Table 17. Control Register Bit Descriptions  
Control Bits Description  
SPI watchdog The T0, T1, and T2 bits allow the user to program the watchdog timeout period. The watchdog timer is reset when a valid  
timeout write to any AD5421 register occurs or when a NOP command is written.  
T0  
0
T1  
0
T2  
0
Timeout Period  
50 ms  
0
0
0
1
0
1
1
0
1
0
1
0
100 ms  
500 ms  
1 sec (default)  
2 sec  
1
0
1
3 sec  
1
1
0
4 sec  
1
1
1
5 sec  
SPI watchdog 0 = SPI watchdog timer is enabled (default).  
timer  
1 = SPI watchdog timer is disabled.  
Auto fault  
readback  
This bit specifies whether the fault register contents are automatically clocked out on the SDO pin on each write operation.  
(The fault register can always be addressed for readback.)  
0 = fault register contents are clocked out on the SDO pin (default).  
1 = fault register contents are not clocked out on the SDO pin.  
Alarm on SPI  
fault  
This bit specifies whether the loop current is forced to the alarm value when an SPI fault is detected (that is, the watchdog  
timer times out). When an SPI fault is detected, the SPI fault bit of the fault register and the FAULT pin are always set.  
0 = loop current is forced to the alarm value when an SPI fault is detected (default).  
1 = loop current is not forced to the alarm value when an SPI fault is detected.  
Set min loop  
current  
0 = normal operation (default).  
1 = loop current is set to its minimum value so that the total current flowing in the loop consists only of the operating  
current of the AD5421 and its associated circuitry.  
Select ADC  
input  
0 = on-chip ADC measures the voltage between the VLOOP and COM pins (default).  
1 = on-chip ADC measures the temperature of the AD5421 die.  
On-chip ADC  
0 = on-chip ADC is disabled (default).  
1 = on-chip ADC is enabled.  
Power down  
internal  
reference  
0 = internal voltage reference is powered up (default).  
1 = internal voltage reference is powered down and an external voltage reference source is required.  
VLOOP fault  
alert  
This bit specifies whether the FAULT pin is set when the voltage between the VLOOP and COM pins falls to approximately 0.3 V.  
(The VLOOP 6V bit of the fault register is always set.)  
0 = FAULT pin is not set when the VLOOP − COM voltage falls to approximately 0.3 V.  
1 = FAULT pin is set when the VLOOP − COM voltage falls to approximately 0.3 V.  
Rev. 0 | Page 26 of 32  
 
AD5421  
FAULT REGISTER  
The read-only fault register is addressed as described in Table 11. The bits in the fault register indicate a range of possible fault conditions.  
Table 18. Fault Register Bit Map  
MSB  
D15  
SPI  
LSB  
D0  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
PEC  
ILOOP  
Over  
ILOOP  
Under  
Temp  
140°C  
Temp  
100°C  
VLOOP  
6V  
VLOOP  
12V  
VLOOP/temperature value  
Table 19. Fault Register Bit Descriptions  
FAULT  
Pin Set  
Fault Alert  
Description  
SPI  
Yes  
This bit is set high to indicate the loss of the SPI interface signaling. This fault occurs if there is no valid  
communication to the AD5421 over the SPI interface for more than the user-defined timeout period. The  
occurrence of this fault also forces the loop current to the alarm value if Bit D10 of the control register is at  
Logic 0. The alarm current direction is determined by the state of the ALARM_CURRENT_DIRECTION pin.  
PEC (packet  
error check)  
Yes  
This bit is set high when an error in the SPI communication is detected using cyclic redundancy check (CRC)  
error detection. See the Packet Error Checking section for more information.  
ILOOP Over  
Yes  
Yes  
Yes  
This bit is set high when the actual loop current is greater than the programmed loop current.  
This bit is set high when the actual loop current is less than the programmed loop current.  
ILOOP Under  
Temp 140°C  
This bit is set high to indicate an overtemperature fault. This bit is set if the die temperature of the AD5421  
exceeds approximately 140°C. This bit is cleared when the temperature returns below approximately 125°C.  
Temp 100°C  
VLOOP 6V  
No  
This bit is set high to indicate an increasing temperature of the AD5421. This bit is set if the die temperature of the  
AD5421 exceeds approximately 100°C. This bit is cleared when the temperature returns below approximately 85°C.  
Yes  
This bit is set high when the voltage between the VLOOP and COM pins falls below approximately 0.3 V (representing  
a 6 V loop supply voltage with 20:1 resistor divider connected at VLOOP). This bit is cleared when the voltage returns  
above approximately 0.4 V.  
VLOOP 12V  
No  
This bit is set high when the voltage between the VLOOP and COM pins falls below approximately 0.6 V (representing  
a 12 V loop supply voltage with 20:1 resistor divider connected at VLOOP). This bit is cleared when the voltage returns  
above approximately 0.7 V.  
VLOOP/temper- N/A  
ature value  
These eight bits represent either the voltage between the VLOOP and COM pins or the AD5421 die temperature,  
depending on the setting of Bit D8 of the control register (see the On-Chip ADC Transfer Function Equations section).  
8-Bit Value  
00000000  
VLOOP − COM Voltage (V)  
Die Temperature (°C)  
0
2.49  
+300  
−55  
11111111  
On-Chip ADC Transfer Function Equations  
The transfer function equation for the die temperature is  
as follows:  
The transfer function equation for the measurement of the  
voltage between the VLOOP and COM pins is as follows:  
Die Temperature = 125 − (1.771 × (D − 128))  
VLOOP COM = (2.5/256) × D  
where D is the 8-bit digital code returned by the on-chip ADC.  
where D is the 8-bit digital code returned by the on-chip ADC.  
Rev. 0 | Page 27 of 32  
 
 
AD5421  
OFFSET ADJUST REGISTER  
The offset adjust register is a read/write register and is addressed as described in Table 11.  
Table 20. Offset Adjust Register Bit Map  
MSB  
LSB  
D0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
16-bit offset adjust data  
Table 21. Offset Adjust Register Adjustment Range  
Offset Adjust Register Data  
Digital Offset Adjustment (LSBs)  
65535  
65534  
+32767  
+32766  
32769  
+1  
32768 (default)  
0
32767  
−1  
1
0
−32767  
−32768  
GAIN ADJUST REGISTER  
The gain adjust register is a read/write register and is addressed as described in Table 11.  
Table 22. Gain Adjust Register Bit Map  
MSB  
LSB  
D0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
16-bit gain adjust data  
Table 23. Gain Adjust Register Adjustment Range  
Gain Adjust Register Data  
Digital Gain Adjustment at Full-Scale Output (LSBs)  
65535 (default)  
0
65534  
−1  
32769  
32768  
32767  
−32767  
−32768  
−32769  
1
0
−65534  
−65535  
Rev. 0 | Page 28 of 32  
 
AD5421  
Transfer Function Equations with Offset and Gain Adjust  
Values  
For the 3.2 mA to 24 mA output range, the loop current can be  
expressed as follows:  
When the offset adjust and gain adjust register values are taken  
into account, the transfer equations can be expressed as follows.  
20.8 mA  
216  
⎟ × Gain  
ILOOP  
=
× D  
216  
For the 4 mA to 20 mA output range, the loop current can be  
expressed as follows:  
16mA  
216  
⎟ × Gain  
20.8mA  
216  
+ 3.2mA +  
⎟ ×  
(
Offset 32,768  
)
ILOOP  
=
× D  
216  
where:  
D is the decimal value of the DAC register.  
Gain is the decimal value of the gain adjust register.  
Offset is the decimal value of the offset adjust register.  
16mA  
216  
+
4 mA +  
⎟ ×  
(
Offset 32,768  
)
Note that the offset adjust register cannot adjust the zero-scale  
output value downward.  
For the 3.8 mA to 21 mA output range, the loop current can be  
expressed as follows:  
17.2 mA  
216  
⎟ × Gain  
ILOOP  
=
× D  
216  
17.2mA  
216  
+
3.8mA +  
⎟ ×  
(
Offset 32,768  
)
Rev. 0 | Page 29 of 32  
AD5421  
APPLICATIONS INFORMATION  
Figure 48 shows a typical connection diagram for the AD5421  
configured in a HART capable smart transmitter. To reduce  
power dissipation on the chip, a depletion mode MOSFET (T1),  
such as a DN2540 or BSP129, can be connected between the  
loop voltage and the AD5421, as shown in Figure 48.  
DETERMINING THE EXPECTED TOTAL ERROR  
The AD5421 can be set up in a number of different configu-  
rations, each of which achieves different levels of accuracy, as  
described in Table 1 and Table 2. With the internal voltage  
reference and internal RSET enabled, a maximum total error  
of 0.157% of full-scale range can be expected for the C grade  
device over the temperature range of −40°C to +105°C.  
If a low loop voltage is used, T1 does not need to be inserted,  
and the loop voltage can connect directly to REGIN (see Figure 41).  
In Figure 48, all interface signal lines are connected to the micro-  
controller. To reduce the number of interface signal lines, the  
Other configurations specify an external voltage reference, an  
external RSET resistor, or both an external voltage reference and  
external RSET resistor. In these configurations, the specifications  
assume that the external voltage reference and external RSET  
resistor are ideal. Therefore, the errors associated with these  
components must be added to the data sheet specifications to  
determine the overall performance. The performance depends  
on the specifications of these components.  
LDAC  
signal can be connected to COM, and the SDO and FAULT  
lines can be left unconnected. However, this configuration disables  
the use of the fault alert features.  
Under normal operating conditions, the voltage between COM  
and LOOP− does not exceed 1.5 V, and the voltage at LOOP− is  
negative with respect to COM. If it is possible that the voltage at  
LOOP− may be forced positive with respect to COM, or if the  
voltage difference between LOOP− and COM may be forced in  
excess of 5 V, a 4.7 V low leakage Zener diode should be placed  
between COM and the LOOP− pin, as shown in Figure 48, to  
protect the AD5421 from potential damage.  
OPTIONAL  
MOSFET  
DN2540  
BSP129  
T1  
2.5V  
2µF  
1µF  
200k  
0.1µF  
0.1µF  
100nF  
IODV  
DV  
REG  
REG  
IN  
DD  
DD  
OUT  
V
LOOP  
RANGE0  
RANGE1  
DRIVE  
19MΩ  
1MΩ  
R
L
ALARM_CURRENT_DIRECTION  
/R  
V
LOOP  
R
INT EXT  
SYNC  
SCLK  
SDIN  
ADuC7060  
LOOP–  
AD5421  
V
= 4.7V  
Z
SDO  
R
EXT1  
EXT2  
24-BIT  
Σ-Δ ADC  
FAULT  
LDAC  
SENSOR  
MCU  
R1  
R
OPTIONAL  
RESISTOR  
COM  
REFOUT2  
C
REFOUT1 REFIN  
COM  
IN  
SETS REGULATOR  
VOLTAGE  
0.1µF  
0.1µF  
47nF  
168nF  
V
CC  
HART MODEM  
TxD  
HART_OUT  
RxD  
RTS  
CD  
HART_IN  
GND  
Figure 48. AD5421 Application Diagram for HART Capable Smart Transmitter  
Rev. 0 | Page 30 of 32  
 
 
 
AD5421  
To determine the absolute worst-case overall error, the reference  
and RSET errors can be directly summed with the specified AD5421  
maximum error. For example, when using an external reference  
and external RSET resistor, the maximum AD5421 error is 0.048%  
of full-scale range. Assuming that the absolute errors for the  
voltage reference and RSET resistor are, respectively, 0.04% and  
0.05% with temperature coefficients of 3 ppm/°C and 2 ppm/°C,  
respectively, the overall worst-case error is as follows:  
Excessive junction temperature can occur if the AD5421  
experiences elevated voltages across its terminals while  
regulating the loop current at a high value. The resulting  
junction temperature depends on the ambient temperature.  
Table 24 provides the bounds of operation at maximum ambient  
temperature and maximum supply voltage. This information is  
displayed graphically in Figure 49 and Figure 50. These figures  
assume that the exposed paddle is connected to a copper plane  
of approximately 6 cm2.  
Worst-Case Error =  
AD5421 Error + VREF Absolute Error + VREF TC +  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
RSET Absolute Error + RSET TC  
Worst-Case Error =  
0.048% + 0.04% + [(3/106) × 100 × 145]% +  
0.05% + [(2/106) × 100 × 145]% = 0.21% FSR  
This is the absolute worst-case value when the AD5421 operates  
over the temperature range of −40°C to +105°C. An error of this  
value is very unlikely to occur because the temperature coeffi-  
cients of the individual components do not exhibit the same  
drift polarity, and, therefore, an element of cancelation occurs.  
For this reason, the TC values should be added in a root of  
squares fashion.  
25  
45  
65  
85  
105  
A further improvement can be gained by performing a two-point  
calibration at zero scale and full scale, thus reducing the absolute  
errors of the voltage reference and RSET resistor to a combined  
error of 1 LSB or 0.0015% FSR. After performing this calibration,  
the total maximum error becomes  
AMBIENT TEMPERATURE (°C)  
Figure 49. Maximum Power Dissipation vs. Ambient Temperature  
60  
50  
40  
30  
20  
10  
0
Total Error =  
0.048% + 0.0015% + (0.0435%)2 + (0.029%)2 = 0.102%FSR  
To reduce this error value further, a voltage reference and RSET  
resistor with lower TC specifications must be chosen.  
THERMAL AND SUPPLY CONSIDERATIONS  
The AD5421 is designed to operate at a maximum junction temp-  
erature of 125°C. To ensure reliable and specified operation over  
the lifetime of the product, it is important that the device not be  
operated under conditions that cause the junction temperature  
to exceed this value.  
25  
45  
65  
85  
105  
AMBIENT TEMPERATURE (°C)  
Figure 50. Maximum Supply Voltage vs. Ambient Temperature  
Table 24. Thermal and Supply Considerations (External MOSFET Not Connected)  
Parameter  
Description  
28-Lead TSSOP Package  
Maximum Power  
Dissipation  
Maximum permitted power dissipation when operating at an  
ambient temperature of 105°C  
TJ MAX TA 125 105  
=
= 625mW  
θJA  
32  
Maximum Ambient  
Temperature  
Maximum permitted ambient temperature when operating from a  
supply of 52 V while regulating a loop current of 22.8 mA  
TJ MAX (PD ×θJA ) =  
125 ((52 × 0.0228) × 32) = 87oC  
TJ MAX TA  
125 105  
Maximum Supply  
Voltage  
Maximum permitted supply voltage when operating at an ambient  
temperature of 105°C while regulating a loop current of 22.8 mA  
=
= 27 V  
I
LOOP × θJA 0.0228 × 32  
Rev. 0 | Page 31 of 32  
 
 
 
 
AD5421  
OUTLINE DIMENSIONS  
9.80  
9.70  
9.60  
5.55  
5.50  
5.45  
15  
14  
28  
1
4.50  
4.40  
4.30  
3.05  
3.00  
2.95  
EXPOSED  
PAD  
(Pins Up)  
6.40  
BSC  
PIN 1  
INDICATOR  
TOP VIEW  
BOTTOM VIEW  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20 MAX  
SEATING  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.25  
8°  
0°  
0.75  
0.60  
0.45  
0.15 MAX  
0.05 MIN  
SECTION OF THIS DATA SHEET.  
PLANE  
0.65 BSC  
0.30  
0.19  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AET  
Figure 51. 28-Lead Thin Shrink Small Outline Package, Exposed Pad [TSSOP_EP]  
(RE-28-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD5421BREZ-REEL  
AD5421BREZ-REEL7  
AD5421CREZ-RL  
AD5421CREZ-RL7  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
28-Lead TSSOP_EP  
28-Lead TSSOP_EP  
28-Lead TSSOP_EP  
28-Lead TSSOP_EP  
Package Option  
RE-28-2  
RE-28-2  
RE-28-2  
RE-28-2  
1 Z = RoHS Compliant Part.  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09128-0-2/11(0)  
Rev. 0 | Page 32 of 32  
 
 

相关型号:

AD5421_13

16-Bit, Serial Input, Loop-Powered, 4 mA to 20 mA DAC
ADI

AD5422

Single Channel, 16-Bit, Serial Input, Current Source & Voltage Output DAC
ADI

AD5422ACPZ

Single Channel, 12/16-Bit, Serial Input, Current Source & Voltage Output DAC
ADI

AD5422ACPZ-REEL

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
ADI

AD5422ACPZ-REEL7

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
ADI

AD5422AREZ

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
ADI

AD5422AREZ-REEL

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
ADI

AD5422BCPZ

Single Channel, 16-Bit, Serial Input, Current Source & Voltage Output DAC
ADI

AD5422BCPZ-REEL

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
ADI

AD5422BCPZ-REEL7

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
ADI

AD5422BREZ

Single Channel, 16-Bit, Serial Input, Current Source & Voltage Output DAC
ADI

AD5422BREZ-REEL

Single Channel, 12-/16-Bit, Serial Input, Current Source and Voltage Output DACs
ADI