AD5444YRM [ADI]

12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface; 12位/ 14位,高带宽乘法数模转换器,串行接口
AD5444YRM
型号: AD5444YRM
厂家: ADI    ADI
描述:

12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
12位/ 14位,高带宽乘法数模转换器,串行接口

转换器 数模转换器
文件: 总28页 (文件大小:726K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
12-/14-Bit High Bandwidth  
Multiplying DACs with Serial Interface  
Data Sheet  
AD5444/AD5446  
FEATURES  
GENERAL DESCRIPTION  
12 MHz multiplying bandwidth  
INL of 0.5 LSB at 12 bits  
Pin-compatible 12-/14-bit current output DAC  
2.5 V to 5.5 V supply operation  
10-lead MSOP package  
10 V reference input  
50 MHz serial interface  
2.7 MSPS update rate  
The AD5444/AD54461 are CMOS 12-bit and 14-bit, current  
output, digital-to-analog converters (DACs). Operating from a  
single 2.5 V to 5.5 V power supply, these devices are suited for  
battery-powered and other applications.  
As a result of the CMOS submicron manufacturing process,  
these parts offer excellent 4-quadrant multiplication char-  
acteristics of up to 12 MHz.  
These DACs use a double-buffered, 3-wire serial interface that  
is compatible with SPI®, QSPI™, MICROWIRE™, and most DSP  
interface standards. On power-up, the internal shift register and  
latches are filled with 0s, and the DAC output is at zero scale.  
Extended temperature range: −40°C to +125°C  
4-quadrant multiplication  
Power-on reset with brownout detection  
0.4 µA typical current consumption  
Guaranteed monotonic  
The applied external reference input voltage (VREF) determines  
the full-scale output current. These parts can handle 10 V  
inputs on the reference, despite operating from a single-supply  
power supply of 2.5 V to 5.5 V. An integrated feedback resistor  
(RFB) provides temperature tracking and full-scale voltage output  
when combined with an external current-to-voltage precision  
amplifier. The AD5444/AD5446 DACs are available in small  
10-lead MSOP packages, which are pin-compatible with the  
AD5425/AD5426/AD5432/AD5443 family of DACs.  
APPLICATIONS  
Portable, battery-powered applications  
Waveform generators  
Analog processing  
Instrumentation applications  
Programmable amplifiers and attenuators  
Digitally controlled calibration  
Programmable filters and oscillators  
Composite video  
The EV-AD5443/46/53SDZ board is available for evaluating  
DAC performance. For more information, see the UG-327  
evaluation board user guide.  
Ultrasound  
Gain, offset, and voltage trimming  
Automotive radar  
1 US Patent Number 5,689,257.  
FUNCTIONAL BLOCK DIAGRAM  
V
V
REF  
DD  
R
FB  
R
AD5444/  
AD5446  
I
I
1
2
OUT  
12-BIT  
R-2R DAC  
OUT  
DAC REGISTER  
INPUT LATCH  
POWER-ON  
RESET  
SYNC  
SCLK  
SDIN  
CONTROL LOGIC AND  
INPUT SHIFT REGISTER  
SDO  
GND  
Figure 1.  
Rev. E  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2004–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5444/AD5446  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
DAC Section................................................................................ 15  
Circuit Operation....................................................................... 15  
Single-Supply Applications ....................................................... 17  
Adding Gain................................................................................ 17  
Divider or Programmable Gain Element................................ 17  
Amplifier Selection .................................................................... 18  
Reference Selection .................................................................... 18  
Serial Interface ................................................................................ 20  
Microprocessor Interfacing....................................................... 21  
PCB Layout and Power Supply Decoupling................................ 23  
Overview of AD54xx and AD55xx Current Output Devices... 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Terminology .................................................................................... 14  
General Description....................................................................... 15  
REVISION HISTORY  
6/13—Rev. D to Rev. E  
4/05—Rev. 0 to Rev. A  
Changes to General Description Section ...................................... 1  
Change to Figure 46 and Figure 47 .............................................. 21  
Changes to Ordering Guide .......................................................... 25  
Added AD5446 ...................................................................Universal  
Changes to Features ..........................................................................1  
Changes to General Description .....................................................1  
Changes to Specifications.................................................................3  
Inserted Figure 7; Renumbered Sequentially.................................9  
Inserted Figure 9; Renumbered Sequentially.................................9  
Inserted Figure 13; Renumbered Sequentially ........................... 10  
Changes to Figure 22...................................................................... 11  
Changes to Figure 23...................................................................... 11  
Changes to Serial Interface............................................................ 20  
Changes to Figure 44...................................................................... 20  
Changes to Figure 45...................................................................... 20  
Updated Outline Dimensions....................................................... 28  
Changes to Ordering Guide.......................................................... 28  
4/12—Rev. C to Rev. D  
Changes to General Description Section ...................................... 1  
Deleted Evaluation Board for the DAC Section......................... 23  
Deleted Power Supplies for the Evaluation Board Section ....... 23  
Deleted Figure 54; Renumbered Sequentially ............................ 24  
Deleted Figure 55 and Figure 56................................................... 25  
Updated Outline Dimensions....................................................... 25  
Changes to Ordering Guide .......................................................... 25  
Deleted Figure 57............................................................................ 26  
4/07—Rev. B to Rev. C  
Changes to Table 9.......................................................................... 19  
Changes to Ordering Guide .......................................................... 28  
Changes to Features.......................................................................... 1  
Changes to General Description .................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Figure 22...................................................................... 10  
Changes to Figure 23...................................................................... 10  
Changes to Table 9.......................................................................... 19  
Changes to Table 12........................................................................ 27  
Updated Outline Dimensions....................................................... 28  
Changes to Ordering Guide .......................................................... 28  
10/04—Revision 0: Initial Version  
Rev. E | Page 2 of 28  
 
Data Sheet  
AD5444/AD5446  
SPECIFICATIONS  
VDD = 2.5 V to 5.5 V, VREF = 10 V, IOUT2 = 0 V. Temperature range for Y version: −40°C to +125°C. All specifications TMIN to TMAX  
,
unless otherwise noted. DC performance measured with OP177, and ac performance measured with AD8038, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
STATIC PERFORMANCE  
AD5444  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Total Unadjusted Error (TUE)  
Gain Error  
12  
0.5  
1
1
0.5  
Bits  
LSB  
LSB  
LSB  
LSB  
Guaranteed monotonic  
AD5446  
Resolution  
14  
Bits  
Relative Accuracy  
2
LSB  
Differential Nonlinearity  
Total Unadjusted Error (TUE)  
Gain Error  
−1/+2  
4
2.5  
LSB  
LSB  
LSB  
ppm FSR/°C  
nA  
Guaranteed monotonic  
Gain Error Temperature Coefficient1  
2
Output Leakage Current  
1
Data = 0x0000, TA = 25°C, IOUT1  
10  
nA  
Data = 0x0000, TA = −40°C to +125°C, IOUT1  
REFERENCE INPUT1  
Reference Input Range  
VREF Input Resistance  
RFB Feedback Resistance  
Input Capacitance  
10  
9
9
V
kΩ  
kΩ  
7
7
11  
11  
Input resistance TC = −50 ppm/°C  
Input resistance TC = −50 ppm/°C  
Zero-Scale Code  
Full-Scale Code  
18  
18  
22  
22  
pF  
pF  
DIGITAL INPUTS/OUTPUTS1  
Input High Voltage, VIH  
2.0  
1.7  
V
V
VDD = 3.6 V to 5 V  
VDD = 2.5 V to 3.6 V  
Input Low Voltage, VIL  
Output High Voltage, VOH  
Output Low Voltage, VOL  
Input Leakage Current, IIL  
Input Capacitance  
0.8  
0.7  
V
V
V
V
V
V
nA  
nA  
pF  
VDD = 2.7 V to 5.5 V  
VDD = 2.5 V to 2.7 V  
VDD − 1  
VDD − 0.5  
VDD = 4.5 V to 5 V, ISOURCE = 200 µA  
VDD = 2.5 V to 3.6 V, ISOURCE = 200 µA  
VDD = 4.5 V to 5 V, ISINK = 200 µA  
VDD = 2.5 V to 3.6 V, ISINK = 200 µA  
TA = 25°C  
0.4  
0.4  
1
10  
10  
TA = −40°C to +125°C  
Rev. E | Page 3 of 28  
 
AD5444/AD5446  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
DYNAMIC PERFORMANCE1  
Reference Multiplying Bandwidth  
Multiplying Feedthrough Error  
12  
MHz  
VREF = 3.5 V, DAC loaded with all 1s  
VREF = 3.5 V, DAC loaded with all 0s  
72  
64  
44  
dB  
dB  
dB  
100 kHz  
1 MHz  
10 MHz  
Output Voltage Settling Time  
VREF = 10 V, RLOAD = 100 Ω, DAC latch alternately  
loaded with 0s and 1s  
Measured to 1 mV of FS  
Measured to 4 mV of FS  
Measured to 16 mV of FS  
Digital Delay  
10%-to-90% Settling Time  
Digital-to-Analog Glitch Impulse  
Output Capacitance  
100  
24  
16  
20  
10  
2
110  
40  
33  
40  
30  
ns  
ns  
ns  
ns  
ns  
nV-s  
Interface delay time  
Rise and fall time, VREF = 10 V, RLOAD = 100 Ω  
1 LSB change around major carry, VREF = 0 V  
IOUT  
1
13  
28  
18  
5
pF  
pF  
pF  
pF  
DAC latches loaded with all 0s  
DAC latches loaded with all 1s  
DAC latches loaded with all 0s  
DAC latches loaded with all 1s  
IOUT  
2
Digital Feedthrough  
0.5  
nV-s  
Feedthrough to DAC output with CS high and  
alternate loading of all 0s and all 1s  
VREF = 3.5 V p-p, all 1s loaded, f = 1 kHz  
Clock = 1 MHz, VREF = 3.5 V  
Analog THD  
Digital THD  
83  
dB  
50 kHz fOUT  
20 kHz fOUT  
Output Noise Spectral Density  
SFDR Performance (Wide Band)  
50 kHz fOUT  
71  
77  
25  
dB  
dB  
nV/√Hz  
@ 1 kHz  
Clock = 10 MHz, VREF = 3.5 V  
78  
74  
dB  
dB  
20 kHz fOUT  
SFDR Performance (Narrow Band)  
50 kHz fOUT  
20 kHz fOUT  
Clock = 1 MHz, VREF = 3.5 V  
87  
85  
79  
dB  
dB  
dB  
Intermodulation Distortion  
POWER REQUIREMENTS  
Power Supply Range, VDD  
Supply Current, IDD  
f1 = 20 kHz, f2 = 25 kHz, clock = 1 MHz, VREF = 3.5 V  
2.5  
5.5  
10  
0.6  
0.001  
V
0.4  
µA  
µA  
%/%  
TA = −40°C to +125°C, logic inputs = 0 V or VDD  
TA = 25°C, logic inputs = 0 V or VDD  
∆VDD = 5%  
Power Supply Sensitivity1  
1 Guaranteed by design and characterization; not subject to production test.  
Rev. E | Page 4 of 28  
Data Sheet  
AD5444/AD5446  
TIMING CHARACTERISTICS  
All input signals are specified with tr = tf = 1 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. VDD = 2.5 V to 5.5 V,  
REF = 10 V, IOUT2 = 0 V, temperature range for Y version: −40°C to +125°C; all specifications TMIN to TMAX, unless otherwise noted.  
V
Table 2.  
V
DD = 4.5 V to  
VDD = 2.5 V to  
5.5 V  
Parameter1  
5.5 V  
50  
20  
8
Unit  
Conditions/Comments  
fSCLK  
t1  
t2  
50  
20  
8
MHz max Maximum clock frequency.  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
MSPS  
SCLK cycle time.  
SCLK high time.  
SCLK low time.  
SYNC falling edge to SCLK active edge setup time.  
Data setup time.  
Data hold time.  
SYNC rising edge to SCLK active edge setup time  
Minimum SYNC high time.  
t3  
t4  
8
8
8
8
t5  
t6  
t7  
5
4.5  
5
5
4.5  
5
t8  
30  
23  
2.7  
30  
30  
2.7  
t9  
SCLK active edge to SDO valid.  
Consists of cycle time, SYNC high time, data setup time and output  
voltage settling time.  
Update Rate  
1 Guaranteed by design and characterization; not subject to production test.  
t1  
SCLK  
t2  
t3  
t4  
t7  
SYNC  
t8  
t6  
t5  
DB15  
DB0  
SDIN  
Figure 2. Standalone Timing Diagram  
t1  
SCLK  
SYNC  
SDIN  
t2  
t3  
t7  
t8  
t4  
t6  
t5  
DB15  
DB0  
DB15 (N)  
DB0 (N)  
(N + 1)  
(N + 1)  
t9  
SDO  
DB15 (N)  
DB0 (N)  
NOTES  
ALTERNATIVELY, DATA CAN BE CLOCKED INTO INPUT SHIFT REGISTER ON RISING EDGE OF SCLK AS  
DETERMINED BY CONTROL BITS. IN THIS CASE, DATA IS CLOCKED OUT OF SDO ON FALLING  
EDGE OF SCLK. TIMING AS ABOVE, WITH SCLK INVERTED.  
Figure 3. Daisy-Chain Timing Diagram  
Rev. E | Page 5 of 28  
 
AD5444/AD5446  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. Transient currents of up to  
100 mA do not cause SCR latch-up.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
Rating  
VDD to GND  
VREF, RFB to GND  
IOUT1, IOUT2 to GND  
Logic Inputs and Outputs1  
Input Current (All Pins Except Supplies)  
Operating Temperature Range  
Extended (Y Version)  
−0.3 V to +7 V  
−12 V to +12 V  
−0.3 V to +7 V  
−0.3 V to VDD + 0.3 V  
10 mA  
Only one absolute maximum rating can be applied at any one  
time.  
−40°C to +125°C  
I
200µA  
OL  
Storage Temperature Range  
Junction Temperature  
10-lead MSOP θJA Thermal Impedance  
Lead Temperature, Soldering (10 sec)  
IR Reflow, Peak Temperature (<20 sec)  
−65°C to +150°C  
150°C  
206°C/W  
300°C  
TO  
OUTPUT  
PIN  
V
+V  
2
OH (MIN)  
OL (MAX)  
C
20pF  
L
I
200µA  
OH  
235°C  
Figure 4. Load Circuit for SDO Timing Specifications  
1
SYNC  
Overvoltages at SCLK,  
, and SDIN are clamped by internal diodes.  
ESD CAUTION  
Rev. E | Page 6 of 28  
 
 
 
Data Sheet  
AD5444/AD5446  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
10  
R
I
1
FB  
OUT  
AD5444/  
AD5446  
9
V
I
2
REF  
DD  
OUT  
8
GND  
V
TOP VIEW  
(Not to Scale)  
7
SCLK  
SDIN  
SDO  
6
SYNC  
Figure 5. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
IOUT  
IOUT  
GND  
SCLK  
1
2
DAC Current Output.  
DAC Analog Ground. This pin should normally be tied to the analog ground of the system.  
Ground Pin.  
Serial Clock Input. By default, data is clocked into the input shift register on the falling edge of the serial clock  
input. Alternatively, by means of the serial control bits, the device can be configured such that data is clocked  
into the shift register on the rising edge of SCLK.  
5
6
SDIN  
SYNC  
Serial Data Input. Data is clocked into the 16-bit input register on the active edge of the serial clock input.  
By default on power-up, data is clocked into the shift register on the falling edge of SCLK. The control bits allow  
the user to change the active edge to the rising edge.  
Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC is taken low,  
data is loaded to the shift register on the active edge of the following clocks. The output updates on the rising  
edge of SYNC.  
7
SDO  
Serial Data Output. This pin allows a number of parts to be daisy-chained. By default, data is clocked into the shift  
register on the falling edge and out via SDO on the rising edge of SCLK. Data is always clocked out on the  
alternate edge to data loaded to the shift register.  
8
9
10  
VDD  
VREF  
RFB  
Positive Power Supply Input. This part can be operated from a supply of 2.5 V to 5.5 V.  
DAC Reference Voltage Input.  
DAC Feedback Resistor. Establishes voltage output for the DAC by connecting to an external amplifier output.  
Rev. E | Page 7 of 28  
 
AD5444/AD5446  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
0.5  
2.0  
1.6  
T
V
V
= 25°C  
= 10V  
A
T
= 25°C  
A
0.4  
0.3  
0.2  
REF  
V
V
= 10V  
REF  
= 5V  
= 5V  
DD  
DD  
1.2  
0.8  
0.1  
0.4  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–0.4  
–0.5  
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
CODE  
Figure 6. INL vs. Code (12-Bit DAC)  
Figure 9. DNL vs. Code (14-Bit DAC)  
2.0  
1.00  
0.75  
0.50  
0.25  
0
T
V
V
= 25°C  
= 10V  
A
T
= 25°C  
A
1.6  
1.2  
REF  
V
= 5V  
DD  
AD5444  
= 5V  
DD  
MAX INL  
0.8  
0.4  
0
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
MIN INL  
–0.25  
–0.50  
–0.75  
–1.00  
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
2
3
4
5
6
7
8
9
10  
REFERENCE VOLTAGE (V)  
Figure 10. INL vs. Reference Voltage  
Figure 7. INL vs. Code (14-Bit DAC)  
1.0  
0.8  
0.6  
0.4  
2.0  
1.5  
T
V
V
= 25°C  
T
= 25°C  
= 5V  
A
A
V
= 10V  
DD  
AD5444  
REF  
= 5V  
DD  
1.0  
MAX DNL  
MIN DNL  
0.5  
0.2  
0
0
–0.2  
–0.5  
–1.0  
–1.5  
–2.0  
–0.4  
–0.6  
–0.8  
–1.0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
2
3
4
5
6
7
8
9
10  
CODE  
REFERENCE VOLTAGE (V)  
Figure 8. DNL vs. Code (12-Bit DAC)  
Figure 11. DNL vs. Reference Voltage  
Rev. E | Page 8 of 28  
 
Data Sheet  
AD5444/AD5446  
1.0  
0.3  
0.2  
V
= 10V  
REF  
T
V
V
= 25°C  
A
0.8  
0.6  
0.4  
= 10V  
REF  
= 5V  
DD  
0.1  
V
= 3V  
DD  
0.2  
V
= 5V  
0
DD  
0
–0.2  
–0.4  
–0.6  
–0.1  
–0.2  
–0.3  
–0.8  
–1.0  
0
512  
1024  
1536  
2048  
2560  
3072  
3584  
4096  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
CODE  
TEMPERATURE (°C)  
Figure 15. Gain Error vs. Temperature  
Figure 12. TUE vs. Code (12-Bit DAC)  
2.0  
2.0  
1.5  
T
V
V
= 25°C  
A
T
= 25°C  
A
= 10V  
1.6  
1.2  
REF  
= 5V  
V
= 5V  
DD  
AD5444  
DD  
1.0  
0.8  
0.5  
0.4  
0
0
–0.4  
–0.8  
–1.2  
–1.6  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
CODE  
2
3
4
5
6
7
8
9
10  
REFERENCE VOLTAGE (V)  
Figure 13. TUE vs. Code (14-Bit DAC)  
Figure 16. Gain Error vs. Reference Voltage  
2.0  
1.5  
1.0  
0.5  
0
2.0  
T
= 25°C  
= 5V  
A
V
DD  
AD5444  
I
1, V = 5V  
OUT DD  
1.6  
1.2  
0.8  
MAX TUE  
I
1, V = 3V  
OUT DD  
MIN TUE  
–0.5  
–1.0  
–1.5  
–2.0  
0.4  
0
2
3
4
5
6
7
8
9
10  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 17. IOUT1 Leakage Current vs. Temperature  
Figure 14. TUE vs. Reference Voltage  
Rev. E | Page 9 of 28  
AD5444/AD5446  
Data Sheet  
2.5  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
A
T
= 25°C  
A
V
IH  
V
IL  
2.0  
1.5  
V
= 5V  
DD  
1.0  
0.5  
0
V
= 3V  
2
DD  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
1
3
4
5
INPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 18. Supply Current vs. Logic Input Voltage  
Figure 21. Threshold Voltage vs. Supply Voltage  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
0
T
= 25°C  
A
ALL 1s  
ALL 0s  
LOADING  
ZS TO FS  
ALL ON  
DB13  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
DB12  
DB11  
DB10  
V
= 5V  
DD  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
V
= 3V  
DD  
V
V
C
= 5V  
DD  
= ±3.5V  
REF  
DB2  
= 1.8pF  
COMP  
AD8038 AMPLIFIER  
10k  
100k  
1M  
10M 100M  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 22. Reference Multiplying Bandwidth vs. Frequency and Code  
Figure 19. Supply Current vs. Temperature  
0.6  
0.4  
6
5
4
3
2
1
0
T
= 25°C  
A
AD5444  
LOADING 0101 0101 0101  
0.2  
0
–0.2  
–0.4  
–0.6  
V
= 5V  
DD  
T
V
= 25°C  
= 5V  
–0.8  
–1.0  
–1.2  
A
DD  
V
= ±3.5V  
REF  
C
= 1.8pF  
COMP  
AD8038 AMPLIFIER  
V
= 3V  
DD  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
10k 100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. Supply Current vs. Update Rate  
Figure 23. Reference Multiplying Bandwidth vs. Frequency—All 1s Loaded  
Rev. E | Page 10 of 28  
Data Sheet  
AD5444/AD5446  
3
10  
0
T
V
= 25°C  
= 3V  
A
T
V
= 25°C  
A
DD  
= 5V  
DD  
AD8038 AMPLIFIER  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–3  
–6  
–9  
FULL SCALE  
ZERO SCALE  
V
V
V
V
V
= ±2V, AD8038 C  
= ±2V, AD8038 C  
= ±15V, AD8038 C  
= ±15V, AD8038 C  
= ±15V, AD8038 C  
= 1pF  
= 1.5pF  
REF  
REF  
REF  
REF  
REF  
COMP  
COMP  
= 1pF  
= 1.5pF  
= 1.8pF  
COMP  
COMP  
COMP  
1
10  
100  
1k  
10k  
100k  
1M  
10M  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 27. Power Supply Rejection Ratio vs. Frequency  
Figure 24. Reference Multiplying Bandwidth vs. Frequency  
and Compensation Capacitor  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
0.08  
0.06  
0.04  
0.02  
0
T
V
V
= 25°C  
= 5V  
A
V
= 5V  
DD  
T
V
= 25°C  
= 0V  
A
DD  
0x7FF TO 0x800  
NRG = 2.154nV-s  
= ±3.5V  
REF  
REF  
AD8038 AMP  
= 1.8pF  
C
COMP  
V
= 3V  
DD  
0x7FF TO 0x800  
NRG = 1.794nV-s  
V
= 5V  
DD  
–0.02  
–0.04  
–0.06  
0x800 TO 0x7FF  
NRG = 0.694nV-s  
V
= 5V  
0x800 TO 0x7FF  
NRG = 0.694nV-s  
DD  
50  
75  
100  
125  
150  
175  
200  
225  
250  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
TIME (ns)  
Figure 25. Midscale Transition, VREF = 0 V  
Figure 28. THD + Noise vs. Frequency  
100  
80  
60  
40  
20  
0
–1.66  
–1.68  
–1.70  
–1.72  
–1.74  
–1.76  
–1.78  
–1.80  
V
= 5V  
DD  
T
V
= 25°C  
= 3.5V  
A
0x7FF TO 0x800  
NRG = 2.154nV-s  
MCLK = 200kHz  
MCLK = 500kHz  
REF  
AD8038 AMP  
= 1.8pF  
C
COMP  
V
= 3V  
DD  
MCLK = 1MHz  
0x7FF TO 0x800  
NRG = 1.794nV-s  
V
= 5V  
DD  
0x800 TO 0x7FF  
NRG = 0.694nV-s  
= 5V  
T
V
= 25°C  
A
V
DD  
= 3.5V  
REF  
0x800 TO 0x7FF  
NRG = 0.694nV-s  
AD8038 AMP  
50  
75  
100  
125  
150  
175  
200  
225  
250  
0
10  
20  
30  
40  
50  
TIME (ns)  
fOUT (kHz)  
Figure 29. Wideband SFDR vs. fOUT Frequency  
Figure 26. Midscale Transition, VREF = 3.5 V  
Rev. E | Page 11 of 28  
AD5444/AD5446  
Data Sheet  
0
0
–20  
T
V
V
= 25°C  
= 5V  
T
V
V
= 25°C  
= 5V  
A
A
DD  
DD  
= 3.5V  
= 3.5V  
REF  
REF  
–20  
AD8038 AMP  
AD8038 AMP  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
100k  
200k  
300k  
400k  
500k  
10k  
15k  
20k  
25k  
30k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 30. Wideband SFDR , fOUT = 20 kHz, Clock = 1 MHz  
Figure 32. Narrow-Band SFDR, fOUT = 20 kHz, Clock = 1 MHz  
0
0
T
V
V
= 25°C  
= 5V  
T
V
V
= 25°C  
= 5V  
A
A
DD  
DD  
= 3.5V  
= 3.5V  
REF  
REF  
–20  
–20  
–40  
AD8038 AMP  
AD8038 AMP  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
0
100k  
200k  
300k  
400k  
500k  
30k  
40k  
50k  
60k  
70k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 31. Wideband SFDR, fOUT = 50 kHz, Clock = 1 MHz  
Figure 33. Narrow-Band SFDR, fOUT = 50 kHz, Clock = 1 MHz  
Rev. E | Page 12 of 28  
Data Sheet  
AD5444/AD5446  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
V
= 25°C  
= 3.5V  
A
T
= 25°C  
A
REF  
AD8038 AMP  
AD8038 AMP  
FULL SCALE  
LOADED TO DAC  
MIDSCALE  
LOADED TO DAC  
ZERO SCALE  
LOADED TO DAC  
–100  
10k  
100  
1k  
10k  
100k  
1M  
15k  
20k  
25k  
30k  
35k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 34. Narrow-Band IMD, fOUT = 20 kHz and 25 kHz, Clock = 1 MHz  
Figure 36. Output Noise Spectral Density  
0
T
= 25°C  
A
V
= 3.5V  
REF  
AD8038 AMP  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
100k  
200k  
300k  
400k  
500k  
FREQUENCY (Hz)  
Figure 35. Wideband IMD, fOUT = 20 kHz and 25 kHz, Clock = 1 MHz  
Rev. E | Page 13 of 28  
AD5444/AD5446  
Data Sheet  
TERMINOLOGY  
Relative Accuracy or Integral Nonlinearity  
Digital Feedthrough  
Relative accuracy or integral nonlinearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after  
adjusting for zero scale and full scale and is normally expressed  
in LSBs or as a percentage of full-scale reading.  
When the device is not selected, high frequency logic activ-  
ity on the device’s digital inputs can be capacitively coupled  
through the device to show up as noise on the IOUT1 and IOUT  
pins and, subsequently, into the following circuitry. This noise is  
digital feedthrough.  
2
Differential Nonlinearity  
Multiplying Feedthrough Error  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of −1 LSB maximum  
over the operating temperature range ensures monotonicity.  
Multiplying feedthrough error is due to capacitive feedthrough  
from the DAC reference input to the DAC IOUT1 line, when all  
0s are loaded to the DAC.  
Total Harmonic Distortion (THD)  
Gain Error  
The DAC is driven by an ac reference. The ratio of the rms sum  
of the harmonics of the DAC output to the fundamental value is  
the THD. Usually only the lower-order harmonics, such as second  
to fifth, are included.  
Gain error or full-scale error is a measure of the output error  
between an ideal DAC and the actual device output. For this  
DAC, ideal maximum output is VREF − 1 LSB. Gain error of the  
DAC is adjustable to zero with external resistance.  
2
2
2
2
V2 +V3 +V4 +V5  
THD = 20 log  
Output Leakage Current  
V1  
Output leakage current is current that flows in the DAC ladder  
switches when the ladder is turned off. For the IOUT1 line, it can  
be measured by loading all 0s to the DAC and measuring the  
Digital Intermodulation Distortion  
Second-order intermodulation (IMD) measurements are the  
relative magnitudes of the fa and fb tones digitally generated by  
the DAC and the second-order products at 2fa − fb and 2fb − fa.  
I
OUT1 current. Minimum current flows in the IOUT2 line when  
the DAC is loaded with all 1s.  
Compliance Voltage Range  
Output Capacitance  
The maximum range of (output) terminal voltage for which  
the device provides the specified characteristics.  
Capacitance from IOUT1 or IOUT2 to AGND.  
Output Current Settling Time  
Spurious-Free Dynamic Range (SFDR)  
The amount of time it takes for the output to settle to a speci-  
fied level for a full-scale input change. For this device, it is  
specified with a 100 Ω resistor to ground. The settling time  
The usable dynamic range of a DAC before spurious noise  
interferes or distorts the fundamental signal. SFDR is the  
measure of difference in amplitude between the fundamental  
and the largest harmonically or nonharmonically related spur  
from dc to full Nyquist bandwidth (half the DAC sampling  
rate or fS/2). Narrow-band SFDR is a measure of SFDR over  
an arbitrary window size, in this case 50% of the fundamental.  
Digital SFDR is a measure of the usable dynamic range of the  
DAC when the signal is a digitally generated sine wave.  
SYNC  
specification includes the digital delay from the  
edge to the full-scale output change.  
rising  
Digital-to-Analog Glitch Impulse  
The amount of charge injected from the digital inputs to the  
analog output when the inputs change state. This is normally  
specified as the area of the glitch in either picoamps per second  
or nanovolts per second, depending upon whether the glitch is  
measured as a current or voltage signal.  
Rev. E | Page 14 of 28  
 
Data Sheet  
AD5444/AD5446  
GENERAL DESCRIPTION  
CIRCUIT OPERATION  
Unipolar Mode  
DAC SECTION  
The AD5444/AD5446 are 12-bit and 14-bit current output  
DACs consisting of segmented (4 bits), inverting R– 2R ladder  
configurations. A simplified diagram for the 12-bit AD5444  
is shown in Figure 37.  
Using a single op amp, the AD5444/AD5446 can easily be  
configured to provide 2-quadrant multiplying operation or  
a unipolar output voltage swing, as shown in Figure 38.  
R
R
R
When an output amplifier is connected in unipolar mode, the  
output voltage is given by  
V
REF  
2R  
S1  
2R  
S2  
2R  
S3  
2R  
2R  
R
S12  
D
R
VOUT    
VREF  
FB  
OUT  
OUT  
2n  
I
I
1
2
where:  
DAC DATA LATCHES  
AND DRIVERS  
D is the fractional representation of the digital word loaded to  
the DAC:  
Figure 37. Simplified Ladder  
D = 0 to 4095 (12-bit AD5444)  
D = 0 to 16383 (14-bit AD5446)  
The feedback resistor (RFB) has a value of R. The value of R is  
typically 9 kΩ (7 kΩ minimum, 11 kΩ maximum). If IOUT1 is  
kept at the same potential as GND, a constant current flows in  
each ladder leg, regardless of digital input code. Therefore, the  
input resistance presented at VREF is always constant and nomi-  
nally of value R. The DAC output (IOUT1) is code-dependent,  
producing various resistances and capacitances. The external  
amplifier choice should take into account the variation in  
impedance generated by the DAC on the amplifiers inverting  
input node.  
n is the number of bits.  
Note that the output voltage polarity is opposite to the VREF  
polarity for dc reference voltages.  
This DAC is designed to operate with either negative or positive  
reference voltages. The VDD power pin is used by the internal  
digital logic only to drive the on and off states of the DAC  
switches. The DAC is also designed to accommodate ac refer-  
ence input signals in the range of −10 V to +10 V. With a fixed  
+10 V reference, the circuit shown in Figure 38 provides a  
unipolar 0 V to −10 V output voltage swing. When VIN is an  
ac signal, the circuit performs 2-quadrant multiplication.  
Access is provided to the VREF, RFB, and both IOUT terminals of  
the DAC, making the device extremely versatile and allowing it  
to be configured in several different operating modes. For  
example, the device provides unipolar output mode, 4-quadrant  
multiplication in bipolar mode, and single-supply mode of  
operation. Note that a matching switch is used in series with the  
internal RFB. Power must be applied to VDD to achieve continuity  
when measuring RFB.  
Table 5 shows the relationship between digital code and  
expected output voltage for unipolar operation.  
Table 5. Unipolar Code  
Digital Input  
Analog Output (V)  
−VREF (4095/4096)  
−VREF (2048/4096) = −VREF/2  
−VREF (1/4096)  
1111 1111 1111  
1000 0000 0000  
0000 0000 0001  
0000 0000 0000  
−VREF (0/4096) = 0  
V
V
DD  
R2  
C1  
R
DD  
FB  
I
1
2
OUT  
AD5444/  
AD5446  
V
V
A1  
REF  
REF  
I
R1  
OUT  
V
= 0V TO –V  
REF  
OUT  
SYNC SCLK SDIN  
AGND  
MICROCONTROLLER  
NOTES  
1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED,  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 38. Unipolar Operation  
Rev. E | Page 15 of 28  
 
 
 
 
 
 
AD5444/AD5446  
Data Sheet  
Bipolar Operation  
Table 6 shows the relationship between digital code and the  
expected output voltage for bipolar operation.  
In some applications, it may be necessary to generate a full  
4-quadrant multiplying operation, or a bipolar output swing.  
This can easily be accomplished by using another external  
amplifier and some external resistors, as shown in Figure 39.  
In this circuit, the second amplifier (A2) provides a gain of 2.  
Biasing the external amplifier with an offset from the reference  
voltage results in a full 4-quadrant multiplying operation. The  
transfer function of this circuit shows that both negative and  
positive output voltages are created as the input data (D) is  
incremented from code zero (VOUT = −VREF) to midscale  
Table 6. Bipolar Code  
Digital Input  
Analog Output (V)  
+VREF (2047/2048)  
0
−VREF (2047/2048)  
−VREF (0/2048)  
1111 1111 1111  
1000 0000 0000  
0000 0000 0001  
0000 0000 0000  
Stability  
In the current-to-voltage (I-to-V) configuration, the IOUT1of the  
DAC and the inverting node of the op amp must be connected  
as closely as possible, and proper PCB layout techniques must  
be employed. Because every code change corresponds to a step  
function, gain peaking can occur if the op amp has limited GBP  
and excessive parasitic capacitance exists at the inverting node.  
This parasitic capacitance introduces a pole into the open-loop  
response that can cause ringing or instability in the closed-loop  
applications circuit.  
(VOUT − 0 V) to full scale (VOUT = +VREF  
)
D
VOUT = V  
×
V  
REF  
REF  
2n1  
where:  
D is the fractional representation of the digital word loaded  
to the DAC:  
D = 0 to 4095 (12-bit AD5444)  
D = 0 to 16383 (14-bit AD5446)  
An optional compensation capacitor (C1) can be added in  
parallel with RFB for stability, as shown in Figure 38 and  
Figure 39. Too small a value for C1 can produce ringing at  
the output, while too large a value can adversely affect the  
settling time. C1 should be found empirically, but 1 pF to  
2 pF is generally adequate for the compensation.  
n is the resolution of the DAC.  
When VIN is an ac signal, the circuit performs 4-quadrant  
multiplication.  
R3  
20kΩ  
V
V
DD  
R2  
R5  
20kΩ  
C1  
R
DD  
FB  
R4  
10kΩ  
R1  
I
1
OUT  
AD5444/  
AD5446  
V
V
±10V  
A1  
REF  
REF  
A2  
I
2
OUT  
V
= –V  
REF  
TO +V  
REF  
SYNC SCLK SDIN  
OUT  
AGND  
NOTES  
MICROCONTROLLER  
1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
ADJUST R1 FOR V = 0V WITH CODE 10000000 LOADED TO DAC.  
OUT  
2. MATCHING AND TRACKING IS ESSENTIAL FOR RESISTOR PAIRS  
R3 AND R4.  
3. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED,  
IF A1/A2 IS A HIGH SPEED AMPLIFIER.  
Figure 39. Bipolar Operation (4-Quadrant Multiplication)  
Rev. E | Page 16 of 28  
 
 
Data Sheet  
AD5444/AD5446  
V
= +5V  
DD  
SINGLE-SUPPLY APPLICATIONS  
Voltage Switching Mode of Operation  
ADR03  
V
V
IN  
OUT  
GND  
Figure 40 shows the AD5444/AD5446 DACs operating in the  
voltage switching mode. The reference voltage (VIN) is applied  
to the IOUT1 pin, IOUT2 is connected to AGND, and the output  
voltage is available at the VREF terminal. In this configuration,  
a positive reference voltage results in a positive output voltage,  
making single-supply operation possible. The output from  
the DAC is voltage at a constant impedance (the DAC ladder  
resistance). Therefore, an op amp is necessary to buffer the  
output voltage. The reference input no longer sees a constant  
input impedance but rather one that varies with code, so the  
voltage input should be driven from a low impedance source.  
+5V  
–5V  
C1  
V
R
FB  
DD  
I
I
1
2
OUT  
–2.5V  
V
REF  
OUT  
V
= 0V TO +2.5V  
OUT  
GND  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED,  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 41. Positive Voltage Output with Minimum Components  
ADDING GAIN  
In applications in which the output voltage is required to be  
greater than VIN, gain can be added with an additional external  
amplifier, or it can be achieved in a single stage. It is important  
to take into consideration the effect of the temperature coeffi-  
cients of the DAC’s thin film resistors. Simply placing a resistor  
in series with the RFB resistor can cause mismatches in the  
temperature coefficients and result in larger gain temperature  
coefficient errors. Instead, increase the gain of the circuit by  
using the recommended configuration shown in Figure 42.  
R1, R2, and R3 should all have similar temperature coefficients,  
but they need not match the temperature coefficients of the  
DAC. This approach is recommended in circuits where gains  
of greater than 1 are required.  
V
DD  
R1  
R2  
R
V
FB  
DD  
V
OUT  
V
V
I
1
IN  
REF  
OUT  
GND  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED,  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 40. Single-Supply Voltage Switching Mode Operation  
It is important to note that, with this configuration, VIN is lim-  
ited to low voltages, because the switches in the DAC ladder do  
not have the same source-drain drive voltage. As a result, their  
on resistance differs, which degrades the integral linearity of the  
DAC. In addition, VIN must not go negative by more than 0.3 V,  
or an internal diode turns on, exceeding the maximum ratings  
of the device. In this type of application, the full range of the  
multiplying capability of the DAC is lost.  
V
DD  
C1  
V
R
FB  
DD  
I
I
1
2
OUT  
R1  
V
V
IN  
V
REF  
OUT  
OUT  
R3  
R2  
GND  
R2 + R3  
R2  
GAIN =  
Positive Output Voltage  
R2R3  
R2 + R3  
The output voltage polarity is opposite to the VREF polarity for  
dc reference voltages. To achieve a positive voltage output, an  
applied negative reference to the input of the DAC is preferred  
over the output inversion through an inverting amplifier because  
of the resistors tolerance errors. To generate a negative reference,  
the reference can be level-shifted by an op amp such that the  
R1 =  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
2. C1 PHASE COMPENSATION (1pF TO 2pF) MAY BE REQUIRED,  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 42. Increasing Gain of Current Output DAC  
DIVIDER OR PROGRAMMABLE GAIN ELEMENT  
Current-steering DACs are very flexible and lend themselves to  
many different applications. If this type of DAC is connected as  
the feedback element of an op amp and RFB is used as the input  
resistor, as shown in Figure 43, then the output voltage is  
inversely proportional to the digital input fraction, D.  
VOUT and GND pins of the reference become the virtual ground  
and −2.5 V, respectively, as shown in Figure 41.  
For D = 1 − 2n, the output voltage is  
V
OUT = −VIN/D = −VIN/(1 − 2n)  
Rev. E | Page 17 of 28  
 
 
 
 
 
 
AD5444/AD5446  
Data Sheet  
V
V
DD  
DD  
The input bias current of an op amp also generates an offset  
V
IN  
at the voltage output as a result of the bias current flowing  
in the feedback resistor, RFB. Most op amps have input bias  
currents low enough to prevent any significant errors in  
12-bit applications.  
R
FB  
V
I
1
REF  
OUT  
GND  
Common-mode rejection of the op amp is important in voltage  
switching circuits because it produces a code-dependent error  
at the voltage output of the circuit. Most op amps have adequate  
common-mode rejection for use at 8-bit, 10-bit, and 12-bit  
resolutions.  
V
OUT  
NOTES:  
1. ADDITIONAL PINS OMITTED FOR CLARITY.  
Provided that the DAC switches are driven from true wideband  
low impedance sources (VIN and AGND), they settle quickly.  
Consequently, the slew rate and settling time of a voltage switching  
DAC circuit is determined largely by the output op amp. To  
obtain minimum settling time in this configuration, it is impor-  
tant to minimize capacitance at the VREF node (voltage output  
node in this application) of the DAC. This is done by using low  
input, capacitance buffer amplifiers and careful board design.  
Figure 43. Current-Steering DAC Used as a Divider  
or Programmable Gain Element  
As D is reduced, the output voltage increases. For small values  
of the digital fraction (D), it is important to ensure that the  
amplifier does not saturate and the required accuracy is met.  
For example, an 8-bit DAC driven with the binary code 0x10  
(0001 0000), that is, 16 decimal, in the circuit of Figure 43,  
should cause the output voltage to be 16 × VIN. However, if the  
DAC has a linearity specification of 0.5 LSB, then D can, in  
fact, have a weight in the range of 15.5/256 to 16.5/256, so the  
possible output voltage is in the range 15.5 VIN to 16.5 VIN. This  
is an error of 3%, even though the DAC itself has a maximum  
error of 0.2%.  
Most single-supply circuits include ground as part of the analog  
signal range, which, in turn, requires an amplifier that can handle  
rail-to-rail signals. A large range of single-supply amplifiers is  
available from Analog Devices, Inc. (see Table 8 and Table 9 for  
suitable suggestions).  
REFERENCE SELECTION  
DAC leakage current is also a potential error source in divider  
circuits. The leakage current must be counterbalanced by an  
opposite current supplied from the op amp through the DAC.  
Because only a fraction (D) of the current into the VREF terminal  
is routed to the IOUT1 terminal, the output voltage has to change,  
as follows:  
When selecting a reference for use with the AD5444/AD5446  
current output DAC, pay attention to the output voltage tem-  
perature coefficient specification. This parameter affects not  
only the full-scale error but can also affect the linearity (INL  
and DNL) performance. The reference temperature coefficient  
should be consistent with the system accuracy specifications.  
For example, an 8-bit system required to hold its overall speci-  
fication to within 1 LSB over the temperature range 0°C to 50°C  
dictates that the maximum system drift with temperature  
should be less than 78 ppm/°C.  
Output Error Voltage due to DAC Leakage = (Leakage × R)/D  
where R is the DAC resistance at the VREF terminal.  
For a DAC leakage current of 10 nA, R equal to 10 kΩ, and a gain  
(1/D) of 16, the error voltage is 1.6 mV.  
A 12-bit system with the same temperature range to overall  
specification within 2 LSBs requires a maximum drift of  
10 ppm/°C. By choosing a precision reference with low output  
temperature coefficient, this error source can be minimized.  
Table 7 suggests some of the dc references available from  
Analog Devices that are suitable for use with this range of  
current output DACs.  
AMPLIFIER SELECTION  
The primary requirement for the current-steering mode is  
an amplifier with low input bias currents and low input offset  
voltage. The input offset voltage of an op amp is multiplied by  
the variable gain (due to the code-dependent output resistance  
of the DAC) of the circuit. A change in this noise gain between  
two adjacent digital fractions produces a step change in the  
output voltage due to the amplifiers input offset voltage. This  
output voltage change is superimposed upon the desired change  
in output between the two codes and gives rise to a differential  
linearity error, which, if large enough, can cause the DAC to be  
nonmonotonic.  
Rev. E | Page 18 of 28  
 
 
 
Data Sheet  
AD5444/AD5446  
Table 7. Suitable Analog Devices Precision References  
Initial Tolerance  
Part No. Output Voltage (V) Accuracy (%)  
Temperature Drift  
Coefficient (ppm/°C)  
ISS (mA) Output Noise (µV p-p)  
Package  
SOIC-8  
TSOT-23, SC70  
SOIC-8  
TSOT-23, SC70  
SOIC-8  
TSOT-23, SC70  
SOIC-8  
TSOT-23, SC70  
SOIC-8  
SOIC-8  
TSOT-23  
TSOT-23  
ADR01  
ADR01  
ADR02  
ADR02  
ADR03  
ADR03  
ADR06  
ADR06  
ADR431 2.5  
ADR435  
ADR391 2.5  
ADR395  
10  
10  
5
0.05  
0.05  
0.06  
0.06  
0.10  
0.10  
0.10  
0.10  
0.04  
0.04  
0.16  
0.10  
3
9
3
9
3
9
3
9
3
3
9
9
1
1
1
1
20  
20  
10  
10  
6
5
2.5  
2.5  
3
1
1
6
1
1
0.8  
0.8  
0.12  
0.12  
10  
10  
3.5  
8
5
8
3
5
5
Table 8. Suitable Analog Devices Precision Op Amps  
Part No. Supply Voltage (V) VOS (Max) (µV) IB (Max) (nA) 0.1 Hz to 10 Hz Noise (µV p-p) Supply Current (µA) Package  
OP97  
2 to 20  
2.5 to 15  
2.7 to 5  
1.8 to 6  
2.7 to 6  
25  
60  
5
50  
5
0.1  
2
0.05  
0.001  
0.1  
0.5  
0.4  
1
2.3  
0.5  
600  
500  
975  
50  
SOIC-8  
OP1177  
AD8551  
AD8603  
AD8628  
MSOP, SOIC-8  
MSOP, SOIC-8  
TSOT  
850  
TSOT, SOIC-8  
Table 9. Suitable Analog Devices High Speed Op Amps  
BW @ ACL  
(Typ) (MHz)  
Slew Rate  
(Typ) (V/µs)  
Part No. Supply Voltage (V)  
VOS (Max) (µV)  
1500  
1000  
3000  
10,000  
IB (Max) (nA)  
0.006  
10500  
750  
Package  
AD8065  
AD8021  
AD8038  
AD9631  
5 to 24  
2.25 to 12  
3 to 12  
145  
490  
350  
320  
180  
120  
425  
1300  
SOIC-8, SOT-23, MSOP  
SOIC-8, MSOP  
SOIC-8, SC70-5  
SOIC-8  
3 to 6  
7000  
Rev. E | Page 19 of 28  
 
 
 
AD5444/AD5446  
Data Sheet  
SERIAL INTERFACE  
The AD5444/AD5446 have an easy-to-use, 3-wire interface that  
is compatible with SPI, QSPI, MICROWIRE, and DSP inter-  
face standards. Data is written to the device in 16-bit words.  
This 16-bit word consists of two control bits, 12 data bits or  
14 data bits, as shown in Figure 44 and Figure 45. The AD5446  
uses all 14 bits of DAC data while AD5444 uses 12 bits and  
ignores the 2 LSBs.  
SYNC  
high  
After the falling edge of the 16th SCLK pulse, bring  
to transfer data from the input shift register to the DAC register.  
Daisy-Chain Mode  
Daisy-chain mode is the default power-on mode. To disable  
the daisy-chain function, write 01 to the control word. In daisy-  
chain mode, the internal gating on the SCLK is disabled. The  
SCLK is continuously applied to the input shift register when  
Control Bit C1 and Control Bit C0 allow the user to load and  
update the new DAC code and to change the active clock edge.  
By default, the shift register clocks data on the falling edge, but  
this can be changed via the control bits. If changed, the DAC  
core is inoperative until the next data frame. A power cycle  
resets this back to the default condition. On-chip, power-on  
reset circuitry ensures the device powers on with zero scale  
loaded to the DAC register and the IOUT line.  
SYNC  
is low. If more than 16 clock pulses are applied, the data  
ripples out of the shift register and appears on the SDO line.  
This data is clocked out on the rising edge of the SCLK (this  
is the default; use the control word to change the active edge)  
and is valid for the next device on the falling edge (default).  
By connecting this line to the SDIN input on the next device in  
the chain, a multidevice interface is constructed. Sixteen clock  
pulses are required for each device in the system. Therefore, the  
total number of clock cycles must equal 16 N, where N is the  
number of devices in the chain.  
Table 10. DAC Control Bits  
C1  
C0  
Function Implemented  
Load and update (power-on default)  
Disable SDO  
0
0
0
1
SYNC  
When the serial transfer to all devices is complete,  
should be taken high. This prevents any further data from  
being clocked into the shift register. A burst clock containing  
the exact number of clock cycles can be used, and  
taken high some time later. After the rising edge of  
is automatically transferred from each devices input register to  
the addressed DAC.  
1
0
No operation  
1
1
Clock data to shift register on rising edge  
SYNC  
can be  
SYNC  
, data  
SYNC  
Function  
SYNC  
is an edge-triggered input that acts as a frame synchroni-  
zation signal. Data can be transferred into the device only while  
When the control bits = 10, the device is in no operation mode.  
This can be useful in daisy-chain applications where the user  
does not want to change the settings of a particular DAC in the  
chain. Simply write 10 to the control bits for that DAC and the  
following data bits are ignored.  
SYNC  
SYNC  
is low. To start the serial data transfer,  
should be  
SYNC  
taken low, observing the minimum  
falling to the SCLK  
falling edge setup time, t4. To minimize the power consumption  
of the device, the interface powers up fully only when the device  
SYNC  
is being written to, that is, on the falling edge of  
The SCLK and DIN input buffers are powered down on the  
SYNC  
.
rising edge of  
.
DB15 (MSB)  
DB0 (LSB)  
C1 C0  
DB9 DB8 DB7 DB6 DB5 DB4  
DATA BITS  
DB1 DB0  
DB3 DB2  
X
X
DB11 DB10  
CONTROL BITS  
Figure 44. AD5444 12-Bit Input Shift Register Contents  
DB15 (MSB)  
DB0 (LSB)  
DB3 DB2 DB1 DB0  
DB5 DB4  
C1  
C0  
DB11 DB10 DB9 DB8 DB7 DB6  
DATA BITS  
DB13 DB12  
CONTROL BITS  
Figure 45. AD5446 14-Bit Input Shift Register Contents  
Rev. E | Page 20 of 28  
 
 
 
Data Sheet  
AD5444/AD5446  
Table 11. SPORT Control Register Setup  
MICROPROCESSOR INTERFACING  
Name  
TFSW  
INVTFS  
DTYPE  
ISCLK  
TFSR  
Setting  
Description  
Microprocessor interfacing to the AD5444/AD5446 DAC is  
through a serial bus that uses standard protocol compatible  
with microcontrollers and DSP processors. The communica-  
tions channel is a 3-wire interface consisting of a clock signal, a  
data signal, and a synchronization signal. The AD5444/AD5446  
requires a 16-bit word, with the default being data valid on the  
falling edge of SCLK, but this can be changed using the control  
bits in the data-word.  
1
1
00  
1
1
Alternate framing  
Active low frame signal  
Right-justify data  
Internal serial clock  
Frame every word  
Internal framing signal  
16-bit data-word  
ITFS  
1
SLEN  
1111  
ADSP-BF5xx to AD5444/AD5446 Interface  
ADSP-21xx to AD5444/AD5446 Interface  
The ADSP-BF5xx family of processors has an SPI-compatible  
port that enables the processor to communicate with SPI-  
compatible devices. A serial interface between the ADSP-BF5xx  
and the AD5444/AD5446 DAC is shown in Figure 48. In this  
configuration, data is transferred through the MOSI (master  
The ADSP-21xx family of DSPs is easily interfaced to the  
AD5444/AD5446 DAC without the need for extra glue logic.  
Figure 46 is an example of an SPI interface between the DAC  
and the ADSP-2191M. SCK of the DSP drives the serial clock  
SYNC  
line, SCLK.  
SPIxSEL  
is driven from one of the port lines, in this  
SYNC  
output/slave input) pin.  
is driven by the SPI chip select  
case  
.
pin, which is a reconfigured programmable flag pin.  
AD5444/  
AD5446*  
ADSP-2191M*  
ADSP-BF5xx*  
AD5444/AD5446*  
SYNC  
SDIN  
SCLK  
SPIxSEL  
MOSI  
SYNC  
SDIN  
SCLK  
SPIxSEL  
MOSI  
SCK  
SCK  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 46. ADSP-2191M SPI to AD5444/AD5446 Interface  
Figure 48. ADSP-BF5xx to AD5444/AD5446 Interface  
A serial interface between the DAC and DSP SPORT is shown  
in Figure 47. In this interface example, SPORT0 is used to trans-  
fer data to the DAC shift register. Transmission is initiated by  
writing a word to the Tx register after the SPORT has been  
enabled. In a write sequence, data is clocked out on each rising  
edge of the DSP serial clock and clocked into the DAC input  
shift register on the falling edge of its SCLK. The update of the  
The ADSP-BF5xx processor incorporates channel synchronous  
serial ports (SPORT). A serial interface between the DAC and  
the DSP SPORT is shown in Figure 49. When the SPORT is  
enabled, initiate transmission by writing a word to the Tx register.  
The data is clocked out on each rising edge of the DSPs serial  
clock and clocked into the DAC input shift register on the  
falling edge of its SCLK. The DAC output is updated by using  
the transmit frame synchronization (TFS) line to provide a  
SYNC  
DAC output takes place on the rising edge of the  
signal.  
ADSP-2101/  
ADSP-2191M*  
AD5444/AD5446*  
SYNC  
signal.  
TFS  
SYNC  
ADSP-BF5xx*  
TFS  
AD5444/AD5446*  
DT  
SDIN  
SYNC  
SCLK  
SCLK  
DT  
SDIN  
SCLK  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 47. ADSP-2101/ADSP-2191M to  
AD5444/AD5446 Interface  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 49. ADSP-BF5xx to AD5444/AD5446 Interface  
Communication between two devices at a given clock speed  
is possible when the following specifications are compatible:  
frame sync delay and frame sync setup-and-hold, data delay  
and data setup-and-hold, and SCLK width. The DAC inter-  
SYNC  
face expects a t4 (  
falling edge to SCLK falling edge setup  
time) of 13 ns minimum. See the ADSP-21xx User Manual for  
information on clock and frame sync frequencies for the  
SPORT register.  
Table 11 shows the setup for the SPORT control register.  
Rev. E | Page 21 of 28  
 
 
 
 
 
 
AD5444/AD5446  
Data Sheet  
80C51/80L51 to AD5444/AD5446 Interface  
MC68HC11*  
AD5444/AD5446*  
A serial interface between the DAC and the 80C51/80L51 is  
shown in Figure 50. TxD of the 80C51/80L51 drives SCLK of  
the DAC serial interface, while RxD drives the serial data line,  
SDIN. P1.1 is a bit-programmable pin on the serial port and  
PC7  
SCK  
SYNC  
SCLK  
SDIN  
MOSI  
SYNC  
is used to drive  
. When data is to be transmitted to the  
*ADDITIONAL PINS OMITTED FOR CLARITY  
switch, P1.1 is taken low. The 80C51/80L51 transmits data only  
in 8-bit bytes; therefore, only eight falling clock edges occur in  
the transmit cycle. To load data correctly to the DAC, P1.1 is  
left low after the first eight bits are transmitted, and a second  
write cycle is initiated to transmit the second byte of data.  
Figure 51. MC68HC11 to AD5444/AD5446 Interface  
If the user wants to verify the data previously written to the  
input shift register, the SDO line can be connected to MISO of  
SYNC  
the MC68HC11, and, with  
low, the shift register clocks  
data out on the rising edges of SCLK.  
Data on RxD is clocked out of the microcontroller on the rising  
edge of TxD and is valid on the falling edge. As a result, no glue  
logic is required between the DAC and microcontroller inter-  
face. P1.1 is taken high following the completion of this cycle.  
The 80C51/80L51 provides the LSB of its SBUF register as the  
first bit in the data stream. The DAC input register requires its  
data with the MSB as the first bit received. The transmit routine  
should take this into account.  
MICROWIRE to AD5444/AD5446 Interface  
Figure 52 shows an interface between the DAC and any  
MICROWIRE-compatible device. Serial data is shifted out  
on the falling edge of the serial clock, SK, and is clocked into  
the DAC input shift register on the rising edge of SK, which  
corresponds to the falling edge of the DAC SCLK.  
MICROWIRE*  
AD5444/AD5446*  
SK  
SO  
CS  
SCLK  
SDIN  
SYNC  
AD5444/AD5446*  
SCLK  
8051*  
TxD  
RxD  
P1.1  
SDIN  
SYNC  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 52. MICROWIRE to AD5444/AD5446 Interface  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 50. 80C51/80L51 to AD5444/AD5446 Interface  
PIC16C6x/7x to AD5444/AD5446 Interface  
MC68HC11 Interface to AD5444/AD5446 Interface  
The PIC16C6x/7x synchronous serial port (SSP) is configured  
as an SPI master with the clock polarity bit (CKP) = 0. This is  
done by writing to the synchronous serial port control register  
(SSPCON); see the PIC16/17 Microcontroller User Manual.  
Figure 51 is an example of a serial interface between the DAC  
and the MC68HC11 microcontroller. The serial peripheral  
interface (SPI) on the MC68HC11 is configured for master  
mode (MSTR) = 1, clock polarity bit (CPOL) = 0, and the clock  
phase bit (CPHA) = 1. The SPI is configured by writing to the  
SPI control register (SPCR); see the 68HC11 User Manual. SCK  
of the 68HC11 drives the SCLK of the DAC interface, the MOSI  
output drives the serial data line (SDIN) of the AD5444/AD5446.  
SYNC  
In this example, I/O port RA1 is used to provide a  
signal and enable the serial port of the DAC. This micro-  
controller transfers only eight bits of data during each serial  
transfer operation; therefore, two consecutive write operations  
are required. Figure 53 shows the connection diagram.  
SYNC  
The  
signal is derived from a port line (PC7). When data  
SYNC  
PIC16C6x/7x*  
AD5444/AD5446*  
is being transmitted to the AD5444/AD5446, the  
line is  
SCK/RC3  
SDI/RC4  
RA1  
SCLK  
SDIN  
SYNC  
taken low (PC7). Data appearing on the MOSI output is valid  
on the falling edge of SCK. Serial data from the 68HC11 is  
transmitted in 8-bit bytes with only eight falling clock edges  
occurring in the transmit cycle. Data is transmitted MSB first.  
To load data to the DAC, PC7 is left low after the first eight bits  
are transferred, and a second serial write operation is performed  
to the DAC. PC7 is taken high at the end of this procedure.  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 53. PIC16C6x/7x to AD5444/AD5446 Interface  
Rev. E | Page 22 of 28  
 
 
 
 
Data Sheet  
AD5444/AD5446  
PCB LAYOUT AND POWER SUPPLY DECOUPLING  
In any circuit where accuracy is important, careful considera-  
tion of the power supply and ground return layout helps to  
ensure the rated performance. The printed circuit boards on  
which the AD5444/AD5446 are mounted should be designed  
so the analog and digital sections are separated and confined to  
certain areas of the board. If the DACs are in systems in which  
multiple devices require a AGND-to-DGND connection, the  
connection should be made at one point only. The star ground  
point should be established as close as possible to the devices.  
A microstrip technique, by far the best, is not always possible  
with a double-sided board. In this technique, the component  
side of the board is dedicated to the ground plane, while signal  
traces are placed on the solder side.  
It is good practice to employ compact, minimum lead-length  
PCB layout design. Leads to the input should be as short as  
possible to minimize IR drops and stray inductance.  
The PCB metal traces between VREF and RFB should also be  
matched to minimize gain error. To maximize high frequency  
performance, the I-to-V amplifier should be located as close  
to the device as possible.  
The DAC should have ample supply bypassing of 10 µF in  
parallel with 0.1 µF on the supply located as close to the pack-  
age as possible, ideally right up against the device. The 0.1 µF  
capacitor should have low effective series resistance (ESR)  
and effective series inductance (ESI), like the common ceramic  
types that provide a low impedance path to ground at high  
frequencies, to handle transient currents due to internal logic  
switching. Low ESR, 1 µF to 10 µF tantalum or electrolytic  
capacitors should also be applied at the supplies to minimize  
transient disturbance and filter out low frequency ripple.  
Fast switching signals such as clocks should be shielded with  
digital ground to avoid radiating noise to other parts of the  
board, and should never be run near the reference inputs.  
Avoid crossover of digital and analog signals. Traces on oppo-  
site sides of the board should run at right angles to each other.  
This reduces the effects of feedthrough throughout the board.  
Rev. E | Page 23 of 28  
 
AD5444/AD5446  
Data Sheet  
OVERVIEW OF AD54xx AND AD55xx CURRENT OUTPUT DEVICES  
Table 12.  
Part Number  
AD5424  
AD5426  
AD5428  
AD5429  
AD5450  
AD5432  
AD5433  
AD5439  
AD5440  
AD5451  
AD5443  
AD5444  
AD5415  
AD5405  
AD5445  
AD5447  
AD5449  
AD5452  
AD5446  
AD5453  
AD5553  
AD5556  
AD5555  
AD5557  
AD5543  
AD5546  
AD5545  
AD5547  
Resolution (Bits)  
Number of DACs  
INL (LSB) Interface Package1  
Features  
8
1
1
2
2
1
1
1
2
2
1
1
1
2
2
2
2
2
1
1
1
1
1
2
2
1
1
2
2
0.25  
0.25  
0.25  
0.25  
0.25  
0.5  
0.5  
0.5  
0.5  
0.25  
1
Parallel  
Serial  
Parallel  
Serial  
Serial  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Serial  
Serial  
RU-16, CP-20  
RM-10  
RU-20  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
12 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
12 MHz BW, 50 MHz serial  
10 MHz BW, 50 MHz serial  
12 MHz BW, 50 MHz serial interface  
10 MHz BW, 50 MHz serial  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 17 ns CS pulse width  
10 MHz BW, 50 MHz serial  
12 MHz BW, 50 MHz serial  
12 MHz BW, 50 MHz serial  
8
8
8
8
RU-10  
UJ-8  
RM-10  
RU-20, CP-20  
RU-16  
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
12  
12  
12  
14  
14  
14  
14  
14  
14  
16  
16  
16  
16  
RU-24  
UJ-8  
RM-10  
RM-10  
RU-24  
0.5  
1
1
Serial  
Parallel  
Parallel  
Parallel  
Serial  
Serial  
Serial  
Serial  
Serial  
Parallel  
Serial  
Parallel  
Serial  
CP-40  
1
RU-20, CP-20  
RU-24  
1
1
0.5  
1
2
1
RU-16  
UJ-8, RM-8  
RM-10  
UJ-8, RM-8  
RM-8  
12 MHz BW, 50 MHz serial  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
4 MHz BW, 50 MHz serial clock  
4 MHz BW, 20 ns WR pulse width  
1
RU-28  
1
1
RM-8  
RU-38  
2
2
RM-8  
RU-28  
Parallel  
Serial  
Parallel  
2
2
RU-16  
RU-38  
1 RU = TSSOP, CP = LFCSP, RM = MSOP, UJ = TSOT.  
Rev. E | Page 24 of 28  
 
Data Sheet  
AD5444/AD5446  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 54. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Resolution (Bits) INL (LSB) Temperature Range Package Description Package Option Branding  
AD5444YRM  
12  
12  
12  
12  
12  
12  
14  
14  
14  
14  
14  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
2
2
2
2
2
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
Evaluation Board  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
D27  
D27  
D27  
D6X  
D6X  
D6X  
D28  
D28  
D28  
D7Z  
D7Z  
AD5444YRM-REEL  
AD5444YRM-REEL7  
AD5444YRMZ  
AD5444YRMZ-REEL  
AD5444YRMZ-REEL7  
AD5446YRM  
AD5446YRM-REEL  
AD5446YRM-REEL7  
AD5446YRMZ  
AD5446YRMZ-RL7  
EV-AD5443/46/53SDZ  
1 Z = RoHS Compliant Part.  
Rev. E | Page 25 of 28  
 
 
AD5444/AD5446  
NOTES  
Data Sheet  
Rev. E | Page 26 of 28  
Data Sheet  
NOTES  
AD5444/AD5446  
Rev. E | Page 27 of 28  
AD5444/AD5446  
NOTES  
Data Sheet  
©2004–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04588-0-6/13(E)  
Rev. E | Page 28 of 28  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY