AD5445 [ADI]

8-/10-/12-Bit, High Bandwidth, Multiplying DACs with Parallel Interface; 8位/ 10位/ 12位,高带宽,乘法DAC ,并行接口
AD5445
型号: AD5445
厂家: ADI    ADI
描述:

8-/10-/12-Bit, High Bandwidth, Multiplying DACs with Parallel Interface
8位/ 10位/ 12位,高带宽,乘法DAC ,并行接口

文件: 总24页 (文件大小:884K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-/10-/12-Bit, High Bandwidth,  
Multiplying DACs with Parallel Interface  
AD5424/AD5433/AD5445*  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
2.5 V to 5.5 V Supply Operation  
Fast Parallel Interface (17 ns Write Cycle)  
10 MHz Multiplying Bandwidth  
V
V
REF  
DD  
R
FB  
AD5424/  
AD5433/  
AD5445  
R
I
1
OUT  
10 V Reference Input  
8-/10-/12-BIT  
R-2R DAC  
I
2
OUT  
Extended Temperature Range –40C to +125C  
20-Lead TSSOP and Chip Scale (4 mm 4 mm) Packages  
8-, 10-, and 12-Bit Current Output DACs  
Upgrades to AD7524/AD7533/AD7545  
Pin Compatible 8-, 10-, and 12-Bit DACs in Chip Scale  
Guaranteed Monotonic  
POWER-ON  
RESET  
DAC REGISTER  
INPUT LATCH  
CS  
R/W  
4-Quadrant Multiplication  
Power-On Reset with Brownout Detection  
Readback Function  
0.4 A Typical Power Consumption  
DB7/DB9/DB11  
DB0  
GND  
DATA  
INPUTS  
APPLICATIONS  
Portable Battery-Powered Applications  
Waveform Generators  
Analog Processing  
Instrumentation Applications  
Programmable Amplifiers and Attenuators  
Digitally-Controlled Calibration  
Programmable Filters and Oscillators  
Composite Video  
Ultrasound  
Gain, Offset, and Voltage Trimming  
GENERAL DESCRIPTION  
The AD5424/AD5433/AD5445 are CMOS 8-, 10-, and 12-bit  
current output digital-to-analog converters (DACs), respectively.  
The applied external reference input voltage (VREF) determines  
the full-scale output current. An integrated feedback resistor  
(RFB) provides temperature tracking and full-scale voltage output  
when combined with an external I-to-V precision amplifier.  
These devices operate from a 2.5 V to 5.5 V power supply,  
making them suited to battery-powered applications and many  
other applications.  
While these devices are upgrades of AD7524/AD7533/AD7545  
in multiplying bandwidth performance, they have a latched  
interface and cannot be used in transparent mode.  
These DACs utilize data readback allowing the user to read the  
contents of the DAC register via the DB pins. On power-up, the  
internal register and latches are filled with 0s and the DAC  
outputs are at zero scale.  
The AD5424 is available in small 20-lead LFCSP and 16-lead  
TSSOP packages, while the AD5433/AD5445 DACs are avail-  
able in small 20-lead LFCSP and TSSOP packages.  
As a result of manufacture on a CMOS submicron process, they  
offer excellent 4-quadrant multiplication characteristics, with  
large signal multiplying bandwidths of up to 10 MHz.  
*U.S. Patent No. 5,689,257  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
AD5424/AD5433/AD5445–SPECIFICATIONS1  
(VDD = 2.5 V to 5.5 V, VREF = 10 V, IOUT2 = O V. All specifications TMIN to TMAX, unless otherwise noted. DC performance measured with OP1177,  
AC performance with AD8038, unless otherwise noted.)  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
STATIC PERFORMANCE  
AD5424  
Resolution  
8
Bits  
Relative Accuracy  
Differential Nonlinearity  
AD5433  
0.25 LSB  
0.5  
LSB  
Guaranteed monotonic  
Guaranteed monotonic  
Resolution  
10  
Bits  
Relative Accuracy  
Differential Nonlinearity  
AD5445  
0.5  
1
LSB  
LSB  
Resolution  
12  
1
Bits  
LSB  
Relative Accuracy  
Differential Nonlinearity  
Gain Error  
–1/+2 LSB  
10  
Guaranteed monotonic  
mV  
ppm FSR/ЊC  
nA  
nA  
Gain Error Temperature Coefficient2  
Output Leakage Current2  
5
10  
20  
Data = 0x0000, TA = 25ЊC, IOUT1  
Data = 0x0000, IOUT  
1
REFERENCE INPUT2  
Reference Input Range  
10  
10  
10  
V
k  
kΩ  
V
REF Input Resistance  
8
8
12  
12  
Input resistance TC = –50 ppm/ЊC  
Input resistance TC = –50 ppm/ЊC  
RFB Resistance  
Input Capacitance  
Code 0  
3
5
6
8
pF  
pF  
Code 4095  
DIGITAL INPUTS/OUTPUT2  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Input Leakage Current, IIL  
Input Capacitance  
1.7  
V
V
A  
pF  
0.6  
1
10  
4
VDD = 4.5 V to 5.5 V  
Output Low Voltage, VOL  
Output High Voltage, VOH  
VDD = 2.5 V to 3.6 V  
Output Low Voltage, VOL  
Output High Voltage, VOH  
0.4  
0.4  
V
V
ISINK = 200 µA  
VDD – 1  
ISOURCE = 200 µA  
V
V
ISINK = 200 µA  
ISOURCE = 200 µA  
VDD – 0.5  
DYNAMIC PERFORMANCE2  
Reference Multiplying Bandwidth  
Output Voltage Settling Time  
AD5424  
AD5433  
AD5445  
Digital Delay  
10% to 90% Settling Time  
Digital to Analog Glitch Impulse  
Multiplying Feedthrough Error  
10  
MHz  
VREF = 3.5 V; DAC loaded all 1s  
VREF = 10 V, RLOAD = 100 , CLOAD = 15 pF  
Measured to 16 mV of full scale  
Measured to 4 mV of full scale  
Measured to 1 mV of full scale  
Interface delay time  
Rise and Fall time, VREF = 10 V, RLOAD = 100 Ω  
1 LSB change around major carry, VREF = 0 V  
DAC latch loaded with all 0s. VREF  
Reference = 1 MHz  
Reference = 10 MHz  
30  
35  
80  
20  
15  
2
60  
70  
120  
40  
30  
ns  
ns  
ns  
ns  
ns  
nV-s  
= 3.5 V  
70  
48  
dB  
dB  
–2–  
REV. 0  
AD5424/AD5433/AD5445  
Parameter  
Min  
Typ  
Max  
Unit  
Conditions  
Output Capacitance  
I
OUT2  
22  
10  
12  
25  
1
25  
12  
17  
30  
pF  
pF  
pF  
pF  
All 0s loaded  
All 1s loaded  
All 0s loaded  
All 1s loaded  
Feedthrough to DAC output with CS high and  
alternate loading of all 0s and all 1s  
VREF = 3.5 V pk-pk; all 1s loaded, f = 100 kHz  
IOUT  
1
Digital Feedthrough  
nV-s  
Total Harmonic Distortion  
Digital THD  
–81  
dB  
Clock = 10 MHz  
50 kHz fOUT  
Output Noise Spectral Density  
SFDR Performance (Wide Band)  
Clock = 10 MHz  
500 kHz fOUT  
65  
25  
dB  
nVHz  
@ 1 kHz  
AD5445, 65k codes, VREF = 3.5 V  
55  
63  
65  
dB  
dB  
dB  
100 kHz fOUT  
50 kHz fOUT  
Clock = 25 MHz  
500 kHz fOUT  
100 kHz fOUT  
50  
60  
62  
dB  
dB  
dB  
50 kHz fOUT  
SFDR Performance (Narrow Band)  
Clock = 10 MHz  
500 kHz fOUT  
AD5445, 65k codes, VREF = 3.5 V  
73  
80  
87  
dB  
dB  
dB  
100 kHz fOUT  
50 kHz fOUT  
Clock = 25 MHz  
500 kHz fOUT  
100 kHz fOUT  
70  
75  
80  
dB  
dB  
dB  
50 kHz fOUT  
Intermodulation Distortion  
Clock = 10 MHz  
f1 = 400 kHz, f2 = 500 kHz  
f1 = 40 kHz, f2 = 50 kHz  
Clock = 25 MHz  
f1 = 400 kHz, f2 = 500 kHz  
f1 = 40 kHz, f2 = 50 kHz  
AD5445, 65k codes, VREF = 3.5 V  
65  
72  
dB  
dB  
51  
65  
dB  
dB  
POWER REQUIREMENTS  
Power Supply Range  
IDD  
2.5  
5.5  
0.6  
5
V
A  
A  
TA = 25ЊC, logic inputs = 0 V or VDD  
Logic inputs = 0 V or VDD  
0.4  
NOTES  
1Temperature range is as follows: Y version: –40ЊC to +125ЊC.  
2Guaranteed by design, not subject to production test.  
Specifications subject to change without notice.  
REV. 0  
–3–  
AD5424/AD5433/AD5445  
TIMING CHARACTERISTICS1, 2  
(VREF = 5 V, IOUT2 = O V. All specifications TMIN to TMAX, unless otherwise noted.)  
Parameter  
VDD = 2.5 V to 5.5 V  
VDD = 4.5 V to 5.5 V  
Unit  
Conditions/Comments  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
0
0
10  
6
0
5
9
20  
40  
5
0
0
10  
6
0
5
7
10  
20  
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns typ  
R/W to CS setup time  
R/W to CS hold time  
CS low time (write cycle)  
Data setup time  
Data hold time  
R/W high to CS low  
CS min high time  
Data access time  
ns max  
ns typ  
t9  
Bus relinquish time  
10  
10  
ns max  
NOTES  
1See Figure 1. Temperature range is as follows: Y version: –40ЊC to +125ЊC. Guaranteed by design and characterization, not subject to production test.  
2All input signals are specified with tr = tf = 1 ns (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. Digital output timing measured with load  
circuit in Figure 2.  
Specifications subject to change without notice.  
t2  
t6  
t2  
t1  
R/W  
t7  
t3  
t4  
DATA VALID  
CS  
t8  
t9  
t5  
DATA  
DATA VALID  
Figure 1. Timing Diagram  
–4–  
REV. 0  
AD5424/AD5433/AD5445  
ABSOLUTE MAXIMUM RATINGS1  
(TA = 25ЊC, unless otherwise noted.)  
I
200A  
OL  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
VREF, RFB to GND . . . . . . . . . . . . . . . . . . . . . . –12 V to +12 V  
IOUT1, IOUT2 to GND . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Logic Inputs and Output2 . . . . . . . . . . . –0.3 V to VDD +0.3 V  
Operating Temperature Range  
TO  
OUTPUT  
PIN  
V
+ V  
2
OH (MIN)  
OL (MAX)  
C
50pF  
L
I
200A  
OH  
Extended Industrial (Y Version) . . . . . . . . –40ЊC to +125ЊC  
Storage Temperature Range . . . . . . . . . . . . . –65ЊC to +150ЊC  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 150ЊC  
16-Lead TSSOP JA Thermal Impedance . . . . . . . . . 150ЊC/W  
20-Lead TSSOP JA Thermal Impedance . . . . . . . . . 143ЊC/W  
20-Lead LFCSP JA Thermal Impedance . . . . . . . . . 135ЊC/W  
Lead Temperature, Soldering (10 seconds) . . . . . . . . . . 300ЊC  
IR Reflow, Peak Temperature (<20 seconds) . . . . . . . . 235ЊC  
Figure 2. Load Circuit for Data Output Timing Specifications  
NOTES  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only and functional operation of  
the device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability. Only one absolute  
maximum rating may be applied at any one time.  
2 Overvoltages at DBx, CS, and R/W, will be clamped by internal diodes.  
ORDERING GUIDE  
Resolution INL  
Temperature  
Range  
Package  
Option  
Model  
(Bits)  
(LSB)  
Package Description  
AD5424YRU  
8
8
8
8
8
8
10  
10  
0.25  
0.25  
0.25  
0.25  
0.25  
0.25  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
–40ЊC to +125ЊC  
TSSOP (Thin Shrink Small Outline Package)  
TSSOP (Thin Shrink Small Outline Package)  
TSSOP (Thin Shrink Small Outline Package)  
LFCSP (Chip Scale Package)  
LFCSP (Chip Scale Package)  
LFCSP (Chip Scale Package)  
TSSOP (Thin Shrink Small Outline Package)  
TSSOP (Thin Shrink Small Outline Package)  
TSSOP (Thin Shrink Small Outline Package)  
LFCSP (Chip Scale Package)  
LFCSP (Chip Scale Package)  
LFCSP (Chip Scale Package)  
TSSOP (Thin Shrink Small Outline Package)  
TSSOP (Thin Shrink Small Outline Package)  
TSSOP (Thin Shrink Small Outline Package)  
LFCSP (Chip Scale Package)  
LFCSP (Chip Scale Package)  
LFCSP (Chip Scale Package)  
RU-16  
RU-20  
RU-20  
CP-20  
CP-20  
CP-20  
RU-20  
RU-20  
RU-20  
CP-20  
CP-20  
CP-20  
RU-20  
RU-20  
RU-20  
CP-20  
CP-20  
CP-20  
AD5424YRU-REEL  
AD5424YRU-REEL7  
AD5424YCP  
AD5424YCP-REEL  
AD5424YCP-REEL7  
AD5433YRU  
AD5433YRU-REEL  
AD5433YRU-REEL7 10  
AD5433YCP  
AD5433YCP-REEL  
AD5433YCP-REEL7 10  
AD5445YRU  
AD5445YRU-REEL  
AD5445YRU-REEL7 12  
AD5445YCP  
AD5445YCP-REEL  
AD5445YCP-REEL7 12  
EVAL-AD5424EB  
10  
10  
12  
12  
1
1
1
1
12  
12  
1
Evaluation Kit  
EVAL-AD5433EB  
EVAL-AD5445EB  
Evaluation Kit  
Evaluation Kit  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD5424/AD5433/AD5445 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions  
are recommended to avoid performance degradation or loss of functionality.  
REV. 0  
–5–  
AD5424/AD5433/AD5445  
PIN CONFIGURATIONS  
TSSOP  
LFCSP  
I
1
2
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
OUT  
R
FB  
I
AD5424  
V
REF  
OUT  
(Not to Scale)  
GND  
DB7  
DB6  
DB5  
DB4  
DB3  
V
DD  
GND  
DB7  
DB6  
DB5  
DB4  
1
2
3
4
5
15 R/W  
14 CS  
13 NC  
12 NC  
11 NC  
PIN 1  
R/W  
INDICATOR  
CS  
AD5424  
TOP VIEW  
DB0 (LSB)  
DB1  
DB2  
NC = NO CONNECT  
AD5424 PIN FUNCTION DESCRIPTIONS  
Pin No.  
TSSOP  
LFCSP Mnemonic  
Function  
1
19  
I
I
OUT1  
OUT2  
DAC Current Output.  
2
20  
DAC Analog Ground. This pin should normally be tied to the analog ground of the system.  
3
1
GND  
DB7–DB0  
NC  
Ground  
4–11  
2–9  
10–13  
14  
Parallel Data Bits 7 to 0.  
No Internal Connection.  
12  
13  
CS  
Chip Select Input. Active low. Used in conjunction with R/W to load parallel data to the input  
latch or to read data from the DAC register. Rising edge of CS loads data.  
15  
R/W  
Read/Write. When low, used in conjunction with CS to load parallel data. When high, use  
with CS to readback contents of DAC register.  
14  
15  
16  
16  
17  
18  
VDD  
VREF  
RFB  
Positive Power Supply Input. These parts can be operated from a supply of 2.5 V to 5.5 V.  
DAC Reference Voltage Input Terminal.  
DAC Feedback Resistor Pin. Establish voltage output for the DAC by connecting to external  
amplifier output.  
–6–  
REV. 0  
AD5424/AD5433/AD5445  
PIN CONFIGURATIONS  
TSSOP  
LFCSP  
I
1
2
1
2
20  
19  
18  
17  
16  
OUT  
R
FB  
I
V
AD5433  
OUT  
REF  
(Not to Scale)  
GND  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
3
V
DD  
GND  
1
2
3
4
5
4
15 R/W  
14 CS  
13 NC  
12 NC  
11 DB0  
R/W  
PIN 1  
DB9  
DB8  
DB7  
DB6  
INDICATOR  
5
CS  
AD5433  
TOP VIEW  
6
15 NC  
7
14  
NC  
8
DB0 (LSB)  
DB1  
13  
12  
9
10  
11 DB2  
NC = NO CONNECT  
NC = NO CONNECT  
AD5433 PIN FUNCTION DESCRIPTIONS  
Pin No.  
TSSOP  
LFCSP Mnemonic Function  
1
19  
IOUT  
OUT2  
GND  
1
DAC Current Output.  
2
20  
I
DAC Analog Ground. This pin should normally be tied to the analog ground of the system.  
Ground  
3
1
4–13  
14, 15  
16  
2–11  
12, 13  
14  
DB9–DB0 Parallel Data Bits 9 to 0.  
NC  
Not Internally Connected.  
CS  
Chip Select Input. Active low. Used in conjunction with R/W to load parallel data to the input  
latch or to read data from the DAC register. Rising edge of CS loads data.  
17  
15  
R/W  
Read/Write. When low, used in conjunction with CS to load parallel data. When high, use  
with CS to readback contents of DAC register.  
18  
19  
20  
16  
17  
18  
VDD  
VREF  
RFB  
Positive Power Supply Input. These parts can be operated from a supply of 2.5 V to 5.5 V.  
DAC Reference Voltage Input Terminal.  
DAC Feedback Resistor Pin. Establish voltage output for the DAC by connecting to external  
amplifier output.  
REV. 0  
–7–  
AD5424/AD5433/AD5445  
PIN CONFIGURATIONS  
TSSOP  
LFCSP  
I
1
2
1
2
20  
19  
18  
17  
16  
15  
14  
OUT  
R
FB  
I
V
OUT  
AD5445  
REF  
(Not to Scale)  
GND  
3
V
DD  
GND  
DB11  
DB10  
DB9  
1
2
3
4
5
15 R/W  
14 CS  
13 DB0  
12 DB1  
11 DB2  
PIN 1  
DB11  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
4
R/W  
INDICATOR  
AD5445  
TOP VIEW  
5
CS  
DB8  
6
DB0 (LSB)  
DB1  
7
8
13 DB2  
9
12  
11  
DB3  
DB4  
10  
AD5445 PIN FUNCTION DESCRIPTIONS  
Pin No.  
TSSOP  
LFCSP Mnemonic  
Function  
1
19  
20  
1
IOUT  
1
DAC Current Output.  
2
I
OUT2  
DAC Analog Ground. This pin should normally be tied to the analog ground of the system.  
3
GND  
Ground Pin.  
4–15  
16  
2–13  
14  
DB11–DB0  
CS  
Parallel Data Bits 11 to 0.  
Chip Select Input. Active low. Rising edge of CS loads data. Used in conjunction with R/W to  
load parallel data to the input latch or to read data from the DAC register.  
17  
15  
R/W  
Read/Write. When low, used in conjunction with CS to load parallel data. When high, use with  
CS to readback contents of DAC register.  
18  
19  
20  
16  
17  
18  
VDD  
VREF  
RFB  
Positive Power Supply Input. These parts can be operated from a supply of +2.5 V to +5.5 V.  
DAC Reference Voltage Input Terminal.  
DAC Feedback Resistor Pin. Establish voltage output for the DAC by connecting to external  
amplifier output.  
–8–  
REV. 0  
Typical Performance Characteristics–AD5424/AD5433/AD5445  
0.20  
0.15  
0.10  
0.05  
0
1.0  
0.5  
T
V
V
= 25C  
T
V
V
= 25C  
T = 25C  
A
A
A
0.8  
0.4  
= 10V  
= 5V  
= 10V  
= 5V  
V
= 10V  
REF  
REF  
REF  
V
= 5V  
DD  
DD  
DD  
0.6  
0.3  
0.4  
0.2  
0.2  
0.1  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.05  
–0.10  
–0.15  
–0.20  
0
50  
100  
CODE  
150  
200  
250  
0
200  
400 600  
CODE  
800  
1000  
0
500 1000 1500 2000 2500 3000 3500 4000  
CODE  
TPC 2. INL vs. Code (10-Bit DAC)  
TPC 1. INL vs. Code (8-Bit DAC)  
TPC 3. INL vs. Code (12-Bit DAC)  
0.5  
0.20  
1.0  
T
V
V
= 25C  
T
V
V
T
V
V
A
A
A
0.4  
0.3  
0.8  
0.6  
= 10V  
= 5V  
REF  
0.15  
0.10  
0.05  
0
DD  
0.2  
0.4  
0.1  
0.2  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.05  
–0.10  
–0.15  
–0.20  
0
200  
400  
600  
CODE  
800  
1000  
0
500 1000 1500 2000 2500 3000 3500 4000  
CODE  
250  
0
200  
50  
150  
CODE  
100  
TPC 6. DNL vs. Code (12-Bit DAC)  
TPC 4. DNL vs. Code (8-Bit DAC)  
TPC 5. DNL vs. Code (10-Bit DAC)  
5
4
0.6  
0.5  
–0.40  
T
V
V
= 25C  
A
= 10V  
= 5V  
REF  
DD  
–0.45  
–0.50  
–0.55  
–0.60  
–0.65  
–0.70  
3
2
V
= 5V  
DD  
0.4  
MAX INL  
0.3  
1
0.2  
T
V
V
= 25C  
0
A
= 10V  
= 5V  
0.1  
0
REF  
DD  
–1  
–2  
–3  
–4  
–5  
V
= 2.5V  
DD  
MIN INL  
MIN DNL  
–0.1  
–0.2  
–0.3  
V
= 10V  
REF  
2
3
4
5
6
7
8
9
10  
–60 –40 –20  
0
20 40 60 80 100 120 140  
2
3
4
5
6
7
8
9
10  
REFERENCE VOLTAGE  
REFERENCE VOLTAGE  
TEMPERATURE (C)  
TPC 7. INL vs. Reference Voltage,  
AD5445  
TPC 8. DNL vs. Reference Voltage,  
AD5445  
TPC 9. Gain Error vs. Temperature  
REV. 0  
–9–  
AD5424/AD5433/AD5445  
0.5  
0.4  
2.0  
4
3
T
V
V
= 25C  
T
V
V
= 25C  
A
A
MAX DNL  
= 2.5V  
= 3V  
1.5  
= 0V  
REF  
REF  
= 3V AND 5V  
DD  
T
V
V
= 25C  
0.3  
DD  
A
2
= 0V  
= 3V  
MAX INL  
1.0  
0.5  
REF  
GAIN ERROR  
MAX INL  
MAX DNL  
0.2  
DD  
1
0.1  
0
0
0
MIN DNL  
–1  
–2  
–3  
–4  
–5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
OFFSET ERROR  
–0.5  
–1.0  
–1.5  
–2.0  
MIN INL  
MIN DNL  
MIN INL  
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
(V)  
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5  
(V)  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
(V)  
V
V
V
BIAS  
BIAS  
BIAS  
TPC 11. Linearity vs. VBIAS Voltage  
Applied to IOUT2, AD5445  
TPC 10. Linearity vs. VBIAS Voltage  
Applied to IOUT2, AD5445  
TPC 12. Gain and Offset Errors  
vs. VBIAS Voltage Applied to IOUT  
2
3
0.5  
0.4  
0.3  
4
T
V
V
= 25C  
A
MAX INL  
T
V
V
= 25C  
A
= 0V  
= 5V  
REF  
DD  
= 2.5V  
= 5V  
3
2
REF  
2
1
DD  
MAX DNL  
GAIN ERROR  
0.2  
0.1  
1
MAX DNL  
0
0
0
MAX INL  
MIN DNL  
–1  
–2  
–3  
–4  
–5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
OFFSET ERROR  
–1  
–2  
–3  
MIN INL  
T
V
V
= 25C  
A
= 2.5V  
REF  
= 3V AND 5V  
MIN DNL  
1.5  
DD  
MIN INL  
0.5  
1.0  
2.5  
2.0  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
(V)  
0.5  
1.0  
1.5  
2.0  
V
(V)  
V
V
(V)  
BIAS  
BIAS  
BIAS  
TPC 14. Linearity vs. VBIAS Voltage  
Applied to IOUT2, AD5445  
TPC 15. Linearity vs. VBIAS Voltage  
Applied to IOUT2, AD5445  
TPC 13. Gain and Offset Errors  
vs. VBIAS Voltage Applied to IOUT  
2
0.50  
8
1.6  
1.4  
1.2  
T = 25C  
A
T
= 25C  
A
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
7
6
5
4
3
2
1
0
V
= 5V  
DD  
I
V
5V  
OUT1 DD  
ALL 0s  
ALL 1s  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 5V  
DD  
V
= 2.5V  
DD  
ALL 1s  
ALL 0s  
I
V
3V  
OUT1 DD  
V
= 3V  
DD  
V
= 2.5V  
DD  
–40  
–60  
–20  
0
20 40 60 80 100 120 140  
C)  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE ( C)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
INPUT VOLTAGE (V)  
0
0.5 1.0  
TEMPERATURE (  
TPC 17. IOUT1 Leakage Cur-  
rent vs. Temperature  
TPC 18. Supply Current vs.  
Temperature  
TPC 16. Supply Current vs. Logic  
Input Voltage (Driving DB0–DB11,  
All Other Digital Inputs @ Supplies)  
–10–  
REV. 0  
AD5424/AD5433/AD5445  
14  
12  
10  
8
6
0
–6  
0.2  
T
= 25C  
ALL ON  
DB11  
DB10  
DB9  
A
T
= 25C  
A
LOADING  
ZS TO FS  
LOADING ZS TO FS  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–66  
–72  
–78  
–84  
–90  
–96  
–102  
0
–0.2  
–0.4  
V
= 5V  
DD  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
6
V
= 3V  
DD  
T
V
V
= 25C  
A
T
V
= 25C  
4
A
= 5V  
DD  
= 5V  
V
= 2.5V  
DD  
DD  
= 3.5V  
V
= 3.5V  
INPUT  
= 1.8pF  
REF  
–0.6  
–0.8  
REF  
C
= 1.8pF  
COMP  
2
C
COMP  
AD8038 AMPLIFIER  
AD5445 DAC  
AD8038 AMPLIFIER  
AD5445 DAC  
ALL OFF  
0
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
TPC 19. Supply Current vs.  
Update Rate  
TPC 20. Reference Multiplying  
Bandwidth vs. Frequency and  
Code  
TPC 21. Reference Multiplying  
Bandwidth—All Ones Loaded  
3
–1.68  
0.045  
T
V
= 25C  
T
V
= 25C  
T
V
= 25C  
A
A
A
7FF TO 800H  
= 5V  
7FF TO 800H  
= 5V  
= 3.5V  
= 5V  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
= 0V  
REF  
DD  
REF  
–1.69  
–1.70  
–1.71  
–1.72  
–1.73  
–1.74  
–1.75  
–1.76  
–1.77  
AD8038 AMPLIFIER  
C
AD5445  
AD8038 AMPLIFIER  
= 1.8pF  
V
DD  
= 1.8pF  
C
COMP  
COMP  
V
DD  
0
–3  
–6  
–9  
V
= 3V  
DD  
V
= 3V  
DD  
800 TO 7FFH  
800 TO 7FFH  
V
= 5V  
DD  
V
= 3V  
DD  
V
= 3V  
DD  
V
V
V
V
V
=
=
=
=
=
2V, AD8038 C 1.47pF  
C
2V, AD8038 C 1pF  
0.15V, AD8038 C 1pF  
0.15V, AD8038 C 1.47pF  
REF  
REF  
REF  
REF  
REF  
C
C
–0.005  
–0.010  
C
V
= 5V  
DD  
3.51V, AD8038 C 1.8pF  
C
0
20 40 60 80 100 120 140 160 180 200  
TIME (ns)  
10k  
100k  
1M  
10M  
100M  
0
20 40 60 80 100 120 140 160 180 200  
TIME (ns)  
FREQUENCY (Hz)  
TPC 22. Reference Multiplying  
Bandwidth vs. Frequency and  
Compensation Capacitor  
TPC 23. Midscale Transition,  
VREF = 0 V  
TPC 24. Midscale Transition,  
VREF = 3.5 V  
20  
100  
–60  
T
V
= 25C  
T
V
= 25C  
T
V
V
= 25C  
A
A
A
= 3V  
= 3.5V  
= 3V  
DD  
DD  
REF  
MCLK = 1MHz  
0
–20  
AMP = AD8038  
AD8038 AMPLIFIER  
AD5445  
= 3.5 V p-p  
REF  
–65  
–70  
–75  
–80  
–85  
–90  
80  
60  
40  
20  
0
MCLK = 200kHz  
MCLK = 0.5MHz  
–40  
–60  
FULL SCALE  
–80  
ZERO SCALE  
–100  
–120  
1
10  
100  
1k  
10k 100k 1M 10M  
1
10  
100  
1k  
10k  
100k  
1M  
0
20 40 60 80 100 120 140 160 180 200  
fOUT (kHz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TPC 25. Power Supply  
Rejection vs. Frequency  
TPC 26. THD and Noise vs.  
Frequency  
TPC 27. Wideband SFDR vs.  
fOUT Frequency  
REV. 0  
–11–  
AD5424/AD5433/AD5445  
90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
V
= 25C  
T
V
= 25C  
A
A
MCLK = 5MHz  
80  
= 5V  
= 5V  
DD  
DD  
MCLK = 10MHz  
AMP = AD8038  
AD5445  
65k CODES  
AMP = AD8038  
AD5445  
65k CODES  
70  
60  
50  
MCLK = 25MHz  
40  
30  
20  
T
V
= 25C  
A
= 3.5V  
REF  
10  
0
AD8038 AMPLIFIER  
AD5445  
0
2
4
6
8
10  
12  
0
100 200 300 400 500 600 700 800 900 1000  
fOUT (kHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 29. Wideband SFDR,  
fOUT = 100 kHz, Clock = 25 MHz  
TPC 30. Wideband SFDR,  
TPC 28. Wideband SFDR vs.  
OUT Frequency  
f
OUT = 500 kHz, Clock = 10 MHz  
f
0
20  
0
0
T = 25C  
A
DD  
AMP = AD8038  
AD5445  
65k CODES  
T
V
= 25C  
T
V
= 25C  
A
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V = 3V  
= 3V  
= 5V  
DD  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
DD  
AMP = AD8038  
AD5445  
65k CODES  
AMP = AD8038  
AD5445  
65k CODES  
–20  
–40  
–60  
–80  
–100  
–120  
50 60 70 80 90 100 110 120 130 140 150  
FREQUENCY (MHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
FREQUENCY (MHz)  
250 300 350 400 450 500 550 600 650 700 750  
FREQUENCY (kHz)  
TPC 31. Wideband SFDR,  
fOUT = 50 kHz, Clock = 10 MHz  
TPC 32. Narrow-Band Spectral  
Response, fOUT = 500 kHz,  
Clock = 25 MHz  
TPC 33. Narrow-Band SFDR,  
fOUT = 100 kHz, MCLK = 25 MHz  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
0
T
V
= 25C  
T
V
= 25C  
T = 25C  
A
DD  
AMP = AD8038  
AD5445  
65k CODES  
A
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
= 3V  
= 3V  
V
= 5V  
DD  
DD  
AMP = AD8038  
AD5445  
65k CODES  
AMP = AD8038  
AD5445  
65k CODES  
MCLK 10MHz  
5V  
V
DD  
200 250 300 350 400 450 500 550 600 650 700  
FREQUENCY (MHz)  
70 75 80 85 90 95 100 105 110 115 120  
FREQUENCY (MHz)  
20 25 30 35 40 45 50 55 60 65 70  
FREQUENCY (MHz)  
TPC 34. Narrow-Band IMD,  
fOUT = 400 kHz, 500 kHz,  
Clock = 10 MHz  
TPC 35. Narrow-Band IMD,  
fOUT = 90 kHz, 100 kHz,  
Clock = 10 MHz  
TPC 36. Narrow-Band IMD,  
fOUT = 40 kHz, 50 kHz,  
Clock = 10 MHz  
–12–  
REV. 0  
AD5424/AD5433/AD5445  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
V
= 25C  
T = 25C  
A
DD  
AMP = AD8038  
AD5445  
65k CODES  
A
= 5V  
V
= 5V  
DD  
AMP = AD8038  
AD5445  
65k CODES  
0
50 100 150 200 250 300 350 400  
FREQUENCY (kHz)  
0
20 40 60 80 100 120 140 160 180 200  
FREQUENCY (kHz)  
TPC 37. Wideband IMD, fOUT  
=
TPC 38. Wideband IMD, fOUT  
=
90 kHz, 100 kHz, Clock = 25 MHz  
60 kHz, 50 kHz, Clock = 10 MHz  
REV. 0  
–13–  
AD5424/AD5433/AD5445  
TERMINOLOGY  
Digital Feedthrough  
Relative Accuracy  
When the device is not selected, high frequency logic activity on  
the device digital inputs may be capacitively coupled through the  
device to show up as noise on the IOUT pins and subsequently  
into the following circuitry. This noise is digital feedthrough.  
Relative accuracy or endpoint nonlinearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after  
adjusting for 0 and full scale and is normally expressed in LSBs  
or as a percentage of full-scale reading.  
Multiplying Feedthrough Error  
This is the error due to capacitive feedthrough from the DAC  
reference input to the DAC IOUT1 terminal, when all 0s are  
loaded to the DAC.  
Differential Nonlinearity  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of –1 LSB max over  
the operating temperature range ensures monotonicity.  
Total Harmonic Distortion (THD)  
The DAC is driven by an ac reference. The ratio of the rms  
sum of the harmonics of the DAC output to the fundamental  
value is the THD. Usually only the lower order harmonics are  
included, such as second to fifth.  
Gain Error  
Gain error or full-scale error is a measure of the output error  
between an ideal DAC and the actual device output. For these  
DACs, ideal maximum output is VREF – 1 LSB. Gain error of  
the DACs is adjustable to 0 with external resistance.  
V22 +V32 +V4 +V52  
2
(
)
THD = 20log  
V
1
Output Leakage Current  
Digital Intermodulation Distortion  
Output leakage current is current that flows in the DAC ladder  
switches when these are turned off. For the IOUT1 terminal, it  
can be measured by loading all 0s to the DAC and measuring  
the IOUT1 current. Minimum current will flow in the IOUT2 line  
when the DAC is loaded with all 1s.  
Second-order intermodulation distortion (IMD) measurements  
are the relative magnitude of the fa and fb tones generated digi-  
tally by the DAC and the second-order products at 2fa – fb and  
2fb – fa.  
Spurious-Free Dynamic Range (SFDR)  
Output Capacitance  
It is the usable dynamic range of a DAC before spurious noise  
interferes or distorts the fundamental signal. SFDR is the mea-  
sure of difference in amplitude between the fundamental and  
the largest harmonically or nonharmonically related spur from  
dc to full Nyquist bandwidth (half the DAC sampling rate, or  
fS/2). Narrow band SFDR is a measure of SFDR over an arbi-  
trary window size, in this case 50% of the fundamental. Digital  
SFDR is a measure of the usable dynamic range of the DAC  
when the signal is digitally generated sine wave.  
Capacitance from IOUT1 or IOUT2 to AGND.  
Output Current Settling Time  
This is the amount of time it takes for the output to settle to a  
specified level for a full scale input change. For these devices, it  
is specified with a 100 resistor to ground.  
The settling time specification includes the digital delay from  
CS rising edge to the full-scale output change.  
Digital to Analog Glitch lmpulse  
The amount of charge injected from the digital inputs to the  
analog output when the inputs change state. This is normally  
specified as the area of the glitch in either pA-secs or nV-secs  
depending upon whether the glitch is measured as a current or  
voltage signal.  
–14–  
REV. 0  
AD5424/AD5433/AD5445  
DAC SECTION  
CIRCUIT OPERATION  
The AD5424, AD5433, and AD5445 are 8-, 10- and 12-bit  
current output DACs consisting of a standard inverting R-2R  
ladder configuration. A simplified diagram for the 8-bit AD5424  
is shown in Figure 3. The matching feedback resistor RFB has a  
value of R. The value of R is typically 10 k(minimum 8 kΩ  
and maximum 12 k). If IOUT1 and IOUT2 are kept at the same  
potential, a constant current flows in each ladder leg, regardless  
of digital input code. Therefore, the input resistance presented  
at VREF is always constant and nominally of resistance value R.  
The DAC output (IOUT) is code-dependent, producing various  
resistances and capacitances. External amplifier choice should  
take into account the variation in impedance generated by the  
DAC on the amplifiers inverting input node.  
Unipolar Mode  
Using a single op amp, these devices can easily be configured to  
provide 2-quadrant multiplying operation or a unipolar output  
voltage swing as shown in Figure 4.  
V
DD  
R2  
C1  
V
R
DD  
FB  
I
1
OUT  
V
AD5424/  
V
A1  
REF  
REFAD5433/AD5445  
I
2
R1  
OUT  
V
=
OUT  
0 TO –V  
REF  
GND  
R/W CS  
AGND  
DATA  
R
R
R
INPUTS  
V
REF  
NOTES  
2R  
S1  
2R  
S2  
2R  
S3  
2R  
S8  
2R  
1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
2. C1 PHASE COMPENSATION (1pF – 2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
R
R
A
FB  
I
1
OUT  
Figure 4. Unipolar Operation  
I
2
OUT  
DAC DATA LATCHES  
AND DRIVERS  
When an output amplifier is connected in unipolar mode, the  
output voltage is given by  
Figure 3. Simplified Ladder  
D
VOUT = VREF  
×
2n  
Access is provided to the VREF, RFB, IOUT1 and IOUT2 terminals  
of the DAC, making the device extremely versatile and allowing it  
to be configured in several different operating modes, for example,  
to provide a unipolar output, 4-quadrant multiplication in bipo-  
lar mode or in single-supply modes of operation. Note that a  
matching switch is used in series with the internal RFB feedback  
resistor. If users attempt to measure RFB, power must be applied  
to VDD to achieve continuity.  
where D is the fractional representation of the digital word loaded  
to the DAC and n is the resolution of the DAC.  
D = 0 to 255 (8-Bit AD5424)  
= 0 to 1023 (10-Bit AD5433)  
= 0 to 4095 (12-Bit AD5445)  
Note that the output voltage polarity is opposite to the VREF  
polarity for dc reference voltages.  
PARALLEL INTERFACE  
These DACs are designed to operate with either negative or  
positive reference voltages. The VDD power pin is only used  
by the internal digital logic to drive the DAC switches’ on  
and off states.  
Data is loaded to the AD5424/33/45 in the format of an 8-, 10-, or  
12-bit parallel word. Control lines CS and R/W allow data to be  
written to or read from the DAC register. A write event takes place  
when CS and R/W are brought low, data available on the data  
lines fills the shift register, and the rising edge of CS latches the  
data and transfers the latched data-word to the DAC register.  
The DAC latches are not transparent, thus a write sequence must  
consist of a falling and rising edge on CS to ensure data is loaded  
to the DAC register and its analog equivalent reflected on the  
DAC output.  
These DACs are also designed to accommodate ac reference  
input signals in the range of –10 V to +10 V.  
With a fixed 10 V reference, the circuit shown in Figure 4 will  
give a unipolar 0 V to –10 V output voltage swing. When VIN is  
an ac signal, the circuit performs 2-quadrant multiplication.  
Table I shows the relationship between digital code and expected  
output voltage for unipolar operation. (AD5424, 8-bit device).  
A read event takes place when R/W is held high and CS is brought  
low. Now data is loaded from the DAC register back to the input  
register and out onto the data line where it can be read back to  
the controller for verification or diagnostic purposes.  
Table I. Unipolar Code Table  
Digital Input  
Analog Output (V)  
1111 1111  
1000 0000  
0000 0001  
0000 0000  
–VREF (255/256)  
–VREF (128/256) = –VREF/2  
–VREF (1/256)  
–VREF (0/256) = 0  
REV. 0  
–15–  
AD5424/AD5433/AD5445  
R3  
10kꢄ  
R2  
V
DD  
R5  
20kꢄ  
C1  
R
V
FB  
DD  
R4  
R1  
10kꢄ  
I
1
2
OUT  
V
10V  
REF  
A1  
V
AD5424/  
AD5433/AD5445  
REF  
I
OUT  
A2  
V
= –V  
TO +V  
OUT  
REF REF  
R/W CS  
GND  
AGND  
DATA  
INPUTS  
NOTES  
1. R1 AND R2 ARE USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
ADJUST R1 FOR V = 0 V WITH CODE 10000000 LOADED TO DAC.  
OUT  
2. MATCHING AND TRACKING IS ESSENTIAL FOR RESISTOR PAIRS R3 AND R4.  
3. C1 PHASE COMPENSATION (1pF–2pF) MAY BE REQUIRED IF A1/A2 IS  
A HIGH SPEED AMPLIFIER.  
Figure 5. Bipolar Operation (4-Quadrant Multiplication)  
Bipolar Operation  
Stability  
In some applications, it may be necessary to generate full  
4-quadrant multiplying operation or a bipolar output swing. This  
can be easily accomplished by using another external amplifier and  
some external resistors as shown in Figure 5. In this circuit, the  
second amplifier A2 provides a gain of 2. Biasing the external  
amplifier with an offset from the reference voltage results in full  
4-quadrant multiplying operation. The transfer function of this  
circuit shows that both negative and positive output voltages  
are created as the input data (D) is incremented from code  
zero (VOUT = –VREF) to midscale (VOUT = 0 V ) to full scale  
(VOUT = +VREF).  
In the I-to-V configuration, the IOUT of the DAC and the invert-  
ing node of the op amp must be connected as close as possible,  
and proper PCB layout techniques must be employed. Since  
every code change corresponds to a step function, gain peaking  
may occur if the op amp has limited GBP and there is excessive  
parasitic capacitance at the inverting node. This parasitic capaci-  
tance introduces a pole into the open-loop response, which can  
cause ringing or instability in closed-loop applications.  
An optional compensation capacitor, C1, can be added in parallel  
with RFB for stability as shown in Figures 4 and 5. Too small a  
value of C1 can produce ringing at the output, while too large  
a value can adversely affect the settling time. C1 should be  
found empirically but 1 pF to 2 pF is generally adequate  
for compensation.  
VOUT = VREF × D 2n1 VREF  
(
)
where D is the fractional representation of the digital word loaded  
to the DAC and n is the resolution of the DAC.  
D = 0 to 255 (8-Bit AD5424)  
= 0 to 1023 (10-Bit AD5433)  
= 0 to 4095 (12-Bit AD5445)  
When VIN is an ac signal, the circuit performs 4-quadrant  
multiplication.  
Table II shows the relationship between digital code and the  
expected output voltage for bipolar operation (AD5426, 8-bit  
device).  
Table II. Bipolar Code Table  
Digital Input  
Analog Output (V)  
1111 1111  
1000 0000  
0000 0001  
0000 0000  
+VREF (127/128)  
0
–VREF (127/128)  
–VREF (128/128)  
–16–  
REV. 0  
AD5424/AD5433/AD5445  
V
SINGLE-SUPPLY APPLICATIONS  
DD  
R1  
R2  
Current Mode Operation  
Figure 6 shows a typical circuit for operation with a single 2.5 V to  
5 V supply. In the current mode circuit of Figure 6, IOUT2 and  
hence IOUT1 is biased positive by the amount applied to VBIAS. In  
this configuration, the output voltage is given by  
R
V
FB  
DD  
V
I
1
A1  
IN  
V
OUT  
OUT  
V
DAC  
REF  
I
2
OUT  
GND  
VOUT = D × R RDAC × V  
VIN +V  
(
)
(
)
{
}
FB  
BIAS  
BIAS  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY  
2. C1 PHASE COMPENSATION (1pF2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
As D varies from 0 to 255 (AD5424), 1023 (AD5433), or  
4095 (AD5445), the output voltage varies from VOUT = VBIAS  
to VOUT = 2 VBIAS – VIN.  
Figure 7. Single-Supply Voltage Switching Mode Operation  
V
BIAS should be a low impedance source capable of sinking and  
sourcing all possible variations in current at the IOUT2 terminal.  
POSITIVE OUTPUT VOLTAGE  
V
DD  
Note that the output voltage polarity is opposite to the VREF  
polarity for dc reference voltages. In order to achieve a positive  
voltage output, an applied negative reference to the input of the  
DAC is preferred over the output inversion through an inverting  
amplifier because of the resistor tolerance errors. To generate a  
negative reference, the reference can be level shifted by an op  
amp such that the VOUT and GND pins of the reference become  
the virtual ground and –2.5 V respectively, as shown in Figure 8.  
C1  
R
V
FB  
DD  
I
1
2
OUT  
V
A1  
DAC  
GND  
REF  
I
OUT  
V
OUT  
V
IN  
V
= 5V  
DD  
ADR03  
V
BIAS  
V
V
IN  
OUT  
GND  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY  
2. C1 PHASE COMPENSATION (1pF–2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
+5V  
C1  
R
V
FB  
DD  
–2.5V  
I
1
8-/10-/12-BIT DAC  
OUT  
Figure 6. Single-Supply Current Mode Operation  
V
I
2
REF  
OUT  
V
=
OUT  
0 TO +2.5V  
1/2 AD8552  
–5V  
GND  
Voltage Switching Mode of Operation  
1/2 AD8552  
Figure 7 shows these DACs operating in the voltage-switching  
mode. The reference voltage, VIN, is applied to the IOUT1 pin;  
IOUT2 is connected to AGND; and the output voltage is avail-  
able at the VREF terminal. In this configuration, a positive  
reference voltage results in a positive output voltage making  
single-supply operation possible. The output from the DAC is  
voltage at a constant impedance (the DAC ladder resistance),  
thus an op amp is necessary to buffer the output voltage. The  
reference input no longer sees a constant input impedance, but  
one that varies with code. So, the voltage input should be driven  
from a low impedance source.  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY  
2. C1 PHASE COMPENSATION (1pF–2pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 8. Positive Voltage Output with Minimum  
of Components  
It is important to note that VIN is limited to low voltages be-  
cause the switches in the DAC ladder no longer have the same  
source-drain drive voltage. As a result, their on resistance dif-  
fers, which degrades the linearity of the DAC. See TPCs 10–15.  
Also, VIN must not go negative by more than 0.3 V or an inter-  
nal diode will turn on, exceeding the max ratings of the device.  
In this type of application, the full range of multiplying capabil-  
ity of the DAC is lost.  
REV. 0  
–17–  
AD5424/AD5433/AD5445  
ADDING GAIN  
resistor as shown in Figure 10, then the output voltage is inversely  
proportional to the digital input fraction D. For D = 1 – 2n the  
output voltage is  
In applications where the output voltage is required to be greater  
than VIN, gain can be added with an additional external amplifier or  
it can also be achieved in a single stage. It is important to consider  
the effect of temperature coefficients of the thin film resistors of  
the DAC. Simply placing a resistor in series with the RFB resistor  
will cause mismatches in the temperature coefficients resulting in  
larger gain temperature coefficient errors. Instead, the circuit of  
Figure 9 is a recommended method of increasing the gain of the  
circuit. R1, R2, and R3 should all have similar temperature coef-  
ficients, but they need not match the temperature coefficients of the  
DAC. This approach is recommended in circuits where gains of  
great than 1 are required.  
VOUT = VIN D = VIN 12n  
(
)
As D is reduced, the output voltage increases. For small values  
of the digital fraction D, it is important to ensure that the  
amplifier does not saturate and also that the required accuracy  
is met. For example, an 8-bit DAC driven with the binary code  
10H (00010000), i.e., 16 decimal, in the circuit of Figure 10  
should cause the output voltage to be 16ϫ VIN. However, if the  
DAC has a linearity specification of 0.5 LSB then D can in  
fact have the weight anywhere in the range 15.5/256 to 16.5/256  
so that the possible output voltage will be in the range 15.5 VIN to  
16.5 VIN—an error of +3% even though the DAC itself has a  
maximum error of 0.2%.  
V
DD  
C1  
R
V
FB  
DD  
V
R1  
DD  
I
1
2
OUT  
8-/10-/12-BIT DAC  
V
IN  
V
V
IN  
OUT  
V
I
REF  
OUT  
R3  
R2  
R
V
DD  
GND  
FB  
GAIN = R2 + R3  
R2  
I
1
OUT  
V
REF  
I
2
OUT  
NOTES  
1. ADDITIONAL PINS OMITTED FOR CLARITY  
2. C1 PHASE COMPENSATION (1pF2pF) MAY BE  
REQUIRED IF A1 IS A HIGH SPEED AMPLIFIER.  
R1 = R2R3  
R2 + R3  
GND  
Figure 9. Increasing Gain of Current Output DAC  
V
OUT  
USING DACS AS A DIVIDER OR A PROGRAMMABLE  
GAIN ELEMENT  
NOTE  
ADDITIONAL PINS OMITTED FOR CLARITY  
Current steering DACs are very flexible and lend themselves to  
many different applications. If this type of DAC is connected as  
the feedback element of an op amp and RFB is used as the input  
Figure 10. Current Steering DAC Used as a Divider  
or Programmable Gain Element  
Table III. Suitable ADI Precision References Recommended for Use with AD5424/AD5433/AD5445 DACs  
Part No.  
Output Voltage  
Initial Tolerance  
Temperature Drift  
0.1 Hz to 10 Hz Noise  
Package  
ADR01  
ADR02  
ADR03  
ADR425  
10 V  
5 V  
2.5 V  
5 V  
0.1%  
0.1%  
0.2%  
0.04%  
3 ppm/°C  
3 ppm/°C  
3 ppm/°C  
3 ppm/°C  
20 V p-p  
10 V p-p  
10 V p-p  
3.4 V p-p  
SC70, TSOT, SOIC  
SC70, TSOT, SOIC  
SC70, TSOT, SOIC  
MSOP, SOIC  
Table IV. Some Precision ADI Op Amps Suitable for Use with AD5424/AD5433/AD5445 DACs  
Part No.  
Max Supply Voltage (V)  
VOS (max) (V)  
IB (max) (nA)  
GBP (MHz)  
Slew Rate (V/s)  
OP97  
OP1177  
AD8551  
20  
18  
6
25  
60  
5
0.1  
2
0.05  
0.9  
1.3  
1.5  
0.2  
0.7  
0.4  
Table V. Some High Speed ADI Op Amps Suitable for Use with AD5424/AD5433/AD5445 DACs  
Max Supply Voltage  
(V)  
BW @ ACL  
(MHz)  
Slew Rate  
(V/s)  
VOS (max)  
(V)  
IB (max)  
(nA)  
Part No.  
AD8065  
AD8021  
AD8038  
AD9631  
12  
12  
5
145  
200  
350  
320  
180  
100  
425  
1300  
1500  
1000  
3000  
10000  
0.01  
1000  
0.75  
7000  
5
–18–  
REV. 0  
AD5424/AD5433/AD5445  
DAC leakage current is also a potential error source in divider  
circuits. The leakage current must be counterbalanced by an  
opposite current supplied from the op amp through the DAC.  
Since only a fraction D of the current into the VREF terminal is  
routed to the IOUT1 terminal, the output voltage has to change  
as follows:  
rail-to-rail signals; there is a large range of single-supply amplifiers  
available from Analog Devices.  
PCB LAYOUT AND POWER SUPPLY DECOUPLING  
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure  
the rated performance. The printed circuit board on which the  
AD5424/AD5433/AD5445 is mounted should be designed so  
that the analog and digital sections are separated, and confined  
to certain areas of the board. If the DAC is in a system where  
multiple devices require an AGND-to-DGND connection, the  
connection should be made at one point only. The star ground  
point should be established as close as possible to the device.  
Output Error Voltage Due to DAC Leakage = (Leakage ϫ R)/D  
where R is the DAC resistance at the VREF terminal. For a DAC  
leakage current of 10 nA, R = 10 kand a gain (i.e., 1/D) of 16  
the error voltage is 1.6 mV.  
REFERENCE SELECTION  
When selecting a reference for use with the AD5424 series of  
current output DACs, pay attention to the references output  
voltage temperature coefficient specification. This parameter not  
only affects the full-scale error, but can also affect the linearity  
(INL and DNL) performance. The reference temperature coeffi-  
cient should be consistent with the system accuracy specifications.  
For example, an 8-bit system required to hold its overall specifi-  
cation to within 1 LSB over the temperature range 0ЊC to 50ЊC  
dictates that the maximum system drift with temperature should  
be less than 78 ppm/ЊC. A 12-bit system with the same tempera-  
ture range to overall specification within 2 LSBs requires a  
maximum drift of 10 ppm/ЊC. By choosing a precision reference  
with low output temperature coefficient this error source can be  
minimized. Table III suggests some references available from  
Analog Devices that are suitable for use with this range of cur-  
rent output DACs.  
These DACs should have ample supply bypassing of 10 F in  
parallel with 0.1 F on the supply located as close to the package  
as possible, ideally right up against the device. The 0.1 F capaci-  
tor should have low effective series resistance (ESR) and effective  
series inductance (ESI), like the common ceramic types that  
provide a low impedance path to ground at high frequencies, to  
handle transient currents due to internal logic switching. Low  
ESR 1 F to 10 F tantalum or electrolytic capacitors should  
also be applied at the supplies to minimize transient disturbance  
and filter out low frequency ripple.  
Fast switching signals such as clocks should be shielded with  
digital ground to avoid radiating noise to other parts of the board,  
and should never be run near the reference inputs.  
Avoid crossover of digital and analog signals. Traces on opposite  
sides of the board should run at right angles to each other. This  
reduces the effects of feedthrough through the board. A micros-  
trip technique is by far the best, but not always possible with a  
double-sided board. In this technique, the component side of  
the board is dedicated to ground plane, while signal traces are  
placed on the solder side.  
AMPLIFIER SELECTION  
The primary requirement for the current-steering mode is an  
amplifier with low input bias currents and low input offset voltage.  
The input offset voltage of an op amp is multiplied by the vari-  
able gain (due to the code dependent output resistance of the  
DAC) of the circuit. A change in this noise gain between two  
adjacent digital fractions produces a step change in the output  
voltage due to the amplifier’s input offset voltage. This output  
voltage change is superimposed on the desired change in output  
between the two codes and gives rise to a differential linearity error,  
which if large enough, could cause the DAC to be nonmonotonic.  
In general, the input offset voltage should be <1/4 LSB to ensure  
monotonic behavior when stepping through codes.  
It is good practice to employ compact, minimum lead length  
PCB layout design. Leads to the input should be as short as  
possible to minimize IR drops and stray inductance.  
The PCB metal traces between VREF and RFB should also be  
matched to minimize gain error. To maximize on high frequency  
performance, the I-to-V amplifier should be located as close to  
the device as possible.  
EVALUATION BOARD FOR THE AD5424/AD5433/AD5445  
The board consists of a 12-bit AD5445 and a current to voltage  
amplifier AD8065. Included on the evaluation board is a 10 V  
reference ADR01. An external reference may also be applied via  
an SMB input.  
The input bias current of an op amp also generates an offset at  
the voltage output as a result of the bias current flowing in the  
feedback resistor RFB. Most op amps have input bias currents  
low enough to prevent any significant errors in 12-bit applications.  
Common-mode rejection of the op amp is important in voltage  
switching circuits since it produces a code dependent error at the  
voltage output of the circuit. Most op amps have adequate common  
mode rejection for use at 8-, 10-, and 12-bit resolution.  
The evaluation kit consists of a CD-ROM with self-installing  
PC software to control the DAC. The software simply allows  
the user to write a code to the device.  
Provided the DAC switches are driven from true wideband  
low impedance sources (VIN and AGND), they settle quickly.  
Consequently, the slew rate and settling time of a voltage switching  
DAC circuit is determined largely by the output op amp. To  
obtain minimum settling time in this configuration, it is important  
to minimize capacitance at the VREF node (voltage output node  
in this application) of the DAC. This is done by using low  
inputs capacitance buffer amplifiers and careful board design.  
OPERATING THE EVALUATION BOARD  
Power Supplies  
The board requires 12 V, and +5 V supplies. The +12 V VDD  
and VSS are used to power the output amplifier, while the +5 V  
is used to power the DAC (VDD1) and transceivers (VCC).  
Both supplies are decoupled to their respective ground plane  
with 10 F tantalum and 0.1 F ceramic capacitors.  
Link1 (LK1) is provided to allow selection between the on-board  
reference (ADR01) or an external reference applied through J2.  
Most single-supply circuits include ground as part of the analog  
signal range, which in turns requires an amplifier that can handle  
REV. 0  
–19–  
AD5424/AD5433/AD5445  
Figure 11. Evaluation Board Schematic  
–20–  
REV. 0  
AD5424/AD5433/AD5445  
P1  
C1  
R2  
R4  
C12  
DB11  
DB9  
DB7  
DB5  
DB3  
DB1  
U3  
DB10  
DB8  
DB6  
DB4  
DB2  
DB0  
U1  
J1  
OUTPUT  
U5  
C2  
TP1  
C7  
R5  
R1  
C6  
C5  
C4  
C3  
C8  
U2  
LK1  
CS  
RW  
EXT  
VREF  
U4  
J4  
J2  
J3  
R3  
C18  
C14  
C16  
CS  
R/W  
C19  
C17  
C13  
C15  
P2  
C20  
EVAL-AD5424/  
AD5433/AD5445EB  
Figure 12. Silkscreen—Component Side View  
REV. 0  
–21–  
AD5424/AD5433/AD5445  
Table VI. Bill of Materials for AD5424/AD5433/AD5445 Evaluation Board  
Name  
Part Description  
Value  
Tolerance  
PCB Decal  
Stock Code  
C1, C2, C4,  
C6, C8  
C10, C12, C13,  
C15  
X7R Ceramic Capacitor  
X7R Ceramic Capacitor  
0.1 F  
0.1 F  
10%  
10%  
0603  
0603  
FEC 499-675  
FEC 499-675  
C3, C5, C9,  
C11, C14  
C17, C19  
Tantalum Capacitor – Taj Series  
X7R Ceramic Capacitor  
10 F 20 V 10%  
0.1 F 10%  
10 F 10 V 10%  
CAP\TAJ_B  
0603  
CAP\TAJ_A  
0603  
TESTPOINT  
TESTPOINT  
SMB  
LINK-3P-  
36WAY  
FEC 197-427  
FEC 499-675  
FEC 197-130  
C16, C18, C20 Tantalum Capacitor – Taj Series  
C7  
CS  
DB0–DB11  
J1–J4  
LK1  
P1  
P2  
R1  
X7R Ceramic Capacitor  
TESTPOINT  
Red Testpoint  
4.7 pF  
10%  
FEC 240-345 (Pack)  
FEC 240-345 (Pack)  
FEC 310-682  
FEC 511-717 and 150-411  
FEC 147-753  
SMB Socket  
3-Pin Header (3 ϫ 1)  
36-Pin Centronics Connector  
6-Pin Terminal Block  
0.063 W Resistor  
CON\POWER6 FEC 151-792  
0603  
Not Inserted  
R2, R3, R4, R5 0.063 W Resistor  
RW, TP1, TP2 Red Testpoint  
10 kΩ  
1%  
0603  
FEC 911-355  
FEC 240-345 (Pack)  
AD5445BRU  
ADR01AR  
AD8065AR  
TESTPOINT  
TSSOP20  
SO8NB  
U1  
AD5445  
ADR425/ADR01/ADR02/ADR03  
AD8065  
U2*  
U3*  
SO8NB  
U4  
U5  
74ABT543  
74ABT543  
Rubber Stick-on Feet  
TSSOP24  
TSSOP24  
Fairchild 74ABT543CMTC  
Fairchild 74ABT543CMTC  
FEC 148-922  
Each Corner  
*See section on Amplifier and Reference Selection  
FEC - Farnell Electronic Components, Units 4 and 5 Gofton Court, Jamestown Road, Finglas, Dublin 11, Ireland. Tel. Int +353 (0)1 8309277  
www.farnell.com  
–22–  
REV. 0  
AD5424/AD5433/AD5445  
Overview of AD54xx Devices  
tS max Interface Package  
Part No.  
Resolution  
No. DACs INL  
Features  
AD5403*  
8
2
0.25 60 ns  
Parallel  
CP-40  
10 MHz Bandwidth,  
10 ns CS Pulse Width,  
4-Quadrant Multiplying Resistors  
AD5410*  
AD5413*  
AD5424  
AD5425  
8
8
8
8
1
2
1
1
0.25 100 ns Serial  
0.25 100 ns Serial  
RU-16  
RU-24  
10 MHz Bandwidth, 50 MHz Serial,  
4-Quadrant Multiplying Resistors  
10 MHz Bandwidth, 50 MHz Serial,  
4-Quadrant Multiplying Resistors  
0.25 60 ns  
Parallel  
RU-16, CP-20 10 MHz Bandwidth,  
17 ns CS Pulse Width  
0.25 100 ns Serial  
0.25 100 ns Serial  
RM-10  
Byte Load, 10 MHz Bandwidth,  
50 MHz Serial  
AD5426  
AD5428  
8
8
1
2
RM-10  
RU-20  
10 MHz Bandwidth, 50 MHz Serial  
0.25 60 ns  
Parallel  
10 MHz Bandwidth,  
17 ns CS Pulse Width  
AD5429  
AD5450  
AD5404*  
8
2
1
2
0.25 100 ns Serial  
0.25 100 ns Serial  
RU-10  
RJ-8  
10 MHz Bandwidth, 50 MHz Serial  
10 MHz Bandwidth, 50 MHz Serial  
8
10  
0.5  
70 ns  
Parallel  
CP-40  
10 MHz Bandwidth,  
17 ns CS Pulse Width,  
4-Quadrant Multiplying Resistors  
AD5411*  
AD5414*  
10  
10  
1
2
0.5  
0.5  
110 ns Serial  
110 ns Serial  
110 ns Serial  
RU-16  
RU-24  
RM-10  
10 MHz Bandwidth, 50 MHz Serial,  
4-Quadrant Multiplying Resistors  
10 MHz Bandwidth, 50 MHz Serial,  
4-Quadrant Multiplying Resistors  
AD5432  
AD5433  
10  
10  
1
1
0.5  
0.5  
10 MHz Bandwidth, 50 MHz Serial  
70 ns  
Parallel  
RU-20, CP-20 10 MHz Bandwidth,  
17 ns CS Pulse Width  
AD5439  
AD5440  
10  
10  
2
2
0.5  
0.5  
110 ns Serial  
70 ns Parallel  
RU-16  
RU-24  
10 MHz Bandwidth, 50 MHz Serial  
10 MHz Bandwidth,  
17 ns CS Pulse Width  
AD5451  
AD5405  
10  
12  
1
2
0.25 110 ns Serial  
RJ-8  
10 MHz Bandwidth, 50 MHz Serial  
1
120 ns Parallel  
CP-40  
10 MHz Bandwidth,  
17 ns CS Pulse Width,  
4-Quadrant Multiplying Resistors  
AD5412*  
AD5415  
12  
12  
1
2
1
1
160 ns Serial  
160 ns Serial  
RU-16  
RU-24  
RM-10  
10 MHz Bandwidth, 50 MHz Serial,  
4-Quadrant Multiplying Resistors  
10 MHz Bandwidth, 50 MHz Serial,  
4-Quadrant Multiplying Resistors  
AD5443  
AD5445  
12  
12  
1
1
1
1
160 ns Serial  
10 MHz Bandwidth, 50 MHz Serial  
120 ns Parallel  
RU-20, CP-20 10 MHz Bandwidth,  
17 ns CS Pulse Width  
AD5447  
AD5449  
12  
12  
2
2
1
1
120 ns Parallel  
160 ns Serial  
RU-24  
RU-16  
10 MHz Bandwidth,  
17 ns CS Pulse Width  
10 MHz Bandwidth,  
17 ns CS Pulse Width  
AD5452  
AD5453  
12  
14  
1
1
0.5  
2
160 ns Serial  
180 ns Serial  
RJ-8, RM-8  
RJ-8, RM-8  
10 MHz Bandwidth, 50 MHz Serial  
10 MHz Bandwidth, 50 MHz Serial  
*Future parts, contact factory for availability  
REV. 0  
–23–  
AD5424/AD5433/AD5445  
OUTLINE DIMENSIONS  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
6.60  
6.50  
6.40  
16  
9
8
20  
11  
10  
4.50  
4.40  
4.30  
6.40  
BSC  
4.50  
4.40  
4.30  
1
6.40 BSC  
1
PIN 1  
1.20  
MAX  
PIN 1  
0.65  
BSC  
0.15  
0.05  
0.20  
0.09  
1.20  
0.75  
0.60  
0.45  
MAX  
0.15  
0.05  
0.20  
0.09  
8ꢁ  
0ꢁ  
0.30  
0.19  
0.65  
BSC  
0.75  
0.60  
0.45  
SEATING  
PLANE  
8ꢁ  
0ꢁ  
0.30  
0.19  
COPLANARITY  
0.10  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AB  
COMPLIANT TO JEDEC STANDARDS MO-153AC  
20-Lead Lead Frame Chip Scale Package [LFCSP]  
(CP-20)  
Dimensions shown in millimeters  
0.60  
MAX  
4.0  
BSC SQ  
0.60  
MAX  
16  
15  
20  
1
5
PIN 1  
2.25  
2.10 SQ  
1.95  
INDICATOR  
TOP  
BOTTOM  
VIEW  
3.75  
VIEW  
BSC SQ  
11  
10  
0.75  
0.55  
0.35  
6
0.25 MIN  
0.80 MAX  
0.65 NOM  
0.30  
0.23  
0.18  
12MAX  
1.00  
0.90  
0.80  
0.05  
0.02  
0.00  
0.20  
REF  
SEATING  
PLANE  
COPLANARITY  
0.08  
0.50  
BSC  
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-1  
–24–  
REV. 0  

相关型号:

AD5445BCP

IC PARALLEL, WORD INPUT LOADING, 0.04 us SETTLING TIME, 12-BIT DAC, QCC20, 4 X 4 MM, CSP-20, Digital to Analog Converter
ADI

AD5445BRU

IC PARALLEL, WORD INPUT LOADING, 0.04 us SETTLING TIME, 12-BIT DAC, PDSO20, TSSOP-20, Digital to Analog Converter
ADI

AD5445YCP

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YCP-REEL

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YCP-REEL7

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YCPZ

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YRU

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YRU-REEL

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YRU-REEL7

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YRUZ

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YRUZ-REEL

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI

AD5445YRUZ-REEL7

8-/10-/12-Bit, High Bandwidth Multiplying DACs with Parallel Interface
ADI