AD5530 [ADI]

Serial Input, Voltage Output 12-/14-Bit DACs; 串行输入,电压输出12位/ 14位DAC
AD5530
型号: AD5530
厂家: ADI    ADI
描述:

Serial Input, Voltage Output 12-/14-Bit DACs
串行输入,电压输出12位/ 14位DAC

文件: 总16页 (文件大小:399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Serial Input, Voltage Output  
12-/14-Bit DACs  
a
AD5530/AD5531  
FEATURES  
GENERAL DESCRIPTION  
Pin-Compatible 12- and 14-Bit DACs  
Serial Input, Voltage Output  
Maximum Output Voltage Range of ؎10 V  
Data Readback  
3-Wire Serial Interface  
Clear Function to a User-Defined Voltage  
Power-Down Function  
The AD5530 and AD5531 are single 12-/14-bit serial input,  
voltage output DACs, respectively.  
They utilize a versatile 3-wire interface that is compatible with  
SPI, QSPI, MICROWIRE, and DSP interface standards.  
Data is presented to the part in the format of a 16-bit serial word.  
Serial data is available on the SDO pin for daisy-chaining pur-  
poses. Data readback allows the user to read the contents of the  
DAC register via the SDO pin.  
Serial Data Output for Daisy-Chaining  
16-Lead TSSOP Packages  
The DAC output is buffered by a gain of 2 amplifier and refer-  
enced to the potential at DUTGND. LDAC may be used to update  
the output of the DAC asynchronously. A power-down (PD) pin  
allows the DAC to be put into a low power state, and a CLR pin  
allows the output to be cleared to a user-defined voltage, the  
potential at DUTGND.  
APPLICATIONS  
Industrial Automation  
Automatic Test Equipment  
Process Control  
General-Purpose Instrumentation  
The AD5530 and AD5531 are available in 16-lead TSSOP  
packages.  
FUNCTIONAL BLOCK DIAGRAM  
V
V
DD  
SS  
AD5530/AD5531  
REFIN  
+
R
12-/14-BIT DAC  
R
+
V
OUT  
R
REFAGND  
LDAC  
RBEN  
R
DAC REGISTER  
SHIFT REGISTER  
DUTGND  
CLR  
SDIN  
POWER-DOWN  
CONTROL LOGIC  
PD  
SDO  
GND  
SCLK  
SYNC  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corporation.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2002  
(VDD = +15 V 10%; VSS = –15 V 10%; GND = 0 V; RL = 5 kand  
AD5530/AD5531–SPECIFICATIONS1CL = 220 pF to GND. All specifications TMIN to TMAX, unless otherwise noted.)  
Parameter  
AD5530  
AD5531  
Unit  
Test Conditions/Comments  
ACCURACY  
Resolution  
12  
1
1
2
2
1
0.5  
10  
14  
2
1
8
8
4
0.5  
10  
Bits  
LSB max  
LSB max  
LSB max  
LSB max  
LSB typ  
ppm FSR/°C typ  
ppm FSR/°C max  
Relative Accuracy  
Differential Nonlinearity  
Zero-Scale Error  
Full-Scale Error  
Gain Error  
Guaranteed Monotonic Over Temperature  
Typically within 1 LSB  
Typically within 1 LSB  
Gain Temperature Coefficient2  
REFERENCE INPUTS2  
Reference Input Range  
DC Input Resistance  
Input Current  
0/5  
100  
1
0/5  
100  
1
V min/V max  
Mtyp  
µA max  
Max Output Range 10 V  
Per Input. Typically 20 nA.  
DUTGND INPUT2  
DC Input Impedance  
Max Input Current  
Input Range  
60  
0.3  
4/+4  
60  
0.3  
4/+4  
ktyp  
mA typ  
V min/V max  
Max Output Range 10 V  
O/P CHARACTERISTICS2  
Output Voltage Swing  
Short Circuit Current  
Resistive Load  
Capacitive Load  
DC Output Impedance  
10  
15  
5
1200  
0.5  
10  
15  
5
1200  
0.5  
V max  
mA max  
kmin  
pF max  
max  
To 0 V  
To 0 V  
DIGITAL I/O  
VINH, Input High Voltage  
2.4  
0.8  
10  
10  
0.4  
2.4  
0.8  
10  
10  
0.4  
V min  
V
INL, Input Low Voltage  
V max  
µA max  
pF max  
V max  
I
INH, Input Current  
Total for All Pins  
3 pF Typ  
ISINK = 1 mA  
CIN, Input Capacitance2  
SDO VOL Output Low Voltage  
POWER REQUIREMENTS  
V
DD/VSS  
+15/15  
+15/15  
V nom  
10% For Specified Performance  
Power Supply Sensitivity  
Full Scale/VDD  
Full Scale/VSS  
IDD  
110  
100  
2
2
150  
110  
100  
2
2
150  
dB typ  
dB typ  
mA max  
mA max  
µA max  
Outputs Unloaded  
Outputs Unloaded  
Typically 50 µA  
ISS  
IDD in Power-Down  
NOTES  
1Temperature range for B Version: 40°C to +85°C.  
2Guaranteed by design, not subject to production test.  
Specifications subject to change without notice.  
–2–  
REV. 0  
SPECIFICATIONS1  
AD5530/AD5531  
(VDD = +12 V 10%; VSS = –12 V 10%; GND = 0 V;  
RL = 5 kand CL = 220 pF to GND; TA = TMIN to TMAX, unless otherwise noted.)  
Parameter  
AD5530  
AD5531  
Unit  
Test Conditions/Comments  
ACCURACY  
Resolution  
12  
1
1
2
2
1
0.5  
10  
14  
2
1
8
8
4
0.5  
10  
Bits  
LSB max  
LSB max  
LSB max  
LSB max  
LSB typ  
ppm FSR/°C typ  
ppm FSR/°C max  
Relative Accuracy  
Differential Nonlinearity  
Zero-Scale Error  
Full-Scale Error  
Gain Error  
Guaranteed Monotonic Over Temperature  
Typically within 1 LSB  
Typically within 1 LSB  
Gain Temperature Coefficient2  
REFERENCE INPUTS2  
Reference Input Range  
DC Input Resistance  
Input Current  
0/4.096  
100  
1
0/4.096  
100  
1
V min/V max  
Mtyp  
µA max  
Max Output Range 8.192 V  
Per Input. Typically 20 nA.  
DUTGND INPUT2  
DC Input Impedance  
Max Input Current  
Input Range  
60  
0.3  
3/+3  
60  
0.3  
3/+3  
ktyp  
mA typ  
V min/V max  
Max Output Range 8.192 V  
O/P CHARACTERISTICS2  
Output Voltage Swing  
Short Circuit Current  
Resistive Load  
Capacitive Load  
DC Output Impedance  
8.192  
15  
5
1200  
0.5  
8.192  
15  
5
1200  
0.5  
V max  
mA max  
kmin  
pF max  
max  
To 0 V  
To 0 V  
DIGITAL I/O  
V
INH, Input High Voltage  
VINL, Input Low Voltage  
INH, Input Current  
IN, Input Capacitance2  
2.4  
0.8  
10  
10  
0.4  
2.4  
0.8  
10  
10  
0.4  
V min  
V max  
µA max  
pF max  
V max  
I
C
Total for All Pins  
3 pF Typ  
ISINK = 1 mA  
SDO VOL Output Low Voltage  
POWER REQUIREMENTS  
VDD /VSS  
+12/12  
+12/12  
V nom  
10% For Specified Performance  
Power Supply Sensitivity  
Full Scale/VDD  
Full Scale/VSS  
IDD  
110  
100  
2
2
150  
110  
100  
2
2
150  
dB typ  
dB typ  
mA max  
mA max  
µA max  
Outputs Unloaded  
Outputs Unloaded  
Typically 50 µA  
ISS  
IDD in Power-Down  
NOTES  
1Temperature range for B Version: 40°C to +85°C.  
2Guaranteed by design, not subject to production test.  
Specifications subject to change without notice.  
(VDD = 10.8 V to 16.5 V, VSS = –10.8 V to –16.5 V; GND = 0 V; RL = 5 kand  
AC PERFORMANCE CHARACTERISTICS  
CL = 220 pF to GND. All specifications TMIN to TMAX, unless otherwise noted.)  
Parameter  
A
Unit  
Test Conditions/Comments  
DYNAMIC PERFORMANCE  
Output Voltage Settling Time  
20  
µs typ  
Full-Scale Change to 1/2 LSB. DAC Latch Contents  
alternately loaded with all 0s and all 1s.  
Slew Rate  
Digital-to-Analog Glitch Impulse  
1.3  
120  
V/µs typ  
nV-s typ  
DAC Latch alternately loaded with 0FFF Hex and  
1000 Hex. Not dependent on load conditions.  
Digital Feedthrough  
Output Noise Spectral Density  
@ 1 kHz  
0.5  
nV-s typ  
Effect of Input Bus Activity on DAC Output Under Test  
100  
nV/(Hz)1/2typ  
All 1s Loaded to DAC  
Specifications subject to change without notice. Guaranteed by design, not subject to production test.  
REV. 0  
–3–  
AD5530/AD5531  
STANDALONE TIMING CHARACTERISTICS1, 2  
(VDD = 10.8 V to 16.5 V, VSS = –10.8 V to –16.5 V; GND = 0 V;  
RL = 5 kand CL = 220 pF to GND. All specifications TMIN to TMAX, unless otherwise noted.)  
Parameter  
Limit at TMIN, TMAX  
Unit  
Description  
fMAX  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
7
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
SCLK Frequency  
SCLK Cycle Time  
SCLK Low Time  
SCLK High Time  
SYNC to SCLK Falling Edge Setup Time  
SCLK Falling Edge to SYNC Rising Edge  
Min SYNC High Time  
Data Setup Time  
Data Hold Time  
SYNC High to LDAC Low  
LDAC Pulsewidth  
140  
60  
60  
50  
40  
50  
40  
15  
5
t9  
t10  
t11  
t12  
50  
5
50  
LDAC High to SYNC Low  
CLR Pulsewidth  
1Guaranteed by design. Not production tested.  
2Sample tested during initial release and after any redesign or process change that may affect this parameter. All input signals are measured with tr = tf = 5 ns  
(10% to 90% of VDD) and timed from a voltage level of (VIL +VIH)/2.  
Specifications subject to change without notice.  
t1  
t3  
SCLK  
t2  
t4  
t5  
SYNC  
t6  
t7  
t8  
MSB  
LSB  
DB0  
SDIN  
DB15  
DB14  
DB11  
t9  
t11  
LDAC*  
t10  
t12  
CLR  
*LDAC MAY BE TIED PERMANENTLY LOW IF REQUIRED  
Figure 1. Timing Diagram for Standalone Mode  
–4–  
REV. 0  
AD5530/AD5531  
DAISY-CHAINING AND READBACK TIMING CHARACTERISTICS1, 2, 3 (VDD = 10.8 V to 16.5 V, VSS = 10.8 V  
to 16.5 V; VSS = 15 V 10%; GND = 0 V; RL = 5 kand CL = 220 pF to GND. All specifications TMIN to TMAX, unless otherwise noted.)  
Parameter  
Limit at TMIN, TMAX  
Unit  
Description  
fMAX  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t12  
t13  
t14  
t15  
t16  
t17  
2
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns max  
ns min  
ns min  
ns min  
SCLK Frequency  
SCLK Cycle Time  
SCLK Low Time  
SCLK High Time  
SYNC to SCLK Falling Edge Setup Time  
SCLK Falling Edge to SYNC Rising Edge  
Min SYNC High Time  
Data Setup Time  
Data Hold Time  
500  
200  
200  
50  
40  
50  
40  
15  
50  
130  
50  
50  
50  
100  
CLR Pulsewidth  
SCLK Falling Edge to SDO Valid  
SCLK Falling Edge to SDO Invalid  
RBEN to SCLK Falling Edge Setup Time  
RBEN Hold Time  
RBEN Falling Edge to SDO Valid  
1Guaranteed by design. Not production tested.  
2Sample tested during initial release and after any redesign or process change that may affect this parameter. All input signals are measured with tr = tf = 5 ns  
(10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
3SDO; RPULLUP = 5 k, CL = 15 pF.  
Specifications subject to change without notice.  
t1  
t3  
SCLK  
t2  
t5  
t4  
SYNC  
t6  
t7  
t8  
MSB  
LSB  
DB0  
SDIN  
DB15  
DB14  
DB11  
t13  
t14  
MSB  
LSB  
DB0  
SDO  
(DAISY  
CHAINING)  
DB15  
DB11  
t15  
t16  
RBEN  
t13  
t17  
t14  
SDO  
(READBACK)  
0
0
RB13  
RB0  
LSB  
MSB  
Figure 2. Timing Diagram for Daisy-Chaining and READBACK Mode  
REV. 0  
–5–  
AD5530/AD5531  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C unless otherwise noted)  
Storage Temperature Range . . . . . . . . . . . . 65°C to +150°C  
Maximum Junction Temperature (TJ MAX) . . . . . . . . . . 150°C  
Package Power Dissipation . . . . . . . . . . . . . . (TJ MAX TA)/θJA  
Thermal Impedance θJA  
TSSOP (RU-16) . . . . . . . . . . . . . . . . . . . . . . . . 150.4°C/W  
Lead Temperature (Soldering 10s) . . . . . . . . . . . . . . . . 300°C  
IR Reflow, Peak Temperature (< 20 sec) . . . . . . . . . . . . 235°C  
*Stresses above those listed under Absolute Maximum Ratings may cause permanent  
damage to the device. This is a stress rating only and functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V, +17 V  
VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V, 17 V  
Digital Inputs to GND . . . . . . . . . . . . . 0.3 V to VDD +0.3 V  
SDO to GND . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to +6.5 V  
REFIN to REFAGND . . . . . . . . . . . . . . . . . . . . 0.3 V, +17 V  
REFIN to GND . . . . . . . . . . . . . . . . VSS 0.3 V, VDD +0.3 V  
REFAGND to GND . . . . . . . . . . . . . VSS 0.3 V, VDD +0.3 V  
DUTGND to GND . . . . . . . . . . . . . . VSS 0.3 V, VDD +0.3 V  
Operating Temperature Range  
Industrial (B Version) . . . . . . . . . . . . . . . . 40°C to +85°C  
ORDERING GUIDE  
Temperature Range Resolution INL (LSBs)  
Model  
DNL(LSBs) Package Option*  
AD5530BRU 40°C to +85 °C  
AD5531BRU 40°C to +85 °C  
12  
14  
1
2
1
1
RU-16  
RU-16  
*RU = Thin Shrink Small Outline Package.  
PIN CONFIGURATION  
REFAGND  
REFIN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
DD  
V
OUT  
AD5530/  
AD5531  
DUTGND  
LDAC  
SDIN  
V
SS  
TOP VIEW  
SYNC  
NC  
(Not to Scale)  
GND  
PD  
RBEN  
SCLK  
SDO  
CLR  
NC = NO CONNECT  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
AD5530/AD5531 features proprietary ESD protection circuitry, permanent damage may occur on  
devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
–6–  
REV. 0  
AD5530/AD5531  
PIN FUNCTION DESCRIPTIONS  
Pin  
1
Mnemonic  
REFAGND  
REFIN  
Function  
For bipolar 10 V output range, this pin should be tied to 0 V.  
2
This is the voltage reference input for the DAC. Connect to external +5 V reference for specified bipolar  
10 V output.  
3
4
LDAC  
Load DAC logic input (active low). When taken low, the contents of the shift register are transferred to  
the DAC register. LDAC may be tied permanently low enabling the outputs to be updated on the rising  
edge of SYNC.  
SDIN  
Serial data input. This device accepts 16-bit words. Data is clocked into the input register on the falling  
edge of SCLK.  
5
6
SYNC  
RBEN  
Active low control input. Data is clocked into the shift requester on the falling edges of SCLK.  
Active low readback enable function. This function allows the contents of the DAC register to be read.  
Data from the DAC register will be shifted out on SDO pin on each rising edge of SCLK.  
7
8
SCLK  
SDO  
Clock input. Data is clocked into the input register on the falling edge of SCLK.  
Serial data out. This pin is used to clock out the serial data previously written to the input shift register or  
may be used in conjunction with RBEN to read back the data from the DAC register. This is an open  
drain output; it should be pulled high with an external pull-up resistor. In standalone mode, SDO should  
be tied to GND or left high impedance.  
9
CLR  
Level sensitive, active low input. A falling edge of CLR resets VOUT to DUTGND. The contents of the  
registers are untouched.  
10  
11  
12  
13  
14  
15  
16  
PD  
This allows the DAC to be put into a power-down state.  
Ground reference  
GND  
NC  
Do not connect anything to this pin.  
VSS  
Negative analog supply voltage, 12 V 10% or 15 V 10% for specified performance.  
DUTGND  
VOUT  
VDD  
VOUT is referenced to the voltage applied to this pin.  
DAC output  
Positive analog supply voltage, +12 V 10% or +15 V 10% for specified performance.  
TERMINOLOGY  
Gain Error  
Gain error is the difference between the actual and ideal analog  
output range, expressed as a percent of the full-scale range. It is the  
deviation in slope of the DAC transfer characteristic from ideal.  
Relative Accuracy  
Relative accuracy or endpoint linearity is a measure of the maximum  
deviation, in LSBs, from a straight line passing through the end-  
points of the DAC transfer function.  
Output Voltage Settling Time  
This is the amount of time it takes for the output to settle to a  
specified level for a full-scale input change.  
Differential Nonlinearity  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is specified as the area of the glitch in nV-s and is mea-  
sured when the digital input code is changed by 1 LSB at the  
major carry transition.  
Zero-Scale Error  
Zero-scale error is a measure of the output error when all 0s are  
loaded to the DAC latch.  
Digital Feedthrough  
Full-Scale Error  
Digital feedthrough is a measure of the impulse injected into the  
analog output of the DAC from the digital inputs of the DAC, but  
is measured when the DAC output is not updated. It is specified  
in nV-s and is measured with a full-scale code change on the data  
bus, i.e., from all 0s to all 1s and vice versa.  
This is the error in DAC output voltage when all 1s are loaded  
into the DAC latch. Ideally the output voltage, with all 1s loaded  
into the DAC latch, should be 2 VREF 1 LSB.  
REV. 0  
–7–  
AD5530/AD5531Typical Performance Characteristics  
1
1
0.75  
0.5  
V
= +15V  
= 15V  
V
= +15V  
= 15V  
DD  
DD  
0.8  
V
V
SS  
SS  
REFIN = +5V  
REFIN = +5V  
0.6  
REFAGND = 0V  
REFAGND = 0V  
T
= +25؇C  
T
= +25؇C  
A
A
0.4  
0.25  
0
0.2  
0
0.2  
0.4  
0.6  
0.8  
1  
0.25  
0.5  
0.75  
1  
0
0
0
500  
1000 1500  
2000 2500 3000 3500 4000  
code  
0
2000  
4000 6000  
8000 10000 12000 14000 16000  
code  
TPC 1. AD5530 Typical INL Plot  
TPC 4. AD5531 Typical DNL Plot  
0.5  
0.4  
2.0  
1.5  
V
V
= +15V  
DD  
V
= +15V  
DD  
= 15V  
SS  
V
= 15V  
SS  
REFIN = +5V  
REFAGND = 0V  
REFIN = +5V  
0.3  
REFAGND = 0V  
1.0  
T
= +25؇C  
A
0.2  
0.5  
0.1  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.5  
1.0  
1.5  
2.0  
500  
1000 1500  
2000 2500 3000 3500 4000  
code  
40  
20  
0
20  
40  
60  
80  
TEMPERATURE ؇C  
TPC 2. AD5530 Typical DNL Plot  
TPC 5. AD5531 Typical INL Error vs. Temperature  
2
1.5  
1
1.0  
V
V
= +15V  
V
= +15V  
DD  
DD  
= 15V  
V
= 15V  
0.8  
0.6  
SS  
SS  
REFIN = +5V  
REFAGND = 0V  
REFIN = +5V  
REFAGND = 0V  
T
= +25؇C  
A
0.4  
0.5  
0
0.2  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1  
0.3  
1.5  
2  
40  
20  
0
20  
40  
60  
80  
2000  
4000 6000  
8000 10000 12000 14000 16000  
code  
TEMPERATURE ؇C  
TPC 3. AD5531 Typical INL Plot  
TPC 6. AD5531 Typical DNL Error vs. Temperature  
–8–  
REV. 0  
AD5530/AD5531  
3
2
0.03  
0.02  
0.01  
0
V
= +15V  
= 15V  
DD  
V
SS  
REFAGND = 0V  
T
= +25؇C  
A
40؇C  
POSITIVE INL  
NEGATIVE INL  
1
+85؇C  
+25؇C  
0
1  
2  
3  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
10  
11  
12  
13  
14  
15  
16  
17  
REFINVOLTAGE V  
SUPPLYVOLTAGE V  
TPC 7. AD5531 Typical INL Error vs. Reference Voltage  
TPC 10. IDD in Power-Down vs. Supply  
0
12  
V
= +15V  
DD  
V
= 15V  
SS  
REFIN = +5V  
8
4
0.5  
1.0  
1.5  
2.0  
2.5  
REFAGND = 0V  
0
4  
8  
12  
V
= +15V  
= 15V  
DD  
5 s/div  
V
SS  
REFIN = +5V  
REFAGND = 0V  
T
= +25؇C  
A
40  
20  
0
20  
40  
60  
80  
0
TIME s  
TEMPERATURE ؇C  
TPC 8. Typical Full-Scale and Offset Error  
vs. Temperature  
TPC 11. Settling Time  
1.50  
0
0.02  
0.04  
0.06  
0.08  
0.10  
0.12  
0.14  
0.16  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
+85؇C  
+25؇C  
40؇C  
V
= +15V  
DD  
V
= 15V  
SS  
REFIN = +5V  
REFAGND = 0V  
T
= +25؇C  
A
10  
11  
12  
13  
V
14  
15  
16  
17  
/V V  
TIME 750ns/DIV  
DD SS  
TPC 9. IDD vs. VDD / VSS  
TPC 12. Typical Digital-to-Analog Glitch Impulse  
REV. 0  
–9–  
AD5530/AD5531  
V
= +15V  
= 15V  
REFIN  
12-/14-BIT DAC  
14  
OUTPUT  
DD  
V
SS  
REFIN = +5V  
REFAGND = 0V  
T
= +25؇C  
A
V
OUT  
LDAC  
SYNC  
DAC REGISTER  
14  
PD  
SYNC REGISTER  
14  
2V/DIV  
2V/DIV  
16-BIT SHIFT  
REGISTER  
SDIN  
SDO  
TPC 13. Typical Power-Down Time  
Figure 4. Simplified Serial Interface  
Data written to the part via SDIN is available on the SDO pin  
16 clocks later if the readback function is not used. SDO data is  
clocked out on the falling edge of the serial clock with some delay.  
GENERAL DESCRIPTION  
DAC Architecture  
PD Function  
The PD pin allows the user to place the device into power-down  
mode. While in this mode, power consumption is at a minimum;  
the device draws only 50µA of current. The PD function does  
not affect the contents of the DAC register.  
The AD5530/AD5531 are pin-compatible 12-/14-bit DACs.  
The AD5530 consists of a straight 12-bit R-2R voltage mode DAC,  
while the AD5531 consists of a 14-bit R-2R section. Using a +5 V  
reference connected to the REFIN pin and REFAGND tied to  
0 V, a bipolar 10 V voltage output results. The DAC coding is  
straight binary.  
READBACK Function  
The AD5530/AD5531 allows the data contained in the DAC  
register to be read back if required. The pins involved are the  
RBEN and SDO (serial data out). When RBEN is taken low, on  
the next falling edge of SCLK, the contents of the DAC register  
are transferred to the shift register. RBEN may be used to frame  
the readback data by leaving it low for 16 clock cycles, or it may  
be asserted high after the required hold time. The shift register  
contains the DAC register data and this is shifted out on the  
SDO line on each falling edge of SCLK with some delay. This  
ensures the data on the serial data output pin is valid for the  
falling edge of the receiving part. The two MSBs of the 16-bit  
word will be 0s.  
Serial Interface  
Serial data on the SDIN input is loaded to the input register under  
the control of SCLK, SYNC, and LDAC. A write operation  
transfers a 16-bit word to the AD5530/AD5531. Figures 1 and 2  
show the timing diagrams. Figure 3 shows the contents of the  
input shift register. Twelve or 14 bits of the serial word are data  
bits; the rest are dont cares.  
DB15 (MSB)  
DB0 (LSB)  
X
X
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DATA BITS  
X X  
Figure 3a. AD5530 Input Shift Register Contents  
CLR Function  
The falling edge of CLR causes VOUT to be reset to the same  
potential as DUTGND. The contents of the registers remain  
unchanged, so the user can reload the previous data with LDAC  
after CLR is asserted high. Alternatively, if LDAC is tied low,  
the output will be loaded with the contents of the DAC register  
automatically after CLR is brought high.  
DB15 (MSB)  
DB0 (LSB)  
X
X D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DATA BITS  
Figure 3b. AD5531 Input Shift Register Contents  
The serial word is framed by the signal, SYNC. After a high to low  
transition on SYNC, data is latched into the input shift register  
on the falling edges of SCLK. There are two ways in which the  
DAC register and output may be updated. The LDAC signal is  
examined on the falling edge of SYNC; depending on its status,  
either a synchronous or asynchronous update is selected. If  
LDAC is low, then the DAC register and output are updated on  
the low to high transition of SYNC. Alternatively, if LDAC is  
high upon sampling, the DAC register is not loaded with the  
new data on a rising edge of SYNC. The contents of the DAC  
register and the output voltage will be updated by bringing  
LDAC low any time after the 16-bit data transfer is complete.  
LDAC may be tied permanently low if required. A simplified  
diagram of the input loading circuitry is illustrated in Figure 4.  
Output Voltage  
The DAC transfer function is as follows:  
D
VOUT  
+ 2 × REFAGND REFIN ] DUTGND  
= 2 [2 × REFIN REFAGND ×  
2N  
where:  
D is the decimal data word loaded to the DAC register,  
N is the resolution of the DAC.  
Bipolar Configuration  
Figure 5 shows the AD5530/AD5531 in a bipolar circuit configu-  
ration. REFIN is driven by the AD586, 5 V reference, while the  
REFAGND and DUTGND pins are tied to GND. This results  
in a bipolar output voltage ranging from 10 V to +10 V. Resistor  
R1 is provided (if required) for gain adjust. Figure 6 shows the  
transfer function of the DAC when REFAGND is tied to 0 V.  
–10–  
REV. 0  
AD5530/AD5531  
+15V  
AD5530/  
AD5531*  
ADSP-2101/  
ADSP-2103*  
2
AD586  
4
V
OUT  
V
6
5
OUT  
REFIN  
V
LDAC  
SYNC  
SDIN  
FO  
OUT  
(10V TO +10V)  
8
TFS  
DT  
AD5530/  
AD5531*  
R1  
10k⍀  
C1  
1F  
SCLK  
SCLK  
DUTGND  
REFAGND GND  
*ADDITIONAL PINS OMITTED FOR CLARITY  
V
SS  
SIGNAL  
GND  
SIGNAL  
GND  
Figure 7. AD5530/AD5531 to ADSP-21xx Interface  
15V  
*ADDITIONAL PINS OMITTED FOR CLARITY  
AD5530/AD5531 to 8051 Interface  
A serial interface between the AD5530/AD5531 and the 8051 is  
shown in Figure 8. TXD of the 8051 drives SCLK of the AD5530/  
AD5531, while RXD drives the serial data line, SDIN. P3.3 and  
P3.4 are bit-programmable pins on the serial port and are used  
to drive SYNC and LDAC respectively.  
Figure 5. Bipolar 10 V Operation  
2 REFIN  
The 8051 provides the LSB of its SBUF register as the first bit in  
the data stream. The user will have to ensure that the data in the  
SBUF register is arranged correctly as the DAC expects MSB first.  
0V  
AD5530/  
AD5531*  
80C51/80L51*  
LDAC  
SYNC  
SDIN  
P3.4  
P3.3  
RXD  
TXD  
–2 REFIN  
SCLK  
DAC INPUT CODE 000 001  
(3)FFF  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 6. Output Voltage vs. DAC Input Codes (Hex)  
Figure 8. AD5530/AD5531 to 8051 Interface  
MICROPROCESSOR INTERFACING  
When data is to be transmitted to the DAC, P3.3 is taken low.  
Data on RXD is clocked out of the microcontroller on the rising  
edge of TXD and is valid on the falling edge. As a result no glue  
logic is required between this DAC and microcontroller interface.  
Microprocessor interfacing to the AD5530/AD5531 is via a serial  
bus that uses standard protocol compatible with microcontrollers  
and DSP processors. The communications channel is a 3-wire  
(minimum) interface consisting of a clock signal, a data signal,  
and a synchronization signal. The AD5530/AD5531 requires a  
16-bit data word with data valid on the falling edge of SCLK.  
The 8051 transmits data in 8-bit bytes with only eight falling clock  
edges occurring in the transmit cycle. As the DAC expects a  
16-bit word, P3.3 must be left low after the first 8 bits are transferred.  
After the second byte has been transferred, the P3.3 line is taken  
high. The DAC may be updated using LDAC via P3.4 of the 8051.  
For all the interfaces, the DAC output update may be done  
automatically when all the data is clocked in or asynchronously  
under the control of LDAC.  
AD5530/AD5531 to MC68HC11 Interface  
The contents of the DAC register may be read using the readback  
function. RBEN is used to frame the readback data, which is  
clocked out on SDO. The following figures illustrate these DACs  
interfacing with a simple 4-wire interface. The serial interface of  
the AD5530/AD5531 may be operated from a minimum of  
three wires.  
Figure 9 shows an example of a serial interface between the  
AD5530/AD5531 and the MC68HC11 microcontroller. SCK  
of the 68HC11 drives the SCLK of the DAC, while the MOSI  
output drives the serial data lines, SDIN. SYNC is driven from  
one of the port lines, in this case PC7.  
AD5530/AD5531 to ADSP-21xx  
AD5530/  
MC68HC11*  
An interface between the AD5530/AD5531 and the ADSP-21xx  
is shown in Figure 7. In the interface example shown, SPORT0  
is used to transfer data to the DAC. The SPORT control regis-  
ter should be configured as follows: internal clock operation,  
alternate framing mode; active low framing signal.  
AD5531*  
LDAC  
PC6  
PC7  
MOSI  
SCK  
SYNC  
SDIN  
SCLK  
Transmission is initiated by writing a word to the Tx register  
after the SPORT has been enabled. As the data is clocked out of  
the DSP on the rising edge of SCLK, no glue logic is required to  
interface the DSP to the DAC. In the interface shown, the DAC  
output is updated using the LDAC pin via the DSP. Alternatively,  
the LDAC input could be tied permanently low and then the  
update takes place automatically when TFS is taken high.  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 9. AD5530/AD5531 to MC68HC11 Interface  
REV. 0  
–11–  
AD5530/AD5531  
The 68HC11 is configured for master mode, MSTR= 1,  
CPOL = 0, and CPHA = 1. When data is transferred to the part,  
PC7 is taken low and data is transmitted MSB first. Data appear-  
ing on the MOSI output is valid on the falling edge of SCK. Eight  
falling clock edges occur in the transmit cycle, so in order to load  
the required 16-bit word, PC7 is not brought high until the second  
8-bit word has been transferred to the DACs input shift register.  
Serial Interface to Multiple AD5530s or AD5531s  
Figure 11 shows how the SYNC pin is used to address multiple  
AD5530/AD5531s. All devices receive the same serial clock and  
serial data, but only one device will receive the SYNC signal at any  
one time. The DAC addressed will be determined by the decoder.  
There will be some feedthrough from the digital input lines, the  
effects of which can be minimized by using a burst clock.  
LDAC is controlled by the PC6 port output. The DAC can be  
updated after each 2-byte transfer by bringing LDAC low. This  
example does not show other serial lines for the DAC. If CLR  
were used, it could be controlled by port output PC5. In order to  
read data back from the DAC register, the SDO line could be  
connected to MISO of the MC68HC11, with RBEN tied to another  
port output controlling and framing the readback data transfer.  
AD5530/AD5531*  
SCLK  
SYNC  
V
OUT  
SDIN  
SDIN  
SCLK  
V
CC  
AD5530/AD5531*  
APPLICATIONS  
Optocoupler Interface  
ENABLE  
EN  
SYNC  
V
DECODER*  
CODED  
ADDRESS  
OUT  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled. Opto-isolators can provide voltage isolation in excess  
of 3 kV. The serial loading structure of the AD5530/AD5531  
makes it ideal for opto-isolated interfaces as the number of  
interface lines is kept to a minimum. Figure 10 shows a 4- channel  
isolated interface to the AD5530/AD5531. To reduce the  
number of opto-isolators, if simultaneous updating is not re-  
quired, then the LDAC pin may be tied permanently low.  
SDIN  
DGND  
SCLK  
*ADDITIONAL PINS  
OMITTED FOR CLARITY  
AD5530/AD5531*  
SYNC  
V
OUT  
SDIN  
SCLK  
V
CC  
AD5530/AD5531*  
SYNC  
V
OUT  
CONTROLLER  
SDIN  
SCLK  
TO LDAC  
TO SYNC  
TO SCLK  
TO SDIN  
CONTROL OUT  
Figure 11. Addressing Multiple AD5530/AD5531s  
SYNC OUT  
Daisy-Chaining Interface with Multiple AD5530s or AD5531s  
A number of these DAC parts may be daisy-chained together  
using the SDO pin. Figure 12 illustrates such a configuration.  
SERIAL CLOCK OUT  
SERIAL DATA OUT  
OPTOCOUPLER  
Figure 10. Opto-Isolated Interface  
V
DD  
R
R
R
AD5530/AD5531*  
AD5530/AD5531*  
AD5530/AD5531*  
SCLK  
SDIN  
SCLK  
SCLK  
SCLK  
SDIN  
SDO  
SDIN  
SDO  
SDIN  
SDO  
SYNC  
SYNC  
SYNC  
SYNC  
TO OTHER  
SERIAL DEVICES  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 12. Daisy-Chaining Multiple AD5530/AD5531s  
–12–  
REV. 0  
AD5530/AD5531  
OUTLINE DIMENSIONS  
Dimensions shown in millimeters  
16-Lead Thin Shrink SO Package (TSSOP)  
(RU-16)  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
COPLANARITY  
1.20  
MAX  
0.15  
0.05  
0.75  
0.60  
0.45  
8؇  
0؇  
0.30  
0.19  
0.65  
BSC  
0.20  
0.09  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153AB  
REV. 0  
–13–  
–14–  
–15–  
–16–  

相关型号:

AD5530BRU

Serial Input, Voltage Output 12-/14-Bit DACs
ADI

AD5530BRU-REEL

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI

AD5530BRU-REEL7

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI

AD5530BRUZ-REEL

SERIAL INPUT LOADING, 20us SETTLING TIME, 12-BIT DAC, PDSO16, LEAD FREE, MO-153AB, TSSOP-16
ADI

AD5530BRUZ-REEL1

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI

AD5530BRUZ-REEL7

Serial Input, Voltage Output 12-Bit D/A Converter
ADI

AD5530BRUZ-REEL71

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI

AD5530BRUZ1

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI

AD5530_07

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI

AD5530_15

Serial Input, Voltage Output 12-/14-Bit Digital-to-Analog Converters
ADI

AD5531

Serial Input, Voltage Output 12-/14-Bit DACs
ADI

AD5531BRU

Serial Input, Voltage Output 12-/14-Bit DACs
ADI