AD5541A [ADI]

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDACs in LFCSP; 2.7 V至5.5 V ,串行输入,电压输出, 16位/ 12位nanoDACs的LFCSP
AD5541A
型号: AD5541A
厂家: ADI    ADI
描述:

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDACs in LFCSP
2.7 V至5.5 V ,串行输入,电压输出, 16位/ 12位nanoDACs的LFCSP

文件: 总24页 (文件大小:838K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.7 V to 5.5 V, Serial-Input, Voltage-Output,  
16-/12-Bit nanoDACs in LFCSP  
Preliminary Technical Data  
AD5541A/AD5542A/AD5512A  
range of −40°C to 105°C.  
FEATURES  
Low power, 1 LSB INL nanoDACs  
AD5541A: 16 bits  
FUNCTIONAL BLOCK DIAGRAMS  
AD5542A: 16 bits  
AD5512A: 12 bits  
2.7 V to 5.5 V single-supply operation  
Low glitch: 0.5 nV-s  
Unbuffered voltage output capable of driving 60 kΩ loads  
directly  
VLOGIC pin provides 1.8 V digital interface capability  
Hardware CLR and LDAC functions  
50 MHz SPI-/QSPI-/MICROWIRE-/DSP-compatible interface  
standards  
Power-on reset clears DAC output to zeroscale and midscale  
Schmitt trigger inputs  
Figure 1. AD5541A  
Available in 3 mm × 3 mm 16-LFCSP, 10-LFCSP, and 8-LFCSP  
Also available in10-MSOP and 16-TSSOP  
APPLICATIONS  
Automatic test equipment  
Precision Source-measure Instruments  
Data Acquisition Systems  
Medical Instrumentation  
Aerospace Instrumentation  
Communications Infrastructure equipment  
Industrial Control  
Figure 2. AD5541A-1  
GENERAL DESCRIPTION  
The AD5541A/AD5542A/AD5512A1 are single, 16-/16-/12-bit,  
serial input, unbuffered voltage output digital-to-analog conver-  
ters (DACs) that operate from a single 2.7 V to 5.5 V supply.  
The AD5541A/AD5542A/AD5512A utilize a versatile 3-wire  
interface that is compatible with a 50 MHz SPI, QSPI™,  
MICROWIRE™, and DSP interface standards.  
These DACs provide 16-/12-bit performance without any adjust-  
ments. The DAC output is unbuffered, which reduces power  
consumption and offset errors contributed to by an output buffer.  
The AD5542A/AD5512A can be operated in bipolar mode, which  
generates a  
VREF output swing. The AD5542A/AD5512A also  
includes Kelvin sense connections for the reference and analog  
ground pins to reduce layout sensitivity.  
Figure 3. AD5542A  
The AD5541A is available in 10-lead 3 mm × 3 mm LFCSP and  
10-lead MSSOP. The AD5541A-1 is available in 8-lead 3 mm ×  
3 mm LFCSP. The AD5542A/AD5512A are available in 16-lead  
3 mm × 3 mm LFCSP and the AD5542A is also available in  
16-lead TSSOP. The AD5542A-1 is available in 10-lead LFCSP.  
The AD5541A and AD5542A are specified over a temperature  
Rev. PrA  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
AD5541A/AD5542A/AD5512A  
Preliminary Technical Data  
Figure 4.  
1 All references to the AD5541A/AD5542A/AD5512A incorporate all models (see Ordering Guide) including the AD5541A-1/AD5542A-1 unless specified.  
Rev. PrA| Page 2 of 24  
Preliminary Technical Data  
AD5541A/AD5542A/AD5512AA  
TABLE OF CONTENTS  
Features...............................................................................................1  
Bipolar Output Operation .........................................................14  
Output Amplifier Selection .......................................................14  
Force Sense Amplifier Selection ...............................................14  
Reference and Ground ...............................................................14  
Power-On Reset...........................................................................15  
Power Supply and Reference Bypassing...................................15  
Microprocessor Interfacing ...........................................................16  
AD5541/AD5542 to ADSP-2101/ADSP-2103 Interface........16  
AD5541/AD5542 to 68HC11/68L11 Interface .......................16  
AD5541/AD5542 to MICROWIRE Interface.........................16  
AD5541/AD5542 to 80C51/80L51 Interface...........................16  
Applications Information...............................................................17  
Optocoupler Interface ................................................................17  
Decoding Multiple AD5541/AD5542s.....................................17  
Outline Dimensions........................................................................18  
Ordering Guide ...........................................................................21  
Applications .......................................................................................1  
General Description..........................................................................1  
Functional Block Diagrams .............................................................1  
Revision History................................................................................3  
Specifications .....................................................................................4  
Timing Characteristics .................................................................5  
Absolute Maximum Ratings ............................................................6  
ESD Caution ..................................................................................6  
Pin Configurations and Function Descriptions............................7  
Typical Performance Characteristics..............................................9  
Terminology.....................................................................................12  
Theory of Operation.......................................................................13  
Digital-to-Analog Section..........................................................13  
Serial Interface.............................................................................13  
Unipolar Output Operation.......................................................13  
REVISION HISTORY  
Rev. PrA | Page 3 of 24  
AD5541A/AD5542A/AD5512A  
SPECIFICATIONS  
Preliminary Technical Data  
VDD = 2.7 V to 5.5V, VREF = 2.5 V, AGND = DGND = 0 V. −40°C < TA < +105°C, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Condition  
STATIC PERFORMANCE  
AD5541A/AD5542A  
Resolution  
16  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
Relative Accuracy (INL)  
±0.5  
±0.5  
±0.5  
±0.5  
±1.0  
±2.0  
±4.0  
±1.0  
±1.5  
L, C grades  
B, J grades  
A grade  
Guaranteed monotonic  
J grade  
Differential Nonlinearity (DNL)  
AD5512A  
Resolution  
12  
Bits  
Relative Accuracy (INL)  
Differential Nonlinearity (DNL)  
Gain Error  
±1.0  
±1.0  
±5  
LSB  
LSB  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
−1.5  
TA = 25°C  
TA = 25°C  
±±  
Gain Error Temperature Coefficient  
Zero Code Error  
±0.1  
0.3  
±1  
±2  
Zero Code Temperature Coefficient  
AD5542A/AD5512A  
±0.05  
ppm/°C  
Bipolar Resistor Matching  
1.000  
±0.0015  
±1  
Ω/Ω  
%
LSB  
RFB/RINV, typically RFB = RINV = 28 kΩ  
Ratio error  
TA = 25°C  
TBD  
±5  
Bipolar Zero Offset Error  
±±  
LSB  
Bipolar Zero Temperature Coefficient  
OUTPUT CHARACTERISTICS  
±0.2  
ppm/°C  
Output Voltage Range  
0
VREF − 1 LSB  
V
Unipolar operation  
−VREF  
+VREF − 1 LSB  
V
μs  
V/μs  
nV-sec  
nV-sec  
kΩ  
AD5542 bipolar operation  
To 1/2 LSB of FS, CL = 10 pF  
CL = 10 pF, measured from 0% to 63%  
1 LSB change around the major carry  
All 1s loaded to DAC, VREF = 2.5 V  
Tolerance typically 20%  
Output Voltage Settling Time  
Slew Rate  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
1
25  
0.5  
0.2  
6.25  
DAC Output Impedance  
Power Supply Rejection Ratio  
DAC REFERENCE INPUT  
Reference Input Range  
Reference Input Resistance1  
±1.0  
VDD  
LSB  
∆VDD ± 10%  
2.0  
9
±.5  
V
kΩ  
kΩ  
Unipolar operation  
AD5542, bipolar operation  
LOGIC INPUTS  
Input Current  
±1  
0.8  
μA  
V
V
V
pF  
V
Input Low Voltage, VINL  
Input High Voltage, VINH  
Input High Voltage, VINH  
Input Capacitance2  
Hysteresis Voltage2  
REFERENCE  
VDD = 2.± V to 5.5 V  
VDD = 4.5 V to 5.5 V  
VDD = 2.± V to 3.6 V  
2.0  
1.8  
10  
0.15  
Reference −3 dB Bandwidth  
Reference Feedthrough  
THD  
Signal-to-Noise Ratio  
Reference Input Capacitance  
1.3  
1
TBD  
92  
±5  
120  
MHz  
mV p-p  
dB  
dB  
pF  
All 1s loaded  
All 0s loaded, VREF = 1 V p-p at 100 kHz  
Code 0x0000  
Code 0xFFFF  
pF  
Rev. PrA | Page 4 of 24  
Preliminary Technical Data  
AD5541A/AD5542A/AD5512AA  
Parameter  
Min  
Typ  
Max  
Unit  
Test Condition  
POWER REQUIREMENTS  
VDD  
IDD  
VLOGIC  
2.±  
1.8  
5.5  
TBD  
5.5  
V
µA  
V
200  
ILOGIC  
200  
1.5  
TBD  
TBD  
µA  
mW  
Power Dissipation  
1 Reference input resistance is code-dependent, minimum at 0x8555.  
2 Guaranteed by design, not subject to production test.  
TIMING CHARACTERISTICS  
VLOGIC = 1.8 V to 5.5 V V, VDD = 5V, VREF = 2.5 V, VINH = 90% of VLOGIC, VINL = 10% of VLOGIC, AGND = DGND = 0 V; −40°C < TA < +105°C,  
unless otherwise noted.  
Table 2.  
Parameter1, 2  
Limit  
50  
20  
10  
10  
5
Unit  
Description  
fSCLK  
t1  
t2  
MHz max  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
SCLK cycle frequency  
SCLK cycle time  
SCLK high time  
t3  
SCLK low time  
t4  
CS low to SCLK high setup  
CS high to SCLK high setup  
SCLK high to CS low hold time  
SCLK high to CS high hold time  
Data setup time  
t5  
±
t6  
15  
10  
±
t±  
t8  
t9  
5
Data hold time (VINH = 90% of VDD, VINL = 10% of VDD)  
Data hold time (VINH = 3V, VINL = 0 V)  
LDAC pulsewidth  
t9  
5
t10  
t11  
t12  
t13  
15  
15  
15  
15  
CS high to LDAC low setup  
CS high time between active periods  
CLR pulsewidth  
1 Guaranteed by design and characterization. Not production tested  
2 All input signals are specified with tR = tF = 1 ns/V and timed from a voltage level of (VINL + VINH)/2.  
Figure 5. Timing Diagram  
Rev. PrA | Page 5 of 24  
AD5541A/AD5542A/AD5512A  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
Rating  
VDD to AGND  
−0.3 V to +6 V  
Digital Input Voltage to DGND  
VOUT to AGND  
AGND, AGNDF, AGNDS to DGND  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to +0.3 V  
Input Current to Any Pin Except Supplies ±10 mA  
Operating Temperature Range  
ESD CAUTION  
Industrial (A, B, C Versions)  
Commercial (J, L Versions)  
Storage Temperature Range  
Maximum Junction Temperature (TJ max)  
Package Power Dissipation  
Thermal Impedance, θJA  
SOIC (R-8)  
−40°C to +85°C  
0°C to ±0°C  
−65°C to +150°C  
150°C  
(TJ max − TA)/θJA  
149.5°C/W  
104.5°C/W  
SOIC (R-14)  
Lead Temperature, Soldering  
Peak Temperature1  
260°C  
1 As per JEDEC Standard 20.  
Rev. PrA | Page 6 of 24  
Preliminary Technical Data  
AD5541A/AD5542A/AD5512AA  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
REF  
CS  
1
2
3
4
8
7
6
5
GND  
VDD  
VOUT  
CLR  
VDD  
VOUT  
AGND  
REF  
1
2
3
4
5
10 VLOGIC  
AD5541A-1  
TO P VIEW  
(Not to Scale)  
9
8
7
6
DGND  
LDAC  
DIN  
AD5541A  
TO P VIEW  
(Not to Scale)  
SCLK  
DIN  
CS  
SCLK  
NC = NO CO NNECT  
NC = NO CO NNECT  
Figure 6. AD5541A-1 8-Lead LFCSP Pin Configuration  
Figure 8. AD5541A 10-Lead LFCSP Pin Configuration  
VDD  
VOUT  
AGND  
REF  
1
2
3
4
5
10 VLOGIC  
9
8
7
6
DGND  
LDAC  
DIN  
AD5541A  
V
1
2
3
4
8
7
6
5
V
DD  
O UT  
TOP VIEW  
(Not to Scale)  
AD5541A  
AG ND  
REF  
CS  
DG ND  
DIN  
TO P VIEW  
(Not to Scale)  
CS  
SCLK  
SCLK  
NC = NO CONNECT  
Figure 9. AD5541A 10-Lead MSOP Pin Configuration  
Figure 7. AD5541A 8-Lead SOIC Pin Configuration  
Table 4. AD5541A Pin Function Descriptions  
Pin No.  
8-Lead  
LFCSP  
8-Lead 10-Lead 10-Lead  
SOIC  
LFCSP  
MSOP  
Mnemonic Description  
6
1
2
3
2
3
4
2
3
4
VOUT  
AGND  
REF  
Analog Output Voltage from the DAC.  
Ground Reference Point for Analog Circuitry.  
Voltage Reference Input for the DAC. Connect to an external 2.5 V reference.  
Reference can range from 2 V to VDD.  
1
CS  
2
3
4
5
5
6
5
6
Logic Input Signal. The chip select signal is used to frame the serial data input.  
SCLK  
Clock Input. Data is clocked into the input register on the rising edge of SCLK.  
Duty cycle must be between 40% and 60%.  
4
6
±
±
DIN  
Serial Data Input. This device accepts 16-bit words. Data is clocked into the  
input register on the rising edge of SCLK.  
±
8
9
1
9
1
DGND  
VDD  
Digital Ground. Ground reference for digital circuitry.  
Analog Supply Voltage, 5 V ± 10%.  
Asynchronous Clear Input. The CLR input is falling edge sensitive. When CLR is  
low, all LDAC pulses are ignored. When CLR is activated, the input register and  
the DAC register are cleared to the model selectable midscale or zeroscale .  
Logic Power Supply.  
±
5
CLR  
10  
8
10  
8
VLOGIC  
LDAC  
LDAC Input. When this input is taken low, the DAC register is simultaneously  
updated with the contents of the input register.  
Rev. PrA | Page ± of 24  
AD5541A/AD5542A/AD5512A  
Preliminary Technical Data  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
RFB  
VDD  
VLOGIC  
INV  
VOUT  
AGNDF  
AGNDS  
REFS  
REFF  
NC  
AD5542A  
TO P VIEW  
(Not to Scale)  
DGND  
LDAC  
CLR  
DIN  
CS  
SCLK  
NC = NO CO NNECT  
Figure 10. AD5542A-1 10-Lead LFCSP Pin Configuration  
Figure 12. AD5542A 16-Lead TSSOP Pin Configuration  
RFB  
1
2
3
4
5
6
7
14  
V
DD  
1
VOUT  
12 DGND  
11 LDAC  
10 CLR  
V
13 INV  
O UT  
AD5542A  
AGNDF 2  
AGNDS 3  
AG NDF  
12 DG ND  
11 LDAC  
10 DIN  
AD5542A  
AD5512A  
TOP  
AG NDS  
REFS  
REFF  
CS  
TO P VIEW  
VIEW  
(Not to Scale)  
4
9
DIN  
REFS  
9
8
NC  
SCLK  
NC = NO CO NNECT  
(Not to Scale)  
NC = NO CO NNECT  
Figure 11. AD5542 14-Lead SOIC Pin Configuration  
Figure 13. AD5542A 16-Lead LFCSP Pin Configuration  
Table 5. AD5542A/AD5512A Pin Function Descriptions  
Pin No.  
10-Lead 14-Lead 16-Lead  
16-Lead  
LFCSP  
LFCSP  
SOIC  
TSSOP  
Mnemonic Description  
8
1
1
16  
RFB  
Feedback Resistor Pin. In bipolar mode, connect this pin to the external op  
amp output.  
6
2
3
4
5
2
3
4
5
1
2
3
4
VOUT  
Analog Output Voltage from the DAC.  
Ground Reference Point for Analog Circuitry (Force).  
Ground Reference Point for Analog Circuitry (Sense).  
Voltage Reference Input (Sense) for the DAC. Connect to an external 2.5 V  
reference. Reference can range from 2 V to VDD.  
AGNDF  
AGNDS  
REFS  
6
6
5
REFF  
Voltage Reference Input (Force) for the DAC. Connect to an external 2.5 V  
reference. Reference can range from 2 V to VDD.  
Logic Input Signal. The chip select signal is used to frame the serial data  
input.  
Clock Input. Data is clocked into the input register on the rising edge of SCLK.  
Duty cycle must be between 40% and 60%.  
CS  
2
3
±
8
8
9
6
8
SCLK  
Asynchronous Clear Input. The CLR input is falling edge sensitive. When CLR  
is low, all LDAC pulses are ignored. When CLR is activated, the input register  
and the DAC register are cleared to the model selectable midscale or  
zeroscale .  
Serial Data Input. This device accepts 16-bit words. Data is clocked into the  
input register on the rising edge of SCLK.  
CLR  
5
4
11  
10  
10  
11  
10  
12  
9
DIN  
11  
LDAC  
LDAC Input. When this input is taken low, the DAC register is simultaneously  
updated with the contents of the input register.  
12  
13  
13  
14  
12  
13  
DGND  
INV  
Digital Ground. Ground reference for digital circuitry.  
Connected to the Internal Scaling Resistors of the DAC. Connect the INV pin  
to external op amps inverting input in bipolar mode.  
Analog Supply Voltage, 5 V ± 10%.  
Logic Power Supply.  
±
9
14  
16  
15  
15  
14  
VDD  
VLOGIC  
Rev. PrA | Page 8 of 24  
Preliminary Technical Data  
AD5541A/AD5542A/AD5512AA  
TYPICAL PERFORMANCE CHARACTERISTICS  
Figure 14. Integral Nonlinearity vs. Code  
Figure 17. Differential Nonlinearity vs. Code  
Figure 15. Integral Nonlinearity vs. Temperature  
Figure 18. Differential Nonlinearity vs. Temperature  
Figure 16. Linearity Error vs. Supply Voltage  
Figure 19. Linearity Error vs. Reference Voltage  
Rev. PrA | Page 9 of 24  
AD5541A/AD5542A/AD5512A  
Preliminary Technical Data  
Figure 20. Gain Error vs. Temperature  
Figure 21. Supply Current vs. Temperature  
Figure 22. Supply Current vs. Digital Input Voltage  
Figure 23. Zero-Code Error vs. Temperature  
Figure 24. Supply Current vs. Reference Voltage or Supply Voltage  
Figure 25. Reference Current vs. Code  
Rev. PrA | Page 10 of 24  
Preliminary Technical Data  
AD5541A/AD5542A/AD5512AA  
Figure 26. Digital Feedthrough  
Figure 28. Large Signal Settling Time  
Figure 27. Digital-to-Analog Glitch Impulse  
Figure 29. Small Signal Settling Time  
Rev. PrA | Page 11 of 24  
AD5541A/AD5542A/AD5512A  
TERMINOLOGY  
Preliminary Technical Data  
Digital-to-Analog Glitch Impulse  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy or INL is a measure of the  
maximum deviation, in LSBs, from a straight line passing  
through the endpoints of the DAC transfer function. A typical  
INL vs. code plot is shown in Figure 14.  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-sec  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition. A digital-to-analog glitch  
impulse plot is shown in Figure 27.  
Differential Nonlinearity (DNL)  
DNL is the difference between the measured change and the  
ideal 1 LSB change between any two adjacent codes. A specified  
differential nonlinearity of 1 LSB maximum ensures mono-  
tonicity. A typical DNL vs. code plot is shown in Figure 17.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC, but it is measured when the DAC output is not updated.  
Gain Error  
CS  
is held high while the CLK and DIN signals are toggled. It  
Gain error is the difference between the actual and ideal analog  
output range, expressed as a percent of the full-scale range.  
It is the deviation in slope of the DAC transfer characteristic  
from ideal.  
is specified in nV-sec and is measured with a full-scale code  
change on the data bus, that is, from all 0s to all 1s and vice  
versa. A typical digital feedthrough plot is shown in Figure 26.  
Power Supply Rejection Ratio (PSRR)  
Gain Error Temperature Coefficient  
PSRR indicates how the output of the DAC is affected by changes  
in the power supply voltage. Power-supply rejection ratio is  
quoted in terms of percent change in output per percent change  
in VDD for full-scale output of the DAC. VDD is varied by 10%.  
Gain error temperature coefficient is a measure of the change  
in gain error with changes in temperature. It is expressed in  
ppm/°C.  
Zero Code Error  
Zero code error is a measure of the output error when zero code  
is loaded to the DAC register.  
Reference Feedthrough  
Reference feedthrough is a measure of the feedthrough from the  
REF input to the DAC output when the DAC is loaded with all  
0s. A 100 kHz, 1 V p-p is applied to VREF. Reference feedthrough  
V
Zero Code Temperature Coefficient  
This is a measure of the change in zero code error with a change  
in temperature. It is expressed in mV/°C.  
is expressed in mV p-p.  
Rev. PrA | Page 12 of 24  
Preliminary Technical Data  
AD5541A/AD5542A/AD5512AA  
THEORY OF OPERATION  
The AD5541A/AD5542A/AD5512A are single, 16-bit, serial  
input, voltage output DACs. They operate from a single supply  
ranging from 2.7 V to 5 V and consume typically 300 µA with a  
supply of 5 V. Data is written to these devices in a 16-bit word  
format,  
SERIAL INTERFACE  
The AD5541/AD5542 are controlled by a versatile 3- or 4-wire  
serial interface that operates at clock rates up to 25 MHz and is  
compatible with SPI, QSPI, MICROWIRE, and DSP interface  
standards. The timing diagram is shown in Figure 5. Input data  
via a 3- or 4-wire serial interface. To ensure a known power-up  
state, these parts are designed with a power-on reset function.  
In unipolar mode, the output is reset to 0 V; in bipolar mode,  
the AD5542 output is set to −VREF. Kelvin sense connections for  
the reference and analog ground are included on the AD5542.  
CS  
is framed by the chip select input, . After a high-to-low  
CS  
transition on , data is shifted synchronously and latched into  
the input register on the rising edge of the serial clock, SCLK.  
Data is loaded MSB first in 16-bit words. After 16 data bits have  
been loaded into the serial input register, a low-to-high transition  
DIGITAL-TO-ANALOG SECTION  
CS  
on transfers the contents of the shift register to the DAC. Data  
CS  
can be loaded to the part only while  
is low.  
function that allows the DAC latch  
LDAC CS  
The DAC architecture consists of two matched DAC sections.  
A simplified circuit diagram is shown in Figure 30. The DAC  
architecture of the AD5541/AD5542 is segmented. The four  
MSBs of the 16-bit data-word are decoded to drive 15 switches,  
E1 to E15. Each switch connects one of 15 matched resistors to  
either AGND or VREF. The remaining 12 bits of the data-word  
drive switches S0 to S11 of a 12-bit voltage mode R-2R ladder  
network.  
LDAC  
The AD5542 has an  
to be updated asynchronously by bringing  
LDAC  
low after  
should be maintained high while data is written  
LDAC  
goes high.  
to the shift register. Alternatively,  
nently low to update the DAC synchronously. With  
can be tied perma-  
LDAC  
tied  
CS  
permanently low, the rising edge of loads the data to the DAC.  
R
R
UNIPOLAR OUTPUT OPERATION  
V
OUT  
These DACs are capable of driving unbuffered loads of 60 kΩ.  
Unbuffered operation results in low supply current, typically  
300 μA, and a low offset error. The AD5541 provides a unipolar  
output swing ranging from 0 V to VREF. The AD5542 can be  
configured to output both unipolar and bipolar voltages. Figure 31  
shows a typical unipolar output voltage circuit. The code table  
for this mode of operation is shown in Table 6.  
2R  
2R  
S0  
2R . . . . .  
S1 . . . . .  
2R  
2R  
E1  
2R . . . . .  
E2 . . . . .  
2R  
E15  
S11  
V
REF  
FOUR MSBs DECODED  
INTO 15 EQUAL SEGMENTS  
12-BIT R-2R LADDER  
5V  
2.5V  
Figure 30. DAC Architecture  
10µF  
0.1µF  
With this type of DAC configuration, the output impedance  
is independent of code, while the input impedance seen by  
the reference is heavily code dependent. The output voltage is  
dependent on the reference voltage, as shown in the following  
equation:  
0.1µF  
SERIAL  
INTERFACE  
V
REF(REFF*) REFS*  
DD  
AD820/  
OP196  
CS  
UNIPOLAR  
OUTPUT  
DIN  
AD5541/AD5542  
OUT  
VREF × D  
SCLK  
LDAC*  
VOUT  
where:  
=
EXTERNAL  
OP AMP  
2N  
DGND  
AGND  
*AD5542 ONLY.  
D is the decimal data-word loaded to the DAC register.  
N is the resolution of the DAC.  
Figure 31. Unipolar Output  
Table 6. Unipolar Code Table  
For a reference of 2.5 V, the equation simplifies to the following:  
DAC Latch Contents  
MSB  
2.5 × D  
LSB  
Analog Output  
VREF × (65,535/65,536)  
VOUT  
=
65,536  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
VREF × (32,±68/65,536) = ½ VREF  
VREF × (1/65,536)  
0 V  
This gives a VOUT of 1.25 V with midscale loaded, and 2.5 V  
with full-scale loaded to the DAC.  
The LSB size is VREF/65,536.  
Rev. PrA | Page 13 of 24  
AD5541A/AD5542A/AD5512A  
Preliminary Technical Data  
Assuming a perfect reference, the unipolar worst-case output  
voltage can be calculated from the following equation:  
Assuming a perfect reference, the worst-case bipolar output  
voltage can be calculated from the following equation:  
D
[
(
VOUT UNI + VOS  
)
(
2 + RD  
)
VREF  
(
1 + RD  
)
]
VOUTUNI  
=
×
(
VREF + VGE + VZSE + INL  
)
VOUTBIP  
=
216  
1 +  
(
2 + RD  
)
A
where:  
OUT−UNI is unipolar mode worst-case output.  
D is code loaded to DAC.  
REF is reference voltage applied to the part.  
GE is gain error in volts.  
ZSE is zero scale error in volts.  
INL is integral nonlinearity in volts.  
where:  
V
V
V
V
OUT-BIP is the bipolar mode worst-case output  
OUT−UNI is the unipolar mode worst-case output.  
OS is the external op amp input offset voltage.  
RD is the RFB and RINV resistor matching error.  
A is the op amp open-loop gain.  
V
V
V
OUTPUT AMPLIFIER SELECTION  
BIPOLAR OUTPUT OPERATION  
For bipolar mode, a precision amplifier should be used and  
supplied from a dual power supply. This provides the VREF  
output. In a single-supply application, selection of a suitable op  
amp may be more difficult as the output swing of the amplifier  
does not usually include the negative rail, in this case, AGND.  
This can result in some degradation of the specified performance  
unless the application does not use codes near zero.  
With the aid of an external op amp, the AD5542 can be confi-  
gured to provide a bipolar voltage output. A typical circuit of  
such operation is shown in Figure 32. The matched bipolar  
offset resistors, RFB and RINV, are connected to an external op  
amp to achieve this bipolar output swing, typically RFB = RINV  
28 kΩ. Table 7 shows the transfer function for this output  
operating mode. Also provided on the AD5542 are a set of  
Kelvin connections to the analog ground inputs.  
=
The selected op amp needs to have a very low-offset voltage (the  
DAC LSB is 38 μV with a 2.5 V reference) to eliminate the need  
for output offset trims. Input bias current should also be very  
low because the bias current, multiplied by the DAC output  
impedance (approximately 6 kΩ), adds to the zero code error.  
Rail-to-rail input and output performance is required. For fast  
settling, the slew rate of the op amp should not impede the  
settling time of the DAC. Output impedance of the DAC is  
constant and code-independent, but to minimize gain errors,  
the input impedance of the output amplifier should be as high  
as possible. The amplifier should also have a 3 dB bandwidth of  
1 MHz or greater. The amplifier adds another time constant to  
the system, thus increasing the settling time of the output. A  
higher 3 dB amplifier bandwidth results in a shorter effective  
settling time of the combined DAC and amplifier.  
+5V +2.5V  
10µF  
0.1µF  
0.1µF  
+5V  
RFB  
SERIAL  
INTERFACE  
V
REFF REFS  
DD  
R
FB  
CS  
INV  
DIN  
R
INV  
UNIPOLAR  
OUTPUT  
OUT  
SCLK  
LDAC  
AD5541/AD5542  
–5V  
EXTERNAL  
OP AMP  
DGND AGNDF AGNDS  
Figure 32. Bipolar Output (AD5542 Only)  
Table 7. Bipolar Code Table  
DAC Latch Contents  
MSB  
LSB  
Analog Output  
FORCE SENSE AMPLIFIER SELECTION  
1111 1111 1111 1111  
1000 0000 0000 0001  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
+VREF × (32,±6±/32,±68)  
+VREF × (1/32,±68)  
0 V  
−VREF × (1/32,±68)  
−VREF × (32,±68/32,±68) = −VREF  
Use single-supply, low-noise amplifiers. A low-output impedance  
at high frequencies is preferred because the amplifiers need to  
be able to handle dynamic currents of up to 20 mA.  
REFERENCE AND GROUND  
Because the input impedance is code-dependent, the reference  
pin should be driven from a low impedance source. The AD5541/  
AD5542 operate with a voltage reference ranging from 2 V to  
VDD. References below 2 V result in reduced accuracy. The full-  
scale output voltage of the DAC is determined by the reference.  
Table 6 and Table 7 outline the analog output voltage or partic-  
ular digital codes. For optimum performance, Kelvin sense  
connections are provided on the AD5542.  
If the application doesn’t require separate force and sense lines,  
tie the lines close to the package to minimize voltage drops  
between the package leads and the internal die.  
Rev. PrA | Page 14 of 24  
Preliminary Technical Data  
AD5541A/AD5542A/AD5512AA  
POWER-ON RESET  
POWER SUPPLY AND REFERENCE BYPASSING  
The AD5541/AD5542 have a power-on reset function to ensure  
that the output is at a known state on power-up. On power-up,  
the DAC register contains all 0s until the data is loaded from  
the serial register. However, the serial register is not cleared on  
power-up, so its contents are undefined. When loading data  
initially to the DAC, 16 bits or more should be loaded to prevent  
erroneous data appearing on the output. If more than 16 bits are  
loaded, the last 16 are kept, and if less than 16 bits are loaded,  
bits remain from the previous word. If the AD5541/ AD5542  
need to be interfaced with data shorter than 16 bits, the data  
should be padded with 0s at the LSBs.  
For accurate high-resolution performance, it is recommended  
that the reference and supply pins be bypassed with a 10 μF  
tantalum capacitor in parallel with a 0.1 μF ceramic capacitor.  
Rev. PrA | Page 15 of 24  
AD5541A/AD5542A/AD5512A  
Preliminary Technical Data  
MICROPROCESSOR INTERFACING  
Microprocessor interfacing to the AD5541/AD5542 is via a  
serial bus that uses standard protocol that is compatible with  
DSP processors and microcontrollers. The communications  
channel requires a 3- or 4-wire interface consisting of a clock  
signal, a data signal and a synchronization signal. The  
AD5541/AD5542 require a 16-bit data-word with data valid on  
the rising edge of SCLK. The DAC update can be done  
automatically when all the data is clocked in or it can be done  
AD5541/AD5542 TO MICROWIRE INTERFACE  
Figure 35 shows an interface between the AD5541/AD5542  
and any MICROWIRE-compatible device. Serial data is shifted  
out on the falling edge of the serial clock and into the AD5541/  
AD5542 on the rising edge of the serial clock. No glue logic is  
required because the DAC clocks data into the input shift  
register on the rising edge.  
LDAC  
under control of the  
(AD5542 only).  
CS  
SO  
CS  
AD5541/  
AD5542*  
MICROWIRE*  
DIN  
AD5541/AD5542 TO ADSP-2101/ADSP-2103  
INTERFACE  
SCLK  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 33 shows a serial interface between the AD5541/AD5542  
and the ADSP-2101/ADSP-2103. The ADSP-2101/ADSP-2103  
should be set to operate in the SPORT transmit alternate framing  
mode. The ADSP-2101/ADSP-2103 are programmed through  
the SPORT control register and should be configured as follows:  
internal clock operation, active low framing, 16-bit word length.  
Transmission is initiated by writing a word to the Tx register  
after the SPORT has been enabled. As the data is clocked out  
on each rising edge of the serial clock, an inverter is required  
between the DSP and the DAC, because the AD5541/AD5542  
clock data in on the falling edge of the SCLK.  
Figure 35. AD5541/AD5542 to MICROWIRE Interface  
AD5541/AD5542 TO 80C51/80L51 INTERFACE  
A serial interface between the AD5541/AD5542 and the 80C51/  
80L51 microcontroller is shown in Figure 36. TxD of the micro-  
controller drives the SCLK of the AD5541/AD5542, and RxD  
drives the serial data line of the DAC. P3.3 is a bit programmable  
CS  
pin on the serial port that is used to drive  
.
The 80C51/80L51 provide the LSB first, whereas the AD5541/  
AD5542 expects the MSB of the 16-bit word first. Care should  
be taken to ensure the transmit routine takes this into account.  
FO  
TFS  
LDAC**  
When data is to be transmitted to the DAC, P3.3 is taken low.  
Data on RxD is valid on the falling edge of TxD, so the clock  
must be inverted as the DAC clocks data into the input shift  
register on the rising edge of the serial clock. The 80C51/80L51  
transmit data in 8-bit bytes with only eight falling clock edges  
occurring in the transmit cycle. As the DAC requires a 16-bit  
word, P3.3 must be left low after the first eight bits are transferred,  
CS  
AD5541/  
AD5542*  
ADSP-2101/  
ADSP-2103*  
DT  
DIN  
SCLK  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
**AD5542 ONLY.  
Figure 33. AD5541/AD5542 to ADSP-2101/ADSP-2103 Interface  
LDAC  
AD5541/AD5542 TO 68HC11/68L11 INTERFACE  
and brought high after the second byte is transferred.  
on  
the AD5542 can also be controlled by the 80C51/ 80L51 serial  
port output by using another bit programmable pin, P3.4.  
Figure 34 shows a serial interface between the AD5541/AD5542  
and the 68HC11/68L11 microcontroller. SCK of the 68HC11/  
68L11 drives the SCLK of the DAC, and the MOSI output drives  
P3.4  
P3.3  
RxD  
TxD  
LDAC**  
CS  
the serial data line serial DIN. The  
signal is driven from one  
80C51/  
80L51*  
CS  
AD5541/  
AD5542*  
of the port lines. The 68HC11/68L11 is configured for master  
mode: MSTR = 1, CPOL = 0, and CPHA = 0. Data appearing  
on the MOSI output is valid on the rising edge of SCK.  
DIN  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
**AD5542 ONLY.  
PC6  
PC7  
LDAC**  
Figure 36. AD5541/AD5542 to 80C51/80L51 Interface  
68HC11/  
68L11*  
CS  
AD5541/  
AD5542*  
MOSI  
SCK  
DIN  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
**AD5542 ONLY.  
Figure 34. AD5541/AD5542 to 68HC11/68L11 Interface  
Rev. PrA | Page 16 of 24  
Preliminary Technical Data  
AD5541A/AD5542A/AD5512AA  
APPLICATIONS INFORMATION  
OPTOCOUPLER INTERFACE  
DECODING MULTIPLE AD5541/AD5542s  
The digital inputs of the AD5541A/AD5542A/AD5512A are  
Schmitt-triggered so that they can accept slow transitions on the  
digital input lines. This makes these parts ideal for industrial  
applications where it may be necessary to isolate the DAC from  
the controller via optocouplers. Figure 37 illustrates such an  
interface.  
CS  
pin of the AD5541/AD5542 can be used to select one of  
The  
a number of DACs. All devices receive the same serial clock and  
CS  
serial data, but only one device receives the  
signal at any one  
time. The DAC addressed is determined by the decoder. There is  
some digital feedthrough from the digital input lines. Using a  
burst clock minimizes the effects of digital feedthrough on the  
analog signal channels. Figure 38 shows a typical circuit.  
5V  
REGULATOR  
AD5541/AD5542  
SCLK  
0.1µF  
POWER  
10µF  
CS  
V
OUT  
DIN  
DIN  
V
DD  
DD  
DD  
V
DD  
SCLK  
10k  
V
DD  
SCLK  
SCLK  
ENABLE  
AD5541/AD5542  
EN  
CS  
CODED  
ADDRESS  
V
DECODER  
DGND  
OUT  
DIN  
V
AD5541/AD5542  
SCLK  
10kΩ  
CS  
CS  
V
AD5541/AD5542  
OUT  
CS  
V
OUT  
V
DIN  
SCLK  
10kΩ  
DIN  
DIN  
GND  
AD5541/AD5542  
CS  
V
OUT  
DIN  
SCLK  
Figure 37. AD5541/AD5542 in an Optocoupler Interface  
Figure 38. Addressing Multiple AD5541/AD5542s  
Rev. PrA | Page 1± of 24  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
6
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
1
5
PIN 1  
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.05  
0.33  
0.17  
SEATING  
PLANE  
0.23  
0.08  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 39. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters.  
0.30  
0.23  
0.18  
3.00  
BSC SQ  
0.50 BSC  
10  
6
PIN 1 INDEX  
AREA  
1.74  
1.64  
1.49  
EXPOSED  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
5
1
PIN 1  
INDICATOR  
(R 0.19)  
TOP VIEW  
2.48  
2.38  
2.23  
0.80 MAX  
0.55 NOM  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.20 REF  
Figure 40. 10-Lead Lead Frame Chip Scale Package [LFCSP]  
(CP-10-9)  
Dimensions shown in millimeters.  
Rev. PrA | Page 18 of 24  
0.35  
0.30  
0.25  
3.00  
BSC SQ  
0.65 BSC  
8
5
4
PIN 1 INDEX  
AREA  
1.74  
1.64  
1.49  
EXPOSED  
PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
1
PIN 1  
R
INDICATO  
(R 0.2)  
TOP VIEW  
2.48  
2.38  
2.23  
0.80 MAX  
0.55 NOM  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.20 REF  
Figure 41. 8-Lead Lead Frame Chip Scale Package [LFCSP]  
(CP-8-3)  
Dimensions shown in millimeters.  
5.10  
5.00  
4.90  
16  
9
4.50  
4.40  
4.30  
6.40  
BSC  
1
8
PIN 1  
1.20  
MAX  
0.20  
0.15  
0.05  
0.75  
0.60  
0.45  
0.09  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 42. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters.  
Rev. PrA | Page 19 of 24  
3.10  
3.00 SQ  
2.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.50  
BSC  
1
4
12  
EXPOSED  
PAD  
1.75  
1.60 SQ  
1.55  
9
8
5
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WEED.  
Figure 43. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
(CP-16-22)  
Dimensions shown in millimeters.  
Rev. PrA | Page 20 of 24  
ORDERING GUIDE  
Clear to Code  
Package  
Description  
Package  
Option  
Model  
INL  
DNL  
Temperature Range  
AD5541ABRMZ  
AD5541AARMZ  
AD5541ABCPZ  
AD5541AACPZ  
AD5541ABCPZ-1  
AD5542ABRUZ  
AD5542AARUZ  
AD5542ASRUZ  
AD5542ABCPZ  
AD5542AACPZ  
AD5442ABCPZ-1  
AD5512AACPZ  
±1 LSB  
±2 LSB  
±1 LSB  
±2 LSB  
±1 LSB  
±1 LSB  
±2 LSB  
±1 LSB  
±1 LSB  
±2 LSB  
±1 LSB  
±1 LSB  
±1 LSB  
±1 LSB  
±1 LSB  
±1 LSB  
±1 LSB  
±1 LSB  
±1 LSB  
±1 LSB  
±1 LSB  
±1 LSB  
±1 LSB  
±1 LSB  
Midscale  
Midscale  
Midscale  
Midscale  
Zero-scale  
Midscale  
Midscale  
Midscale  
Midscale  
Midscale  
Midscale  
Midscale  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−55°C to +125°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
10-Lead MSOP  
10-Lead MSOP  
10-Lead LFCSP  
10-Lead LFCSP  
8-Lead LFCSP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead LFCSP  
16-Lead LFCSP  
10-Lead LFCSP  
16-Lead LFCSP  
RM-10  
RM-10  
CP-10-9  
CP-10-9  
CP_8-3  
RU-16  
RU-16  
RU-16  
CP-16-22  
CP-16-22  
CP-10-9  
CP-16-22  
Rev. PrA | Page 21 of 24  
AD5541A/AD5542A/AD5512A  
NOTES  
Preliminary Technical Data  
Rev. PrA | Page 22 of 24  
Preliminary Technical Data  
NOTES  
AD5541A/AD5542A/AD5512A  
Rev. PrA | Page 23 of 24  
AD5541A/AD5542A/AD5512A  
NOTES  
Preliminary Technical Data  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR08516-0-12/09(PrA)  
Rev. PrA | Page 24 of 24  

相关型号:

AD5541AACPZ

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDACs in LFCSP
ADI

AD5541AACPZ-REEL7

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDAC™ in 8-lead 3 mm x 3 mm LFCSP
ADI

AD5541AARMZ

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDACs in LFCSP
ADI

AD5541AARMZ-REEL7

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDAC™ in 8-lead 3 mm x 3 mm LFCSP
ADI

AD5541ABCPZ

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDACs in LFCSP
ADI

AD5541ABCPZ-1

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDACs in LFCSP
ADI

AD5541ABCPZ-1-RL7

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDAC™ in 8-lead 3 mm x 3 mm LFCSP
ADI

AD5541ABCPZ-1-RL7

SERIAL INPUT LOADING, 1 us SETTLING TIME, 16-BIT DAC, PDSO8, 3 X 3 MM, ROHS COMPLIANT, MO-229WEED, LFCSP-8
ROCHESTER

AD5541ABCPZ-500RL7

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDAC™ in 8-lead 3 mm x 3 mm LFCSP
ADI

AD5541ABCPZ-REEL7

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDAC™ in 8-lead 3 mm x 3 mm LFCSP
ADI

AD5541ABCPZ-REEL7

SERIAL INPUT LOADING, 1 us SETTLING TIME, 16-BIT DAC, PDSO10, 3 X 3 MM, ROHS COMPLIANT, LFCSP-10
ROCHESTER

AD5541ABRMZ

2.7 V to 5.5 V, Serial-Input, Voltage-Output, 16-/12-Bit nanoDACs in LFCSP
ADI