AD5543CRMZ [ADI]

Current Output/Serial Input, 16-/14-Bit DACs; 电流输出/串行输入, 16位/ 14位DAC
AD5543CRMZ
型号: AD5543CRMZ
厂家: ADI    ADI
描述:

Current Output/Serial Input, 16-/14-Bit DACs
电流输出/串行输入, 16位/ 14位DAC

转换器 数模转换器 光电二极管 PC
文件: 总20页 (文件大小:582K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Current Output/Serial Input,  
16-/14-Bit DACs  
Data Sheet  
AD5543/AD5553  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
16-bit resolution AD5543  
14-bit resolution AD5553  
1 LSB DNL  
AD5543/AD5553  
R
FB  
V
DD  
1 LSB INL  
Low noise: 12 nV/√Hz  
Low power: IDD = 10 µA  
0.5 µs settling time  
4Q multiplying reference input  
2 mA full-scale current 20%, with VREF = 10 V  
Built-in RFB facilitates voltage conversion  
3-wire interface  
I
V
DAC  
OUT  
REF  
CS  
16 OR 14  
CONTROL  
LOGIC  
DAC  
REGISTER  
16 OR 14  
CLK  
SDI  
GND  
16-BIT/14-BIT SHIFT  
REGISTER  
Ultracompact 8-lead MSOP and 8-lead SOIC packages  
Figure 1.  
APPLICATIONS  
1.0  
0.8  
Automatic test equipment  
Instrumentation  
0.6  
Digitally controlled calibration  
Industrial control PLCs  
0.4  
0.2  
0
GENERAL DESCRIPTION  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
The AD5543/AD5553 are precision 16-/14-bit, low power,  
current output, small form factor digital-to-analog converters  
(DACs). They are designed to operate from a single 5 V supply  
with a 10 V multiplying reference.  
The applied external reference, VREF, determines the full-scale  
output current. An internal feedback resistor (RFB) facilitates the  
R-2R and temperature tracking for voltage conversion when  
combined with an external op amp.  
CODE  
Figure 2. Integral Nonlinearity  
2
0
A serial-data interface offers high speed, 3-wire microcontroller-  
compatible inputs using serial data in (SDI), clock (CLK), and  
CS  
chip select ( ).  
–2  
The AD5543/AD5553 are packaged in ultracompact (3 mm ×  
4.7 mm) 8-lead MSOP and 8-lead SOIC packages.  
–4  
–6  
–8  
–10  
–12  
–14  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
Figure 3. Reference Multiplying Bandwidth  
Rev. F  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2002–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD5543/AD5553  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information.............................................................. 11  
Stability ........................................................................................ 11  
Positive Voltage Output............................................................. 11  
Bipolar Output............................................................................ 11  
Programmable Current Source ................................................ 12  
Reference Selection .................................................................... 12  
Amplifier Selection .................................................................... 12  
Evaluation Board ............................................................................ 14  
System Development Platform................................................. 14  
AD5543/AD5553 to SPORT Interface .................................... 14  
Waveform Generator ................................................................. 14  
Operating the Evaluation Board .............................................. 14  
Bill of Materials........................................................................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 20  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Diagrams.......................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Circuit Operation ............................................................................. 9  
DAC Section.................................................................................. 9  
Serial Data Interface....................................................................... 10  
ESD Protection Circuits............................................................. 10  
PCB Layout and Power Supply Bypassing .............................. 10  
REVISION HISTORY  
1/12—Rev. E to Rev. F  
10/09—Rev. B to Rev. C  
Added Figure 15, Renumbered Sequentially ................................ 8  
Change to Table 9 ........................................................................... 13  
Changes to Figure 27...................................................................... 15  
Changes to Figure 28...................................................................... 16  
Replaced Figure 29, Figure 30, and Figure 31............................. 17  
Updated Outline Dimensions..................................................... 14  
Changes to Ordering Guide.......................................................... 15  
7/09—Rev. A to Rev. B  
Updated Format..................................................................Universal  
Change to Features Section..............................................................1  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide.......................................................... 15  
2/11—Rev. D to Rev. E  
Added Evaluation Board Section ................................................. 14  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide .......................................................... 21  
2/03—Rev. 0 to Rev. A  
Changes to Ordering Guide.............................................................3  
4/10—Rev. C to Rev. D  
Changes to Figure 3.......................................................................... 1  
Changes to Table 1............................................................................ 3  
Moved Timing Diagrams Section .................................................. 4  
Moved Table 4 ................................................................................... 6  
Delete Figure 13; Renumbered Sequentially................................. 8  
Changes to Figure 14........................................................................ 8  
Changes to Figure 18........................................................................ 9  
Moved Table 5 and Table 6............................................................ 10  
Added Reference Selection Section and Amplifier Selection  
Section.............................................................................................. 12  
Added Table 7, Table 8, and Table 9;  
12/02—Revision 0: Initial Version  
Renumbered Sequentially.............................................................. 13  
Rev. F | Page 2 of 20  
 
Data Sheet  
AD5543/AD5553  
SPECIFICATIONS  
VDD = 5 V 10%, VSS = 0 V, I OUT = virtual GND, GND = 0 V, VREF = 10 V, TA = full operating temperature range, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
N
Condition  
5 V 10%  
Unit  
STATIC PERFORMANCE1  
Resolution  
1 LSB = VREF/216 = 153 µV when VREF = 10 V (AD5543)  
1 LSB = VREF/214 = 610 µV when VREF = 10 V (AD5553)  
Grade: AD5553C  
16  
14  
1
Bits  
Bits  
Relative Accuracy  
INL  
LSB max  
LSB max  
LSB max  
LSB max  
nA max  
nA max  
mV typ/max  
ppm/°C typ  
Grade: AD5543C  
Grade: AD5543B  
Monotonic  
Data = 0x0000, TA = 25°C  
Data = 0x0000, TA = TA maximum  
Data = 0xFFFF  
1
2
1
Differential Nonlinearity  
Output Leakage Current  
DNL  
IOUT  
10  
20  
1/ 4  
1
Full-Scale Gain Error  
Full-Scale Temperature Coefficient2  
REFERENCE INPUT  
VREF Range  
GFSE  
TCVFS  
VREF  
RREF  
CREF  
−15/+15  
V min/max  
kΩ typ3  
pF typ  
Input Resistance  
5
5
Input Capacitance2  
ANALOG OUTPUT  
Output Current  
IOUT  
Data = 0xFFFF for AD5543  
Data = 0x3FFF for AD5553  
Code dependent  
2
mA typ  
pF typ  
Output Capacitance2  
LOGIC INPUTS AND OUTPUT  
Logic Input Low Voltage  
Logic Input High Voltage  
Input Leakage Current  
Input Capacitance2  
INTERFACE TIMING2, 4  
Clock Input Frequency  
Clock Width High  
COUT  
200  
VIL  
VIH  
IIL  
0.8  
2.4  
10  
V max  
V min  
µA max  
pF max  
CIL  
10  
See Figure 4 and Figure 5  
fCLK  
tCH  
tCL  
tCSS  
tCSH  
tDS  
50  
10  
10  
0
MHz  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Clock Width Low  
CS to Clock Setup  
Clock to CS Hold  
10  
5
10  
Data Setup  
Data Hold  
tDH  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Power Dissipation  
VDD RANGE  
IDD  
PDISS  
PSS  
4.5/5.5  
10  
0.055  
0.006  
V min/max  
µA max  
mW max  
%/% max  
Logic inputs = 0 V  
Logic inputs = 0 V  
ΔVDD = 5%  
Power Supply Sensitivity  
Rev. F | Page 3 of 20  
 
AD5543/AD5553  
Data Sheet  
Parameter  
AC CHARACTERISTICS4  
Symbol  
Condition  
5 V 10%  
Unit  
Output Voltage Settling Time  
tS  
To 0.1% of full scale,  
0.5  
µs typ  
Data = 0x0000 to 0xFFFF to 0x0000 for AD5543  
Data = 0x0000 to 0x3FFF to 0x0000 for AD5553  
VREF = 100 mV rms, data = 0xFFFF  
VREF = 0 V, data = 0x7FFF to 0x8000 for AD5543  
Data = 0x0000, VREF = 100 mV rms, same channel  
CS = 1 and fCLK = 1 MHz  
Reference Multiplying Bandwidth  
DAC Glitch Impulse  
Feedthrough Error  
Digital Feedthrough  
Total Harmonic Distortion  
Output Spot Noise Voltage  
BW  
Q
VOUT/VREF  
Q
THD  
eN  
6.6  
7
−83  
7
−103  
12  
MHz typ  
nV-sec  
dB  
nV-sec  
dB typ  
nV/√Hz  
VREF = 5 V p-p, data = 0xFFFF, f = 1 kHz  
f = 1 kHz, BW = 1 Hz  
1 All static performance tests (except IOUT) are performed in a closed-loop system using an external precision OP177 I-to-V converter amplifier. The AD5543 RFB terminal is  
tied to the amplifier output. The +IN op amp is grounded, and the DAC IOUT is tied to the −IN op amp. Typical values represent average readings measured at 25°C.  
2 These parameters are guaranteed by design and are not subject to production testing.  
3 All ac characteristic tests are performed in a closed-loop system using an AD8038 I-to-V converter amplifier except for THD where an AD8065 was used.  
4 All input control signals are specified with tR = tF = 2.5 ns (10% to 90% of 3 V) and timed from a voltage level of 1.5 V.  
TIMING DIAGRAMS  
SDI  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D1  
D0  
CLK  
tDS  
tDH  
tCH  
tCL  
tCSS  
tCSH  
CS  
Figure 4. AD5543 Timing Diagram  
SDI  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D1  
D0  
CLK  
tDS  
tDH  
tCH  
tCL  
tCSS  
tCSH  
CS  
Figure 5. AD5553 Timing Diagram  
Rev. F | Page 4 of 20  
 
 
 
 
Data Sheet  
AD5543/AD5553  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to GND  
VREF to GND  
Logic Inputs to GND  
V(IOUT) to GND  
Input Current to Any Pin Except Supplies  
Package Power Dissipation  
Thermal Resistance, θJA  
8-Lead Surface Mount (MSOP)  
8-Lead Surface Mount (SOIC)  
Maximum Junction Temperature (TJ Max  
Operating Temperature Range  
Model B and Model C  
−0.3 V to +8 V  
−18 V to +18 V  
−0.3 V to +8 V  
−0.3 V to VDD + 0.3 V  
50 mA  
(TJ Max − TA )/θJA  
ESD CAUTION  
150°C/W  
100°C/W  
150°C  
)
−40°C to +85°C  
−65°C to +150°C  
Storage Temperature Range  
Lead Temperature  
R-8, RM-8 (Vapor Phase, 60 sec)  
R-8, RM-8 (Infrared, 15 sec)  
215°C  
220°C  
Rev. F | Page 5 of 20  
 
 
AD5543/AD5553  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
CLK  
SDI  
1
2
3
4
8
7
6
5
CS  
AD5543/  
AD5553  
V
DD  
R
GND  
FB  
TOP VIEW  
(Not to Scale)  
V
I
OUT  
REF  
Figure 6. Pin Configuration  
Table 3. Pin Function Descriptions  
Pin No. Mnemonic Description  
Clock Input. Positive-edge triggered, clocks data into shift register.  
1
2
3
4
5
CLK  
SDI  
RFB  
VREF  
IOUT  
Serial Register Input. Data loads directly into the shift register MSB first. Extra leading bits are ignored.  
Internal Matching Feedback Resistor. This pin connects to an external op amp for voltage output.  
DAC Reference Input Pin. Establishes DAC full-scale voltage. Constant input resistance vs. code.  
DAC Current Output. This pin connects to the inverting terminal of the external precision I-to-V op amp for  
voltage output.  
6
7
8
GND  
VDD  
CS  
Analog and Digital Ground.  
Positive Power Supply Input. Specified range of operation at 5 V 10%.  
Chip Select. Active low digital input. Transfers shift-register data to DAC register on rising edge.  
See Table 4 for operation.  
Table 4. Control-Logic Truth Table  
CS  
CLK  
Serial Shift Register Function  
No effect  
DAC Register  
X
H
Latched  
+1  
X1  
X1  
L
Shift register data advanced one bit  
No effect  
Shift register data transferred to DAC register  
Latched  
H
+1  
Latched  
New data loaded from serial register  
1 + = positive logic transition; X = don't care.  
Rev. F | Page 6 of 20  
 
 
 
 
Data Sheet  
AD5543/AD5553  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.8  
–1.0  
0
8192 16,384 24,576 32,768 40,960 49,152 57,344 65,536  
CODE (Decimal)  
0
2048  
4096  
6144  
CODE (Decimal)  
8192 10,240 12,288 14,336 16,384  
Figure 7. AD5543 Integral Nonlinearity Error  
Figure 10. AD5553 Differential Nonlinearity Error  
1.5  
1.0  
0.8  
V
A
= 2.5V  
REF  
= 25°C  
T
1.0  
0.5  
0
0.6  
0.4  
0.2  
INL  
0
DNL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
GE  
2
4
6
8
10  
0
8192 16,384 24,576 32,768 40,960 49,152 57,344 65,536  
CODE (Decimal)  
SUPPLY VOLTAGE V (V)  
DD  
Figure 8. AD5543 Differential Nonlinearity Error  
Figure 11. Linearity Error vs. VDD  
5
4
3
2
1
0
1.0  
0.8  
V
A
= 5V  
DD  
= 25°C  
T
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
IH  
4.0  
4.5  
5.0  
0
2048  
4096  
6144  
CODE (Decimal)  
8192 10,240 12,288 14,336 16,384  
LOGIC INPUTVOLTAGEV (V)  
Figure 12. Supply Current vs. Logic Input Voltage  
Figure 9. AD5553 Integral Nonlinearity Error  
Rev. F | Page 7 of 20  
 
AD5543/AD5553  
Data Sheet  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
A2  
–5V  
DLY  
67.72µs  
0x5555  
0x8000  
0xFFFF  
0x0000  
10k  
100k  
1M  
CLOCK FREQUENCY (Hz)  
10M  
100M  
5V  
2V  
136ns  
Figure 16. Settling Time  
Figure 13. AD5543 Supply Current vs. Clock Frequency  
–3.65  
–3.70  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 5V ± 10%  
= 10V  
DD  
REF  
–3.75  
–3.80  
–3.85  
–3.90  
–3.95  
–4.00  
–4.05  
–20  
–10  
0
10  
20  
30  
40  
10  
100  
1k  
10k  
100k  
1M  
TIME (ns)  
FREQUENCY (Hz)  
Figure 14. Power Supply Rejection Ratio (PSRR) vs. Frequency  
Figure 17. Midscale Transition and Digital Feedthrough  
20  
0
–20  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
0
5
10  
15  
20  
25  
FREQUENCY (kHz)  
Figure 15. AD5543/AD5553 Analog THD  
Rev. F | Page 8 of 20  
Data Sheet  
AD5543/AD5553  
CIRCUIT OPERATION  
The AD5543/AD5553 contain 16-/14-bit current output, DACs,  
serial input registers, and DAC registers. Both converters use a  
3-wire serial data interface.  
Note that a matching switch is used in series with the internal  
5 kΩ feedback resistor. If users attempt to measure RFB, power  
must be applied to VDD to achieve continuity.  
V
DD  
DAC SECTION  
R2  
The DAC architecture uses a current steering R-2R ladder  
design. Figure 18 shows the typical equivalent DAC structure.  
The DAC contains a matching feedback resistor for use with an  
external op amp (see Figure 19). With RFB and IOUT terminals  
connected to the op amp output and inverting node, respectively,  
a precision voltage output is achieved as  
C1  
V
R
DD  
FB  
I
1
OUT  
AD5543/  
AD5553  
V
V
REF  
A1  
REF  
R1  
GND  
V
= 0 TO –V  
REF  
OUT  
SYNC SCLK SDIN  
AGND  
V
OUT = −VREF × D/65,536 (AD5543)  
(1)  
(2)  
µCONTROLLER  
NOTES  
VOUT = −VREF × D/16,384 (AD5553)  
1. R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
2. C1 PHASE COMPENSATION (4pF TO 6pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Note that the output voltage polarity is the opposite of the VREF  
polarity for dc reference voltages.  
Figure 19. Voltage Output Configuration  
These DACs are designed to operate with either negative or  
positive reference voltages. The VDD power pin is only used  
by the internal logic to drive the on and off states of the DAC  
switches.  
These DACs are also designed to accommodate ac reference  
input signals. The AD5543 accommodates input reference  
voltages in the range of −12 V to +12 V. The reference voltage  
inputs exhibit a constant nominal input resistance value of 5 kΩ  
30%. The DAC output (IOUT) is code dependent, producing  
various resistances and capacitances. External amplifier choice  
should take into account the variation in impedance generated  
by the AD5543 on the inverting input node of the amplifier.  
The feedback resistance, in parallel with the DAC ladder  
resistance, dominates output voltage noise. To maintain good  
analog performance, power supply bypassing of 0.01 µF to 0.1 µF  
ceramic or chip capacitors, in parallel with a 1 µF tantalum  
capacitor, is recommended. Due to degradation of PSRR in  
frequency, users must avoid using switching power supplies.  
V
DD  
R
R
R
R
V
FB  
REF  
2R  
2R  
2R  
R
5kΩ  
S1  
S2  
I
OUT  
GND  
DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY;  
SWITCHES S1 AND S2 ARE CLOSED, V MUST BE POWERED.  
DD  
Figure 18. Equivalent R-2R DAC Circuit  
Rev. F | Page 9 of 20  
 
 
 
 
AD5543/AD5553  
Data Sheet  
SERIAL DATA INTERFACE  
V
DD  
CS  
The AD5543/AD5553 use a 3-wire ( , SDI, CLK) serial data  
interface. New serial data is clocked into the serial input register  
in a 16-bit data-word format for the AD5543. The MSB is loaded  
first. Table 5 defines the 16 data-word bits. Data is placed on the  
SDI pin and clocked into the register on the positive clock edge  
of CLK, subject to the data setup-and-hold time requirements  
that are specified in the interface timing specifications. Only the  
last 16 bits clocked into the serial register are interrogated when  
DIGITAL  
INPUTS  
5k  
DGND  
Figure 20. Equivalent ESD Protection Circuits  
PCB LAYOUT AND POWER SUPPLY BYPASSING  
CS  
the pin is strobed to transfer the serial register data to the DAC  
register. Because most microcontrollers output serial data in 8-  
bit bytes, two data bytes can be written to the AD5543/AD5553.  
It is a good practice to employ compact, minimum lead length  
PCB layout design. The leads to the input should be as short as  
possible to minimize IR drop and stray inductance.  
CS  
After loading the serial register, the rising edge of  
transfers  
the serial register data to the DAC register; during this strobe,  
the CLK should not be toggled. For the AD5553, with 16-bit  
clock cycles, the two LSBs are ignored.  
It is also essential to bypass the power supplies with quality  
capacitors for optimum stability. Supply leads to the device  
should be bypassed with 0.01 μF to 0.1 μF disc or chip ceramic  
capacitors. Low ESR 1 μF to 10 μF tantalum or electrolytic  
capacitors should also be applied at the supplies to minimize  
transient disturbance and filter out low frequency ripple.  
ESD PROTECTION CIRCUITS  
All logic input pins contain back-biased ESD protection Zener  
diodes that are connected to ground (DGND) and VDD, as  
shown in Figure 20.  
The PCB metal traces between VREF and RFB should also be  
matched to minimize gain error.  
Table 5. AD5543 Serial Input Register Data Format; Data Loaded MSB-First Format  
B15 (MSB)  
B14  
B13  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0 (LSB)  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Table 6. AD5553 Serial Input Register Data Format; Data Loaded MSB-First Format  
B13 (MSB)1  
B12  
B11  
B10  
B9  
B8  
B7  
B6  
B5  
B4  
D4  
B3  
D3  
B2  
B1  
B0 (LSB)  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D2  
D1  
D0  
1
CS  
A full 16-bit data-word can be loaded into the AD5553 serial input register, but only the last 14 bits entered are transferred to the DAC register when returns to  
logic high.  
Rev. F | Page 10 of 20  
 
 
 
 
 
 
Data Sheet  
AD5543/AD5553  
APPLICATIONS INFORMATION  
STABILITY  
BIPOLAR OUTPUT  
V
DD  
The AD5543/AD5553 are inherently 2-quadrant multiplying  
DACs. That is, they can easily be set up for unipolar output  
operation. The full-scale output polarity is the inverse of the  
reference input voltage.  
U1  
C1  
V
R
FB  
DD  
I
V
V
OUT  
REF  
REF  
V
O
AD8628  
In some applications, it may be necessary to generate the full  
4-quadrant multiplying capability or a bipolar output swing,  
which is easily accomplished by using an additional U4 external  
amplifier configured as a summing amplifier (see Figure 23). In  
this circuit, the second amplifier, U4, provides a gain of 2 that  
increases the output span magnitude to 5 V. Biasing the external  
amplifier with a 2.5 V offset from the reference voltage results in a  
full 4-quadrant multiplying circuit. The transfer equation of this  
circuit shows that both negative and positive output voltages are  
created as the input data (D) is incremented from code zero  
GND  
AD5543/AD5553  
U2  
Figure 21. Optional Compensation Capacitor for Gain Peaking Prevention  
In the I-to-V configuration, the IOUT of the DAC and the inverting  
node of the op amp must be connected as close as possible to  
each other, and proper PCB layout technique must be employed.  
Because every code change corresponds to a step function, gain  
peaking may occur if the op amp has limited GBP and there is  
excessive parasitic capacitance at the inverting node.  
(VOUT = −2.5 V) to midscale (VOUT = 0 V) to full-scale (VOUT  
=
An optional compensation capacitor, C1, can be added for  
stability, as shown in Figure 21. C1 should be found empirically,  
but 20 pF is generally adequate for the compensation.  
+2.5 V).  
V
V
OUT = (D/32,768 − 1) × VREF (AD5543)  
OUT = (D/16,384 − 1) × VREF (AD5553)  
(3)  
(4)  
POSITIVE VOLTAGE OUTPUT  
For the AD5543, the resistance tolerance becomes the dominant  
error of which users should be aware.  
To achieve the positive voltage output, an applied negative  
reference to the input of the DAC is preferred over the output  
inversion through an inverting amplifier because of the tolerance  
errors of the resistors. To generate a negative reference, the  
reference can be level-shifted by an op amp such that the VOUT  
and GND pins of the reference become the virtual ground and  
−2.5 V, respectively (see Figure 22).  
R1  
R2  
10kΩ ± 0.01% 10kΩ ± 0.01%  
C2  
U4  
+5V  
V+  
+5V  
U1  
5kΩ ± 0.01%  
V
O
R3  
ADR03  
1/2AD8620  
V–  
C1  
OUT  
V
R
FB  
+5V  
DD  
ADR03  
I
V
V
V
+5V  
IN  
REF  
GND  
OUT  
GND  
U3  
–5V  
1/2AD8620  
–2.5V < V < +2.5V  
V
V
O
IN  
OUT  
U4  
+5V  
U1  
V
GND  
U3  
–2.5V  
C1  
OUT  
AD5553 ONLY  
V
R
FB  
U2  
DD  
V+  
I
1/2AD8620  
V–  
REF  
Figure 23. 4-Quadrant Multiplying Application Circuit  
V
O
1/2AD8628  
GND  
–5V  
AD5543/AD5553  
U2  
0V < V < +2.5V  
O
Figure 22. Positive Voltage Output Configuration  
Rev. F | Page 11 of 20  
 
 
 
 
 
 
AD5543/AD5553  
Data Sheet  
PROGRAMMABLE CURRENT SOURCE  
REFERENCE SELECTION  
Figure 24 shows a versatile V-I conversion circuit using an  
improved Howland current pump. In addition to the precision  
current conversion it provides, this circuit enables a bidirectional  
current flow and high voltage compliance. This circuit can be used  
in 4 mA to 20 mA current transmitters with up to 500 Ω of load. In  
Figure 24, it can be shown that if the resistor network is matched,  
the load current is  
When selecting a reference for use with the AD55xx series of  
current output DACs, pay attention to the output voltage,  
temperature coefficient specification of the reference. Choosing  
a precision reference with a low output temperature coefficient  
minimizes error sources. Table 7 lists some of the references  
available from Analog Devices, Inc., that are suitable for use  
with this range of current output DACs.  
(
R2 + R3 /R1  
)
AMPLIFIER SELECTION  
IL  
=
×VREF × D  
(5)  
R3  
The primary requirement for the current-steering mode is an  
amplifier with low input bias currents and low input offset  
voltage. Because of the code-dependent output resistance of the  
DAC, the input offset voltage of an op amp is multiplied by the  
variable gain of the circuit. A change in this noise gain between  
two adjacent digital fractions produces a step change in the  
output voltage due to the amplifier’s input offset voltage. This  
output voltage change is superimposed upon the desired change  
in output between the two codes and gives rise to a differential  
linearity error, which, if large enough, can cause the DAC to be  
nonmonotonic.  
R3 in theory can be made small to achieve the current needed  
within the U3 output current driving capability. This circuit is  
versatile such that AD8510 can deliver 20 mA in both directions  
and the voltage compliance approaches 15 V, which is limited  
mainly by the supply voltages of U3. However, users must pay  
attention to the compensation. Without C1, it can be shown  
that the output impedance becomes  
R1' R3  
R2' + R3'  
If the resistors are perfectly matched, ZO is infinite, which is  
(
R1 + R2  
)
ZO  
=
(6)  
R1  
(
)
R1' R2 + R3  
(
)
The input bias current of an op amp also generates an offset at  
the voltage output because of the bias current flowing in the  
feedback resistor, RFB.  
desirable, and behaves as an ideal current source. On the other  
hand, if they are not matched, ZO can be either positive or negative.  
Negative can cause oscillation. As a result, C1 is needed to prevent  
the oscillation. For critical applications, C1 could be found  
empirically but typically falls in the range of a few picofarads (pF).  
Common-mode rejection of the op amp is important in voltage-  
switching circuits because it produces a code-dependent error  
at the voltage output of the circuit.  
V
DD  
Provided that the DAC switches are driven from true wideband  
low impedance sources (VIN and AGND), they settle quickly.  
Consequently, the slew rate and settling time of a voltage-  
switching DAC circuit is determined largely by the output op  
amp. To obtain minimum settling time in this configuration,  
minimize capacitance at the VREF node (the voltage output node  
in this application) of the DAC. This is done by using low input  
capacitance buffer amplifiers and careful board design.  
U1  
R
V
FB  
DD  
I
V
V
REF  
OUT  
REF  
R1'  
150kΩ  
R2'  
15kΩ  
AD8628  
GND  
C1  
10pF  
AD5543/AD5553  
U2  
V
DD  
U3  
R3'  
50Ω  
V+  
Analog Devices offers a wide range of amplifiers for both  
precision dc and ac applications, as listed in Table 8 and Table 9.  
AD8510  
V–  
R3  
50Ω  
V
SS  
V
L
R1  
150kΩ  
R2  
15kΩ  
I
LOAD  
L
Figure 24. Programmable Current Source with Bidirectional Current Control  
and High Voltage Compliance Capabilities  
Rev. F | Page 12 of 20  
 
 
 
 
Data Sheet  
AD5543/AD5553  
Table 7. Suitable Analog Devices Precision References  
Maximum Temperature  
Part No. Output Voltage (V) Initial Tolerance (%) Drift (ppm/°C)  
ISS (mA) Output Noise (μV p-p) Package(s)  
ADR01  
ADR01  
ADR02  
ADR02  
ADR03  
ADR03  
ADR06  
ADR06  
ADR420  
ADR421  
ADR423  
ADR425  
ADR431  
ADR435  
ADR391  
ADR395  
10  
10  
5.0  
5.0  
2.5  
2.5  
3.0  
3.0  
2.048  
2.50  
3.00  
5.00  
2.500  
5.000  
2.5  
0.05  
0.05  
0.06  
0.06  
0.1  
0.1  
0.1  
0.1  
0.05  
0.04  
0.04  
0.04  
0.04  
0.04  
0.16  
0.10  
3
9
3
9
3
9
3
9
3
3
3
3
3
3
9
9
1
1
1
1
1
1
1
1
0.5  
0.5  
0.5  
0.5  
0.8  
0.8  
0.12  
0.12  
20  
20  
10  
10  
6
SOIC-8  
TSOT-5, SC70-5  
SOIC-8  
TSOT-5, SC70-5  
SOIC-8  
TSOT-5, SC70-5  
SOIC-8  
TSOT-5, SC70-5  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
TSOT-5  
6
10  
10  
1.75  
1.75  
2
3.4  
3.5  
8
5
8
5.0  
TSOT-5  
Table 8. Suitable Analog Devices Precision Op Amps  
OS Maximum IB Maximum 0.1 Hz to 10 Hz  
V
Part No.  
Supply Voltage (V) (μV)  
(nA)  
Noise (μV p-p)  
Supply Current (μA) Package(s)  
OP97  
2 ꢀo 20  
2.5 ꢀo 15  
5 ꢀo 18  
5 ꢀo 15  
5 ꢀo 15  
1.8 ꢀo 5  
1.8 ꢀo 5  
2.7 ꢀo 5  
2.7 ꢀo 5  
2.7 ꢀo 5  
25  
60  
75  
75  
125  
50  
50  
65  
65  
65  
0.1  
2
2
12  
0.5  
0.4  
0.1  
0.077  
0.1  
2.3  
2.3  
2.3  
2.4  
2.4  
600  
500  
2300  
3000  
2000  
40  
SOIC-8 , PDIP-8  
MSOP-8, SOIC-8  
MSOP-8, SOIC-8  
MSOP-8, SOIC-8  
SOIC-8, SOT-23-5  
TSOT-5  
MSOP-8, SOIC-8  
WLCSP-5, SOT-23-5  
TSOT-5  
OP1177  
AD8675  
AD8671  
ADA4004-1  
AD8603  
AD8607  
AD8605  
AD8615  
AD8616  
90  
0.001  
0.001  
0.001  
0.001  
0.001  
40  
1000  
2000  
2000  
MSOP-8, SOIC-8  
Table 9. Suitable Analog Devices High Speed Op Amps  
Part No.  
AD8065  
AD8066  
AD8021  
AD8038  
ADA4899-1  
AD8057  
AD8058  
AD8061  
AD8062  
AD9631  
Supply Voltage (V) BW @ ACL (MHz)  
Slew Rate (V/μs)  
VOS (Max) (μV)  
1500  
1500  
1000  
3000  
35  
5000  
5000  
6000  
IB (Max) (nA)  
0.006  
0.006  
10,500  
750  
100  
500  
500  
350  
Package(s)  
5 ꢀo 24  
5 ꢀo 24  
5 ꢀo 24  
3 ꢀo 12  
5 ꢀo 12  
3 ꢀo 12  
3 ꢀo 12  
2.7 ꢀo 8  
2.7 ꢀo 8  
3 ꢀo 6  
145  
145  
490  
350  
600  
325  
325  
320  
320  
320  
180  
180  
120  
425  
310  
1000  
850  
650  
650  
1300  
SOIC-8, SOT-23-5  
SOIC-8, MSOP-8  
SOIC-8, MSOP-8  
SOIC-8, SC70-5  
LFCSP-8, SOIC-8  
SOT-23-5, SOIC-8  
SOIC-8, MSOP-8  
SOT-23-5, SOIC-8  
SOIC-8, MSOP-8  
SOIC-8, PDIP-8  
6000  
10,000  
350  
7000  
Page 13 of 20  
 
 
 
AD5543/AD5553  
Data Sheet  
EVALUATION BOARD  
The EVAL-AD5543/EVAL-AD5553 is used in conjunction with  
an SDP1Z system development platform board available from  
Analog Devices, which is purchased separately from the  
evaluation board. The USB-to-SPI communication to the  
AD5543 is completed using this Blackfin-based development  
board. The software offers a waveform generator.  
SPORT_TFS  
SPORT_TSCLK  
SPORT_DTO  
CS  
SCLK  
SDIN  
SYSTEM DEVELOPMENT PLATFORM  
ADSP-BF527  
AD5543/AD5553  
The system development platform (SDP) is a hardware and  
software evaluation tool for use in conjunction with product  
evaluation boards. The SDP board is based on the Blackfin  
BF527 processor with USB connectivity to the PC through a  
USB 2.0 high speed port. For more information about this  
device, see the system development platform web page.  
Figure 25. AD5543/AD5553 to SPORT Interface  
WAVEFORM GENERATOR  
The evaluation board software offers a waveform generator to  
show every change introduced and transmitted to the output.  
OPERATING THE EVALUATION BOARD  
AD5543/AD5553 TO SPORT INTERFACE  
The evaluation board requires 12 V and +5 V supplies. The  
+12 V VDD and VSS are used to power the output amplifier, while  
the +5 V is used to power the DAC (VDD1).  
The Analog Devices SDP has one SPORT serial port. The  
SPORT interface is used to control the AD5543/AD5553,  
allowing clock frequencies up to 30 MHz.  
Figure 26. Evaluation Board Software—Waveform Generator  
Rev. F | Page 14 of 20  
 
 
 
 
 
Data Sheet  
AD5543/AD5553  
1 2 6  
0
+
+
+
Figure 27. Schematic of AD5543/AD5553 Evaluation Board  
Rev. F | Page 15 of 20  
AD5543/AD5553  
Data Sheet  
BMODE1: PULL UP WITH A 10k RESISTOR TO SET SDP TO BOOT FROM A SPI FLASH ON THE DAUGHTER BOARD  
J2  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
61  
RESET_IN  
UART_RX  
GND  
NC  
BMODE1  
UART_TX  
GND  
62  
63  
64  
BOARD ID EEPROM (24LC64) MUST BE ON I2C BUS 0, ADDRESS IS AT USER DISCRETION  
NC  
65  
SDP  
STANDARD  
CONNECTOR  
NC  
NC  
66  
NC  
NC  
3.3V_BF  
67  
NC  
NC  
U4  
68  
NC  
NC  
69  
1
2
3
4
8
7
6
5
GND  
NC  
GND  
A0  
VCC  
WP  
SCL  
SDA  
70  
NC  
NC  
A1  
71  
NC  
TMR_C  
A2  
VSS  
72  
*
TMR_D  
TMR_B  
GPIO7  
73  
TIMERS  
TMR_A  
GPIO6  
GND  
GPIO4  
GPIO2  
GPIO0  
SCL_1  
SDA_1  
GND  
74  
24LC64  
75  
GND  
76  
GENERAL  
INPUT/OUTPUT  
GPIO5  
77  
GPIO3  
STATUS  
START  
78  
GPIO1  
79  
SCL_0  
80  
I2C  
SDA_0  
81  
GND  
82  
MAIN I2C BUS (CONNECTED TO BLACKFIN TWI - PULL UP RESISTORS NOT REQUIRED)  
SPI_SEL1/SPI_SS  
SPI_SEL_C  
SPI_SEL_B  
GND  
SPI_CLK  
SPI_MISO  
SPI_MOSI  
SPI_SEL_A  
GND  
83  
84  
SPI  
I2C BUS 1 IS COMMON ACROSS BOTH CONNECTORS ON SDP - PULL UP RESISTORS REQUIRED  
(CONNECTED TO BLACKFIN GPIO - USE I2C_0 FIRST)  
85  
86  
SPORT_INT  
87  
*
SPORT_DT3  
SPORT_TSCLK  
SPORT_DT0  
SPORT_TFS  
SPORT_RFS  
SPORT_DR0  
SPORT_RSCLK  
GND  
SCLK  
SDIN  
/CS  
88  
*
SPORT_DT2  
89  
SPORT  
SPORT_DT1  
SPORT_DR1  
90  
91  
*
*
SPORT_DR2  
92  
SPORT_DR3  
93  
GND  
94  
PAR_FS1  
PAR_FS3  
PAR_A1  
PAR_A3  
GND  
PAR_CLK  
PAR_FS2  
PAR_A0  
PAR_A2  
GND  
PAR_INT  
PAR_WR  
PAR_D0  
PAR_D2  
PAR_D4  
GND  
PAR_D6  
PAR_D8  
PAR_D10  
PAR_D12  
GND  
95  
96  
97  
98  
99  
PAR_CS  
PAR_RD  
PAR_D1  
PAR_D3  
PAR_D5  
GND  
PAR_D7  
PAR_D9  
PAR_D11  
PAR_D13  
PAR_D14  
GND  
PAR_D17  
PAR_D19  
PAR_D21  
PAR_D23  
GND  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
PARALLEL  
PORT  
USB_VBUS  
PAR_D15  
*
*
*
*
*
PAR_D16  
*
PAR_D18  
8
3.3V_BF  
*
*
PAR_D20  
7
PAR_D22  
6
GND  
VIO(+3.3V)  
GND  
5
VIO: USE TO SET IO VOLTAGE MAX DRAW 20mA  
USB_VBUS  
GND  
GND  
NC  
VIN  
4
VIN: USE THIS PIN TO POWER THE SDP  
REQUIRES 4-7V 200mA  
3
GND  
2
NC  
NC  
1
*NC ON BLACKFIN SDP  
Figure 28. Schematic of SDP Interface  
Rev. F | Page 16 of 20  
Data Sheet  
AD5543/AD5553  
Figure 29. Silkscreen—Component Side View (Top Layer)  
Figure 30 Component Side Artwork  
Figure 31. Solder Side Artwork  
Rev. F | Page 17 of 20  
AD5543/AD5553  
Data Sheet  
BILL OF MATERIALS  
Table 10.  
Name  
CS  
Part Description  
Value  
PCB Decal  
Testpoint  
Testpoint  
RTAJ_A  
C0603  
C0603  
RTAJ_B  
C0603  
RTAJ_B  
C0603  
Part Description  
Testpoint  
Red testpoint  
AGND  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
Testpoint  
Black testpoint  
Capacitor+  
Capacitor  
Capacitor  
Capacitor+  
Capacitor  
Capacitor+  
Capacitor  
Capacitor+  
Capacitor  
Capacitor  
Capacitor  
Capacitor  
Ground link  
CON\POWER5  
SDP-STANDARD-CONN  
SMB  
10 µF  
0.1 µF  
5.6 pF  
10 µF  
0.1 µF  
10 µF  
0.1 µF  
10 µF  
0.1 µF  
0.1 µF  
10 µF  
0.1 µF  
10 V SMD tantalum capacitor  
50 V X7R ceramic capacitor  
Multilayer ceramic capacitor  
16 V tantalum capacitor  
50 V X7R ceramic capacitor  
16 V tantalum capacitor  
50 V X7R ceramic capacitor  
16 V tantalum capacitor  
50 V X7R ceramic capacitor  
50 V X7R ceramic capacitor  
RTAJ_B  
C0603  
C0603  
C0805  
C9  
C10  
C11  
C12  
GL1  
J1  
J2  
J3  
J4  
10 V 10 µF ceramic capacitor 10% X5R 0805  
50 V X7R ceramic capacitor  
Copper short  
C0603  
Component link  
CON\POWER5  
CON-120/FX8-120S-SV  
SMB  
5-pin terminal block  
120-way connector, 0.6 mm pitch, receptacle  
Straight PCB mount SMB jack—50 Ω  
Straight PCB mount SMB jack—50 Ω  
Red testpoint  
Red testpoint  
Digital-to-analog converter  
5 V reference  
SMB  
Testpoint  
Testpoint  
AD5543/AD5553  
ADR435  
SMB  
SCLK  
SDIN  
U1  
Testpoint  
Testpoint  
SO8NB  
U2  
SO8NB  
U3  
AD8038  
SO8NB  
Single op amp 8-pin  
U4  
24LC64  
Testpoint  
Testpoint  
Testpoint  
MTHOLE-3MM  
MTHOLE-3MM  
MSO8  
64K I2C serial EEPROM MSOP8  
Black testpoint  
Red testpoint  
Red testpoint  
3 mm NPTH hole  
USB_VBUS  
VOUT  
VREF  
X1  
Testpoint  
Testpoint  
Testpoint  
MTHOLE-3MM  
MTHOLE-3MM  
X2  
3 mm NPTH hole  
Rev. F | Page 18 of 20  
 
Data Sheet  
AD5543/AD5553  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 32. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 33. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. F | Page 19 of 20  
 
AD5543/AD5553  
Data Sheet  
ORDERING GUIDE  
Model1, 2  
AD5543CRMZ  
AD5543CRMZ-REEL7  
AD5543BR  
AD5543BRZ  
AD5543BRM  
AD5543BRM-REEL7  
AD5543BRMZ  
AD5543BRMZ-REEL7  
AD5553CRM  
AD5553CRM-REEL7  
AD5553CRMZ  
INL (LSB)  
RES (LSB)  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
Evaluation Board  
Package Option  
Branding  
DEV  
DEV  
1
1
2
2
2
2
2
2
1
1
1
1
16  
16  
16  
16  
16  
16  
16  
16  
14  
14  
14  
14  
RM-8  
RM-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
DXB  
DXB  
DXB#  
DXB#  
DUC  
DUC  
DUC#  
DUC#  
AD5553CRMZ-REEL7  
EVAL-AD5543SDZ  
1 The AD5543 contains 1040 transistors. The die size measures 55 mil × 73 mil or 4,015 sq. mil.  
2 Z = RoHS Compliant Part, # denotes RoHS-compliant product may be top or bottom marked.  
©2002–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D02917-0-1/12(F)  
Rev. F | Page 20 of 20  
 

相关型号:

AD5543CRMZ-REEL7

Current Output/Serial Input, 16-/14-Bit DACs
ADI

AD5543CRZ

IC SERIAL INPUT LOADING, 0.5 us SETTLING TIME, 16-BIT DAC, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8, Digital to Analog Converter
ADI

AD5543CRZ-REEL7

IC SERIAL INPUT LOADING, 0.5 us SETTLING TIME, 16-BIT DAC, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8, Digital to Analog Converter
ADI

AD5543_12

Current Output/Serial Input, 16-/14-Bit DACs
ADI

AD5544

Quad, Current-Output Serial-Input, 16-Bit/14-Bit DACs
ADI

AD55444

13-BIT 250 MSPS ANALOG-TO-DIGITAL CONVERTER
TI

AD5544ACPZ-1-R2

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544ACPZ-1-RL7

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544ARS

Quad, Current-Output Serial-Input, 16-Bit/14-Bit DACs
ADI

AD5544ARSZ

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544ARSZ-REEL7

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI

AD5544BCPZ-R2

Quad, Current-Output, Serial-Input 16-/14-Bit DACs
ADI