AD5546CRUZ [ADI]

Current-Output Parallel-Input, 16-Bit Digital-to-Analog Converter;
AD5546CRUZ
型号: AD5546CRUZ
厂家: ADI    ADI
描述:

Current-Output Parallel-Input, 16-Bit Digital-to-Analog Converter

转换器 数模转换器
文件: 总16页 (文件大小:567K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Current Output, Parallel Input, 16-/14-Bit  
Multiplying DACs with 4-Quadrant Resistors  
AD5546/AD5556  
FEATURES  
16-bit resolution  
FUNCTIONAꢀ BꢀOCK DIAGRAM  
R
R
REF R  
1
COM  
OFS  
14-bit resolution  
2- or 4-quadrant multiplying DAC  
1 ꢀSB DNꢀ  
1 ꢀSB INꢀ or 2 ꢀSB INꢀ  
Operating supply voltage: 2.7 V to 5.5 V  
ꢀow noise: 12 nV/Hz  
ꢀow power: IDD = 10 µA  
0.5 µs settling time  
R
R
R
R
FB  
1
2
OFS  
R
I
FB  
DAC  
16/14  
AD5546/  
AD5556  
OUT  
V
DD  
WR  
CONTROL  
LOGIC  
DAC  
REGISTER  
LDAC  
GND  
DB0–DB15  
POR  
Built-in RFB facilitates current-to-voltage conversion  
Built-in 4-quadrant resistors allow 0 V to –10 V, 0 V to +10 V,  
or 10 V outputs  
MSB RS  
Figure 1. AD5546/AD5556 Simplified Block Diagram  
2 mA full-scale current 20ꢁ, with VREF = 10 V  
Automotive operating temperature: –40°C to +125°C  
Compact TSSOP-28 package  
GENERAꢀ DESCRIPTION  
The AD5546/AD5556 are precision 16-/14-bit, multiplying, low  
power, current output, parallel input D/A converters. They  
operate from a single 2.7 V to 5.5 V supply with 1ꢀ V multi-  
plying references for 4-quadrant outputs. Built-in 4-quadrant  
resistors facilitate the resistance matching and temperature  
tracking that minimize the number of components needed for  
multiquadrant applications. The feedback resistor (RFB) simpli-  
fies the I-V conversion with an external buffer. The AD5546/  
AD5556 are packaged in compact TSSOP-28 packages with  
operating temperatures from –4ꢀ°C to +125°C.  
APPꢀICATIONS  
Automatic test equipment  
Instrumentation  
Digitally controlled calibration  
Digital waveform generation  
5V  
2
+
VIN  
U2A  
U3  
ADR03  
OP2177  
5
6
C1  
TRIM  
–VREF  
REF  
+VREF  
VOUT  
GND  
4
R1  
RCOM  
ROF  
RFB  
R1  
R2  
ROFS  
RFB  
C2  
5V  
VDD  
IOUT  
16/14-BIT  
U1  
U2B  
OP2177  
AD5546/AD5556  
VOUT  
GND  
16/14 DATA  
+
–VREF TO +VREF  
WR LDAC RS MSB  
WR  
LDAC  
RS  
MSB  
Figure 2. 16-/14-Bit, 4-Quadrant Multiplying DAC with a Minimum of External Components  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
 
AD5546/AD5556  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Pin Configurations and Functional Descriptions ........................ 6  
Typical Performance Characteristics ............................................. 8  
Circuit Operation ........................................................................... 11  
D/A Converter Section.............................................................. 11  
Digital Section............................................................................. 12  
ESD Protection Circuits............................................................. 12  
Amplifier Selection..................................................................... 12  
Reference Selection .................................................................... 12  
Applications..................................................................................... 13  
Unipolar Mode ........................................................................... 13  
Bipolar Mode .............................................................................. 14  
AC Reference Signal Attenuator............................................... 15  
System Calibration ..................................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
REVISION HISTORY  
Revision ꢀ: Initial Version  
Rev. 0 | Page 2 of 16  
AD5546/AD5556  
SPECIFICATIONS  
Table 1. Electrical Characteristics. VDD = 2.7 V to 5.5 V, IOUT = virtual GND, GND = 0 V, VREF = –10 V to 10 V, TA = full operating  
temperature range, unless otherwise noted.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
STATIC PERFORMANCE1  
Resolution  
N
N
AD5546, 1 LSB = VREF/216 = 153 µV at  
16  
14  
Bits  
Bits  
V
REF = 10 V  
Resolution  
AD5556, 1 LSB = VREF/214 = 610 µV at  
VREF = 10 V  
Relative Accuracy  
Relative Accuracy  
INL  
INL  
DNL  
IOUT  
IOUT  
GFSE  
GE  
Grade: AD5556C  
Grade: AD5546B  
Monotonic  
Data = zero scale, TA = 25°C  
Data = zero scale, TA = TA maximum  
Data = full scale  
Data = full scale  
Data = full scale  
1
2
1
10  
20  
4
LSB  
LSB  
LSB  
nA  
Differential Nonlinearity  
Output Leakage Current  
Output Leakage Current  
Full-Scale Gain Error  
Bipolar Mode Gain Error  
nA  
1
1
1
mV  
mV  
mV  
4
2.5  
Bipolar Mode Zero-Scale  
Error  
GZSE  
Full-Scale Tempco  
REFERENCE INPUT  
VREF Range  
2
TCVFS  
1
ppm/°C  
VREF  
REF  
R1 and R2  
∆(R1 to R2)  
RFB, ROFS  
–18  
4
4
+18  
6
6
1.5  
12  
V
REF Input Resistance  
R1 and R2 Resistance  
R1-to-R2 Mismatch  
Feedback and Offset  
Resistance  
5
5
0.5  
10  
kΩ  
kΩ  
8
kΩ  
Input Capacitance2  
ANALOG OUTPUT  
Output Current  
CREF  
5
pF  
IOUT  
COUT  
Data = full scale  
Code dependent  
2
200  
mA  
pF  
Output Capacitance  
2
LOGIC INPUT AND OUTPUT  
Logic Input Low Voltage  
Logic Input Low Voltage  
Logic Input High Voltage  
Logic Input High Voltage  
Input Leakage Current  
VIL  
VIL  
VIH  
VIH  
IIL  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
0.8  
0.4  
V
V
V
V
µA  
pF  
2.4  
2.1  
10  
10  
Input Capacitance  
2
CIL  
INTERFACE TIMING, 3  
2
Data to WR Setup Time  
Data to WR Hold Time  
WR Pulse Width  
tDS  
tDH  
tWR  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
20  
35  
0
ns  
ns  
ns  
ns  
ns  
0
20  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
35  
20  
35  
20  
35  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LDAC Pulse Width  
RS Pulse Width  
tLDAC  
tRS  
WR to LDAC Delay Time  
tLWD  
0
Rev. 0 | Page 3 of 16  
 
 
 
 
 
AD5546/AD5556  
Parameter  
Symbol Condition  
Min Typ Max  
Unit  
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Power Dissipation  
Power Supply Sensitivity  
AC CHARACTERISTICS4  
VDD RANGE  
IDD  
PDISS  
PSS  
2.7  
5.5  
10  
V
µA  
Logic inputs = 0 V  
Logic inputs = 0 V  
∆VDD 5ꢀ  
0.055 mW  
0.003 ꢀ/ꢀ  
=
Output Voltage Settling  
Time  
tS  
To 0.1ꢀ of full scale, data cycles from zero scale to full scale  
to zero scale  
0.5  
µs  
Reference Multiplying BW  
DAC Glitch Impulse  
Multiplying Feedthrough  
Error  
BW  
Q
VREF = 5 V p-p, data = full scale  
VREF = 0 V, midscale to midscale minus 1  
4
7
–65  
MHz  
nV-s  
dB  
V
OUT/VREF VREF = 100 mV rms, f = 10 kHz  
Digital Feedthrough  
QD  
WR = 1, LDAC toggles at 1MHz  
VREF = 5 V p-p, data = full-scale, f = 1 KHz  
f = 1 kHz, BW = 1 Hz  
7
nV-s  
dB  
nV/rt  
Hz  
Total Harmonic Distortion  
Output Noise Density  
THD  
eN  
–85  
12  
1 All static performance tests (except IOUT) are performed in a closed-loop system, using an external precision OP97 I-V converter amplifier. The AD554x RFB terminal is  
tied to the amplifier output. The op amp +IN is grounded and the DAC IOUT is tied to the op amp –IN. Typical values represent average readings measured at 25°C.  
2 These parameters are guaranteed by design and not subject to production testing.  
3 All input control signals are specified with tR = tF = 2.5 ns (10ꢀ to 90ꢀ of 3 V), and timed from a voltage level of 1.5 V.  
4 All ac characteristic tests are performed in a closed-loop system using an AD841 I-V converter amplifier.  
Rev. 0 | Page 4 of 16  
AD5546/AD5556  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
VDD to GND  
–0.3 V, +8 V  
–18 V, 18 V  
–0.3 V, +8 V  
–0.3 V, VDD + 0.3 V  
50 mA  
128°C  
150°C  
–40°C to +125°C  
–65°C to +150°C  
RFB, ROFS, R1, RCOM, and REF to GND  
Logic Inputs to GND  
V(IOUT) to GND  
Input Current to Any Pin except Supplies  
Thermal Resistance (θJA)  
Maximum Junction Temperature (TJ MAX  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature:  
)
Vapor Phase, 60 s  
215°C  
Infrared, 15 s  
220°C  
Package Power Dissipation  
(TJ MAX – TA)/θJA  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 5 of 16  
 
AD5546/AD5556  
PIN CONFIGURATIONS AND FUNCTIONAL DESCRIPTIONS  
D5  
D4  
D3  
D2  
D1  
D0  
NC  
NC  
1
2
28 V  
DD  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
2
28  
V
DD  
27 D6  
27 D8  
3
26 D7  
3
26 D9  
4
25 D8  
4
25 D10  
24 D11  
23 D12  
22 D13  
21 D14  
20 D15  
19 GND  
18 RS  
5
24 D9  
5
6
23 D10  
22 D11  
21 D12  
20 D13  
19 GND  
18 RS  
6
AD5556  
AD5546  
7
7
TOP VIEW  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
8
8
R
9
R
9
OFS  
OFS  
R
10  
R
10  
FB  
FB  
R1 11  
R
12  
COM  
R1 11  
12  
17 MSB  
16 WR  
15 LDAC  
R
17 MSB  
16 WR  
15 LDAC  
COM  
REF 13  
14  
REF 13  
I 14  
OUT  
I
OUT  
NC = NO CONNECT  
Figure 3.AD5546 Pin Configuration  
Figure 4. AD5556 Pin Configuration  
Table 3. AD5546 Functional Descriptions  
Pin No. Mnemonic Description  
1–8  
9
D7 to D0  
ROFS  
Digital Input Data Bits D7 to D0. Signal level must be ≤ VDD + 0.3 V.  
Bipolar Offset Resistor. Accepts up to 18 V. In 2-quadrant mode ties to RFB. In 4-quadrant mode ties to R1 and  
external reference.  
10  
11  
12  
RFB  
R1  
RCOM  
Internal Matching Feedback Resistor. Connects to the output of an external op amp for I-V conversion.  
4-Quandrant Resistor R1. In 2-quadrant mode shorts to REF pin. In 4-quadrant mode ties to ROFS.  
Center Tap Point of Two 4-Quadrant Resistors, R1 and R2. In 4-quadrant mode, ties to the inverting node of the  
reference amplifier. In 2-quadrant mode, shorts to REF pin.  
13  
REF  
DAC Reference Input in 2-Quadrant Mode and R2 Terminal in 4-Quadrant Mode. In 2-quadrant mode, this is the  
reference input with constant input resistance versus code. In 4-quadrant mode, this pin is driven by the external  
reference amplifier.  
14  
15  
16  
IOUT  
LDAC  
WR  
DAC Current Output. Connects to the inverting node of an external op amp for I-V conversion.  
Digital Input Load DAC Control. Signal level must be ≤ VDD + 0.3 V.  
Write Control Digital Input in Active Low. Transfers shift-register data to DAC register on rising edge. Signal level  
must be ≤ VDD + 0.3 V.  
17  
18  
MSB  
RS  
Power-On Reset State. MSB = 0 resets at zero scale, MSB = 1 resets at midscale. Signal level must be ≤ VDD + 0.3 V.  
Reset in Active Low. Resets to zero scale if MSB = 0, and resets to midscale if MSB = 1. Signal level must be  
≤ VDD + 0.3 V.  
19  
GND  
Analog and Digital Grounds.  
20–21  
22–27  
28  
D15 to D14 Digital Input Data Bits D15 to D14. Signal level must be ≤ VDD + 0.3 V.  
D13 to D8  
VDD  
Digital Input Data Bits D13 to D8. Signal level must be ≤ VDD + 0.3 V.  
Positive Power Supply Input. Specified range of operation: 2.7 V to 5.5 V.  
Table 4. AD5556 Functional Descriptions  
Pin No. Mnemonic Description  
1–6  
7–8  
9
D5 to D0  
NC  
ROFS  
Digital Input Data Bits D5 to D0. Signal level must be VDD+0.3 V.  
No Connection. User should not connect anything other than dummy pads on these terminals.  
Bipolar Offset Resistor. Accepts up to 18 V. In 2-quadrant mode ties to RFB. In 4-quadrant mode ties to R1 and  
external reference.  
10  
11  
12  
RFB  
R1  
RCOM  
Internal Matching Feedback Resistor. Connects to the output of an external op amp for I-V conversion.  
4-Quandrant Resistor R1. In 2-quadrant mode shorts to REF pin. In 4-quadrant mode ties to ROFS.  
Center Tap Point of Two 4-Quadrant Resistors, R1 and R2. In 4-quadrant mode, ties to the inverting node of the  
reference amplifier. In 2-quadrant mode, shorts to REF pin.  
13  
14  
REF  
IOUT  
DAC Reference Input in 2-Quadrant Mode and R2 Terminal in 4-Quadrant Mode. In 2-quadrant mode, this is the  
reference input with constant input resistance versus code. In 4-quadrant mode, this pin is driven by the external  
reference amplifier.  
DAC Current Output. Connects to the inverting node of an external op amp for I-V conversion.  
Rev. 0 | Page 6 of 16  
 
AD5546/AD5556  
Pin No. Mnemonic Description  
15  
16  
LDAC  
WR  
Digital Input Load DAC Control. Signal level must be VDD + 0.3 V.  
Write Control Digital Input in Active Low. Transfers shift-register data to DAC register on rising edge. Signal level  
must be VDD + 0.3 V.  
17  
18  
MSB  
RS  
Power On Reset State. MSB = 0 resets at zero-scale, MSB = 1 resets at midscale. Signal level must be VDD + 0.3 V.  
Reset in Active Low. Resets to zero-scale if MSB = 0 and resets to midscale if MSB = 1. Signal level must be  
VDD + 0.3 V.  
19  
GND  
Analog and Digital Grounds.  
20–27  
28  
D13 to D6  
VDD  
Digital Input Data Bits D13 to D6. Signal level must be VDD + 0.3 V.  
Positive power supply input. Specified range of operation: 2.7 V to 5.5 V.  
tWR  
WR  
DATA  
tDH  
tDS  
tLWD  
LDAC  
tLDAC  
tRS  
RS  
Figure 5. AD5546/AD5556 Timing Diagram  
Table 5. AD5546 Parallel Input Data Format  
MSB  
B15  
D15  
LSB  
B0  
D0  
Bit Position  
Data Word  
B14  
D14  
B13  
D13  
B12  
D12  
B11  
D11  
B10  
D10  
B9  
D9  
B8  
D8  
B7  
D7  
B6  
D6  
B5  
D5  
B4  
D4  
B3  
D3  
B2  
D2  
B1  
D1  
Table 6. AD5556 Parallel Input Data Format  
MSB  
LSB  
Bit Position  
Data Word  
B13  
D13  
B12 B11  
D12 D11  
B10 B9  
D10 D9  
B8  
B7 B6  
B5 B4  
D5 D4  
B3  
D3  
B2 B1  
D2 D1  
B0  
D0  
D8 D7 D6  
Table 7. Control Inputs  
RS WR  
ꢀDAC Register Operation  
0
1
1
1
1
X
0
1
0
X
0
1
1
Reset output to 0, with MSB pin = 0. Midscale with MSB pin = 1.  
Load input register with data bits.  
Load DAC register with the contents of the input register.  
Input and DAC registers are transparent.  
When LDAC and WR are tied together and programmed as a pulse, the data bits are loaded into the input register on  
the falling edge of the pulse, and then loaded into the DAC register on the rising edge of the pulse.  
No register operation.  
1
1
0
Rev. 0 | Page 7 of 16  
AD5546/AD5556  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
1.0  
0.8  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE (Decimal)  
0
0248 4096  
6144  
8192 10240 12288 14336 16384  
CODE (Decimal)  
Figure 9. AD5556 Differential Nonlinearity Error  
Figure 6. AD5546 Integral Nonlinearity Error  
1.5  
1.0  
1.0  
0.8  
V
T
= 2.5V  
= 25°C  
REF  
A
0.6  
0.4  
0.5  
0.2  
INL  
0
0
DNL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
GE  
2
4
6
8
10  
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE (Decimal)  
SUPPLY VOLTAGE V (V)  
DD  
Figure 10. Linearity Error vs. VDD  
Figure 7. AD5546 Differential Nonlinearity Error  
1.0  
0.8  
5
4
3
2
V
= 5V  
= 25°C  
DD  
T
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
1
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
IH  
4.0  
4.5  
5.0  
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
LOGIC INPUT VOLTAGE V (V)  
CODE (Decimal)  
Figure 8. AD5556 Integral Nonlinearity Error  
Figure 11. Supply Current vs. Logic Input Voltage  
Rev. 0 | Page 8 of 16  
 
AD5546/AD5556  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
LDAC (5V/DIV)  
0x5555  
0x8000  
V
V
= 5V  
DD  
= 10V  
REF  
CODES 0x8000 0x7FFF  
0xFFFF  
0x0000  
V
(50mV/DIV)  
OUT  
10k  
100k  
1M  
CLOCK FREQUENCY (Hz)  
10M  
100M  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
TIME (µs)  
Figure 12. AD5546 Supply Current vs. Clock Frequency  
Figure 15. AD5546 Midscale Transition and Digital Feedthrough  
REF LEVEL  
0.000dB  
/DIV  
12.000dB  
MARKER 4 41 677.200Hz  
MAG (A/R) –2.939db  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0xFFFF  
0x8000  
0x4000  
0x2000  
0x1000  
0x0800  
0x0400  
0x0200  
0x0100  
0x0080  
0x0040  
0x0020  
0x0010  
0x0008  
0x0004  
0x0002  
0x0001  
V
V
= 5V ± 10%  
DD  
–12dB  
–24dB  
–36dB  
–48dB  
–60dB  
–72dB  
–84dB  
–96dB  
–108dB  
= 10V  
REF  
0x0000  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
START 10.000Hz  
STOP 50 000 000.000Hz  
Figure 16. AD5546 Unipolar Reference Multiplying Bandwidth  
Figure 13. Power Supply Rejection Ratio vs. Frequency  
REF LEVEL  
0.000dB  
/DIV  
12.000dB  
0
ALL BITS ON  
D15 AND D14 ON  
D15 AND D13 ON  
D15 AND D12 ON  
D15 AND D11 ON  
D15 AND D10 ON  
–12  
–24  
–36  
–48  
–60  
–72  
–84  
–96  
–108  
–120  
LDAC  
1
D15 AND D9 ON  
D15 AND D8 ON  
D15 AND D7 ON  
D15 AND D6 ON  
D15 AND D5 ON  
2
D15 AND D4 ON  
D15 AND D3 ON  
D15 AND D2 ON  
D15 AND D1 ON  
V
OUT  
D15 AND D0 ON  
D15 ON  
CH1 5.00V CH2 2.00V M 200ns  
A CH1 2.70V  
B CH1 –6.20V  
400.00ns  
10  
100  
1k  
10k  
100k  
1M  
10M  
START 10.000Hz  
STOP 10 000 000.000Hz  
Figure 17. AD5546 Bipolar Reference Multiplying Bandwidth  
(Codes from Midscale to Full Scale)  
Figure 14. Settling Time from Full Scale to Zero Scale  
Rev. 0 | Page 9 of 16  
AD5546/AD5556  
REF LEVEL  
0.000dB  
/DIV  
12.000dB  
0
–12  
–24  
–36  
–48  
–60  
–72  
–84  
–96  
–108  
–120  
ALL BITS OFF  
D14 ON  
D14 AND D13 ON  
D14 AND D12 ON  
D14 AND D11 ON  
D14 AND D10 ON  
D14 AND D9 ON  
D14 AND D8 ON  
D14 AND D7 ON  
D14 AND D6 ON  
D14 AND D5 ON  
D14 AND D4 ON  
D14 AND D3 ON  
D14 AND D2 ON  
D14 AND D1 ON  
D14 AND D0 ON  
D14 ON  
10  
100  
1k  
10k  
100k  
1M  
10M  
START 10.000Hz  
STOP 10 000 000.000Hz  
Figure 18. AD5546 Bipolar Reference Multiplying Bandwidth  
(Codes from Midscale to Zero Scale)  
Rev. 0 | Page 10 of 16  
AD5546/AD5556  
CIRCUIT OPERATION  
The reference voltage inputs exhibit a constant input resistance  
of 5 kΩ 2ꢀ0. The DAC output, IOUT, impedance is code depen-  
dent. External amplifier choice should take into account the  
variation of the AD5546/AD5556 output impedance. The  
feedback resistance in parallel with the DAC ladder resistance  
dominates output voltage noise. To maintain good analog  
performance, it is recommended to bypass the power supply  
with a ꢀ.ꢀ1 µF to ꢀ.1 µF ceramic or chip capacitor in parallel  
with a 1 µF tantulum capacitor. Also, to minimize gain error,  
PCB metal traces between VREF and RFB should match.  
D/A CONVERTER SECTION  
The AD5546/AD5556 are 16-/14-bit multiplying, current out-  
put, and parallel input DACs. The devices operate from a single  
2.7 V to 5.5 V supply, and provide both unipolar ꢀ V to –VREF, or  
ꢀ V to +VREF, and bipolar VREF output ranges from a –18 V to  
+18 V reference. In addition to the precision conversion RFB  
commonly found in current output DACs, there are three addi-  
tional precision resistors for 4-quadrant bipolar applications.  
The AD5546/AD5556 consist of two groups of precision R-2R  
ladders, which make up the 12/1ꢀ LSBs, respectively. Further-  
more, the four MSBs are decoded into 15 segments of resistor  
value 2R. Figure 19 shows the architecture of the 16-bit  
AD5546. Each of the 16 segments in the R-2R ladder carries an  
equally weighted current of one-sixteenth of full scale. The  
feedback resistor, RFB, and 4-quadrant resistor, ROFS, have values  
of 1ꢀ kΩ. Each 4-quadrant resistor, R1 and R2, equals 5 kΩ. In  
4-quadrant operation, R1, R2, and an external op amp work  
together to invert the reference voltage and apply it to the REF  
input. With ROFS and RFB connected as shown in Figure 2, the  
Every code change of the DAC corresponds to a step function;  
gain peaking at each output step may occur if the op amp has  
limited GBP and excessive parasitic capacitance present at the  
op amp inverting node. A compensation capacitor, therefore,  
may be needed between the I-V op amp inverting and output  
nodes to smooth the step transition. Such a compensation  
capacitor should be found empirically, but a 2ꢀ pF capacitor is  
generally adequate for the compensation.  
The VDD power is used primarily by the internal logic and to  
drive the DAC switches. Note that the output precision degrades  
if the operating voltage falls below the specified voltage. Users  
should also avoid using switching regulators because device  
power supply rejection degrades at higher frequencies.  
output can swing from –VREF to +VREF  
.
REF  
2R  
2R  
2R  
2R  
80k  
R2  
5kΩ  
80k80k80kΩ  
RCOM  
R1  
5kΩ  
4 MSB  
15 SEGMENTS  
R1  
R
R
R
R
R
R
R
R
40k40k40k40k40k40k40k40kΩ  
2R 2R 2R 2R 2R 2R 2R 2R 2R  
80k80k80k80k80k80k80k80k80kΩ  
8-BIT R2R  
ROFS  
RFB  
RA  
RB  
R
R
R
R
2R  
2R  
2R  
2R  
2R  
80k80k80k80k80kΩ  
10k10kΩ  
4-BIT R2R  
IOUT  
GND  
16  
8
4
ADDRESS DECODER  
LDAC  
WR  
LDAC  
WR  
DAC REGISTER  
RS  
RS  
RS  
INPUT REGISTER  
D15 D14  
D0  
Figure 19. 16-Bit AD5546 Equivalent R-2R DAC Circuit with Digital Section  
Rev. 0 | Page 11 of 16  
 
 
AD5546/AD5556  
DIGITAꢀ SECTION  
AMPꢀIFIER SEꢀECTION  
The AD5546/AD5556 have 16-/14-bit parallel inputs. The  
devices are double-buffered with 16-/14-bit registers. The  
double-buffered feature allows the update of several AD5546/  
AD5556 simultaneously. For AD5546, the input register is  
In addition to offset voltage, the bias current is important in op  
amp selection for precision current output DACs. An input bias  
current of 3ꢀ nA in the op amp contributes to 1 LSB in the  
AD5546s full-scale error. Op amps OP1177 and AD8628 are  
good candidates for the I-V conversion.  
loaded directly from a 16-bit controller bus when the  
pin is  
WR  
brought low. The DAC register is updated with data from the  
input register when LDAC is brought high. Updating the DAC  
register updates the DAC output with the new data (see  
REFERENCE SEꢀECTION  
The initial accuracy and the rated output of the voltage refer-  
ence determine the full span adjustment. The initial accuracy is  
usually a secondary concern in precision, as it can be trimmed.  
Figure 25 shows an example of a trimming circuit. The zero  
scale error can also be minimized by standard op amp nulling  
techniques.  
Figure 19). To make both registers transparent, tie  
low and  
WR  
LDAC high. The asynchronous  
pin resets the part to zero  
RS  
scale if MSB pin = ꢀ, and midscale if MSB pin = 1.  
ESD PROTECTION CIRCUITS  
All logic input pins contain back-biased ESD protection Zeners  
connected to ground (GND) and VDD, as shown in Figure 2ꢀ. As  
a result, the voltage level of the logic input should not be greater  
than the supply voltage.  
The voltage reference temperature coefficient and long-term  
drift are primary considerations. For example, a 5 V reference  
with a TC of 5 ppm/oC means that the output changes by 25 µV  
per degree Celsius. As a result, the reference that operates at  
55oC contributes an additional 75ꢀ µV full-scale error.  
V
DD  
DIGITAL  
INPUTS  
Similarly, the same 5 V reference with a 5ꢀ ppm long-term  
drift means that the output may change by 25ꢀ µV over time.  
Therefore, it is practical to calibrate a system periodically to  
maintain its optimum precision.  
5k  
DGND  
Figure 20. Equivalent ESD Protection Circuits  
Rev. 0 | Page 12 of 16  
 
 
AD5546/AD5556  
APPLICATIONS  
2-Quadrant Multiplying Mode, VOUT = 0 V to +VREF  
UNIPOꢀAR MODE  
The AD5546/AD5556 are designed to operate with either  
positive or negative reference voltages. As a result, positive  
output can be achieved with an additional op amp, (see  
Figure 22), and the output becomes  
2-Quadrant Multiplying Mode, VOUT = 0 V to –VREF  
The AD5546/AD5556 DAC architecture uses a current-steering  
R-2R ladder design that requires an external reference and op  
amp to convert the unipolar mode of output voltage to  
V
OUT = +VREF × D/65,536 (AD5546)  
(3)  
(4)  
VOUT = –VREF × D/65,536 (AD5546)  
OUT = –VREF × D/16,384 (AD5556)  
(1)  
(2)  
VOUT = +VREF × D/16,384 (AD5556)  
V
Table 9 shows the positive output versus code for the AD5546.  
where D is the decimal equivalent of the input code.  
Table 9. AD5546 Unipolar Mode Positive Output vs. Code  
The output voltage polarity is opposite to the VREF polarity in  
this case (see Figure 21). Table 8 shows the negative output  
versus code for the AD5546.  
D in Binary  
VOUT (V)  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
+VREF(65,535/65,536)  
+VREF/2  
+VREF(1/65,536)  
0
Table 8. AD5546 Unipolar Mode Negative Output vs. Code  
D in Binary  
VOUT (V)  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
–VREF(65,535/65,536)  
–VREF/2  
–VREF(1/65,536)  
0
+5V  
2
VIN  
C1  
1µF  
C2  
0.1µF  
U3  
ADR03  
5
TRIM  
VOUT  
GND  
4
R1  
RCOM  
REF  
ROFS  
RFB  
RFB  
C6  
2.2pF  
R1  
R2  
ROFS  
VDD  
C3  
0.1µF  
IOUT  
16/14-BIT  
V+  
U2  
AD8628  
U1  
AD5546/AD5556  
VOUT  
–2.5V TO 0V  
GND  
V–  
+
C4  
0.1µF  
16/14 DATA  
WR LDAC RS MSB  
C5  
1µF  
WR  
LDAC  
RS  
–5V  
MSB  
Figure 21. Unipolar 2-Quadrant Multiplying Mode, VOUT = 0 to –VREF  
Rev. 0 | Page 13 of 16  
 
 
 
 
AD5546/AD5556  
+
V+  
U2A  
AD8628  
V–  
C8  
0.1µF  
+5V  
2
VIN  
C1  
1µF  
C2  
0.1µF  
U3  
ADR03  
C9  
1µF  
5
6
–2.5V  
–5V  
+2.5V  
TRIM  
C7  
VOUT  
GND  
4
R1A  
RCOMA  
REFA  
ROFSA RFBA  
+5V  
C4  
1µF  
C6  
R1  
R2  
ROFS  
RFB  
VDD  
C5  
C3  
0.1µF  
IOUT  
0.1µF  
16/14-BIT  
V+  
U1  
U2B  
AD5546/AD5556  
VOUT  
0V TO +2.5V  
AD8628  
GND  
V–  
+
16/14 DATA  
WR LDAC RS MSB  
WR  
LDAC  
RS  
MSB  
Figure 22. Unipolar 2-Quadrant Multiplying Mode, VOUT = 0 to +VREF  
+15V  
2
+
VIN  
C1  
1µF  
C2  
0.1µF  
U2A  
AD8512  
U3  
ADR01  
5
6
–10V  
REF  
+10V  
TRIM  
C8  
VOUT  
GND  
4
R1  
RCOM  
ROF  
RFB  
RFB  
+15V  
C4  
1µF  
R1  
R2  
ROFS  
C9  
+5V  
VDD  
C5  
C3  
IOUT  
0.1µF  
0.1µF  
16/14-BIT  
V+  
U1  
U2B  
AD5546/AD5556  
VOUT  
AD8512  
–10V TO +10V  
GND  
V–  
+
C6  
0.1µF  
16/14 DATA  
WR LDAC RS MSB  
C7  
1µF  
WR  
LDAC  
RS  
–15V  
MSB  
Figure 23. 4-Quadrant Multiplying Mode, VOUT = –VREF to +VREF  
BIPOꢀAR MODE  
4-Quadrant Multiplying Mode, VOUT = –VREF to +VREF  
The AD5546/AD5556 contain on-chip all the 4-quadrant  
resistors necessary for the precision bipolar multiplying  
operation. Such a feature minimizes the number of exponent  
components to only a voltage reference, dual op amp, and  
compensation capacitor (see Figure 23). For example, with a  
1ꢀ V reference, the circuit yields a precision, bipolar –1ꢀ V to  
+1ꢀ V output.  
VOUT = (D/32768 1) × VREF (AD5546)  
VOUT = (D/16384 1) × VREF (AD5556)  
(5)  
(6)  
Rev. 0 | Page 14 of 16  
 
 
AD5546/AD5556  
Table 1ꢀ shows some of the results for the 16-bit AD5546.  
ac reference signals for signal attenuation, channel equalization,  
and waveform generation applications. The maximum signal  
range can be up to 18 V (see Figure 24).  
Table 10. AD5546 Output vs. Code  
D in Binary  
VOUT  
1111 1111 1111 1111  
1000 0000 0000 0001  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
+VREF(32,767/32,768)  
+VREF(1/32,768)  
0
–VREF(1/32,768)  
–VREF  
SYSTEM CAꢀIBRATION  
The initial accuracy of the system can be adjusted by trimming  
the voltage reference ADRꢀx with a digital potentiometer (see  
Figure 25). The AD517ꢀ provides an OTP (one time program-  
mable), 8-bit adjustment that is ideal and reliable for such cali-  
bration. ADIs OTP digital potentiometer comes with program-  
mable software that simplifies the factory calibration process.  
AC REFERENCE SIGNAꢀ ATTENUATOR  
Besides handling digital waveforms decoded from parallel input  
data, the AD5546/AD5556 handle equally well low frequency  
+
U2A  
OP2177  
+10V  
–10V  
C7  
R1A  
R1  
RCOMA  
VREFA  
ROFSA RFBA  
+15V  
C4  
1µF  
C6  
R2  
ROFS  
RFB  
+5V  
VDD  
C5  
C1  
1µF  
C2  
IOUT  
0.1µF  
0.1µF  
16/14-BIT  
V+  
U1  
U2B  
AD5546/AD5556  
VOUT  
OP2177  
GND  
V–  
+
16/14 DATA  
C8  
1µF  
WR LDAC RS MSB  
WR  
LDAC  
RS  
C9  
0.1µF  
–15V  
MSB  
Figure 24. Signal Attenuator with AC Reference  
+5V  
2
+
V+  
VIN  
U4  
AD5170  
C1  
1µF  
C2  
0.1µF  
U2A  
AD8628  
U3  
ADR03  
R3  
470kΩ  
V–  
C8  
0.1µF  
5
6
10kΩ  
TRIM  
B
R7  
VOUT  
GND  
4
1kΩ  
C9  
–2.5V  
1µF  
–5V  
C7  
+2.5V  
R1A  
R1  
RCOMA  
VREFA  
ROFSA RFBA  
+5V  
C4  
1µF  
C6  
R2  
ROFS  
RFB  
VDD  
C5  
C3  
0.1µF  
IOUT  
0.1µF  
16/14-BIT  
V+  
U1  
U2B  
AD5546/AD5556  
VOUT  
0V TO +2.5V  
AD8628  
GND  
V–  
+
16/14 DATA  
WR LDAC RS MSB  
WR  
LDAC  
RS  
MSB  
Figure 25. Full Span Calibration  
Rev. 0 | Page 15 of 16  
 
 
 
 
AD5546/AD5556  
OUTLINE DIMENSIONS  
9.80  
9.70  
9.60  
28  
15  
4.50  
4.40  
4.30  
6.40 BSC  
1
14  
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
8°  
0°  
0.75  
0.60  
0.45  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AE  
Figure 26. 28-Lead Thin Shrink Small Outline Package [TSSOP]  
RU-28  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range (°C)  
Ordering  
Quantity  
Package  
Description  
Package  
Option  
Model  
RES (Bit)  
DNꢀ (ꢀSB)  
INꢀ (ꢀSB)  
AD5546BRU  
16  
16  
14  
14  
1
1
1
1
2
2
1
1
–40 to +125  
–40 to +125  
–40 to +125  
–40 to +125  
50  
TSSOP-28  
TSSOP-28  
TSSOP-28  
TSSOP-28  
RU-28  
RU-28  
RU-28  
RU-28  
AD5546BRU-REEL7  
AD5556CRU  
1000  
50  
AD5556CRU-REEL7  
1000  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D03810-0-1/04(0)  
Rev. 0 | Page 16 of 16  
 

相关型号:

AD5546CRUZ-REEL7

Current-Output Parallel-Input, 16-Bit Digital-to-Analog Converter
ADI

AD5547

Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5547-EP

Dual-Current Output, Parallel Input
ADI

AD5547BRU

Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5547BRU-R7

IC PARALLEL, WORD INPUT LOADING, 0.5 us SETTLING TIME, 16-BIT DAC, PDSO38, MO-153BD-1, TSSOP-38, Digital to Analog Converter
ADI

AD5547BRU-REEL7

Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5547BRUZ

Dual-Current Output, Parallel Input, 16-/14-Bit Multiplying DACs
ADI

AD5547BRUZ-REEL7

IC PARALLEL, WORD INPUT LOADING, 0.5 us SETTLING TIME, 16-BIT DAC, PDSO38, ROHS COMPLIANT, MO-153BD-1, TSSOP-38, Digital to Analog Converter
ADI

AD5547CRUZ

Dual-Current Output, Parallel Input, 16-/14-Bit Multiplying DACs
ADI

AD5547CRUZ-REEL7

Dual-Current Output, Parallel Input, 16-/14-Bit Multiplying DACs
ADI

AD5547SRU-EP

Dual-Current Output, Parallel Input
ADI

AD5551

5 V, Serial-Input Voltage-Output, 14-Bit DACs
ADI