AD5557 [ADI]

Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors; 双路电流输出,并行输入, 16位/ 14位乘法数模转换器与4象限电阻
AD5557
型号: AD5557
厂家: ADI    ADI
描述:

Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
双路电流输出,并行输入, 16位/ 14位乘法数模转换器与4象限电阻

转换器 数模转换器
文件: 总20页 (文件大小:652K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual Current Output, Parallel Input, 16-/14-Bit  
Multiplying DACs with 4-Quadrant Resistors  
AD5547/AD5557  
FEATURES  
Dual channel  
FUNCTIONAꢀ BꢀOCK DIAGRAM  
R
R
V
R
1A  
COMA  
REFA  
OFSA  
16-bit resolution: AD5547  
14-bit resolution: AD5557  
R
FBA  
V
DD  
2- or 4-quadrant, 4 MHz BW multiplying DAC  
1 ꢀSB DNꢀ  
1 ꢀSB INꢀ for AD5557, 2 ꢀSB INꢀ for AD5547  
Operating supply voltage: 2.7 V to 5.5 V  
ꢀow noise: 12 nV/√Hz  
DAC A  
REGISTER  
RS  
D0..D15  
OR  
D0..D13  
INPUT  
REGISTER  
I
DAC A  
DAC B  
D0–D15  
(AD5547)  
D0–D13  
OUTA  
RS  
AGNDA  
(AD5557)  
AGNDB  
DAC B  
REGISTER  
RS  
INPUT  
REGISTER  
ꢀow power: IDD = 10 µA max  
0.5 µs settling time  
I
OUTB  
RS  
DAC A  
DAC B  
WR  
Built-in RFB facilitates current-to-voltage conversion  
Built-in 4-quadrant resistors allow 0 V to –10 V, 0 V to +10 V,  
or 10 V outputs  
2 mA full-scale current 20ꢁ, with VREF = 10 V  
Extended automotive operating temperature range:  
–40°C to +125°C  
R
FBB  
R
OFSB  
POWER  
ON  
RESET  
A0, A1  
ADDR  
DECODE  
AD5547/AD5557  
DGND  
RS MSB  
LDAC  
R
R
V
REFB  
1B  
COMB  
Figure 1.  
Selectable zero-scale/midscale power-on presets  
Compact TSSOP-38 package  
APPꢀICATIONS  
Automatic test equipment  
Instrumentation  
Digitally controlled calibration  
Digital waveform generation  
The built-in 4-quadrant resistors facilitate resistance matching  
and temperature tracking, which minimize the numbers of  
components needed for multiquadrant applications. In addition,  
the feedback resistor (RFB) simplifies the I-V conversion with an  
external buffer.  
GENERAꢀ DESCRIPTION  
The AD5547/AD5557 are dual precision, 16-/14-bit,  
multiplying, low power, current-output, parallel input, digital-  
to-analog converters. They are designed to operate from single  
+5 V supply with 1ꢀ V multiplying references for 4-quadrant  
outputs with up to 4 MHz bandwidth.  
The AD5547/AD5557 are available in a compact TSSOP-38  
package and operate at the extended automotive temperature  
range of –4ꢀ°C to +125°C.  
VREF  
U1  
–VREF  
C1  
R
R
V
R
R
FBA  
1A  
COMA  
REFA  
OFSA  
C2  
ROFS RFB  
R1  
R2  
U2  
IOUTA  
VOUTA  
16-/14-BIT  
DAC A  
AD5547/AD5557  
16/14 DATA  
AGNDA  
–VREF TO +VREF  
POWER-ON  
RESET  
WR LDAC RS  
MSB A0, A1  
(ONE CHANNEL SHOWN ONLY)  
WR  
LDAC  
RS  
MSB  
A0, A1  
2
Figure 2. 16/14-Bit 4-Quadrant Multiplying DAC with Minimum of External Components (Only One Channel Shown)  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD5547/AD5557  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Typical Performance Characteristics ............................................. 9  
Circuit Operation ........................................................................... 12  
D/A Converter Section.............................................................. 12  
Digital Section............................................................................. 13  
PCB Layout, Power Supply Bypassing, and Ground  
Connections................................................................................ 13  
Applications..................................................................................... 14  
Unipolar Mode ........................................................................... 14  
Bipolar Mode .............................................................................. 16  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
REVISION HISTORY  
Revision ꢀ: Initial Version  
Rev. 0 | Page 2 of 20  
AD5547/AD5557  
SPECIFICATIONS  
VDD = 2.7 V to 5.5 V, IOUT = Virtual GND, GND = ꢀ V, VREF = –1ꢀ V to +1ꢀ V, TA = –4ꢀ°C to +125°C, unless otherwise noted.  
Table 1. Electrical Characteristics  
Parameter  
Symbol  
N
Conditions  
Min Typ  
Max  
Unit  
STATIC PERFORMANCE1  
Resolution  
AD5547, 1 LSB = VREF/216 = 153 µV at VREF = 10 V  
AD5557, 1 LSB = VREF/214 = 610 µV at VREF = 10 V  
Grade: AD5557C  
Grade: AD5547B  
Monotonic  
Data = zero scale, TA = 25°C  
Data = zero scale, TA = TA maximum  
Data = full scale  
Data = full scale  
Data = full scale  
16  
14  
Bits  
Bits  
LSB  
LSB  
LSB  
nA  
nA  
mV  
mV  
mV  
Relative Accuracy  
INL  
1
2
1
10  
20  
4
Differential Nonlinearity  
Output Leakage Current  
DNL  
IOUT  
Full-Scale Gain Error  
Bipolar Mode Gain Error  
Bipolar Mode Zero-Scale Error  
Full-Scale Tempco2  
GFSE  
GE  
GZSE  
TCVFS  
1
1
1
4
3
1
ppm/°C  
REFERENCE INPUT  
VREF Range  
VREF  
REF  
R1 and R2  
∆(R1 to R2)  
RFB, ROFS  
CREF  
–18  
4
4
+18  
6
6
1.5  
12  
V
REF Input Resistance  
R1 and R2 Resistance  
R1-to-R2 Mismatch  
Feedback and Offset Resistance  
Input Capacitance2  
5
5
kΩ  
kΩ  
kΩ  
pF  
0.5  
8
10  
5
ANALOG OUTPUT  
Output Current  
IOUT  
COUT  
Data = full scale  
Code dependent  
2
200  
mA  
pF  
Output Capacitance2  
LOGIC INPUT AND OUTPUT  
Logic Input Low Voltage  
VIL  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
0.8  
0.4  
V
V
V
V
Logic Input High Voltage  
VIH  
2.4  
2.1  
Input Leakage Current  
Input Capacitance2  
IIL  
CIL  
10  
10  
µA  
pF  
INTERFACE TIMING2, 3  
Data to WR Setup Time  
tDS  
tDH  
tWR  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
20  
35  
0
ns  
ns  
ns  
ns  
ns  
Data to WR Hold Time  
WR Pulse Width  
0
20  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
35  
20  
35  
20  
35  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LDAC Pulse Width  
RS Pulse Width  
tLDAC  
tRS  
WR to LDAC Delay Time  
tLWD  
0
SUPPLY CHARACTERISTICS  
Power Supply Range  
Positive Supply Current  
Power Dissipation  
VDD RANGE  
IDD  
PDISS  
PSS  
2.7  
5.5  
10  
V
µA  
Logic inputs = 0 V  
Logic inputs = 0 V  
∆VDD = 5ꢀ  
0.055 mW  
0.003 ꢀ/ꢀ  
Power Supply Sensitivity  
Rev. 0 | Page 3 of 20  
 
 
AD5547/AD5557  
Parameter  
AC CHARACTERISTICS4  
Symbol  
Conditions  
Min Typ  
Max  
Unit  
Output Voltage Settling Time  
tS  
To 0.1ꢀ of full scale, data cycles from zero scale  
to full scale to zero scale  
0.5  
µs  
Reference Multiplying BW  
DAC Glitch Impulse  
Multiplying Feedthrough Error  
Digital Feedthrough  
BW  
Q
VOUT/VREF  
QD  
VREF = 5 V p-p, data = full scale  
VREF = 0 V, midscale to midscale – 1  
VREF = 100 mV rms, f = 10 kHz  
WR = 1, LDAC toggles at 1 MHz  
VREF = 5 V p-p, data = full scale, f = 1 kHz  
f = 1 kHz, BW = 1 Hz  
4
7
–65  
7
MHz  
nV-s  
dB  
nV-s  
dB  
Total Harmonic Distortion  
Output Noise Density  
Analog Crosstalk  
THD  
eN  
–85  
12  
–95  
nV/√Hz  
dB  
CAT  
Signal input at Channel A and measure the output  
at Channel B, f = 1 kHz  
1 All static performance tests (except IOUT) are performed in a closed-loop system using an external precision OP97 I-V converter amplifier. The device RFB terminal is tied  
to the amplifier output. The OP97’s +IN pin is grounded, and the DAC’s IOUT is tied to the OP97’s –IN pin. Typical values represent average readings measured at 25°C.  
2 Guaranteed by design; not subject to production testing.  
3 All input control signals are specified with tR = tF = 2.5 ns (10ꢀ to 90ꢀ of 3 V), and are timed from a voltage level of 1.5 V.  
4 All ac characteristic tests are performed in a closed-loop system using an AD841 I-V converter amplifier.  
tWR  
WR  
DATA  
tDH  
tDS  
tLWD  
LDAC  
tLDAC  
tRS  
RS  
Figure 3. AD5547/AD5557 Timing Diagram  
Rev. 0 | Page 4 of 20  
AD5547/AD5557  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Rating  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
VDD to GND  
RFB, ROFS, R1, RCOM, and VREF to GND  
Logic Inputs to GND  
V(IOUT) to GND  
Input Current to Any Pin except Supplies  
Thermal Resistance (θJA)1  
Maximum Junction Temperature (TJ MAX  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature  
–0.3 V, +8 V  
–18 V, 18 V  
–0.3 V, +8 V  
–0.3 V, VDD + 0.3 V  
50 mA  
)
150°C  
–40°C to +125°C  
–65°C to +150°C  
1 Package power dissipation = (TJ MAX – TA)/θJA.  
Vapor Phase, 60 s  
Infrared, 15 s  
215°C  
220°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. 0 | Page 5 of 20  
 
 
AD5547/AD5557  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
NC  
NC  
1
2
3
4
5
6
7
8
9
38 D0  
37 D1  
D1  
1
2
3
4
5
6
7
8
9
38 D2  
37 D3  
36 D4  
35 D5  
34 D6  
33 D7  
32 D8  
31 D9  
30 D10  
29 VDD  
28 D11  
27 D12  
26 D13  
25 D14  
24 D15  
D0  
36  
D2  
R
R
OFSA  
OFSA  
35 D3  
34 D4  
33 D5  
32 D6  
31 D7  
30 D8  
29 VDD  
28 D9  
27 D10  
26 D11  
25 D12  
24 D13  
R
R
FBA  
FBA  
R
R
1A  
COMA  
1A  
COMA  
R
R
V
V
REFA  
REFA  
I
I
OUTA  
OUTA  
AD5557  
AD5547  
AGNDA  
AGNDA  
DGND 10  
TOP VIEW  
(Not to Scale)  
DGND 10  
TOP VIEW  
(Not to Scale)  
AGNDB 11  
AGNDA 11  
I
12  
13  
14  
15  
16  
17  
I
12  
13  
14  
15  
16  
17  
OUTB  
OUTB  
V
V
REFB  
REFB  
R
R
COMB  
COMB  
R
R
1B  
1B  
23  
RS  
23  
RS  
R
R
FBB  
FBB  
22 MSB  
21 LDAC  
20 A1  
22 MSB  
21 LDAC  
20 A1  
R
R
OFSB  
OFSB  
WR 18  
A0 19  
WR 18  
A0 19  
NC = NO CONNECT  
Figure 4. AD5547 TSSOP-38 Pin Configuration  
Figure 5. AD5557 TSSOP-38 Pin Configuration  
Table 3. AD5547 Pin Function Descriptions  
Pin No.  
Mnemonic Function  
1, 2, 24–  
D0–D15  
Digital Input Data Bits D0 to D15. Signal level must be ≤ VDD + 0.3 V.  
28, 30–38  
3
ROFSA  
Bipolar Offset Resistor A. Accepts up to 18 V. In 2-quadrant mode, ROFSA ties to RFBA. In 4-quadrant mode, ROFSA  
ties to R1A and the external reference.  
4
5
RFBA  
R1A  
Internal Matching Feedback Resistor A. Connects to the external op amp for I-V conversion.  
4-Quandrant Resistor. In 2-quadrant mode, R1A shorts to the VREFA pin. In 4-quadrant mode, R1A ties to ROFSA. Do  
not connect when operating in unipolar mode.  
6
7
RCOMA  
Center Tap Point of the Two 4-Quadrant Resistors, R1A and R2A. In 4-quadrant mode, RCOMA ties to the inverting  
node of the reference amplifier. In 2-quadrant mode, RCOMA shorts to the VREF pin. Do not connect if operating in  
unipolar mode.  
DAC A Reference Input in 2-Quadrant Mode, R2 Terminal in 4-Quadrant Mode. In 2-quadrant mode, VREFA is the  
reference input with constant input resistance versus code. In 4-quadrant mode, VREFA is driven by the external  
reference amplifier.  
VREFA  
8
IOUTA  
DAC A Current Output. Connects to the inverting terminal of external precision I-V op amp for voltage output.  
9
AGNDA  
DGND  
AGNDB  
IOUTB  
DAC A Analog Ground.  
Digital Ground.  
DAC B Analog Ground.  
10  
11  
12  
13  
DAC B Current Output. Connects to inverting terminal of external precision I-V op amp for voltage output.  
DAC B Reference Input Pin. Establishes DAC full-scale voltage. Constant input resistance versus code. If  
VREFB  
configured with an external op amp for 4-quadrant multiplying, VREFB becomes –VREF  
.
14  
15  
RCOMB  
Center Tap Point of the Two 4-Quadrant Resistors, R1B and R2B. In 4-quadrant mode, RCOMB ties to the inverting  
node of the reference amplifier. In 2-quadrant mode, RCOMB shorts to the VREF pin. Do not connect if operating in  
unipolar mode.  
4-Quandrant Resistor. In 2-quadrant mode, R1B shorts to the VREFB pin. In 4-quadrant mode, R1B ties to ROFSB. Do not  
connect if operating in unipolar mode.  
R1B  
16  
17  
RFBB  
ROFSB  
Internal Matching Feedback Resistor B. Connects to external op amp for I-V conversion.  
Bipolar Offset Resistor B. Accepts up to 18 V. In 2-quadrant mode, ROFSB ties to RFBB. In 4-quadrant mode, ROFSB  
ties to R1B and an external reference.  
Rev. 0 | Page 6 of 20  
 
AD5547/AD5557  
Pin No.  
Mnemonic Function  
18  
WR  
Write Control Digital Input In, Active Low. WR transfers shift register data to the DAC register on the rising edge.  
Signal level must be ≤ VDD + 0.3 V.  
19  
20  
21  
22  
A0  
A1  
LDAC  
MSB  
Address Pin 0. Signal level must be ≤ VDD + 0.3 V.  
Address Pin 1. Signal level must be ≤ VDD + 0.3 V.  
Digital Input Load DAC Control. Signal level must be ≤ VDD + 0.3 V.  
Power-On Reset State. MSB = 0 corresponds to zero-scale reset; MSB = 1 corresponds to midscale reset. The  
signal level must be ≤ VDD + 0.3 V.  
23  
29  
RS  
Active low resets both input and DAC registers. Resets to zero-scale if MSB = 0, and to midscale if MSB = 1. Signal  
level must be ≤ VDD + 0.3 V.  
Positive Power Supply Input. The specified range of operation is 2.7 V to 5.5 V.  
VDD  
Table 4. AD5557 Pin Function Descriptions  
Pin No. Mnemonic Function  
1, 2  
3
NC  
ROFSA  
No Connection. Do not connect anything other than dummy pads to these pins.  
Bipolar Offset Resistor A. Accepts up to 18 V. In 2-quadrant mode, ROFSA ties to RFBA. In 4-quadrant mode, ROFSA ties  
to R1A and the external reference.  
4
5
RFBA  
R1A  
Internal Matching Feedback Resistor A. Connects to the external op amp for I-V conversion.  
4-Quandrant Resistor. In 2-quadrant mode, R1A shorts to the VREFA pin. In 4-quadrant mode, R1A ties to ROFSA. Do not  
connect when operating in unipolar mode.  
6
7
RCOMA  
Center Tap Point of the Two 4-Quadrant Resistors, R1A and R2A. In 4-quadrant mode, RCOMA ties to the inverting node  
of the reference amplifier. In 2-quadrant mode, RCOMA shorts to the VREF pin. Do not connect if operating in  
unipolar mode.  
DAC A Reference Input in 2-Quadrant Mode, R2 Terminal in 4-Quadrant Mode. In 2-quadrant mode, VREFA is the  
reference input with constant input resistance versus code. In 4-quadrant mode, VREFA is driven by the external  
reference amplifier.  
VREFA  
8
IOUTA  
DAC A Current Output. Connects to the inverting terminal of external precision I-V op amp for voltage output.  
9
AGNDA  
DGND  
AGNDB  
IOUTB  
DAC A Analog Ground.  
Digital Ground.  
DAC B Analog Ground.  
10  
11  
12  
13  
DAC B Current Output. Connects to inverting terminal of external precision I-V op amp for voltage output.  
DAC B Reference Input Pin. Establishes DAC full-scale voltage. Constant input resistance versus code. If configured  
VREFB  
with an external op amp for 4-quadrant multiplying, VREFB becomes –VREF  
.
14  
15  
RCOMB  
Center Tap Point of the Two 4-Quadrant Resistors, R1B and R2B. In 4-quadrant mode, RCOMB ties to the inverting node  
of the reference amplifier. In 2-quadrant mode, RCOMB shorts to the VREF pin. Do not connect if operating in  
unipolar mode.  
4-Quandrant Resistor. In 2-quadrant mode, R1B shorts to the VREFB pin. In 4-quadrant mode, R1B ties to ROFSB. Do not  
connect if operating in unipolar mode.  
R1B  
16  
17  
RFBB  
ROFSB  
Internal Matching Feedback Resistor B. Connects to external op amp for I-V conversion.  
Bipolar Offset Resistor B. Accepts up to 18 V. In 2-quadrant mode, ROFSB ties to RFBB. In 4-quadrant mode, ROFSB ties  
to R1B and an external reference.  
18  
WR  
Write Control Digital Input In, Active Low. Transfers shift register data to the DAC register on the rising edge. Signal  
level must be ≤ VDD + 0.3 V.  
19  
20  
21  
22  
A0  
A1  
LDAC  
MSB  
Address Pin 0. Signal level must be ≤ VDD + 0.3 V.  
Address Pin 1. Signal level must be ≤ VDD + 0.3 V.  
Digital Input Load DAC Control. Signal level must be ≤ VDD + 0.3 V.  
Power-On Reset State. MSB = 0 corresponds to zero-scale reset; MSB = 1 corresponds to midscale reset. The signal  
level must be ≤ VDD + 0.3 V.  
23  
RS  
Active low resets both input and DAC registers. Resets to zero-scale if MSB = 0, and to midscale if MSB = 1. Signal  
level must be ≤ VDD + 0.3 V.  
24–28,  
30–38  
29  
D13 to D0  
VDD  
Digital Input Data Bits D13 to D0. Signal level must be ≤ VDD + 0.3 V.  
Positive Power Supply Input. The specified range of operation is 2.7 V to 5.5 V.  
Rev. 0 | Page 7 of 20  
AD5547/AD5557  
Table 5. Address Decoder Pins  
A1  
A0  
Output Update  
DAC A  
0
0
0
1
None  
1
1
0
1
DAC A and B  
DAC B  
Table 6. Control Inputs  
RS WR  
ꢀDAC Register Operation  
0
1
1
1
1
X
0
1
0
X
0
1
1
Reset the output to 0 with MSB pin = 0; reset the output to midscale with MSB pin = 1.  
Load the input register with data bits.  
Load the DAC register with the contents of the input register.  
The input and DAC registers are transparent.  
When LDAC and WR are tied together and programmed as a pulse, the data bits are loaded into the input register on  
the falling edge of the pulse, and are then loaded into the DAC register on the rising edge of the pulse.  
No register operation.  
1
1
0
Rev. 0 | Page 8 of 20  
AD5547/AD5557  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
1.0  
0.8  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE (Decimal)  
0
2048 4096  
6144  
8192 10240 12288 14336 16384  
CODE (Decimal)  
Figure 9. AD5557 Differential Nonlinearity Error  
Figure 6. AD5547 Integral Nonlinearity Error  
1.0  
0.8  
1.5  
1.0  
V
= 2.5V  
= 25°C  
REF  
T
A
0.6  
0.4  
0.5  
0.2  
INL  
0
0
DNL  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
GE  
0
8192 16384 24576 32768 40960 49152 57344 65536  
CODE (Decimal)  
2
4
6
8
10  
SUPPLY VOLTAGE V (V)  
DD  
Figure 10. Linearity Error vs. VDD  
Figure 7. AD5547 Differential Nonlinearity Error  
5
4
3
2
1.0  
0.8  
V
T
= 5V  
= 25°C  
DD  
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
1
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
IH  
4.0  
4.5  
5.0  
0
2048  
4096  
6144  
8192 10240 12288 14336 16384  
LOGIC INPUT VOLTAGE V (V)  
CODE (Decimal)  
Figure 11. Supply Current vs. Logic Input Voltage  
Figure 8. AD5557 Integral Nonlinearity Error  
Rev. 0 | Page 9 of 20  
 
AD5547/AD5557  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
LDAC (5V/DIV)  
0x5555  
0x8000  
V
V
= 5V  
DD  
= 10V  
REF  
CODES 0x8000 0x7FFF  
0xFFFF  
0x0000  
V
(50mV/DIV)  
OUT  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
10k  
100k  
1M  
CLOCK FREQUENCY (Hz)  
10M  
100M  
TIME (µs)  
Figure 15. AD5547 Midscale Transition and Digital Feedthrough  
Figure 12. AD5547 Supply Current vs. Clock Frequency  
REF LEVEL  
0.000dB  
/DIV  
12.000dB  
MARKER 4 41 677.200Hz  
MAG (A/R) –2.939db  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0xFFFF  
0x8000  
0x4000  
0x2000  
0x1000  
0x0800  
0x0400  
0x0200  
0x0100  
0x0080  
0x0040  
0x0020  
0x0010  
0x0008  
0x0004  
0x0002  
0x0001  
V
V
= 5V ± 10%  
REF  
DD  
–12dB  
–24dB  
–36dB  
–48dB  
–60dB  
–72dB  
–84dB  
–96dB  
–108dB  
= 10V  
0x0000  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
START 10.000Hz  
STOP 50 000 000.000Hz  
Figure 13. Power Supply Rejection Ratio vs. Frequency  
Figure 16. AD5547 Unipolar Reference Multiplying Bandwidth  
REF LEVEL  
0.000dB  
/DIV  
12.000dB  
0
ALL BITS ON  
D15 AND D14 ON  
D15 AND D13 ON  
D15 AND D12 ON  
D15 AND D11 ON  
D15 AND D10 ON  
–12  
–24  
–36  
–48  
–60  
–72  
–84  
–96  
–108  
–120  
LDAC  
1
2
D15 AND D9 ON  
D15 AND D8 ON  
D15 AND D7 ON  
D15 AND D6 ON  
D15 AND D5 ON  
D15 AND D4 ON  
D15 AND D3 ON  
D15 AND D2 ON  
D15 AND D1 ON  
V
OUT  
CH1 5.00V CH2 2.00V M 200ns  
A CH1 2.70V  
B CH1 –6.20V  
400.00ns  
D15 AND D0 ON  
D15 ON  
10  
100  
1k  
10k  
100k  
1M  
10M  
Figure 14. Settling Time from Full Scale to Zero Scale  
START 10.000Hz  
STOP 10 000 000.000Hz  
Figure 17. AD5547 Bipolar Reference Multiplying Bandwidth (Codes from  
Midscale to Full Scale)  
Rev. 0 | Page 10 of 20  
AD5547/AD5557  
REF LEVEL  
0.000dB  
/DIV  
12.000dB  
0
–12  
–24  
–36  
–48  
–60  
–72  
–84  
–96  
–108  
–120  
ALL BITS OFF  
D14 ON  
D14 AND D13 ON  
D14 AND D12 ON  
D14 AND D11 ON  
D14 AND D10 ON  
D14 AND D9 ON  
D14 AND D8 ON  
D14 AND D7 ON  
D14 AND D6 ON  
D14 AND D5 ON  
D14 AND D4 ON  
D14 AND D3 ON  
D14 AND D2 ON  
D14 AND D1 ON  
D14 AND D0 ON  
D14 ON  
10  
100  
1k  
10k  
100k  
1M  
10M  
START 10.000Hz  
STOP 10 000 000.000Hz  
Figure 18. AD5547 Bipolar Reference Multiplying Bandwidth (Codes from  
Midscale to Zero Scale)  
Rev. 0 | Page 11 of 20  
AD5547/AD5557  
CIRCUIT OPERATION  
D/A CONVERTER SECTION  
the variation of the AD5547/AD5557 output impedance. The  
feedback resistance in parallel with the DAC ladder resistance  
dominates output voltage noise. To maintain good analog  
performance, it is recommended that the power supply is  
bypassed with a ꢀ.ꢀ1 µF to ꢀ.1 µF ceramic or chip capacitor in  
parallel with a 1 µF tantalum capacitor. Also, to minimize gain  
error, PCB metal traces between VREF and RFB should match.  
The AD5547/AD5557 are 16-/14-bit, multiplying, current  
output, parallel input DACs. The devices operate from a single  
2.7 V to 5.5 V supply, and provide both unipolar (ꢀ V to –VREF  
or ꢀ V to +VREF), and bipolar ( VREF) output ranges from –18 V  
to +18 V references. In addition to the precision conversion RFB  
commonly found in current output DACs, there are three addi-  
tional precision resistors for 4-quadrant bipolar applications.  
Every code change of the DAC corresponds to a step function;  
gain peaking at each output step may occur if the op amp has  
limited GBP and excessive parasitic capacitance present at the  
op amp’s inverting node. A compensation capacitor, therefore,  
may be needed between the I-V op amp inverting and output  
nodes to smooth the step transition. Such a compensation  
capacitor should be found empirically, but a 2ꢀ pF capacitor is  
generally adequate for the compensation.  
The AD5547/AD5557 consist of two groups of precision R-2R  
ladders, which make up the 12/1ꢀ LSBs, respectively. Further-  
more, the 4 MSBs are decoded into 15 segments of resistor value  
2R. Figure 19 shows the architecture of the 16-bit AD5547. Each  
of the 16 segments and the R-2R ladder carries an equally  
weighted current of one-sixteenth of full scale. The feedback  
resistor RFB and 4-quadrant resistor ROFS have values of 1ꢀ kΩ.  
Each 4-quadrant resistor, R1 and R2, equals 5 kΩ. In 4-quadrant  
operation, R1, R2, and an external op amp work together to  
invert the reference voltage and apply it to the VREF input.  
With ROFS and RFB connected as shown in Figure 2, the output  
The VDD power is used primarily by the internal logic to drive  
the DAC switches. Note that the output precision degrades if the  
operating voltage falls below the specified voltage. Users should  
also avoid using switching regulators because device power  
supply rejection degrades at higher frequencies.  
can swing from –VREF to +VREF  
.
The reference voltage inputs exhibit a constant input resistance  
of 5 kΩ 2ꢀ0. The impedance of IOUT, the DAC output, is code  
dependent. External amplifier choice should take into account  
V
REF  
2R  
2R  
2R  
2R  
80k  
R2  
5kΩ  
80k80k80kΩ  
RCOM  
R1  
R1  
5kΩ  
4 MSB  
15 SEGMENTS  
R
R
R
R
R
R
R
R
40k40k40k40k40k40k40k40kΩ  
2R 2R 2R 2R 2R 2R 2R 2R 2R  
80k80k80k80k80k80k80k80k80kΩ  
8-BIT R2R  
ROFS  
RFB  
RA  
RB  
R
R
R
R
2R  
2R  
2R  
2R  
2R  
80k80k80k80k80kΩ  
10k10kΩ  
4-BIT R2R  
IOUT  
AGND  
15  
8
4
ADDRESS DECODER  
LDAC  
LDAC  
WR  
DAC REGISTER  
RS  
RS  
RS  
INPUT REGISTER  
WR  
D15 D14  
D0  
Figure 19. 16-Bit AD5547 Equivalent R-2R DAC Circuit with Digital Section, One Channel Shown  
Rev. 0 | Page 12 of 20  
 
 
AD5547/AD5557  
The voltage reference temperature coefficient and long-term  
drift are primary considerations. For example, a 5 V reference  
with a TC of 5 ppm/°C means the output changes by 25 µV/°C.  
As a result, a reference operating at 55°C contributes an  
additional 75ꢀ µV full-scale error.  
DIGITAꢀ SECTION  
The AD5547/AD5557 have 16-/14-bit parallel inputs. The  
devices are double-buffered with 16-/14-bit registers. The dou-  
ble-buffered feature allows the simultaneous update of several  
AD5547/AD5557s. For the AD5547, the input register is loaded  
WR  
directly from a 16-bit controller bus when  
is brought low.  
Similarly, the same 5 V reference with a 5ꢀ ppm long-term  
drift means the output may change by 25ꢀ µV over time.  
Therefore, it is practical to calibrate a system periodically to  
maintain its optimum precision.  
The DAC register is updated with data from the input register  
when LDAC is brought high. Updating the DAC register  
updates the DAC output with the new data (see Figure 19). To  
low and LDAC high.  
pin resets the part to zero scale if the  
MSB pin = ꢀ, and to midscale if the MSB pin = 1.  
WR  
make both registers transparent, tie  
PCB ꢀAYOUT, POWER SUPPꢀY BYPASSING, AND  
GROUND CONNECTIONS  
RS  
The asynchronous  
It is a good practice to employ a compact, minimum-lead length  
PCB layout design. The leads to the input should be as short as  
possible to minimize IR drop and stray inductance.  
ESD Protection Circuits  
All logic input pins contain back-biased ESD protection Zeners  
connected to ground (GND) and VDD, as shown in Figure 2ꢀ. As  
a result, the voltage level of the logic input should not be greater  
than the supply voltage.  
The PCB metal traces between VREF and RFB should also be  
matched to minimize gain error.  
V
DD  
It is also essential to bypass the power supply with quality  
capacitors for optimum stability. Supply leads to the device  
should be bypassed with ꢀ.ꢀ1 µF to ꢀ.1 µF disc or chip ceramic  
capacitors. Low ESR 1 µF to 1ꢀ µF tantalum or electrolytic  
capacitors should also be applied at the supply in parallel with  
the ceramic capacitor to minimize transient disturbance and  
filter out low frequency ripple.  
DIGITAL  
INPUTS  
5k  
DGND  
Figure 20. Equivalent ESD Protection Circuits  
To minimize the digital ground bounce, the AD5547/AD5557  
DGND terminal should be joined with the AGND terminal at a  
single point. Figure 21 illustrates the basic supply-bypassing  
configuration and AGND/DGND connection for the  
AD5547/AD5557.  
Amplifier Selection  
In addition to offset voltage, the bias current is important in op  
amp selection for precision current output DACs. A 3ꢀ nA input  
bias current in the op amp contributes to 1 LSB in the AD5547’s  
full-scale error. The OP1177 and AD8628 op amps are good  
candidates for the I-V conversion.  
V
DD  
+
5V  
C2  
C1  
Reference Selection  
AD5547/AD5557  
AGND  
1µF  
0.1µF  
The initial accuracy and rated output of the voltage reference  
determine the full-span adjustment. The initial accuracy of the  
reference is usually a secondary concern because it can be  
trimmed. Figure 26 shows an example of a trimming circuit.  
The zero-scale error can also be minimized by standard op amp  
nulling techniques.  
DGND  
Figure 21. Power Supply Bypassing  
Rev. 0 | Page 13 of 20  
 
 
 
AD5547/AD5557  
APPLICATIONS  
UNIPOꢀAR MODE  
2-Quadrant Multiplying Mode, VOUT = 0 V to –VREF  
In this case, the output voltage polarity is opposite the VREF  
polarity (see Figure 22). Table 7 shows the negative output  
versus code for the AD5547.  
The AD5547/AD5557 DAC architecture uses a current-steering  
R-2R ladder design that requires an external reference and op  
amp to convert the unipolar mode of output voltage to  
Table 7. AD5547 Unipolar Mode Negative Output vs. Code  
D in Binary  
VOUT (V)  
V
V
OUT = –VREF × D/65,536 (AD5547)  
OUT = –VREF × D/16,384 (AD5557)  
(1)  
(2)  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
–VREF(65,535/65,536)  
–VREF/2  
–VREF(1/65,536)  
0
where D is the decimal equivalent of the input code.  
+5V  
2
U3 ADR03  
5
C1  
1µF  
C2  
0.1µF  
VIN  
TRIM  
VOUT  
GND  
6
+2.5V  
V
REFA  
4
R
R
R
R
FBA  
1A  
COMA  
OFSA  
2.2pF  
C6  
VDD  
ROFS  
RFB  
R1  
R2  
C3  
0.1µF  
2.5V  
16-/14-BIT  
I
OUTA  
V
+V  
AD5547/AD5557  
OUTA  
AD8628  
–V  
AGNDA  
U1  
–2.5V TO 0V  
16/14 DATA  
C4  
WR LDAC RS MSB A0, A1  
0.1µF  
C5  
WR  
LDAC  
RS  
2
1µF  
–5V  
MSB  
A0, A1  
Figure 22. Unipolar 2-Quadrant Multiplying Mode, VOUT = 0 to –VREF  
Rev. 0 | Page 14 of 20  
 
 
 
AD5547/AD5557  
Table 8 shows the positive output versus code for the AD5547.  
2-Quadrant Multiplying Mode, VOUT = 0 V to +VREF  
The AD5547/AD5557 are designed to operate with either  
positive or negative reference voltages. As a result, a positive  
output can be achieved with an additional op amp, (see  
Figure 23); the output becomes  
Table 8. AD5547 Unipolar Mode Positive Output vs. Code  
D in Binary  
VOUT (V)  
1111 1111 1111 1111  
1000 0000 0000 0000  
0000 0000 0000 0001  
0000 0000 0000 0000  
+VREF(65,535/65,536)  
+VREF/2  
+VREF(1/65,536)  
0
V
V
OUT = +VREF × D/65,536 (AD5547)  
OUT = +VREF × D/16,384 (AD5557)  
(3)  
(4)  
+5V  
C1  
2
U3  
C2  
1µF  
U2A  
1µF  
VIN  
5
6
TRIM  
VOUT  
GND  
AD8628  
C7  
–2.5V  
4
ADR03  
+2.5V  
+5V  
1µF  
C5 0.1µF  
C4  
R
R
V
R
R
1A  
R1  
COMA  
REFA  
OFSA  
FBA  
C6  
U2B  
VDD  
ROFS  
RFB  
R2  
C3  
0.1µF  
I
OUTA  
+V  
16-/14-BIT  
V
OUTA  
AD8628  
–V  
AGNDA  
AD5547/AD5557  
16/14 DATA  
0V TO +2.5V  
WR LDAC RS MSB A0, A1  
WR  
LDAC  
RS  
2
MSB  
A0, A1  
Figure 23. Unipolar 2-Quadrant Multiplying Mode, VOUT = 0 to +VREF  
Rev. 0 | Page 15 of 20  
 
 
AD5547/AD5557  
+15V  
2
U3  
C1  
C2  
1µF  
0.1µF  
VIN  
5
6
TRIM  
VOUT  
GND  
U2A  
4
ADR01  
AD8512  
C8  
–10V  
REFA  
+10V  
R
R
V
R
R
1A  
COMA  
OFSA  
FBA  
+5V  
C4 1µF  
VDD  
ROFS  
RFB  
+15V  
U2B  
R1  
R2  
C9  
C5 0.1µF  
C3  
0.1µF  
I
OUTA  
AD5547/AD5557  
16-/14-BIT  
DAC A  
+V  
VOUT  
AD8512  
–V  
U1  
AGNDA  
16/14 DATA  
–10V TO +10V  
C6 0.1µF  
C7 1µF  
WR  
LDAC RS MSB A0, A1  
WR  
LDAC  
RS  
2
–15V  
MSB  
A0, A1  
Figure 24. 4-Quadrant Multiplying Mode, VOUT = –VREF to +VREF  
BIPOꢀAR MODE  
4-Quadrant Multiplying Mode, VOUT = –VREF to +VREF  
Table 9. AD5547 Output vs. Code  
D in Binary  
VOUT  
The AD5547/AD5557 contain on-chip all the 4-quadrant  
resistors necessary for precision bipolar multiplying operation.  
Such a feature minimizes the number of exponent components  
to only a voltage reference, dual op amp, and compensation  
capacitor (see Figure 24). For example, with a +1ꢀ V reference,  
the circuit yields a precision, bipolar –1ꢀ V to +1ꢀ V output.  
Table 9 shows some of the results for the 16-bit AD5547.  
1111 1111 1111 1111  
1000 0000 0000 0001  
1000 0000 0000 0000  
0111 1111 1111 1111  
0000 0000 0000 0000  
+VREF (32,767/32,768)  
+VREF (1/32,768)  
0
–VREF (1/32,768)  
–VREF  
V
V
OUT = (D/32768 − 1) × VREF (AD5547)  
OUT = (D/16384 − 1) × VREF (AD5557)  
(5)  
(6)  
Rev. 0 | Page 16 of 20  
 
 
 
AD5547/AD5557  
AC Reference Signal Attenuator  
System Calibration  
Besides handling the digital waveform decoded from the  
parallel input data, the AD5547/AD5557 can also handle low  
frequency ac reference signals for signal attenuation, channel  
equalization, and waveform generation applications. The  
maximum signal range can be up to 18 V (See Figure 25).  
The initial accuracy of the system can be adjusted by trimming  
the voltage reference ADRꢀx with a digital potentiometer (see  
Figure 26). The AD517ꢀ provides a one-time programmable  
(OTP), 8-bit adjustment that is ideal and reliable for such  
calibration. ADIs OTP digital potentiometer comes with  
programmable software that simplifies factory calibration.  
U2A  
OP2177  
C7  
+10V  
–10V  
+15V  
C4  
C5 0.1µF  
1µF  
R
R
R
FBA  
R
V
REFA  
1A  
OFSA  
COMA  
C6  
+5V  
R1  
U2B  
VDD  
R2  
ROFS  
RFB  
C1  
1µF  
C2  
0.1µF  
I
OUTA  
16-/14-BIT  
V
+V  
AD5547/AD5557  
OUTA  
OP2177  
–V  
AGNDA  
U1  
16/14 DATA  
C8 1µF  
C9 0.1µF  
WR LDAC RS MSB A0, A1  
WR  
LDAC  
RS  
2
MSB  
–15V  
A0, A1  
Figure 25. Signal Attenuator with AC Reference  
+5V  
C1  
1µF  
2
AD5170  
U4  
U3  
C2  
0.1µF  
VIN  
R3  
5
6
10kΩ  
TRIM  
470kΩ  
B
VOUT  
GND  
U2  
R7 1kΩ  
AD8628  
4
ADR03  
–2.5V  
C7  
+2.5V  
+5V  
C4  
1µF  
R
R
R
R
V
REFA  
1A  
OFSA  
FBA  
COMA  
C6  
C5 0.1µF  
U2B  
R1  
VDD  
R2  
ROFS  
RFB  
C3  
0.1µF  
I
OUTA  
V
16-/14-BIT  
+V  
AD5547/AD5557  
OUTA  
AD8628  
–V  
AGNDA  
U1  
0V TO +2.5V  
16/14 DATA  
WR LDAC RS MSB A0, A1  
WR  
LDAC  
RS  
MSB  
2
REF 01/AD  
A0, A1  
Figure 26. Full-Span Calibration  
Rev. 0 | Page 17 of 20  
 
 
AD5547/AD5557  
Table 1ꢀ lists the latest DACS available from Analog Devices.  
Table 10. ADI Current Output DACs  
Model  
Bits Outputs Interface  
Package  
MSOP-10  
MSOP-10  
SOT23-8  
TSSOP-16  
TSSOP-16  
TSSOP-20  
MSOP-10  
SOT23-8  
TSSOP-20  
TSSOP-16  
TSSOP-24  
MSOP-10  
SOT23-8  
TSSOP-20  
MSOP-10  
TSSOP-16  
TSSOP-24  
TSSOP-24  
LFCSP-40  
SOT23-8  
MSOP-8  
Comments  
AD5425  
AD5426  
AD5450  
AD5424  
AD5429  
AD5428  
AD5432  
AD5451  
AD5433  
AD5439  
AD5440  
AD5443  
AD5452  
AD5445  
AD5444  
AD5449  
AD5415  
AD5447  
AD5405  
AD5453  
AD5553  
AD5556  
AD5446  
AD5555  
AD5557  
AD5543  
AD5546  
AD5545  
AD5547  
8
1
1
1
1
2
2
1
1
1
2
2
1
1
1
1
2
2
2
2
1
1
1
1
2
2
1
1
2
2
SPI, 8-Bit Load  
SPI  
Fast 8-bit load; see also AD5426.  
See also AD5425 fast load.  
See also AD5425 fast load.  
8
8
SPI  
8
8
Parallel  
SPI  
8
Parallel  
SPI  
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
12  
12  
12  
14  
14  
14  
14  
14  
14  
16  
16  
16  
16  
SPI  
Parallel  
SPI  
Parallel  
SPI  
SPI  
Parallel  
SPI  
SPI  
See also AD5452 and AD5444.  
Higher accuracy version of AD5443; see also AD5444.  
Higher accuracy version of AD5443; see also AD5452.  
Uncommitted resistors.  
SPI  
Parallel  
Parallel  
SPI  
SPI  
Parallel  
SPI  
SPI  
Parallel  
SPI  
Parallel  
SPI  
Parallel  
Uncommitted resistors.  
TSSOP-28  
MSOP-10  
TSSOP-16  
TSSOP-38  
MSOP-8  
TSSOP-28  
TSSOP-16  
TSSOP-38  
MSOP version of AD5453; compatible with AD5443, AD5432, and AD5426.  
Rev. 0 | Page 18 of 20  
 
AD5547/AD5557  
OUTLINE DIMENSIONS  
9.80  
9.70  
9.60  
38  
20  
19  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
8°  
0°  
0.50  
BSC  
0.27  
0.17  
0.70  
0.60  
0.45  
SEATING  
PLANE  
0.20  
0.09  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153BD-1  
Figure 27. 38-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-38)  
Dimension s shown in millimeters  
ORDERING GUIDE  
Resolution DNꢀ  
INꢀ  
Temperature  
Ordering  
Quantity Package Description  
Package  
Option  
Model  
(Bits)  
(ꢀSB) (ꢀSB) Range  
AD5547BRU  
16  
1
1
1
1
2
2
1
1
–40°C to +125°C 50  
–40°C to +125°C 1,000  
–40°C to +125°C 50  
–40°C to +125°C 1,000  
Thin Shrink Small Outline Package (TSSOP) RU-38  
Thin Shrink Small Outline Package (TSSOP) RU-38  
Thin Shrink Small Outline Package (TSSOP) RU-38  
Thin Shrink Small Outline Package (TSSOP) RU-38  
AD5547BRU-REEL7 16  
AD5557CRU 14  
AD5557CRU-REEL7 14  
Rev. 0 | Page 19 of 20  
 
AD5547/AD5557  
NOTES  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04452–0–4/04(0)  
Rev. 0 | Page 20 of 20  

相关型号:

AD5557CRU

Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5557CRU-R7

IC PARALLEL, WORD INPUT LOADING, 0.5 us SETTLING TIME, 14-BIT DAC, PDSO38, MO-153BD-1, TSSOP-38, Digital to Analog Converter
ADI

AD5557CRU-REEL7

Dual Current Output, Parallel Input, 16-/14-Bit Multiplying DACs with 4-Quadrant Resistors
ADI

AD5557CRUZ

Dual-Current Output, Parallel Input, 16-/14-Bit Multiplying DACs
ADI

AD5560

1.2 A Programmable Device Power Supply with Integrated 16-Bit Level Setting DACs
ADI

AD5560JBCZ

1.2 A Programmable Device Power Supply
ADI

AD5560JBCZ-REEL

1.2 A Programmable Device Power Supply
ADI

AD5560JSVUZ

1.2 A Programmable Device Power Supply
ADI

AD5560JSVUZ-REEL

1.2 A Programmable Device Power Supply
ADI

AD5564

IC SAMPLE AND HOLD AMPLIFIER, PBGA119, 14 X 22 MM, 1.27 MM PITCH, BGA-119, Sample and Hold Circuit
ADI

AD5564B

Industrial Control IC
ETC

AD557

DACPORT, Low-Cost Complete mP-Compatible 8-Bit DAC
ADI