AD5611AKSZ-REEL7 [ADI]

2.7 V to 5.5 V, <100 μA, 8-/10-/12-Bit nanoDAC, SPI Interface in LFCSP and SC70; 2.7 V至5.5 V , \u003c 100 μA , 8位/ 10位/ 12位属于nanoDAC , SPI接口的LFCSP和SC70
AD5611AKSZ-REEL7
型号: AD5611AKSZ-REEL7
厂家: ADI    ADI
描述:

2.7 V to 5.5 V, <100 μA, 8-/10-/12-Bit nanoDAC, SPI Interface in LFCSP and SC70
2.7 V至5.5 V , \u003c 100 μA , 8位/ 10位/ 12位属于nanoDAC , SPI接口的LFCSP和SC70

转换器 数模转换器 光电二极管
文件: 总24页 (文件大小:466K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.7 V to 5.5 V, <100 μA, 8-/10-/12-Bit  
nanoDAC, SPI Interface in LFCSP and SC70  
Data Sheet  
AD5601/AD5611/AD5621  
FEATURES  
6-lead SC70 and LFCSP packages  
FUNCTIONAL BLOCK DIAGRAM  
V
DD  
GND  
Micropower operation: 100 µA maximum at 5 V  
Power-down typically to 0.2 µA at 3 V  
2.7 V to 5.5 V power supply  
POWER-ON  
RESET  
AD5601/AD5611/AD5621  
Guaranteed monotonic by design  
Power-on reset to 0 V with brownout detection  
3 power-down functions  
REF(+)  
DAC  
REGISTER  
OUTPUT  
BUFFER  
V
12-/10-/8-BIT  
DAC  
OUT  
Low power serial interface with Schmitt-triggered inputs  
On-chip output buffer amplifier, rail-to-rail operation  
INPUT  
CONTROL  
LOGIC  
POWER-DOWN  
CONTROL LOGIC  
RESISTOR  
NETWORK  
interrupt facility  
SYNC  
Minimized zero-code error  
AD5601 buffered 8-bit DAC  
B version: 0.5 LSB INL  
AD5611 buffered 10-bit DAC  
B version: 0.5 LSB INL  
A version: 4 LSB INL  
AD5621 buffered 12-bit DAC  
B version: 1 LSB INL  
A version: 6 LSB INL  
SYNC SCLK SDIN  
Figure 1.  
Table 1. Related Devices  
Part Number Description  
AD5641  
2.7 V to 5.5 V, <100 µA, 14-bit nanoDAC in  
SC70 and LFCSP packages  
APPLICATIONS  
Voltage level setting  
Portable battery-powered instruments  
Digital gain and offset adjustment  
Programmable voltage and current sources  
Programmable attenuators  
They also provide software-selectable output loads while in  
power-down mode. The parts are put into power-down mode  
over the serial interface.  
The low power consumption of these parts in normal operation  
makes them ideally suited to portable battery-operated equip-  
ment. The combination of small package and low power makes  
these nanoDAC devices ideal for level-setting requirements,  
such as generating bias or control voltages in space-constrained  
and power-sensitive applications.  
GENERAL DESCRIPTION  
The AD5601/AD5611/AD5621, members of the nanoDAC®  
family, are single, 8-/10-/12-bit, buffered voltage output DACs  
that operate from a single 2.7 V to 5.5 V supply, consuming  
typically 75 µA at 5 V. The parts come in tiny LFCSP and SC70  
packages. Their on-chip precision output amplifier allows rail-  
to-rail output swing to be achieved. The AD5601/AD5611/  
AD5621 utilize a versatile 3-wire serial interface that operates at  
clock rates up to 30 MHz and is compatible with SPI, QSPI™,  
MICROWIRE™, and DSP interface standards.  
PRODUCT HIGHLIGHTS  
1. Available in 6-lead LFCSP and SC70 packages.  
2. Low power, single-supply operation. The AD5601/  
AD5611/AD5621 operate from a single 2.7 V to 5.5 V  
supply with a maximum current consumption of 100 µA,  
making them ideal for battery-powered applications.  
3. The on-chip output buffer amplifier allows the output of  
the DAC to swing rail-to-rail with a typical slew rate of  
0.5 V/µs.  
4. Reference is derived from the power supply.  
5. High speed serial interface with clock speeds up to  
30 MHz. Designed for very low power consumption.  
The interface powers up only during a write cycle.  
6. Power-down capability. When powered down, the DAC  
typically consumes 0.2 µA at 3 V. Power-on reset with  
brownout detection.  
The reference for the AD5601/AD5611/AD5621 is derived  
from the power supply inputs and, therefore, gives the widest  
dynamic output range. The parts incorporate a power-on reset  
circuit, which ensures that the DAC output powers up to 0 V  
and remains there until a valid write to the device takes place.  
The AD5601/AD5611/AD5621 contain a power-down feature  
that reduces current consumption to typically 0.2 µA at 3 V.  
Rev. G  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2005–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5601/AD5611/AD5621  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Output Amplifier........................................................................ 14  
Serial Interface ............................................................................ 14  
Input Shift Register .................................................................... 14  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Terminology .................................................................................... 13  
Theory of Operation ...................................................................... 14  
DAC Section................................................................................ 14  
Resistor String............................................................................. 14  
SYNC  
Interrupt .......................................................................... 14  
Power-On Reset.......................................................................... 16  
Power-Down Modes .................................................................. 16  
Microprocessor Interfacing....................................................... 16  
Applications..................................................................................... 18  
Choosing a Reference as Power Supply for the  
AD5601/AD5611/AD5621 ....................................................... 18  
Bipolar Operation Using the AD5601/AD5611/AD5621..... 18  
Using the AD5601/AD5611/AD5621 with a Galvanically  
Isolated Interface ........................................................................ 19  
Power Supply Bypassing and Grounding................................ 19  
Outline Dimensions....................................................................... 20  
Ordering Guide .......................................................................... 21  
REVISION HISTORY  
6/13—Rev. F to Rev. G  
12/07—Rev. B to Rev. C  
Change to Ordering Guide............................................................ 21  
Changes to Features ..........................................................................1  
Changes to Table 2.............................................................................3  
Changes to AD5601/AD5611/AD5621 to ADSP-2101  
Interface Section ............................................................................. 16  
Updated Outline Dimensions....................................................... 20  
Changes to Ordering Guide.......................................................... 20  
2/12—Rev. E to Rev. F  
Added 6-Lead LFCSP.........................................................Universal  
Changes to Features Section, General Description Section,  
Table 1, and Product Highlights Section....................................... 1  
Changes to Table 4............................................................................ 5  
Added Figure 4; Renumbered Sequentially .................................. 6  
Changes to Table 5............................................................................ 6  
Changes to Choosing a Reference as Power Supply for the  
AD5601/AD5611/AD5621 Section.............................................. 18  
Updated Outline Dimensions ....................................................... 20  
Changes to Ordering Guide .......................................................... 21  
7/05—Rev. A to Rev. B  
Changes to Figure 48...................................................................... 17  
Changes to Galvanically Isolated Interface Section................... 19  
Changes to Figure 52...................................................................... 19  
3/05—Rev. 0 to Rev. A  
Changes to Timing Characteristics.................................................4  
Changes to Absolute Maximum Ratings........................................5  
Changes to Full Scale Error Section................................................7  
Changes to Figure 20...................................................................... 10  
Changes to Theory of Operation.................................................. 14  
Changes to Power Down Modes .................................................. 15  
7/10—Rev. D to Rev. E  
Changes to Figure 1.......................................................................... 1  
5/08—Rev. C to Rev. D  
Changes to General Description Section ...................................... 1  
Changes to Table 2............................................................................ 3  
Changes to Choosing a Reference as Power Supply for the  
AD5601/AD5611/AD5621 Section.............................................. 18  
Changes to Ordering Guide .......................................................... 20  
1/05—Revision 0: Initial Version  
Rev. G | Page 2 of 24  
 
Data Sheet  
AD5601/AD5611/AD5621  
SPECIFICATIONS  
VDD = 2.7 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; all specifications TMIN to TMAX, unless otherwise noted. Temperature range  
for A/B grades is −40°C to +125°C, typical at 25°C.  
Table 2.  
A Grade  
Min Typ  
B Grade  
Min Typ  
Parameter  
Max  
Max  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE  
AD5601  
Resolution  
8
Bits  
LSB  
LSB  
Relative Accuracy1 (INL)  
Differential Nonlinearity (DNL)  
AD5611  
0.5  
0.5  
Guaranteed monotonic by design  
Guaranteed monotonic by design  
Resolution  
10  
12  
Bits  
LSB  
LSB  
Relative Accuracy1 (INL)  
Differential Nonlinearity (DNL)  
AD5621  
4
0.5  
0.5  
0.5  
Resolution  
Bits  
LSB  
LSB  
mV  
mV  
mV  
Relative Accuracy1 (INL)  
Differential Nonlinearity (DNL)  
Zero-Code Error  
Full-Scale Error  
6
0.5  
10  
1
0.5  
10  
Guaranteed monotonic by design  
All 0s loaded to DAC register  
All 1s loaded to DAC register  
0.5  
0.5  
0.063  
0.5  
0.5  
0.063  
Offset Error  
10  
10  
Gain Error  
Zero-Code Error Drift  
Gain Temperature Coefficient  
0.0004  
5.0  
0.037  
0.0004  
5.0  
0.037 %FSR  
µV/°C  
2.0  
2.0  
ppm  
FSR/°C  
OUTPUT CHARACTERISTICS2  
Output Voltage Range  
Output Voltage Settling Time  
Slew Rate  
0
VDD  
10  
0
VDD  
10  
V
µs  
V/µs  
pF  
pF  
6
6
Code ¼ scale to ¾ scale  
0.5  
470  
1000  
120  
2
0.5  
470  
1000  
120  
2
Capacitive Load Stability  
RL = ∞  
RL = 2 kΩ  
DAC code = midscale,1 kHz  
Output Noise Spectral Density  
Noise  
nV/Hz  
µV  
DAC code = midscale,  
0.1 Hz to 10 kHz bandwidth  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
Short-Circuit Current  
DC Output Impedance  
LOGIC INPUTS  
5
5
nV-s  
nV-s  
mA  
Ω
1 LSB change around major carry  
0.2  
15  
0.5  
0.2  
15  
0.5  
VDD = 3 V/5 V  
Input Current3  
2
2
µA  
V
V
V
V
Input High Voltage, VINH  
1.8  
1.4  
1.8  
1.4  
VDD = 4.7 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
VDD = 4.7 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
Input Low Voltage, VINL  
Pin Input Capacitance  
0.8  
0.6  
0.8  
0.6  
3
3
pF  
Rev. G | Page 3 of 24  
 
 
AD5601/AD5611/AD5621  
Data Sheet  
A Grade  
Min Typ  
B Grade  
Min Typ  
Parameter  
Max  
Max  
Unit  
Test Conditions/Comments  
POWER REQUIREMENTS  
VDD  
2.7  
5.5  
2.7  
5.5  
V
All digital inputs at 0 V or VDD  
IDD for Normal Mode  
DAC active and excluding load  
current  
VDD  
VDD  
=
=
4.5 V to 5.5 V  
2.7 V to 3.6 V  
75  
60  
100  
90  
75  
60  
100  
90  
µA  
µA  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
IDD for All Power-Down Modes  
VDD  
VDD  
=
=
4.5 V to 5.5 V  
2.7 V to 3.6 V  
0.5  
0.2  
0.5  
0.2  
µA  
µA  
POWER EFFICIENCY  
IOUT/IDD  
96  
96  
%
ILOAD = 2 mA and VDD = 5 V  
1 Linearity calculated using a reduced code range: AD5621 from Code 64 to Code 4032; AD5611 from Code 16 to Code 1008; AD5601 from Code 4 to Code 252.  
2 Guaranteed by design and characterization, not production tested.  
3 Total current flowing into all pins.  
TIMING CHARACTERISTICS  
VDD = 2.7 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted. See Figure 2.  
Table 3.  
Parameter  
Limit1  
33  
5
5
10  
5
Unit  
Test Conditions/Comments  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge setup time  
Data setup time  
2
t1  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
4.5  
0
Data hold time  
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time  
SYNC rising edge to next SCLK falling edge ignored  
20  
13  
1 All input signals are specified with tr = tf = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
2 Maximum SCLK frequency is 30 MHz.  
t4  
t2  
t1  
t9  
SCLK  
SYNC  
t8  
t3  
t7  
t6  
t5  
D15  
D14  
D2  
D1  
D0  
D15  
D14  
SDIN  
Figure 2. Timing Diagram  
Rev. G | Page 4 of 24  
 
 
Data Sheet  
AD5601/AD5611/AD5621  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter  
Rating  
VDD to GND  
Digital Input Voltage to GND  
VOUT to GND  
−0.3 V to +7.0 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
Operating Temperature Range  
Industrial (A/B Grades)  
Storage Temperature Range  
Maximum Junction Temperature  
SC70 Package  
−40°C to +125°C  
−65°C to +160°C  
150°C  
ESD CAUTION  
θJA Thermal Impedance  
θJC Thermal Impedance  
LFCSP Package  
433.34°C/W  
149.47°C/W  
θJA Thermal Impedance  
Lead Temperature, Soldering  
Vapor Phase (60 sec)  
Infrared (15 sec)  
95°C/W  
215°C  
220°C  
2.0 kV  
ESD (Human Body Model)  
Rev. G | Page 5 of 24  
 
 
 
 
 
AD5601/AD5611/AD5621  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
AD5601/  
AD5611/  
V
1
2
6
5
4
V
OUT  
DD  
V
1
2
3
6
5
4
SYNC  
SCLK  
SDIN  
OUT  
AD5601/  
AD5611/  
AD5621  
TOP VIEW  
(Not to Scale)  
SCLK  
SDIN  
GND  
AD5621  
GND  
TOP VIEW  
(Not to Scale)  
SYNC  
3
V
DD  
NOTES:  
1. CONNECT THE EXPOSED PAD TO GND.  
Figure 3. 6-Lead SC70 Pin Configuration  
Figure 4. 6-Lead LFCSP Pin Configuration  
Table 5. Pin Function Descriptions  
SC70 LFCSP  
Pin No. Pin No.  
Mnemonic  
Description  
1
4
SYNC  
Level-Triggered Control Input (Active Low). This is the frame synchronization signal for the input  
data. When SYNC goes low, it enables the input shift register, and data is transferred in on the falling  
edges of the clocks that follow. The DAC is updated following the 16th clock cycle, unless SYNC is  
taken high before this edge, in which case the rising edge of SYNC acts as an interrupt and the write  
sequence is ignored by the DAC.  
2
3
4
2
3
1
SCLK  
SDIN  
VDD  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock  
input. Data can be transferred at rates up to 30 MHz.  
Serial Data Input. This device has a 16-bit shift register. Data is clocked into the register on the falling  
edge of the serial clock input.  
Power Supply Input. The AD5601/AD5611/AD5621 can be operated from 2.7 V to 5.5 V. VDD should be  
decoupled to GND.  
5
6
5
6
GND  
VOUT  
EP  
Ground. Ground reference point for all circuitry on the AD5601/AD5611/AD5621.  
Analog Output Voltage from the DAC. The output amplifier has rail-to-rail operation.  
Exposed Pad. Connect to GND.  
Rev. G | Page 6 of 24  
 
 
 
Data Sheet  
AD5601/AD5611/AD5621  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
2.5  
2.0  
V
T
= V = 5V  
V
T
= V = 5V  
REF  
DD  
REF  
DD  
= 25°C  
= 25°C  
A
A
1.5  
0.5  
1.0  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
64  
564  
1064  
1564  
2064  
2564  
3064  
3564  
4064  
64  
564  
1064  
1564  
2064  
2564  
3064  
3564  
4064  
DAC CODE  
DAC CODE  
Figure 5. Typical AD5621 INL  
Figure 8. AD5621 Total Unadjusted Error (TUE)  
0.5  
0.4  
0.6  
V
T
= V  
REF  
25°C  
= 5V  
V
T
= V = 5V  
REF  
DD  
DD  
= 25°C  
=
A
A
0.4  
0.2  
0.3  
0.2  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.2  
–0.4  
–0.6  
16  
116 216 316 416 516 616 716 816 916  
DAC CODE  
16  
116 216 316 416 516 616 716 816 916  
DAC CODE  
Figure 6. Typical AD5611 INL  
Figure 9. AD5611 Total Unadjusted Error (TUE)  
0.100  
0.075  
0.050  
0.025  
0
0.20  
0.15  
0.10  
0.05  
0
V
= V  
REF  
= 5V  
V
= V = 5V  
REF  
DD  
= 25°C  
DD  
T = 25°C  
A
T
A
–0.025  
–0.050  
–0.075  
–0.100  
–0.05  
–0.10  
–0.15  
–0.20  
4
54  
104  
154  
204  
4
54  
104  
154  
204  
DAC CODE  
DAC CODE  
Figure 7. Typical AD5601 INL  
Figure 10. AD5601 Total Unadjusted Error (TUE)  
Rev. G | Page 7 of 24  
 
 
 
 
 
AD5601/AD5611/AD5621  
Data Sheet  
0.20  
12  
10  
8
V
V
V
= 3V  
= DV  
= GND  
V
V
V
= 5V  
= DV  
= GND  
V
T
= 5V  
= 25°C  
DD  
DD  
IH  
DD  
IH  
DD  
DD  
A
0.15  
0.10  
0.05  
0
IL  
A
IL  
A
T
= 25°C  
T
= 25°C  
6
0
–0.05  
–0.10  
–0.15  
–0.20  
4
2
0
64  
564  
1064  
1564  
2064  
2564  
3064  
3564  
DAC CODE  
I
(mA)  
DD  
Figure 11. Typical AD5621 DNL  
Figure 14. IDD Histogram (3 V/5 V)  
0.05  
0.04  
0.03  
0.02  
0.01  
0
V
= 5V  
= 25°C  
T = 25°C  
A
DD  
T
V
= 5V  
A
DD  
CH1 = SCLK  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
CH2 = V  
OUT  
16  
116 216 316 416 516 616 716 816 916  
DAC CODE  
CH1 = 5V/DIV CH2 = 1V/DIV TIME BASE = 2µs/DIV  
Figure 12. Typical AD5611 DNL  
Figure 15. Full-Scale Settling Time  
0.010  
0.008  
0.006  
0.004  
0.002  
T
V
= 25°C  
A
V
= 5V  
DD  
= 25°C  
= 5V  
DD  
T
A
CH1 = SCLK  
0
CH2 = V  
OUT  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
4
54  
104  
154  
204  
CH1 = 5V/DIV CH2 = 1V/DIV TIME BASE = 2µs/DIV  
DAC CODE  
Figure 13. Typical AD5601 DNL  
Figure 16. Half-Scale Settling Time  
Rev. G | Page 8 of 24  
 
 
Data Sheet  
AD5601/AD5611/AD5621  
V
= 5V  
DD  
= 25°C  
V
DD  
V
= 5V  
DD  
= 25°C  
T
A
T
A
MIDSCALE LOADED  
CH1  
CH1  
V
= 70mV  
OUT  
CH2  
CH1 5µV/DIV  
CH1 1V, CH2 20mV, TIME BASE = 20µs/DIV  
Figure 17. Power-On Reset to 0 V  
Figure 20. 1/f Noise, 0.1 Hz to 10 Hz Bandwidth  
CH1  
V
T
= 5V  
= 25°C  
DD  
V
DD  
V
= 5V  
DD  
= 25°C  
CH1  
A
T
A
V
OUT  
CH2  
CH2  
V
OUT  
CH1 5V, CH2 1V, TIME BASE = 2µs/DIV  
CH1 1V, CH2 5V, TIME BASE = 50µs/DIV  
Figure 18. VDD vs. VOUT  
Figure 21. Exiting Power-Down Mode  
140  
2.458  
3/4 SCALE  
2.456  
2.454  
2.452  
2.450  
2.448  
2.446  
2.444  
2.442  
2.440  
2.438  
2.436  
FULL SCALE  
120  
100  
80  
60  
40  
20  
0
MIDSCALE  
1/4 SCALE  
ZERO SCALE  
T
V
= 25°C  
A
= 5V  
DD  
LOAD = 2kΩ AND 220pF  
CODE 0x2000 TO 0x1FFF  
10ns/SAMPLE NUMBER  
0
100  
200  
300  
400  
500  
0
5
10  
15  
20  
25  
SAMPLE NUMBER  
FREQUENCY (MHz)  
Figure 19. Digital-to-Analog Glitch Energy  
Figure 22. IDD vs. SCLK vs. Code  
Rev. G | Page 9 of 24  
 
 
AD5601/AD5611/AD5621  
Data Sheet  
700  
0.3  
0.2  
V
= 5V  
V
= 5V  
DD  
DD  
= 25°C  
AD5621 MAX INL ERROR  
T
A
600 UNLOADED OUTPUT  
AD5601 MAX INL ERROR  
0.1  
AD5611 MAX INL ERROR  
AD5611 MIN INL ERROR  
500  
400  
300  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
AD5601 MIN INL ERROR  
MIDSCALE  
200  
100  
0
FULL SCALE  
AD5621 MIN INL ERROR  
ZERO SCALE  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 23. Noise Spectral Density  
Figure 26. INL vs. Temperature (5 V)  
70  
60  
50  
40  
30  
20  
10  
0
0.08  
T
= 25°C  
V
= 5V  
A
0.07  
0.06  
DD  
V
= 5V  
= 3V  
DD  
AD5621 MAX DNL ERROR  
0.05  
0.04  
0.03  
V
DD  
AD5611 MAX DNL ERROR  
0.02  
0.01  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.07  
–0.08  
AD5601 MAX DNL ERROR  
AD5601 MIN DNL ERROR  
AD5611 MIN DNL ERROR  
AD5621 MIN DNL ERROR  
–40  
10  
60  
110  
160  
0
2000 4000 6000 8000 10000 12000 14000 16000  
DIGITAL INPUT CODE  
TEMPERATURE (°C)  
Figure 24. Supply Current vs. Digital Input Code  
Figure 27. DNL vs. Temperature (5 V)  
0.8  
0.6  
0.00149  
0.00099  
0.00049  
–0.00001  
–0.00051  
V
= 5V  
DD  
V
= 5V  
= 25°C  
DD  
AD5621 ZERO-CODE ERROR  
T
A
DAC LOADED WITH ZERO-SCALE CODE  
0.4  
AD5611 ZERO-CODE ERROR  
AD5601 ZERO-CODE ERROR  
AD5601 FULL-SCALE ERROR  
0.2  
0.0  
–0.2  
–0.4  
–0.6  
DAC LOADED WITH FULL-SCALE CODE  
AD5611 FULL-SCALE ERROR  
AD5621 FULL-SCALE ERROR  
–40  
–20  
0
–20  
40  
60  
80  
100  
120  
140  
–15  
–10  
–5  
0
5
10  
15  
TEMPERATURE (°C)  
I (mA)  
Figure 25. Sink and Source Capability  
Figure 28. Zero-Code Error and Full-Scale Error vs. Temperature  
Rev. G | Page 10 of 24  
 
 
Data Sheet  
AD5601/AD5611/AD5621  
1.5  
1.3  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
AD5621 MAX TUE  
1.1  
V
= 5V  
= 3V  
0.9  
DD  
0.7  
0.5  
AD5601 MAX TUE  
AD5611 MAX TUE  
V
DD  
0.3  
0.1  
–0.1  
–0.3  
–0.5  
AD5601 MIN TUE  
AD5611 MIN TUE  
AD5621 MIN TUE  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 29. Total Unadjusted Error (TUE) vs. Temperature (5 V)  
Figure 32. Supply Current vs. Temperature (3 V/5 V Supply)  
1.5  
1.4  
1.3  
1.2  
1.1  
T
= 25°C  
A
0.4  
0.2  
AD5621 MAX INL ERROR  
AD5611 MAX INL ERROR  
AD5601 MAX INL ERROR  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
= 5V  
DD  
0
AD5601 MIN INL ERROR  
AD5611 MIN INL ERROR  
= 3V  
DD  
–0.2  
–0.4  
–0.6  
AD5621 MIN INL ERROR  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 30. Offset Error vs. Temperature (3 V/5 V Supply)  
Figure 33. INL vs. Supply Voltage at 25°C  
0
0.10  
0.09  
T
= 25°C  
A
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–0.012  
–0.014  
–0.016  
V
= 5V  
DD  
AD5621 MAX DNL ERROR  
AD5611 MAX DNL ERROR  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.07  
–0.08  
–0.09  
–0.10  
AD5611 MIN DNL ERROR  
AD5601 MAX DNL ERROR  
AD5601 MIN DNL ERROR  
V
= 3V  
DD  
AD5621 MIN DNL ERROR  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.7  
6.2  
6.7  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 31. Gain Error vs. Temperature (3 V/5 V Supply)  
Figure 34. DNL vs. Supply Voltage at 25°C  
Rev. G | Page 11 of 24  
AD5601/AD5611/AD5621  
Data Sheet  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
1.5  
T
= 25°C  
T
= 25°C  
A
A
1.3  
1.1  
AD5621 MAX TUE  
0.9  
0.7  
0.5  
AD5611 MAX TUE  
AD5621 MIN TUE  
0.3  
0.1  
AD5601 MAX TUE  
AD5611 MIN TUE  
AD5601 MIN TUE  
–0.1  
–0.3  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 37. Supply Current vs. Supply Voltage at 25°C  
Figure 35. Total Unadjusted Error (TUE) vs. Supply Voltage at 25°C  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.0010  
T
= 25°C  
T
= 25°C  
A
SCLK/SDIN  
INCREASING  
A
AD5621 ZERO-CODE ERROR  
SCLK/SDIN  
DECREASING  
0.0008  
0.0006  
0.0004  
V
= 5V  
DD  
V
= 5V  
DD  
SCLK/SDIN  
INCREASING  
AD5601 FULL-SCALE ERROR  
AD5611 ZERO-CODE ERROR  
V
= 3V  
DD  
0.0002  
0
AD5601 ZERO-CODE ERROR  
AD5611 FULL-SCALE ERROR  
AD5621 FULL-SCALE ERROR  
–0.0002  
–0.0004  
SCLK/SDIN DECREASING V  
= 3V  
DD  
3
0
0
1
2
4
5
6
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
5.7  
6.2  
6.7  
SUPPLY VOLTAGE (V)  
V
(V)  
LOGIC  
Figure 38. SCLK/SDIN vs. Logic Voltage  
Figure 36. Zero-Code Error and Full-Scale Error vs. Supply Voltage at 25°C  
Rev. G | Page 12 of 24  
Data Sheet  
AD5601/AD5611/AD5621  
TERMINOLOGY  
Relative Accuracy  
Total Unadjusted Error  
For the DAC, relative accuracy or integral nonlinearity (INL) is  
a measure of the maximum deviation, in LSBs, from a straight  
line passing through the endpoints of the DAC transfer func-  
tion. See Figure 5 to Figure 7 for plots of typical INL vs. code.  
Total unadjusted error (TUE) is a measure of the output error,  
taking all the various errors into account. See Figure 8 to  
Figure 10 for plots of typical TUE vs. code.  
Zero-Code Error Drift  
Differential Nonlinearity  
Zero-code error drift is a measure of the change in zero-code  
error with a change in temperature. It is expressed in µV/°C.  
Differential nonlinearity (DNL) is the difference between the  
measured change and the ideal 1 LSB change between any two  
adjacent codes. A specified differential nonlinearity of 1 LSB  
maximum ensures monotonicity. This DAC is guaranteed  
monotonic by design. See Figure 11 to Figure 13 for plots of  
typical DNL vs. code.  
Gain Temperature Coefficient  
Gain temperature coefficient is a measure of the change in gain  
error with changes in temperature. It is expressed in (ppm of  
full-scale range)/°C.  
Digital-to-Analog Glitch Impulse  
Zero-Code Error  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-s  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition (0x2000 to 0x1FFF). See  
Figure 19.  
Zero-code error is a measure of the output error when zero  
code (0x0000) is loaded to the DAC register. Ideally, the output  
should be 0 V. The zero-code error is always positive in the  
AD5601/AD5611/AD5621 because the output of the DAC cannot  
go below 0 V. Z e ro-code error is due to a combination of the  
offset errors in the DAC and output amplifier. Zero-code error  
is expressed in mV. See Figure 28 for a plot of zero-code error  
vs. temperature.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC, but is measured when the DAC output is not updated.  
It is specified in nV-s and is measured with a full-scale code  
change on the data bus—from all 0s to all 1s and vice versa.  
Full-Scale Error  
Full-scale error is a measure of the output error when full-scale  
code (0xFFFF) is loaded to the DAC register. Ideally, the output  
should be VDD − 1 LSB. Full-scale error is expressed in mV. See  
Figure 28 for a plot of full-scale error vs. temperature.  
Gain Error  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal, expressed as a percent of the full-scale range.  
Rev. G | Page 13 of 24  
 
AD5601/AD5611/AD5621  
Data Sheet  
THEORY OF OPERATION  
DAC SECTION  
OUTPUT AMPLIFIER  
The AD5601/AD5611/AD5621 DACs are fabricated on a  
CMOS process. The architecture consists of a string DAC  
followed by an output buffer amplifier. Figure 39 is a block  
diagram of the DAC architecture.  
The output buffer amplifier is capable of generating rail-to-rail  
voltages on its output, giving an output range of 0 V to VDD. It is  
capable of driving a load of 2 kΩ in parallel with 1000 pF to  
GND. The source and sink capabilities of the output amplifier  
are shown in Figure 25. The slew rate is 0.5 V/µs, with a half-  
scale settling time of 8 µs with the output loaded.  
V
DD  
REF (+)  
SERIAL INTERFACE  
RESISTOR  
NETWORK  
V
DAC REGISTER  
OUT  
The AD5601/AD5611/AD5621 have a 3-wire serial interface  
REF (–)  
OUTPUT  
AMPLIFIER  
SYNC  
(
, SCLK, and SDIN) that is compatible with SPI, QSPI,  
and MICROWIRE interface standards as well as most DSPs. See  
Figure 2 for a timing diagram of a typical write sequence.  
GND  
Figure 39. DAC Architecture  
SYNC  
line low. Data  
The write sequence begins by bringing the  
from the SDIN line is clocked into the 16-bit shift register on  
the falling edge of SCLK. The serial clock frequency can be as  
high as 30 MHz, making the AD5601/AD5611/AD5621 com-  
patible with high speed DSPs. On the 16th falling clock edge,  
the last data bit is clocked in and the programmed function is  
executed (a change in DAC register contents and/or a change  
Because the input coding to the DAC is straight binary, the ideal  
output voltage is given by  
D
2n  
VOUT = VDD  
where:  
×
SYNC  
in the mode of operation). At this stage, the  
line may be  
D is the decimal equivalent of the binary code that is loaded to  
the DAC register.  
n is the bit resolution of the DAC.  
kept low or brought high. In either case, it must be brought high  
for a minimum of 33 ns before the next write sequence so that a  
SYNC  
falling edge of  
can initiate the next write sequence.  
RESISTOR STRING  
SYNC  
Because the  
buffer draws more current when VIN = 1.8 V  
The resistor string structure is shown in Figure 40. It is simply a  
string of resistors, each of Value R. The code loaded to the DAC  
register determines at which node on the string the voltage is  
tapped off to be fed into the output amplifier. The voltage is  
tapped off by closing one of the switches connecting the string  
to the amplifier. Because it is a string of resistors, it is guaran-  
teed monotonic.  
SYNC  
than it does when VIN = 0.8 V,  
should be idled low  
between write sequences for even lower power operation of the  
part, as mentioned previously. However, it must be brought  
high again just before the next write sequence.  
INPUT SHIFT REGISTER  
The input shift register is 16 bits wide (see Figure 41). The first  
two bits are control bits, which control the operating mode of  
the part (normal mode or any one of three power-down  
modes). For a complete description of the various modes, see  
the Power-Down Modes section. For the AD5621, the next  
12 bits are the data bits, which are transferred to the DAC  
register on the 16th falling edge of SCLK. The information in  
the last two bits is ignored by the AD5621. See Figure 42 and  
Figure 43 for the AD5611 and AD5601 input shift register map.  
R
R
TO OUTPUT  
AMPLIFIER  
R
SYNC INTERRUPT  
SYNC  
In a normal write sequence, the  
line is kept low for at  
least 16 falling edges of SCLK and the DAC is updated on the  
th  
SYNC  
16 falling edge. However, if  
is brought high before the  
16th falling edge, this acts as an interrupt to the write sequence.  
The shift register is reset and the write sequence is seen as  
invalid. Neither an update of the DAC register contents nor a  
change in the operating mode occurs (see Figure 44).  
R
R
Figure 40. Resistor String Structure  
Rev. G | Page 14 of 24  
 
 
 
 
 
 
 
 
 
Data Sheet  
AD5601/AD5611/AD5621  
DB15 (MSB)  
DB0 (LSB)  
X
X
X
PD1  
PD0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
X
X
DATA BITS  
0
0
1
1
0
1
0
1
NORMAL OPERATION  
1kΩ TO GND  
POWER-DOWN MODES  
100kΩ TO GND  
THREE-STATE  
Figure 41. AD5621 Input Register Contents  
DB15 (MSB)  
DB0 (LSB)  
PD1  
PD0  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
X
DATA BITS  
0
0
1
1
0
1
0
1
NORMAL OPERATION  
1kΩ TO GND  
POWER-DOWN MODES  
100kΩ TO GND  
THREE-STATE  
Figure 42. AD5611 Input Register Contents  
DB15 (MSB)  
DB0 (LSB)  
PD1  
PD0  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
X
X
X
X
DATA BITS  
0
0
1
1
0
1
0
1
NORMAL OPERATION  
1kΩ TO GND  
POWER-DOWN MODES  
100kΩ TO GND  
THREE-STATE  
Figure 43. AD5601 Input Register Contents  
SCLK  
SYNC  
SDIN  
DB15  
DB0  
DB15  
DB0  
INVALID WRITE SEQUENCE:  
SYNC HIGH BEFORE 16TH FALLING EDGE  
VALID WRITE SEQUENCE, OUTPUT UPDATES  
ON THE 16TH FALLING EDGE  
SYNC  
Figure 44.  
Interrupt Facility  
Rev. G | Page 15 of 24  
 
 
 
 
AD5601/AD5611/AD5621  
Data Sheet  
POWER-ON RESET  
MICROPROCESSOR INTERFACING  
AD5601/AD5611/AD5621 to ADSP-2101 Interface  
The AD5601/AD5611/AD5621 contain a power-on reset circuit  
that controls the output voltage during power-up. The DAC  
register is filled with 0s and the output voltage is 0 V. It remains  
there until a valid write sequence is made to the DAC. This is  
useful in applications in which it is important to know the state  
of the DAC output while it is in the process of powering up.  
Figure 46 shows a serial interface between the AD5601/  
AD5611/AD5621 and the ADSP-2101. The ADSP-2101 should  
be set up to operate in SPORT transmit alternate framing mode.  
The ADSP-2101 SPORT is programmed through the SPORT  
control register and should be configured as follows: internal  
clock operation, active low framing, and 16-bit word length.  
Transmission is initiated by writing a word to the Tx register  
after the SPORT is enabled.  
POWER-DOWN MODES  
The AD5601/AD5611/AD5621 have four separate modes of  
operation. These modes are software-programmable by setting  
two bits (DB15 and DB14) in the control register. Table 6 shows  
how the state of the bits corresponds to the operating mode of  
the device.  
ADSP-2101*  
AD5601/AD5611/  
AD5621*  
TFS  
DT  
SYNC  
SDIN  
SCLK  
Table 6. Operating Modes of the AD5601/AD5611/AD5621  
SCLK  
DB15  
DB14  
Operating Mode  
Normal operation  
Power-down modes:  
1 kΩ to GND  
100 kΩ to GND  
Three-state  
0
0
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 46. AD5601/AD5611/AD5621 to ADSP-2101 Interface  
0
1
1
1
0
1
AD5601/AD5611/AD5621 to 68HC11/68L11 Interface  
Figure 47 shows a serial interface between the AD5601/AD5611/  
AD5621 and the 68HC11/68L11 microcontroller. SCK of the  
68HC11/68L11 drives the SCLK of the AD5601/AD5611/  
AD5621, while the MOSI output drives the serial data line of  
When both bits are set to 0, the part has normal power  
consumption of 100 µA maximum at 5 V. However, for the  
three power-down modes, the supply current falls to typically  
0.2 µA at 3 V.  
SYNC  
the DAC. The  
signal is derived from a port line (PC7).  
The setup conditions for correct operation of this interface are  
as follows: the 68HC11/68L11 should be configured so that the  
CPOL bit is 0 and the CPHA bit is 1. When data is being trans-  
Not only does the supply current fall, but the output stage is  
also internally switched from the output of the amplifier to a  
resistor network of known values. This has the advantage that  
the output impedance of the part is known while the part is in  
power-down mode.  
SYNC  
mitted to the DAC, the  
line is taken low (PC7). When the  
68HC11/68L11 are configured as indicated, data appearing on  
the MOSI output is valid on the falling edge of SCK. Serial data  
from the 68HC11/68L11 is transmitted in 8-bit bytes with only  
eight falling clock edges occurring in the transmit cycle. Data is  
transmitted MSB first. To load data to the AD5601/AD5611/  
AD5621, PC7 is left low after the first eight bits are transferred  
and a second serial write operation is performed to the DAC.  
PC7 is taken high at the end of this procedure.  
There are three different options: the output is connected  
internally to GND through a 1 kΩ resistor or a 100 kΩ resistor,  
or the output is left open-circuited (three-stated). Figure 45  
shows the output stage.  
RESISTOR  
STRING DAC  
AMPLIFIER  
V
OUT  
68HC11/  
68L11*  
AD5601/AD5611/  
AD5621*  
PC7  
SCK  
SYNC  
SCLK  
SDIN  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
MOSI  
Figure 45. Output Stage During Power-Down  
*ADDITIONAL PINS OMITTED FOR CLARITY  
The bias generator, output amplifier, resistor string, and other  
associated linear circuitry are all shut down when power-down  
mode is activated. However, the contents of the DAC register  
are unaffected when in power-down. The time to exit power-  
down is typically 13 µs for VDD = 5 V and 16 µs for VDD = 3 V.  
See Figure 21 for a plot.  
Figure 47. AD5601/AD5611/AD5621 to 68HC11/68L11 Interface  
Rev. G | Page 16 of 24  
 
 
 
 
 
 
 
Data Sheet  
AD5601/AD5611/AD5621  
AD5601/AD5611/AD5621 to Blackfin® ADSP-BF53x  
Interface  
and a second write cycle is initiated to transmit the second byte  
of data. P3.3 is taken high following the completion of this  
cycle. The 80C51/80L51 output the serial data LSB first. The  
AD5601/AD5611/AD5621 require data with the MSB as the  
first bit received. The 80C51/80L51 transmit routine should  
take this into account.  
Figure 48 shows a serial interface between the AD5601/AD5611/  
AD5621 and the Blackfin ADSP-BF53x microprocessor. The  
ADSP-BF53x processor family incorporates two dual-channel  
synchronous serial ports, SPORT1 and SPORT0, for serial and  
multiprocessor communications. Using SPORT0 to connect to  
the AD5601/AD5611/AD5621, the setup for the interface is as  
follows: DT0PRI drives the SDIN pin of the AD5601/AD5611/  
AD5601/AD5611/  
AD5621*  
80C51/80L51*  
P3.3  
TxD  
RxD  
SYNC  
SCLK  
SDIN  
AD5621, while TSCLK0 drives the SCLK of the part. The  
is driven from TFS0.  
SYNC  
AD5601/AD5611/  
AD5621*  
ADSP-BF53x*  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 49. AD5601/AD5611/AD5621 to 80C51/80L51 Interface  
DT0PRI  
TSCLK0  
TFS0  
SDIN  
SCLK  
SYNC  
AD5601/AD5611/AD5621 to MICROWIRE Interface  
Figure 50 shows an interface between the AD5601/AD5611/  
AD5621 and any MICROWIRE-compatible device. Serial data  
is shifted out on the falling edge of the serial clock and is  
clocked into the AD5601/AD5611/AD5621 on the rising edge  
of the SK.  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 48. AD5601/AD5611/AD5621 to Blackfin ADSP-BF53x Interface  
AD5601/AD5611/AD5621 to 80C51/80L51 Interface  
Figure 49 shows a serial interface between the AD5601/  
AD5611/AD5621 and the 80C51/80L51 microcontroller. The  
setup for the interface is as follows: TxD of the 80C51/80L51  
drives SCLK of the AD5601/AD5611/AD5621, while RxD  
AD5601/AD5611/  
AD5621*  
MICROWIRE*  
CS  
SK  
SO  
SYNC  
SCLK  
SDIN  
SYNC  
drives the serial data line of the part. The  
signal is again  
derived from a bit programmable pin on the port. In this case,  
Port Line P3.3 is used. When data is to be transmitted to the  
AD5601/AD5611/AD5621, P3.3 is taken low. The 80C51/80L51  
transmit data only in 8-bit bytes; therefore, only eight falling  
clock edges occur in the transmit cycle. To load data to the  
DAC, P3.3 is left low after the first eight bits are transmitted,  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 50. AD5601/AD5611/AD5621 to MICROWIRE Interface  
Rev. G | Page 17 of 24  
 
 
 
AD5601/AD5611/AD5621  
Data Sheet  
APPLICATIONS  
CHOOSING A REFERENCE AS POWER SUPPLY FOR  
THE AD5601/AD5611/AD5621  
BIPOLAR OPERATION USING THE  
AD5601/AD5611/AD5621  
The AD5601/AD5611/AD5621 come in tiny LFCSP and SC70  
packages with less than a 100 µA supply current. Because of  
this, the choice of reference depends on the application  
requirements. For applications with space-saving requirements,  
the ADR02 is recommended. It is available in an SC70 package  
and has excellent drift at 9 ppm/°C (3 ppm/°C in the R-8 package)  
and provides very good noise performance at 3.4 µV p-p in the 0.1  
Hz to 10 Hz range.  
The AD5601/AD5611/AD5621 have been designed for single-  
supply operation, but a bipolar output range is also possible  
using the circuit shown in Figure 52. The circuit in Figure 52  
gives an output voltage range of 5 V. Rail-to-rail operation at  
the amplifier output is achievable using an AD820 or OP295 as  
the output amplifier.  
R2 = 10kΩ  
+5V  
+5V  
R1 = 10kΩ  
Because the supply current required by the AD5601/AD5611/  
AD5621 is extremely low, the parts are ideal for low supply  
applications. The ADR395 voltage reference is recommended in  
this case. It requires less than 100 µA of quiescent current and  
can, therefore, drive multiple DACs in one system, if required. It  
also provides very good noise performance at 8 µV p-p in the  
0.1 Hz to 10 Hz range.  
AD820/  
OP295  
+5V  
V
V
OUT  
DD  
10µF  
0.1µF  
AD5601/AD5611/  
AD5621  
–5V  
3-WIRE  
SERIAL  
INTERFACE  
7V  
5V  
Figure 52. Bipolar Operation with the AD5601/AD5611/AD5621  
ADR395  
The output voltage for any input code can be calculated as  
D
R1+ R2  
R1  
R2  
R1  
   
   
SYNC  
3-WIRE  
SERIAL  
INTERFACE  
VOUT = VDD  
×
×
V  
×
DD  
V
= 0V TO 5V  
OUT  
   
2N  
AD5601/AD5611/  
AD5621  
SCLK  
SDIN  
where D represents the input code in decimal (0 – 2N).  
With VDD = 5 V, R1 = R2 = 10 kΩ  
Figure 51. ADR395 as Power Supply to the AD5601/AD5611/AD5621  
10 × D  
2N  
Some recommended precision references for use as supplies to  
the AD5601/AD5611/AD5621 are listed in Table 7.  
VOUT  
=
5 V  
This is an output voltage range of 5 V, with 0x0000 corre-  
sponding to a −5 V output and 0x3FFF corresponding to a  
+5 V output.  
Table 7. Precision References for the AD5601/AD5611/AD5621  
Initial  
Accuracy Temp Drift  
0.1 Hz to 10 Hz  
Part No.  
ADR435  
ADR425  
ADR02  
ADR02  
ADR395  
(mV max) (ppm/°C max)  
Noise (µV p-p typ)  
2
2
3
3
5
3 (R-8)  
3 (R-8)  
3 (R-8)  
3 (SC70)  
9 (TSOT-23)  
8
3.4  
10  
10  
8
Rev. G | Page 18 of 24  
 
 
 
 
 
Data Sheet  
AD5601/AD5611/AD5621  
USING THE AD5601/AD5611/AD5621 WITH A  
GALVANICALLY ISOLATED INTERFACE  
POWER SUPPLY BYPASSING AND GROUNDING  
When accuracy is important in a circuit, it is helpful to carefully  
consider the power supply and ground return layout on the  
board. The PCB containing the AD5601/AD5611/AD5621  
should have separate analog and digital sections, each having its  
own area of the board. If the AD5601/AD5611/AD5621 are in a  
system where other devices require an AGND-to-DGND  
connection, the connection should be made at one point only.  
This ground point should be as close as possible to the  
AD5601/AD5611/AD5621.  
In process control applications in industrial environments,  
it is often necessary to use a galvanically isolated interface to  
protect and isolate the controlling circuitry from any hazardous  
common-mode voltages that might occur in the area where the  
DAC is functioning. iCoupler® provides isolation in excess of  
2.5 kV. Because the AD5601/AD5611/AD5621 use a 3-wire serial  
logic interface, the ADuM1300 3-channel digital isolator  
provides the required isolation (see Figure 53). The power  
supply to the part also needs to be isolated, which is done by  
using a transformer. On the DAC side of the transformer, a 5 V  
regulator provides the 5 V supply required for the AD5601/  
AD5611/AD5621.  
The power supply to the AD5601/AD5611/AD5621 should be  
bypassed with 10 µF and 0.1 µF capacitors. The capacitors  
should be physically as close as possible to the device, with the  
0.1 µF capacitor ideally right up against the device. The 10 µF  
capacitors are the tantalum bead type. It is important that the  
0.1 µF capacitor have low effective series resistance (ESR) and  
effective series inductance (ESI), such as in common ceramic  
types of capacitors. This 0.1 µF capacitor provides a low imped-  
ance path to ground for high frequencies caused by transient  
currents due to internal logic switching.  
5V  
REGULATOR  
POWER  
10µF  
0.1µF  
V
DD  
SCLK  
V
V
SCLK  
IA  
OA  
The power supply line itself should have as large a trace as  
possible to provide a low impedance path and reduce glitch  
effects on the supply line. Clocks and other fast switching  
digital signals should be shielded from other parts of the board  
by digital ground. Avoid crossover of digital and analog signals,  
if possible. When traces cross on opposite sides of the board,  
ensure that they run at right angles to each other to reduce  
feedthrough effects on the board. The best board layout tech-  
nique is the microstrip technique, where the component side of  
the board is dedicated to the ground plane only and the signal  
traces are placed on the solder side. However, this is not always  
possible with a two-layer board.  
ADuM1300  
AD5601/  
AD5611/  
AD5621  
V
OUT  
SDI  
V
V
V
V
SYNC  
SDIN  
IB  
IC  
OB  
OC  
DATA  
GND  
Figure 53. AD5601/AD5611/AD5621 with a Galvanically Isolated Interface  
Rev. G | Page 19 of 24  
 
 
 
AD5601/AD5611/AD5621  
OUTLINE DIMENSIONS  
Data Sheet  
2.20  
2.00  
1.80  
2.40  
2.10  
1.80  
6
1
5
2
4
3
1.35  
1.25  
1.15  
0.65 BSC  
1.30 BSC  
1.00  
0.90  
0.70  
0.40  
0.10  
1.10  
0.80  
0.46  
0.36  
0.26  
0.22  
0.08  
SEATING  
PLANE  
0.10 MAX  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-203-AB  
Figure 54. 6-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-6)  
Dimensions shown in millimeters  
1.50  
1.40  
1.30  
2.10  
2.00  
1.90  
0.65 REF  
0.20 MIN  
4
6
3.10  
3.00  
2.90  
EXPOSED  
PAD  
1.70  
1.60  
1.50  
0.45  
0.40  
0.35  
PIN 1 INDEX  
AREA  
3
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.00 MIN  
0.203 REF  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.35  
0.30  
0.25  
COPLANARITY  
0.08  
COMPLIANT TO JEDEC STANDARDS MO-229  
Figure 55. 6-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
2.00 × 3.00 mm Body, Very Very Thin, Dual Lead  
(CP-6-5)  
Dimensions shown in millimeters  
Rev. G | Page 20 of 24  
 
Data Sheet  
AD5601/AD5611/AD5621  
ORDERING GUIDE  
Temperature  
Range  
Package  
Option  
Model1  
INL  
Package Description  
Branding  
D3V  
D3V  
89  
AD5601BKSZ-500RL7  
AD5601BKSZ-REEL7  
AD5601BCPZ-RL7  
AD5611AKSZ-500RL7  
AD5611AKSZ-REEL7  
AD5611ACPZ-RL7  
AD5611BKSZ-500RL7  
AD5611BKSZ-REEL7  
AD5621AKSZ-500RL7  
AD5621AKSZ-REEL7  
AD5621ACPZ-RL7  
AD5621BKSZ-500RL7  
AD5621BKSZ-REEL7  
EVAL-AD5621EBZ  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
0.5 LSB 6-Lead Thin Shrink Small Outline Transistor Package [SC70] KS-6  
0.5 LSB 6-Lead Thin Shrink Small Outline Transistor Package [SC70] KS-6  
0.5 LSB 6-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
CP-6-5  
4.0 LSB 6-Lead Thin Shrink Small Outline Transistor Package [SC70] KS-6  
4.0 LSB 6-Lead Thin Shrink Small Outline Transistor Package [SC70] KS-6  
D3U  
D3U  
8B  
D3T  
D3T  
D3S  
D3S  
D3S  
D3R  
D3R  
4.0 LSB 6-Lead Lead Frame Chip Scale Package[LFCSP_WD]  
CP-6-5  
0.5 LSB 6-Lead Thin Shrink Small Outline Transistor Package [SC70] KS-6  
0.5 LSB 6-Lead Thin Shrink Small Outline Transistor Package [SC70] KS-6  
6.0 LSB 6-Lead Thin Shrink Small Outline Transistor Package [SC70] KS-6  
6.0 LSB 6-Lead Thin Shrink Small Outline Transistor Package [SC70] KS-6  
6.0 LSB 6-Lead Lead Frame Chip Scale Package[LFCSP_WD]  
1.0 LSB 6-Lead Thin Shrink Small Outline Transistor Package [SC70] KS-6  
1.0 LSB 6-Lead Thin Shrink Small Outline Transistor Package [SC70] KS-6  
Evaluation Board  
CP-6-5  
1 Z = RoHS Compliant Part.  
Rev. G | Page 21 of 24  
 
AD5601/AD5611/AD5621  
NOTES  
Data Sheet  
Rev. G | Page 22 of 24  
Data Sheet  
NOTES  
AD5601/AD5611/AD5621  
Rev. G | Page 23 of 24  
AD5601/AD5611/AD5621  
NOTES  
Data Sheet  
©2005–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06853-0-6/13(G)  
Rev. G | Page 24 of 24  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY