AD5612 [ADI]

2.7 V to 5.5 V, <100 uA, 8-/10-/12-Bit nanoDACs with; 2.7 V至5.5 V , \u003c 100微安, 8位/ 10位/ 12位nanoDACs与
AD5612
型号: AD5612
厂家: ADI    ADI
描述:

2.7 V to 5.5 V, <100 uA, 8-/10-/12-Bit nanoDACs with
2.7 V至5.5 V , \u003c 100微安, 8位/ 10位/ 12位nanoDACs与

文件: 总24页 (文件大小:560K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.7 V to 5.5 V, <100 μA, 8-/10-/12-Bit nanoDACs® with  
I2C®-Compatible Interface, Tiny SC70 Package  
AD5602/AD5612/AD5622  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
Single 8-, 10-, 12-bit DACs, 2 LSB INL  
6-lead SC70 package  
DD  
GND  
POWER-ON  
RESET  
Micropower operation: 100 μA max @ 5 V  
Power-down to <150 nA @ 3 V  
2.7 V to 5.5 V power supply  
Guaranteed monotonic by design  
Power-on reset to 0 V with brownout detection  
3 power-down functions  
AD5602/AD5612/AD5622  
REF(+)  
DAC  
REGISTER  
OUTPUT  
BUFFER  
V
8-/10-/12-BIT  
DAC  
OUT  
I2C-compatible serial interface supports standard (100 kHz),  
fast (400 kHz), and high speed (3.4 MHz) modes  
INPUT  
CONTROL  
LOGIC  
POWER-DOWN  
CONTROL LOGIC  
RESISTOR  
NETWORK  
On-chip output buffer amplifier, rail-to-rail operation  
APPLICATIONS  
ADDR  
SCL SDA  
Process control  
Figure 1.  
Data acquisition systems  
Portable battery-powered instruments  
Digital gain and offset adjustment  
Programmable voltage and current sources  
Programmable attenuators  
Table 1. Related Devices  
Part No.  
AD5601/AD5611/AD5621 2.7 V to 5.5 V, <100 μA, 8-, 10-, 12-bit  
nanoDAC with SPI® interface in a  
Description  
tiny SC70 package  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The AD5602/AD5612/AD5622, members of the nanoDAC  
family, are single 8-, 10-, 12-bit buffered voltage-out DACs that  
operate from a single 2.7 V to 5.5 V supply, consuming <100 μA  
at 5 V. These DACs come in tiny SC70 packages. Each DAC  
contains an on-chip precision output amplifier that allows rail-  
to-rail output swing to be achieved.  
1. Available in a 6-lead SC70 package.  
2. Maximum 100 μA power consumption, single-supply  
operation. These parts operate from a single 2.7 V to 5.5 V  
supply, typically consuming 0.2 mW at 3 V and 0.4 mW at  
5 V, making them ideal for battery-powered applications.  
3. The on-chip output buffer amplifier allows the output of  
the DAC to swing rail-to-rail with a typical slew rate of  
0.5 V/μs.  
The AD5602/AD5612/AD5622 use a 2-wire I2C-compatible  
serial interface that operates in standard (100 kHz), fast  
(400 kHz), and high speed (3.4 MHz) modes.  
4. Reference derived from the power supply.  
5. Standard, fast, and high speed mode I2C interface.  
6. Designed for very low power consumption.  
The references for AD5602/AD5612/AD5622 are derived from  
the power supply inputs to give the widest dynamic output range.  
Each part incorporates a power-on reset circuit that ensures the  
DAC output powers up to 0 V and remains there until a valid  
write takes place to the device. The parts contain a power-down  
feature that reduces the current consumption of the devices to  
<150 nA at 3 V and provides software-selectable output loads  
while in power-down mode. The parts are put into power-down  
mode over the serial interface. The low power consumption of  
the AD5602/AD5612/AD5622 in normal operation makes them  
ideally suited for use in portable battery-operated equipment. The  
typical power consumption is 0.4 mW at 5 V.  
7. Power-down capability. When powered down, the DAC  
typically consumes <150 nA at 3 V.  
8. Power-on reset and brownout detection.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD5602/AD5612/AD5622  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Resistor String............................................................................. 15  
Output Amplifier........................................................................ 15  
Serial Interface ................................................................................ 16  
Input Register.............................................................................. 16  
Power-On Reset.......................................................................... 17  
Power-Down Modes .................................................................. 17  
Write Operation.......................................................................... 18  
Read Operation........................................................................... 19  
High Speed Mode....................................................................... 20  
Applications..................................................................................... 21  
Choosing a Reference as Power Supply................................... 21  
Bipolar Operation....................................................................... 21  
Power Supply Bypassing and Grounding................................ 21  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
I2C Timing Specifications............................................................ 4  
Timing Diagram ........................................................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Terminology .................................................................................... 14  
Theory of Operation ...................................................................... 15  
D/A Section................................................................................. 15  
REVISION HISTORY  
3/06—Rev. A to Rev. B  
Changes to Table 2............................................................................ 3  
Updates to Outline Dimensions ................................................... 22  
Changes to Ordering Guide .......................................................... 23  
8/05—Rev. 0 to Rev. A  
Changes to Ordering Guide .......................................................... 22  
6/05—Revision 0: Initial Version  
Rev. B | Page 2 of 24  
 
AD5602/AD5612/AD5622  
SPECIFICATIONS  
VDD = 2.7 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
A, B, W, Y Versions1  
Parameter  
STATIC PERFORMANCE  
Resolution  
AD5602  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
DAC output unloaded  
Bits  
8
AD5612  
AD5622  
Relative Accuracy2  
10  
12  
AD5602  
AD5612  
0.5  
0.5  
4
LSB  
LSB  
LSB  
B, Y versions  
B, Y versions  
A version  
AD5622  
2
LSB  
B, Y versions  
6
1
10  
10  
LSB  
LSB  
mV  
mV  
A, W versions  
Guaranteed monotonic by design  
All 0s loaded to DAC register  
Differential Nonlinearity2  
Zero Code Error  
Offset Error  
Full-Scale Error  
Gain Error  
Zero Code Error Drift  
Gain Temperature Coefficient  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
Output Voltage Settling Time  
Slew Rate  
0.5  
0.063  
0.5  
0.0004  
5
2
mV  
All 1s loaded to DAC register  
0.037  
% of FSR  
μV/°C  
ppm of FSR/°C  
0
VDD  
10  
V
μs  
V/μs  
pF  
pF  
6
Code ¼ to ¾  
0.5  
470  
1000  
120  
2
Capacitive Load Stability  
RL = ∞  
RL = 2 kΩ  
Output Noise Spectral Density  
Noise  
nV/Hz  
DAC code = midscale, 10 kHz  
DAC code = midscale, 0.1 Hz to 10 Hz  
bandwidth  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
DC Output Impedance  
Short Circuit Current  
5
nV-s  
nV-s  
Ω
1 LSB change around major carry  
0.2  
0.5  
15  
mA  
VDD = 3 V/5 V  
LOGIC INPUTS (SDA, SCL)  
IIN, Input Current  
VINL, Input Low Voltage  
VINH, Input High Voltage  
CIN, Pin Capacitance  
VHYST, Input Hysteresis  
LOGIC OUTPUTS (OPEN DRAIN)  
VOL, Output Low Voltage  
1
μA  
V
V
pF  
V
0.3 × VDD  
0.7 × VDD  
0.1 × VDD  
2
2
0.4  
0.6  
1
V
V
μA  
pF  
ISINK = 3 mA  
ISINK = 6 mA  
Floating-State Leakage Current  
Floating-State Output Capacitance  
Rev. B | Page 3 of 24  
 
AD5602/AD5612/AD5622  
A, B, W, Y Versions1  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
POWER REQUIREMENTS  
VDD  
2.7  
5.5  
V
IDD (Normal Mode)  
VDD = 4.5 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
IDD (All Power-Down Modes)  
VDD = 4.5 V to 5.5 V  
VDD = 2.7 V to 3.6 V  
POWER EFFICIENCY  
IOUT/IDD  
DAC active and excluding load current  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
75  
60  
100  
90  
μA  
μA  
0.3  
0.15  
1
1
μA  
μA  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
96  
%
ILOAD = 2 mA, VDD = 5 V  
1 Temperature ranges for A, B versions: 40°C to +125°C, typical at 25°C.  
2 Linearity calculated using a reduced code range 64 to 4032.  
3 Guaranteed by design and characterization, not production tested.  
I2C TIMING SPECIFICATIONS  
VDD = 2.7 V to 5.5 V; all specifications TMIN to TMAX, fSCL = 3.4 MHz, unless otherwise noted.1  
Table 3.  
Limit at TMIN, TMAX  
Parameter  
Conditions2  
Min  
Max  
100  
400  
3.4  
Unit  
KHz  
KHz  
MHz  
MHz  
μs  
μs  
ns  
ns  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
μs  
μs  
Description  
3
fSCL  
Standard mode  
Fast mode  
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
Serial clock frequency  
tHIGH, SCL high time  
tLOW, SCL low time  
1.7  
t1  
4
Fast mode  
0.6  
60  
120  
4.7  
1.3  
160  
320  
250  
100  
10  
0
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
t2  
Fast mode  
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
t3  
t4  
tSU;DAT, data setup time  
tHD;DAT, data hold time  
3.45  
0.9  
Fast mode  
0
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
0
0
70  
150  
ns  
ns  
μs  
μs  
ns  
μs  
μs  
ns  
t5  
t6  
t7  
4.7  
0.6  
160  
4
0.6  
160  
4.7  
tSU;STA, set-up time for a repeated start condition  
tHD;STA, hold time (repeated) start condition  
μs  
tBUF, bus free time between a stop and a start  
condition  
Fast mode  
1.3  
μs  
Rev. B | Page 4 of 24  
 
 
 
AD5602/AD5612/AD5622  
Limit at TMIN, TMAX  
Parameter  
Conditions2  
Min  
Max  
Unit  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Description  
t8  
Standard mode  
Fast mode  
High speed mode  
Standard mode  
Fast mode  
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
4
0.6  
160  
tSU;STO, setup time for a stop condition  
t9  
1000  
300  
80  
160  
300  
300  
80  
160  
1000  
300  
40  
tRDA, rise time of SDA signal  
10  
20  
t10  
t11  
t11A  
tFDA, fall time of SDA signal  
tRCL, rise time of SCL signal  
Fast mode  
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
10  
20  
Fast mode  
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
10  
20  
80  
1000  
tRCL1, rise time of SCL signal after a repeated start  
condition and after an acknowledge bit  
Fast mode  
300  
80  
160  
300  
300  
40  
80  
50  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Standard mode  
10  
20  
t12  
tFCL, fall time of SCL signal  
Fast mode  
High speed mode, CB = 100 pF  
High speed mode, CB = 400 pF  
Fast mode  
10  
20  
0
4
tSP  
Pulse width of spike suppressed  
High speed mode  
0
1 See Figure 2. High speed mode timing specification applies to the AD5602-1/AD5612-1/AD5622-1 only. Standard and fast mode timing specifications apply to the  
AD5602-1/AD5612-1/AD5622-1 and AD5602-2/AD5612-2/AD5622-2.  
2 CB refers to the capacitance on the bus line.  
3 The SDA and SCL timing is measured with the input filters enabled. Switching off the input filters improves the transfer rate but has a negative effect on EMC behavior  
of the part.  
4 Input filtering on the SCL and SDA inputs suppress noise spikes that are less than 50 ns for fast mode or 10 ns for high speed mode.  
TIMING DIAGRAM  
t11  
t12  
t6  
t2  
t6  
SCL  
t1  
t3  
t5  
t10  
t8  
t4  
t9  
SDA  
t7  
P
S
S
P
Figure 2. 2-Wire Serial Interface Timing Diagram  
Rev. B | Page 5 of 24  
 
 
 
 
 
AD5602/AD5612/AD5622  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to GND  
–0.3 V to + 7.0 V  
Digital Input Voltage to GND  
VOUT to GND  
–0.3 V to VDD + 0.3 V  
–0.3 V to VDD + 0.3 V  
Operating Temperature Range  
Extended Automotive (W, Y Versions)  
Extended Industrial (A, B Versions)  
–40°C to +125°C  
40°C to +85°C  
–65°C to +160°C  
150°C  
Storage Temperature Range  
Maximum Junction Temperature  
SC70 Package  
θJA Thermal Impedance  
θJC Thermal Impedance  
Lead Temperature, Soldering  
Vapor Phase (60 sec)  
Infrared (15 sec)  
332°C/W  
120°C/W  
215°C  
220°C  
2.0 kV  
ESD  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. B | Page 6 of 24  
 
AD5602/AD5612/AD5622  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADDR  
1
2
3
6
5
4
V
OUT  
AD5602/  
AD5612/  
AD5622  
SCL  
GND  
TOP VIEW  
(Not to Scale)  
SDA  
V
DD  
Figure 3. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
ADDR  
SCL  
SDA  
Three-State Address Input. Sets the two least significant bits (Bit A1, Bit A0) of the 7-bit slave address (see Table 6).  
Serial Clock Line. This is used in conjunction with the SDA line to clock data into or out of the 16-bit input register.  
Serial Data Line. This is used in conjunction with the SCL line to clock data into or out of the 16-bit input register. It  
is a bidirectional, open-drain data line that should be pulled to the supply with an external pull-up resistor.  
4
5
6
VDD  
GND  
VOUT  
Power Supply Input. These parts can be operated from 2.7 V to 5.5 V, and VDD should be decoupled to GND.  
Ground. The ground reference point for all circuitry on the part.  
Analog Output Voltage from the DAC. The output amplifier has rail-to-rail operation.  
Rev. B | Page 7 of 24  
 
AD5602/AD5612/AD5622  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
0.05  
0.04  
0.03  
0.02  
V
T
= 5V  
V
T
= 5V  
DD  
= 25°C  
DD  
= 25°C  
0.8  
0.6  
0.4  
0.2  
0
A
A
0.01  
0
–0.01  
–0.02  
–0.03  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.04  
–0.05  
0
500  
1000  
1500 2000 2500 3000  
DAC CODE  
3500 4000  
0
200  
400  
DAC CODE  
600  
800  
1000  
Figure 4. Typical AD5622 Integral Nonlinearity Error  
Figure 7. Typical AD5612 Differential Nonlinearity Error  
0.15  
0.10  
0.05  
0
0.06  
V
= 5V  
V
= 5V  
DD  
= 25°C  
DD  
T = 25°C  
A
T
A
0.04  
0.02  
0
–0.05  
–0.10  
–0.02  
–0.04  
–0.06  
–0.15  
–0.20  
0
500  
1000  
1500 2000 2500 3000  
DAC CODE  
3500 4000  
0
50  
100  
150  
200  
250  
DAC CODE  
Figure 5. Typical AD5622 Differential Nonlinearity Error  
Figure 8. Typical AD5602 Integral Nonlinearity Error  
0.25  
0.015  
0.010  
0.005  
0
V
T
= 5V  
V
T
= 5V  
DD  
= 25°C  
DD  
= 25°C  
0.20  
0.15  
0.10  
0.05  
0
A
A
–0.05  
–0.10  
–0.15  
–0.005  
–0.010  
–0.015  
–0.20  
–0.25  
0
200  
400  
600  
800  
1000  
0
50  
100  
DAC CODE  
150  
200  
250  
DAC CODE  
Figure 9. Typical AD5602 Differential Nonlinearity Error  
Figure 6. Typical AD5612 Integral Nonlinearity Error  
Rev. B | Page 8 of 24  
 
 
 
AD5602/AD5612/AD5622  
1
0
0.5  
V
= 5V  
T = 25°C  
A
DD  
= 25°C  
T
A
0.4  
0.3  
–1  
–2  
–3  
–4  
–5  
MAX DNL  
0.2  
0.1  
0
–0.1  
MIN DNL  
–6  
–7  
–0.2  
–0.3  
0
500  
1000  
1500 2000 2500 3000  
DAC CODE  
3500 4000  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
V
DD  
Figure 10. Typical AD5622 Total Unadjusted Error  
Figure 13. AD5622 DNL Error vs. Supply  
0.5  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
A
MAX INL  
0.4  
0.3  
MAX INL = 5V  
MAX INL = 3V  
0.2  
0.1  
0
–0.2  
–0.4  
–0.1  
MIN INL = 5V  
MIN INL = 3V  
MIN INL  
4.2  
–0.2  
–0.3  
–0.6  
–0.8  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
2.7  
3.2  
3.7  
4.7  
5.2  
TEMPERATURE (°C)  
V
(V)  
DD  
Figure 14. AD5622 INL Error vs. Temperature (3 V/5 V Supply)  
Figure 11. AD5622 INL Error vs. Supply  
8
0
T
= 25°C  
A
MAX TUE = 5V  
7
–1  
–2  
–3  
–4  
–5  
–6  
MAX TUE  
6
5
MAX TUE = 3V  
MIN TUE = 5V  
4
3
2
MIN TUE  
–7  
–8  
1
0
MIN TUE = 3V  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
TEMPERATURE (°C)  
V
DD  
Figure 15. AD5622 Total Unadjusted Error vs. Temperature (3 V/5 V Supply)  
Figure 12. AD5622 Total Unadjusted Error vs. Supply  
Rev. B | Page 9 of 24  
 
AD5602/AD5612/AD5622  
0.6  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.5  
OFFSET ERROR = 3V  
0.4  
MAX DNL = 5V  
0.3  
0.2  
MAX DNL = 3V  
0.1  
0
0.6  
0.4  
OFFSET ERROR = 5V  
MIN DNL = 5V  
MIN DNL = 3V  
–0.1  
–0.2  
–0.3  
0.2  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. AD5622 DNL Error vs. Temperature (3 V/5 V Supply)  
Figure 19. Offset Error vs. Temperature (3 V/5 V Supply)  
4
0.00025  
0.00020  
0.00015  
0.00010  
GAIN ERROR = 3V  
ZERO CODE ERROR = 3V  
ZERO CODE ERROR = 5V  
2
0
–2  
–4  
GAIN ERROR = 5V  
FULL-SCALE ERROR = 3V  
–6  
0.00005  
0
–8  
FULL-SCALE ERROR = 5V  
–10  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 20. Gain Error vs. Temperature (3 V/5 V Supply)  
Figure 17. Zero Code/Full-Scale Error vs. Temperature (3 V/5 V Supply)  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
1
T
= 25°C  
A
0
–1  
–2  
–3  
–4  
ZERO CODE ERROR  
T
= 25°C  
A
–5  
–6  
FULL-SCALE ERROR  
–7  
–8  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
V
V
DD  
DD  
Figure 18. Zero Code/Full-Scale Error vs. Supply Voltage  
Figure 21. Supply Current vs. Supply Voltage  
Rev. B | Page 10 of 24  
 
 
AD5602/AD5612/AD5622  
12  
10  
8
V
V
V
= 3V  
V
V
V
= 5V  
DD  
IH  
DD  
IH  
= V  
= V  
DD  
DD  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
= GND  
= 25°C  
= GND  
= 25°C  
IL  
A
IL  
A
T
T
V
= 5V  
DD  
6
V
= 3V  
DD  
4
2
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
I
(µA)  
TEMPERATURE (°C)  
DD  
Figure 22. Supply Current vs. Temperature (3 V/5 V Supply)  
Figure 25. IDD Histogram (3 V/5 V Supply)  
70  
60  
50  
40  
30  
20  
10  
0
0.8  
0.6  
V
= 5V  
= 25°C  
T
= 25°C  
DD  
A
V
= 5V  
= 3V  
DD  
T
A
DAC LOADED WITH ZERO-SCALE CODE  
0.4  
V
DD  
0.2  
0.0  
–0.2  
–0.4  
–0.6  
DAC LOADED WITH FULL-SCALE CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000  
DAC CODE  
–15  
–10  
–5  
0
5
10  
15  
I (mA)  
Figure 23. Supply Current vs. Digital Input Code  
Figure 26. Sink and Source Capability  
900  
800  
700  
600  
500  
400  
300  
200  
SCL/SDA INCREASING  
V
DD  
V
= 5V  
DD  
= 25°C  
V
= 5V  
DD  
T
A
SCL/SDA DECREASING  
= 5V  
V
DD  
CH1  
SCL/SDA  
INCREASING  
V
= 3V  
SCL/SDA DECREASING  
= 3V  
DD  
V
= 70mV  
OUT  
V
DD  
100  
0
CH2  
0
0.5  
1.0  
1.5  
2.0  
V
2.5  
LOGIC  
3.0  
(V)  
3.5  
4.0  
4.5  
5.0  
CH1 = 1V/DIV, CH2 = 20mV/DIV, TIME BASE = 20µs/DIV  
Figure 24. Supply Current vs. SCL/SDA Logic Voltage  
Figure 27. Power-On Reset to 0 V  
Rev. B | Page 11 of 24  
 
AD5602/AD5612/AD5622  
CH1  
V
DD  
V
= 5V  
DD  
T
= 25°C  
A
V
= 5V  
DD  
= 25°C  
T
A
CH1  
CH2  
CH2  
V
OUT  
CH1 = 5V/DIV, CH2 = 1V/DIV, TIME BASE = 2µs/DIV  
CH1 = 1V/DIV, CH2 = 3V/DIV, TIME BASE = 50µs/DIV  
Figure 28. Exiting Power-Down Mode  
Figure 31. VOUT vs. VDD  
2.458  
2.456  
2.454  
2.452  
2.450  
2.448  
2.446  
2.444  
2.442  
2.440  
2.438  
2.436  
V
= 5V  
DD  
= 25°C  
T
A
CH1  
V
T
= 5V  
DD  
= 25°C  
A
LOAD = 2kAND 220pF  
CODE 0x800 TO 0x7FF  
10ns/SAMPLE NUMBER  
CH2  
CH1 = 5V/DIV, CH2 = 1V/DIV, TIME BASE = 2µs/DIV  
0
100  
200  
300  
400  
500  
SAMPLE NUMBER  
Figure 32. Digital-to-Analog Glitch Impulse  
Figure 29. Full-Scale Settling Time  
2.4278  
2.4276  
2.4274  
2.4272  
2.4270  
2.4268  
2.4266  
2.4264  
V
= 5V  
DD  
= 25°C  
T
A
LOAD = 2kAND 220pF  
10ns/SAMPLE NUMBER  
V
= 5V  
DD  
= 25°C  
T
A
CH1  
CH2  
2.4262  
2.4260  
0
100  
200  
300  
400  
500  
CH1 = 5V/DIV, CH2 = 1V/DIV, TIME BASE = 2µs/DIV  
SAMPLE NUMBER  
Figure 33. Digital Feedthrough  
Figure 30. Half-Scale Settling Time  
Rev. B | Page 12 of 24  
 
 
 
AD5602/AD5612/AD5622  
700  
600  
500  
400  
300  
200  
100  
0
V
= 5V  
DD  
= 25°C  
V
= 5V  
DD  
T = 25°C  
A
T
A
UNLOADED OUTPUT  
MIDSCALE LOADED  
CH1  
ZERO SCALE  
MIDSCALE  
FULL SCALE  
CH1 = 5µV/DIV  
100  
1000  
10000  
100000  
FREQUENCY (Hz)  
Figure 34. 1/f Noise, 0.1 Hz to 10 Hz Bandwidth  
Figure 35. Output Noise Spectral Density  
Rev. B | Page 13 of 24  
AD5602/AD5612/AD5622  
TERMINOLOGY  
Relative Accuracy  
Gain Error  
For the DAC, relative accuracy or integral nonlinearity (INL) is  
a measure of the maximum deviation, in LSBs, from a straight  
line passing through the endpoints of the DAC transfer  
function. A typical INL vs. code plot can be seen in Figure 4.  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from ideal  
expressed as a percent of the full-scale range.  
Total Unadjusted Error (TUE)  
Differential Nonlinearity (DNL)  
Total unadjusted error is a measure of the output error taking  
all the various errors into account. A typical TUE vs. code plot  
can be seen in Figure 10.  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. This DAC is guaranteed monotonic by  
design. A typical DNL vs. code plot can be seen in Figure 5.  
Zero Code Error Drift  
Zero code error drift is a measure of the change in zero code  
error with a change in temperature. It is expressed in μV/°C.  
Zero Code Error  
Gain Error Drift  
Zero-code error is due to a combination of the offset errors in  
the DAC and output amplifier; it is a measure of the output  
error when zero code (0x0000) is loaded to the DAC register.  
Ideally, the output should be 0 V. The zero-code error is always  
positive in the AD5602/AD5612/AD5622 because the output of  
the DAC cannot go below 0 V. Zero-code error is expressed in  
mV. A plot of zero-code error vs. temperature can be seen in  
Figure 17.  
Gain error drift is a measure of the change in gain error with  
changes in temperature. It is expressed in (ppm of full-scale  
range)/°C.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-s and  
is measured when the digital input code is changed by 1 LSB at  
the major carry transition (0x7FFF to 0x8000) (see Figure 32).  
Full-Scale Error  
Full-scale error is a measure of the output error when full-scale  
code (0xFFFF) is loaded to the DAC register; it is expressed in  
Digital Feedthrough  
percent of full-scale range. Ideally, the output should be VDD  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the DAC,  
but is measured when the DAC output is not updated. It is  
specified in nV-s and measured with a full-scale code change on  
the data bus, that is, from all 0s to all 1s, and vice versa  
(see Figure 33).  
1 LSB. A plot of full-scale error vs. temperature can be seen in  
Figure 17.  
Rev. B | Page 14 of 24  
 
AD5602/AD5612/AD5622  
THEORY OF OPERATION  
D/A SECTION  
R
The AD5602/AD5612/AD5622 DACs are fabricated on a  
CMOS process. The architecture consists of a string DACs  
followed by an output buffer amplifier. Figure 36 shows a block  
diagram of the DAC architecture.  
R
R
V
TO OUTPUT  
AMPLIFIER  
DD  
REF (+)  
RESISTOR  
NETWORK  
V
DAC REGISTER  
OUT  
REF (–)  
OUTPUT  
AMPLIFIER  
GND  
R
R
Figure 36. DAC Architecture  
Since the input coding to the DAC is straight binary, the ideal  
output voltage is given by  
D
2n  
VOUT = VDD  
×
Figure 37. Resistor String Structure  
OUTPUT AMPLIFIER  
where:  
The output buffer amplifier is capable of generating rail-to-rail  
voltages on its output, giving an output range of 0 V to VDD. It is  
capable of driving a load of 2 kΩ in parallel with 1000 pF to  
GND. The source and sink capabilities of the output amplifier  
can be seen in Figure 26. The slew rate is 0.5 V/μs with a half-  
scale settling time of 5 μs with the output unloaded.  
D is the decimal equivalent of the binary code that is loaded  
to the DAC register; it can range from 0 to 255 (AD5602),  
0 to 1023 (AD5612), or 0 to 4095 (AD5622).  
n is the bit resolution of the DAC.  
RESISTOR STRING  
The resistor string structure is shown in Figure 37. It is simply a  
string of resistors, each of value R. The code loaded to the DAC  
register determines at which node on the string the voltage is  
tapped off to be fed into the output amplifier. The voltage is  
tapped off by closing one of the switches connecting the string  
to the amplifier. Because it is a string of resistors, it is  
guaranteed monotonic.  
Rev. B | Page 15 of 24  
 
 
 
AD5602/AD5612/AD5622  
SERIAL INTERFACE  
The AD5602/AD5612/AD5622 have 2-wire I2C-compatible  
serial interfaces (refer to I2C-Bus Specification, Version 2.1,  
January 2000, available from Philips Semiconductor). The  
AD5602/AD5612/AD5622 can be connected to an I2C bus as a  
slave device, under the control of a master device. See Figure 2  
for a timing diagram of a typical write sequence.  
3. When all data bits have been read or written, a stop  
condition is established. In write mode, the master pulls  
the SDA line high during the 10th clock pulse to establish a  
stop condition. In read mode, the master issues a no  
acknowledge for the ninth clock pulse (that is, the SDA line  
remains high). The master then brings the SDA line low  
before the 10th clock pulse, and then high during the 10th  
clock pulse to establish a stop condition.  
The AD5602/AD5612/AD5622 support standard (100 kHz),  
fast (400 kHz), and high speed (3.4 MHz) data transfer modes.  
Support is not provided for 10-bit addressing and general call  
addressing.  
Table 6. Device Address Selection  
ADDR  
A1  
A0  
1
GND  
1
VDD  
0
1
0
0
The AD5602/AD5612/AD5622 each have a 7-bit slave address.  
The five MSBs are 00011 and the two LSBs are determined by  
the state of the ADDR pin. The facility to make hardwired  
changes to ADDR allows the user to incorporate up to three of  
these devices on one bus as outlined in Table 6.  
NC (No Connection)  
INPUT REGISTER  
The input register is 16 bits wide. Figure 38, Figure 39, and  
Figure 40 illustrate the contents of the input register for each  
part. Data is loaded into the device as a 16-bit word under the  
control of a serial clock input, SCL. The timing diagram for this  
operation is shown in Figure 2. The 16-bit word consists of four  
control bits followed by 8, 10, or 12 bits of data, depending on  
the device type. MSB (DB15) is loaded first. The first two bits  
are reserved bits that must be set to zero, the next two bits are  
control bits that select the mode of operation of the device  
(normal mode or any one of three power-down modes). See the  
Power-Down Modes section for a complete description. The  
remaining bits are left-justified DAC data bits, starting with the  
MSB and ending with the LSB.  
The 2-wire serial bus protocol operates as follows:  
1. The master initiates data transfer by establishing a start  
condition, which is when a high-to-low transition on the  
SDA line occurs while SCL is high. The following byte is  
the address byte, which consists of the 7-bit slave address.  
The slave address corresponding to the transmitted address  
responds by pulling SDA low during the ninth clock pulse  
(this is termed the acknowledge bit). At this stage, all other  
devices on the bus remain idle while the selected device  
waits for data to be written to, or read from, its shift register.  
2. Data is transmitted over the serial bus in sequences of nine  
clock pulses (eight data bits followed by an acknowledge  
bit). The transitions on the SDA line must occur during the  
low period of SCL and remain stable during the high  
period of SCL.  
DB15 (MSB)  
DB0 (LSB)  
0
0
PD1  
PD1  
PD1  
PD0  
PD0  
PD0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D2  
D4  
X
X
X
X
DATA BITS  
Figure 38. AD5602 Input Register Contents  
DB15 (MSB)  
DB0 (LSB)  
0
0
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D1  
D0  
X
X
DATA BITS  
Figure 39. AD5612 Input Register Contents  
DB15 (MSB)  
DB0 (LSB)  
0
0
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
DATA BITS  
Figure 40. AD5622 Input Register Contents  
Rev. B | Page 16 of 24  
 
 
 
 
AD5602/AD5612/AD5622  
POWER-ON RESET  
When both bits are set to 0, the part works normally with its  
usual power consumption of 100 μA maximum at 5 V. However,  
for the three power-down modes, the supply current falls to  
<150 nA (at 3 V). Not only does the supply current fall, but the  
output stage is internally switched from the output of the  
amplifier to a resistor network of known values. This gives the  
advantage of knowing the output impedance of the part while  
the part is in power-down mode. There are three different  
options. The output is connected internally to GND through a  
1 kΩ resistor, a 100 kΩ resistor, or it is left open-circuited  
(three-state). Figure 41 shows the output stage.  
The AD5602/AD5612/AD5622 each contain a power-on reset  
circuit that controls the output voltage during power-up. The  
DAC register is filled with zeros and the output voltage is 0 V  
where it remains until a valid write sequence is made to the  
DAC. This is useful in applications where it is important to  
know the state of the DAC output while it is in the process of  
powering up.  
POWER-DOWN MODES  
The AD5602/AD5612/AD5622 each contain four separate  
modes of operation. These modes are software-programmable  
by setting Bit PD1 and Bit PD0 in the control register. Table 7  
shows how the state of the bits corresponds to the mode of  
operation of the device.  
RESISTOR  
AMPLIFIER  
V
OUT  
STRING DAC  
Table 7. Modes of Operation  
PD1  
PD0  
Operating Mode  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
0
0
1
1
0
1
0
1
Normal operation  
Power-down (1 kΩ load to GND)  
Power-down (100 kΩ load to GND)  
Power-down (Three-state output)  
Figure 41. Output Stage During Power-Down  
The bias generator, output amplifier, resistor string, and other  
associated linear circuitry are all shut down when the power-  
down mode is activated. However, the contents of the DAC  
register are unaffected when in power-down. The time to exit  
power-down is typically 14 μs for VDD = 5 V and 17 μs for VDD  
3 V (see Figure 28).  
=
Rev. B | Page 17 of 24  
 
 
 
 
AD5602/AD5612/AD5622  
Two bytes of data are then written to the DAC, the most  
significant byte followed by the least significant byte as shown in  
Figure 39; both of these data bytes are acknowledged by the  
AD5602/AD5612/AD5622. A stop condition follows. The write  
operations for the three DACs are shown in Figure 42, Figure 43,  
and Figure 44.  
WRITE OPERATION  
When writing to the AD5602/AD5612/AD5622, the user must  
begin with a start command followed by an address byte (R/  
0), after which the DAC acknowledges that it is prepared to  
receive data by pulling SDA low.  
W
=
1
9
1
9
SCL  
0
0
0
0
0
1
1
A1  
A0  
R/W  
0
0
PD1  
PD0  
D7  
D6  
D5  
D4  
SDA  
START BY  
ACK. BY  
AD5602  
ACK. BY  
AD5602  
MASTER  
FRAME 1  
FRAME 2  
SERIAL BUS ADDRESS BYTE  
MOST SIGNIFICANT DATA BYTE  
9
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D3  
D2  
D1  
D0  
X
X
X
X
ACK. BY STOP BY  
AD5602 MASTER  
FRAME 3  
LEAST SIGNIFICANT DATA BYTE  
Figure 42. AD5602 Write Sequence  
1
9
1
9
SCL  
0
0
1
1
A1  
A0  
R/W  
0
0
PD1  
PD0  
D9  
D8  
D7  
D6  
SDA  
START BY  
ACK. BY  
AD5612  
ACK. BY  
AD5612  
MASTER  
FRAME 1  
FRAME 2  
SERIAL BUS ADDRESS BYTE  
MOST SIGNIFICANT DATA BYTE  
9
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D5  
D4  
D3  
D2  
D1  
D0  
X
X
ACK. BY STOP BY  
AD5612 MASTER  
FRAME 3  
LEAST SIGNIFICANT DATA BYTE  
Figure 43. AD5612 Write Sequence  
1
9
1
9
SCL  
0
0
1
1
A1  
A0  
R/W  
0
0
PD1  
PD0  
D11  
D10  
D9  
D8  
SDA  
START BY  
ACK. BY  
AD5622  
ACK. BY  
AD5622  
MASTER  
FRAME 1  
SERIAL BUS ADDRESS BYTE  
FRAME 2  
MOST SIGNIFICANT DATA BYTE  
9
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK. BY STOP BY  
AD5622 MASTER  
FRAME 3  
LEAST SIGNIFICANT DATA BYTE  
Figure 44. AD5622 Write Sequence  
Rev. B | Page 18 of 24  
 
 
 
AD5602/AD5612/AD5622  
READ OPERATION  
prepared to transmit data by pulling SDA low. Two bytes of data  
are then read from the DAC, which are both acknowledged by  
the master as shown in Figure 45, Figure 46, and Figure 47. A  
stop condition follows.  
When reading data back from the AD5602/AD5612/AD5622,  
the user begins with a start command followed by an address  
byte (R/ = 1), after which the DAC acknowledges that it is  
W
1
9
1
9
SCL  
0
0
0
0
0
1
1
A1  
A0  
R/W  
PD1  
PD0  
D7  
D6  
D5  
D4  
D3  
D2  
SDA  
START BY  
ACK. BY  
AD5602  
ACK. BY  
MASTER  
MASTER  
FRAME 1  
FRAME 2  
SERIAL BUS ADDRESS BYTE  
MOST SIGNIFICANT DATA BYTE FROM AD5602  
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D1  
D0  
0
0
0
0
0
0
NO ACK. BY STOP BY  
MASTER MASTER  
FRAME 3  
LEAST SIGNIFICANT DATA BYTE FROM AD5602  
Figure 45. AD5602 Read Sequence  
1
9
1
9
SCL  
0
0
1
1
A1  
A0  
R/W  
PD1  
PD0  
D9  
D8  
D7  
D6  
D5  
D4  
SDA  
START BY  
ACK. BY  
AD5612  
ACK. BY  
MASTER  
MASTER  
FRAME 1  
FRAME 2  
SERIAL BUS ADDRESS BYTE  
MOST SIGNIFICANT DATA BYTE FROM AD5612  
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D3  
D2  
D1  
D0  
0
0
0
0
NO ACK. BY STOP BY  
MASTER MASTER  
FRAME 3  
LEAST SIGNIFICANT DATA BYTE FROM AD5612  
Figure 46. AD5612 Read Sequence  
1
9
1
9
SCL  
0
0
1
1
A1  
A0  
R/W  
PD1  
PD0  
D11  
D10  
D9  
D8  
D7  
D6  
SDA  
START BY  
ACK. BY  
AD5622  
ACK. BY  
MASTER  
MASTER  
FRAME 1  
SERIAL BUS ADDRESS BYTE  
FRAME 2  
MOST SIGNIFICANT DATA BYTE FROM AD5622  
1
9
SCL (CONTINUED)  
SDA (CONTINUED)  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
NO ACK. BY STOP BY  
MASTER MASTER  
FRAME 3  
LEAST SIGNIFICANT DATA BYTE FROM AD5622  
Figure 47. AD5622 Read Sequence  
Rev. B | Page 19 of 24  
 
 
 
 
AD5602/AD5612/AD5622  
followed by a no acknowledge. The master must then issue a  
repeated start followed by the device address. The selected  
device then acknowledges its address. All devices continue to  
operate in high speed mode until the master issues a stop  
condition. When the stop condition is issued, the devices return  
to standard/fast mode.  
HIGH SPEED MODE  
High speed mode communication commences after the master  
addresses all devices connected to the bus with the Master  
Code 00001XXX to indicate that a high speed mode transfer is  
to begin. No device connected to the bus is permitted to  
acknowledge the high speed master code, therefore, the code is  
FAST MODE  
1
HIGH-SPEED MODE  
9
1
9
SCL  
SDA  
START BY  
0
0
0
0
1
X
X
X
0
0
0
1
1
A1  
A0  
R/W  
NACK. SR  
ACK. BY  
AD56x2  
MASTER  
HS-MODE MASTER CODE  
SERIAL BUS ADDRESS BYTE  
Figure 48. Placing the AD5602/AD5612/AD5622 into High Speed Mode  
Rev. B | Page 20 of 24  
 
AD5602/AD5612/AD5622  
APPLICATIONS  
CHOOSING A REFERENCE AS POWER SUPPLY  
With VDD = 5 V, R1 = R2 = 10 kΩ  
The AD5602/AD5612/AD5622 come in tiny SC70 packages  
with less than 100 μA supply current, thereby making the  
choice of reference dependent upon the application  
requirement. For space-saving applications, the ADR425 is  
available in an SC70 package with excellent drift at 3ppm/°C. It  
also provides very good noise performance at 3.4 μV p-p in the  
0.1 Hz to 10 Hz range.  
10× D  
VO  
=
5 V  
2n  
This is an output voltage range of 5 V with 0x000 corresponding  
to a −5 V output, and 0xFFF corresponding to a +5 V output.  
R2  
10k  
+5V  
R1  
10kΩ  
+5V  
Because the supply current required by the AD5602/AD5612/  
AD5622 DACs is extremely low, they are ideal for low supply  
applications. The ADR293 voltage reference is recommended in  
this case. This requires 15 μA of quiescent current and can  
therefore drive multiple DACs in the one system, if required.  
AD820/  
OP295  
±5V OUT  
AD5602/  
AD5612/  
AD5622  
V
V
OUT  
DD  
10µF  
0.1µF  
–5V  
SDA SCL  
7V  
Figure 50. Bipolar Operation with the AD5602/AD5612/AD5622  
5V  
ADR425  
POWER SUPPLY BYPASSING AND GROUNDING  
When accuracy is important in a circuit, it is helpful to carefully  
consider the power supply and ground return layout on the  
board. The printed circuit board containing the AD5602/  
AD5612/AD5622 should have separate analog and digital  
sections, each having its own area of the board. If the AD5602,  
AD5612, or AD5622 is in a system where other devices require  
an AGND to DGND connection, the connection should be  
made at one point only. This ground point should be as close as  
possible to the AD5602/AD5612/AD5622.  
AD5602/  
V
= 0V TO 5V  
OUT  
SCL  
SDA  
AD5612/  
AD5622  
Figure 49. ADR425 as Power Supply  
Examples of some recommended precision references for use as  
supplies to the AD5602/AD5612/AD5622 are shown in Table 8.  
Table 8. Recommended Precision References  
Initial  
Accuracy  
Temperature  
Drift  
The power supply to the AD5602/AD5612/AD5622 should be  
bypassed with 10 μF and 0.1 μF capacitors. The capacitors  
should be physically as close as possible to the device with the  
0.1 μF capacitor ideally right up against the device. The 10 μF  
capacitors are the tantalum bead type. It is important that the  
0.1 μF capacitor has low effective series resistance (ESR) and  
effective series inductance (ESI), such as common ceramic  
types. This 0.1 μF capacitor provides a low impedance path to  
ground for high frequencies caused by transient currents due to  
internal logic switching.  
Part  
No.  
0.1 Hz to 10 Hz Noise  
(mV max) (ppm/°C max) (μV p-p typ)  
ADR435  
ADR425  
ADR02  
6
6
5
6
3
3
3
25  
3.4  
3.4  
15  
5
ADR395  
BIPOLAR OPERATION  
The AD5602/AD5612/AD5622 have been designed for single-  
supply operation, but a bipolar output range is also possible  
using the circuit in Figure 50. The circuit in Figure 50 gives an  
output voltage range of 5 V. Rail-to-rail operation at the  
amplifier output is achievable using an AD820 or an OP295 as  
the output amplifier.  
The power supply line should have as large a trace as possible to  
provide a low impedance path and reduce glitch effects on the  
supply line. Clocks and other fast switching digital signals  
should be shielded from other parts of the board by digital  
ground. Avoid crossover of digital and analog signals if possible.  
When traces cross on opposite sides of the board, ensure that  
they run at right angles to each other to reduce feedthrough  
effects through the board. The best board layout technique is  
the microstrip technique where the component side of the  
board is dedicated to the ground plane only and the signal  
traces are placed on the solder side. However, the microstrip  
technique is not always possible with a 2-layer board.  
The output voltage for any input code can be calculated as  
D
2n  
R1+ R2  
R2  
R1  
⎞ ⎛  
VO = VDD  
×
×
V  
×
⎟ ⎜  
DD  
R1  
⎠ ⎝  
where:  
D represents the input code in decimal.  
n represents the bit resolution of the DAC.  
Rev. B | Page 21 of 24  
 
 
 
AD5602/AD5612/AD5622  
OUTLINE DIMENSIONS  
2.20  
2.00  
1.80  
2.40  
2.10  
1.80  
6
1
5
2
4
3
1.35  
1.25  
1.15  
PIN 1  
1.30 BSC  
0.65 BSC  
1.00  
0.90  
0.70  
0.40  
0.10  
1.10  
0.80  
0.46  
0.36  
0.26  
0.30  
0.15  
0.22  
0.08  
0.10 MAX  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203-AB  
Figure 51. 6-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-6)  
Dimensions shown in millimeters  
Rev. B | Page 22 of 24  
 
AD5602/AD5612/AD5622  
ORDERING GUIDE  
I2C Interface  
Modes  
Temperature  
Range  
Power Supply Package Package  
Model  
AD5602YKSZ-1500RL71  
INL (max) Supported  
Range  
Option  
Description  
Branding  
0.5 LSB  
Standard, fast and  
−40°C to +125°C  
2.7 V to 5.5 V  
KS-6  
6-Lead SC70  
D5W  
high speed  
Standard, fast and  
high speed  
AD5602YKSZ-1REEL71  
0.5 LSB  
−40°C to +125°C  
2.7 V to 5.5 V  
KS-6  
6-Lead SC70  
D5W  
AD5602BKSZ-2500RL71  
AD5602BKSZ-2REEL71  
AD5602YKSZ-2500RL71  
AD5602YKSZ-2REEL71  
AD5612YKSZ-1500RL71  
0.5 LSB  
0.5 LSB  
0.5 LSB  
0.5 LSB  
0.5 LSB  
Standard, fast  
Standard, fast  
Standard, fast  
Standard, fast  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +125°C  
−40°C to +125°C  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
6-Lead SC70  
6-Lead SC70  
6-Lead SC70  
6-Lead SC70  
6-Lead SC70  
D5X  
D5X  
D5Y  
D5Y  
D5T  
Standard, fast, and −40°C to +125°C  
high speed  
Standard, fast, and −40°C to +125°C  
high speed  
AD5612YKSZ-1REEL71  
0.5 LSB  
2.7 V to 5.5 V  
KS-6  
6-Lead SC70  
D5T  
AD5612BKSZ-2500RL71  
AD5612BKSZ-2REEL71  
AD5612AKSZ-2500RL71  
AD5612AKSZ-2REEL71  
AD5612YKSZ-2500RL71  
AD5612YKSZ-2REEL71  
AD5622YKSZ-1500RL71  
0.5 LSB  
0.5 LSB  
4 LSB  
Standard, fast  
Standard, fast  
Standard, fast  
Standard, fast  
Standard, fast  
Standard, fast  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +125°C  
−40°C to +125°C  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
6-Lead SC70  
6-Lead SC70  
6-Lead SC70  
6-Lead SC70  
6-Lead SC70  
6-Lead SC70  
6-Lead SC70  
D5U  
D5U  
D60  
D60  
D5S  
D5S  
D5M  
4 LSB  
0.5 LSB  
0.5 LSB  
2 LSB  
Standard, fast, and −40°C to +125°C  
high speed  
Standard, fast, and −40°C to +125°C  
high speed  
AD5622YKSZ-1REEL71  
2 LSB  
2.7 V to 5.5 V  
KS-6  
6-Lead SC70  
D5M  
AD5622BKSZ-2500RL71  
AD5622BKSZ-2REEL71  
AD5622YKSZ-2500RL71  
AD5622YKSZ-2REEL71  
AD5622WKSZ-1500RL71  
2 LSB  
2 LSB  
2 LSB  
2 LSB  
6 LSB  
Standard, fast  
Standard, fast  
Standard, fast  
Standard, fast  
Standard, fast, and −40°C to +125°C  
high speed  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +125°C  
−40°C to +125°C  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
6-Lead SC70  
6-Lead SC70  
6-Lead SC70  
6-Lead SC70  
6-Lead SC70  
D5N  
D5N  
D5P  
D5P  
D5Q  
AD5622WKSZ-1REEL71  
6 LSB  
Standard, fast, and −40°C to +125°C  
high speed  
2.7 V to 5.5 V  
KS-6  
6-Lead SC70  
D5Q  
AD5622AKSZ-2500RL71  
AD5622AKSZ-2REEL71  
6 LSB  
6 LSB  
Standard, fast  
Standard, fast  
−40°C to +85°C  
−40°C to +85°C  
2.7 V to 5.5 V  
2.7 V to 5.5 V  
KS-6  
KS-6  
6-Lead SC70  
6-Lead SC70  
D5R  
D5R  
1 Z = Pb-free part.  
Rev. B | Page 23 of 24  
 
 
AD5602/AD5612/AD5622  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05446-0-3/06(B)  
Rev. B | Page 24 of 24  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY