AD5640CRJ-2 [ADI]

IC SERIAL INPUT LOADING, 8 us SETTLING TIME, 14-BIT DAC, PDSO8, MO-178-BA, SOT-23, 8 PIN, Digital to Analog Converter;
AD5640CRJ-2
型号: AD5640CRJ-2
厂家: ADI    ADI
描述:

IC SERIAL INPUT LOADING, 8 us SETTLING TIME, 14-BIT DAC, PDSO8, MO-178-BA, SOT-23, 8 PIN, Digital to Analog Converter

输入元件 光电二极管
文件: 总20页 (文件大小:507K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3 V/5 V, 12/14-Bit nanoDACTM D/A with  
10 ppm/°C Max On-Chip Reference in SOT-23  
AD5620/AD5640  
Preliminary Technical Data  
FEATURES  
AD5620: low power single 12-bit nanoDAC  
FUNCTIONAL BLOCK DIAGRAM  
V
V
REFOUT  
DD  
GND  
AD5640: low power single 16-bit nanoDAC  
12-bit accuracy guaranteed  
1.25/2.5V  
REF  
POWER-ON  
RESET  
AD5620/AD5640  
On-chip 1.25 V/2.5 V, 10 ppm/°C reference  
Tiny 8-lead SOT-23/MSOP package  
Power-down to 200 nA @ 5 V, 50 nA @ 3 V  
3 V/5 V single power supply  
V
FB  
REF(+)  
DAC  
DAC  
REGISTER  
OUTPUT  
BUFFER  
V
OUT  
Guaranteed 16-bit monotonic by design  
Power-on reset to zero/midscale  
3 power-down functions  
Serial interface with Schmitt-triggered inputs  
Rail-to-rail operation  
INPUT  
CONTROL  
LOGIC  
POWER-DOWN  
CONTROL LOGIC  
RESISTOR  
NETWORK  
SYNC interrupt facility  
SYNC SCLK DIN  
APPLICATIONS  
Process control  
Data acquisition systems  
Figure 1.  
Portable battery-powered instruments  
Digital gain and offset adjustment  
Programmable voltage and current sources  
Programmable attenuators  
GENERAL DESCRIPTION  
The low power consumption of this part in normal operation  
makes it ideally suited to portable battery-operated equipment.  
The power consumption is 0.7 mW at 5 V, reducing to 1 µW in  
power-down mode.  
The AD5620/40 parts are a member of the nanoDAC family of  
devices. They are low power, single, 12-/14-bit buffered voltage-  
out DACs, guaranteed monotonic by design. The AD5620/40x-1  
operate from a 3 V single supply featuring an internal reference  
of 1.25 V and an internal gain of 2. The AD5620/40x-2/3 operate  
from a 5 V single supply featuring an internal reference of 2.5 V  
and an internal gain of 2. Each reference has a 10 ppm/°C max  
temperature coefficient. The reference associated with each part  
is available at the REFOUT pin.  
The AD5620/40 is designed with new technology and is the  
next generation to the AD53xx family.  
RELATED DEVICES  
Part No. Description  
AD5660 3 V/5 V 16-bit DAC in SOT-23, internal reference  
AD5662 2.7 V to 5.5 V 16-bit DAC in SOT-23, external reference  
The part incorporates a power-on reset circuit, which ensures  
that the DAC output powers up to 0 V (AD5620/40x-1/2) or to  
midscale (AD5620/40x-3) and remains there until a valid write  
takes place. The part contains a power-down feature that reduces  
the current consumption of the device to 200 nA at 5 V and  
provides software selectable output loads while in power-down  
mode.  
PRODUCT HIGHLIGHTS  
1. 16-bit DAC; 12-bit accuracy guaranteed.  
2. On-chip 1.25 V/2.5 V, 10 ppm/°C max reference.  
3. Available in 8-lead SOT-23 and 8-lead MSOP packages.  
4. Power-on reset to 0 V or midscale.  
5. Power-down capability. When powered down, the DAC  
typically consumes 50 nA at 3 V and 200 nA at 5 V.  
6. 10 µS settling time.  
The AD5620/40 uses a versatile 3-wire serial interface that  
operates at clock rates up to 30 MHz and is compatible with  
standard SPI™, QSPI™, MICROWIRE™, and DSP interface  
standards. Its on-chip precision output amplifier allows rail-to-  
rail output swing to be achieved.  
Rev. PrA  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD5620/AD5640  
Preliminary Technical Data  
TABLE OF CONTENTS  
AD5620/40x-2/3–Specifications..................................................... 3  
Typical Performance Characteristics ........................................... 11  
Theory of Operation ...................................................................... 14  
Serial Interface............................................................................ 14  
Microprocessor Interfacing....................................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
AD5620/40x-1–Specifications ........................................................ 5  
Timing Characteristics..................................................................... 7  
Pin Configuration and Function Descriptions............................. 8  
Absolute Maximum Ratings............................................................ 9  
ESD Caution.................................................................................. 9  
Terminology .................................................................................... 10  
REVISION HISTORY  
10/04—Revision 0: PrA  
Rev. PrA | Page 2 of 20  
Preliminary Technical Data  
AD5620/AD5640  
AD5620/40X-2/3–SPECIFICATIONS  
VDD = +4.5 V to +5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; all specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
B Version 1  
Parameter  
STATIC PERFORMANCE2  
A Grade B Grade C Grade Unit  
Conditions/Comments  
AD5620  
Resolution  
12  
±6  
±1  
12  
±1  
±1  
12  
±1  
±1  
Bits min  
LSB max  
LSB max  
Relative Accuracy  
Differential Nonlinearity  
AD5640  
See Figure 4.  
Guaranteed monotonic by design. See Figure 5.  
Resolution  
14  
14  
14  
Bits min  
Relative Accuracy  
Differential Nonlinearity  
Zero Code Error  
±±  
±1  
+5  
±4  
±1  
+5  
±4  
±1  
+5  
LSB max  
LSB max  
mV typ  
See Figure 4.  
Guaranteed monotonic by design. See Figure 5.  
All 0s loaded to DAC register.  
+20  
±10  
−0.15  
−1.25  
±1.25  
±2  
+20  
±10  
−0.15  
−1.25  
±1.25  
±2  
+20  
±10  
−0.15  
−1.25  
±1.25  
±2  
mV max  
mV typ  
Offset Error  
Full-Scale Error  
% of FSR typ  
% of FSR max  
% of FSR max  
µV/°C typ  
ppm typ  
dB typ  
All 1s loaded to DAC register.  
Gain Error  
Zero Code Error Drift3  
Gain Temperature Coefficient  
DC Power Supply Rejection Ratio  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
±2.5  
−100  
±2.5  
−100  
±2.5  
−100  
Of FSR/°C  
DAC code = midscale; VDD = 5 V ±10%  
0
0
V min  
VDD  
±
10  
12  
1
VDD  
±
10  
12  
1
VDD  
±
10  
12  
1
V max  
µs typ  
µs max  
µs typ  
V/µs typ  
nF typ  
Output Voltage Settling Time  
To ±0.003% FSR 0x0200 to 0xFD00  
RL = 2 kΩ; 0 pF < CL < 200 pF  
RL = 2 kΩ; CL = 500 pF  
Slew Rate  
Capacitive Load Stability  
2
2
2
RL = ∞  
10  
±0  
10  
−±0  
10  
±0  
10  
−±0  
10  
±0  
10  
−±0  
nF typ  
RL = 2 kΩ  
Output Noise Spectral Density  
Output Noise (0.1 Hz to 10 Hz)  
THD, Total Harmonic Distortion  
Output Drift  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
DC Output Impedance  
Short Circuit Current  
Power-Up Time  
nV/√Hz typ  
µVp-p typ  
dB typ  
ppm/°C typ  
nV-s typ  
nV-s typ  
Ω typ  
DAC code = midscale, 10kHz  
DAC code = midscale  
VREF = 2 V ± 300 mV p-p, f = 5 kHz  
5
5
5
1 LSB change around major carry.  
0.1  
0.5  
30  
4
0.1  
0.5  
30  
4
0.1  
0.5  
30  
4
mA typ  
µs typ  
VDD = 5 V  
Coming out of power-down mode. VDD = 5 V  
REFERENCE OUTPUT  
Output Voltage  
AD5620/40x-2/3  
2.495  
2.505  
±25  
2.495  
2.505  
±25  
2.495  
2.505  
±10  
V min  
V max  
ppm/°C max  
Reference TC  
LOGIC INPUTS3  
Input Current  
±1  
±1  
±1  
µA max  
1 Temperature ranges are as follows: B Version: -40°C to +105°C, typical at 25°C.  
2 Linearity calculated using a reduced code range of 512 to 65024. Output unloaded.  
3 Guaranteed by design and characterization, not production tested.  
Rev. PrA | Page 3 of 20  
 
 
 
 
 
AD5620/AD5640  
Preliminary Technical Data  
B Version 1  
Conditions/Comments  
Parameter  
A Grade B Grade C Grade Unit  
VINL, Input Low Voltage  
VINH, Input High Voltage  
Pin Capacitance  
0.±  
2
3
0.±  
2
3
0.±  
2
3
V max  
V min  
pF max  
VDD = 5 V  
VDD = 5 V  
POWER REQUIREMENTS  
VDD  
4.5  
5.5  
0.5  
1
4.5  
5.5  
0.5  
1
4.5  
5.5  
0.5  
1
V min  
V max  
mA typ  
mA max  
All digital inputs at 0 V or VDD  
DAC active and excluding load current  
VIH = VDD and VIL = GND  
IDD (Normal Mode)  
VDD = 4.5 V to 5.5 V  
VDD = 4.5 V to 5.5 V  
IDD (All Power-Down Modes)  
VDD = 4.5 V to 5.5 V  
VDD = 4.5 V to 5.5 V  
POWER EFFICIENCY  
IOUT/IDD  
VIH = VDD and VIL = GND  
0.2  
1
0.2  
1
0.2  
1
µA typ  
µA max  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
±9  
±9  
±9  
%
ILOAD = 2 mA, VDD = 5 V  
Rev. PrA | Page 4 of 20  
Preliminary Technical Data  
AD5620/AD5640  
AD5620/40X-1–SPECIFICATIONS  
VDD = 2.7 V to 3.6 V; RL = 2 kΩ to GND; CL = 200 pF to GND; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
B Version 4  
Parameter  
STATIC PERFORMANCE5  
A Grade B Grade C Grade Unit  
Conditions/Comments  
AD5620  
Resolution  
12  
±6  
±1  
12  
±1  
±1  
12  
±1  
±1  
Bits min  
LSB max  
LSB max  
Relative Accuracy  
Differential Nonlinearity  
AD5640  
See Figure 4.  
Guaranteed monotonic by design. See Figure 5.  
Resolution  
14  
14  
14  
Bits min  
Relative Accuracy  
Differential Nonlinearity  
Zero Code Error  
±±  
±1  
+5  
±4  
±1  
+5  
±4  
±1  
+5  
LSB max  
LSB max  
mV typ  
See Figure 4.  
Guaranteed monotonic by design. See Figure 5.  
All 0s loaded to DAC register  
+20  
±10  
−0.15  
−1.25  
±1.25  
±20  
±5  
+20  
±10  
−0.15  
−1.25  
±1.25  
±20  
±5  
+20  
±10  
−0.15  
−1.25  
±1.25  
±20  
±5  
mV max  
mV typ  
Offset Error  
Full-Scale Error  
% of FSR typ  
% of FSR max  
% of FSR max  
µV/°C typ  
ppm typ  
dB typ  
All 1s loaded to DAC register.  
Gain Error  
Zero Code Error Drift6  
Gain Temperature Coefficient  
DC Power Supply Rejection Ratio  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
Of FSR/°C  
DAC code = midscale; VDD = 3 V ±10%  
−100  
−100  
−100  
0
0
V min  
VDD  
±
10  
12  
1
VDD  
±
10  
12  
1
VDD  
±
10  
12  
1
V max  
µs typ  
µs max  
µs typ  
V/µs typ  
nF typ  
Output Voltage Settling Time  
To ±0.003% FSR 0200H to FD00H  
RL = 2 kΩ; 0 pF < CL < 200 pF.  
RL = 2 kΩ; CL = 500 pF  
Slew Rate  
Capacitive Load Stability  
2
2
2
RL = ∞  
10  
±0  
10  
−±0  
10  
±0  
10  
−±0  
tbd  
5
0.1  
0.5  
30  
10  
10  
±0  
10  
−±0  
nF typ  
RL = 2 kΩ  
Output Noise Spectral Density  
Output Noise (0.1 Hz to 10 Hz)  
THD, Total Harmonic Distortion  
Output Drift  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
DC Output Impedance  
Short Circuit Current  
Power-Up Time  
nV/√Hz typ  
µVp-p typ  
dB typ  
ppm/°C typ  
nV-s typ  
nV-s typ  
typ  
DAC code = midscale, 10 kHz  
DAC code = midscale  
VREF = 2 V ± 300 mV p-p, f = 5 kHz  
5
5
1 LSB change around major carry.  
0.1  
0.5  
30  
10  
0.1  
0.5  
30  
10  
mA typ  
µs typ  
VDD = 3 V  
Coming out of power-down mode. VDD = 3 V  
REFERENCE OUTPUT  
Output Voltage  
AD5620/40x-1  
1.24±  
1.252  
±25  
1.24±  
1.252  
±25  
1.24±  
1.252  
±10  
V min  
V max  
ppm/°C max  
Reference TC  
4 Temperature ranges are as follows: B Version: -40°C to +105°C, typical at 25°C.  
5 Linearity calculated using a reduced code range of 4±5 to 64714. Output unloaded.  
6 Guaranteed by design and characterization, not production tested.  
Rev. PrA | Page 5 of 20  
 
 
 
 
AD5620/AD5640  
Preliminary Technical Data  
B Version 4  
Conditions/Comments  
Parameter  
LOGIC INPUTS3  
A Grade B Grade C Grade Unit  
Input Current  
±1  
0.±  
2
±1  
0.±  
2
±1  
0.±  
2
µA max  
V max  
V min  
VINL, Input Low Voltage  
VINH, Input High Voltage  
Pin Capacitance  
POWER REQUIREMENTS  
VDD  
IDD (Normal Mode)  
VDD = 2.7 V to 3.6 V  
VDD = 2.7 V to 3.6 V  
IDD (All Power-Down Modes)  
VDD = 2.7 V to 3.6 V  
VDD = 2.7 V to 3.6 V  
POWER EFFICIENCY  
IOUT/IDD  
VDD = 3 V  
VDD = 3 V  
3
3
3
pF max  
2.7  
3.6  
0.5  
1
2.7  
3.6  
0.5  
1
2.7  
3.6  
0.5  
1
V min  
V max  
mA typ  
mA max  
All digital inputs at 0 V or VDD  
DAC active and excluding load current  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
0.2  
1
0.2  
1
0.2  
1
µA typ  
µA max  
VIH = VDD and VIL = GND  
VIH = VDD and VIL = GND  
ILOAD = 2 mA, VDD = 3 V  
Rev. PrA | Page 6 of 20  
Preliminary Technical Data  
TIMING CHARACTERISTICS  
AD5620/AD5640  
All input signals are specified with tr = tf = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
See Figure 2.  
VDD = 2.7 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Limit at TMIN, TMAX  
VDD = 3.6 V to 5.5 V  
Parameter  
VDD = 2.7 V to 3.6 V  
Unit  
Conditions/Comments  
7
t1  
50  
33  
ns min  
SCLK cycle time  
t2  
t3  
t4  
t5  
t6  
t7  
t±  
t9  
t10  
13  
13  
0
13  
13  
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
SCLK high time  
SCLK low time  
SYNC  
to SCLK falling edge setup time  
5
4.5  
0
5
4.5  
0
Data setup time  
Data hold time  
SYNC  
SCLK falling edge to  
SYNC  
rising edge  
50  
13  
0
33  
13  
0
Minimum  
SYNC  
high time  
rising edge to SCLK fall ignore  
SYNC  
SCLK falling edge to  
fall ignore  
7 Maximum SCLK frequency is 30 MHz at VDD = 3.6 V to 5.5 V and 20 MHz at VDD = 2.7 V to 3.6 V.  
t10  
t1  
t9  
SCLK  
t2  
t8  
t3  
t7  
t4  
SYNC  
DIN  
t6  
t5  
DB15  
DB0  
Figure 2. Serial Write Operation  
Rev. PrA | Page 7 of 20  
 
 
 
AD5620/AD5640  
Preliminary Technical Data  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
8
7
6
5
GND  
DIN  
DD  
AD5620/  
AD5640  
V
REFOUT  
TOP VIEW  
V
SCLK  
SYNC  
FB  
(Not to Scale)  
V
OUT  
Figure 3. 8-Lead S0T-23/MSOP Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic Function  
1
2
3
4
5
VDD  
VREFOUT  
VFB  
VOUT  
SYNC  
Power Supply Input. These parts can be operated from 2.5 V to 5.5 V, and VDD should be de-coupled to GND.  
Reference Voltage Output.  
Feedback Connection for the Output Amplifier.  
Analog Output Voltage from DAC. The output amplifier has rail-to-rail operation.  
Level Triggered Control Input (Active Low). This is the frame synchronization signal for the input data. When  
SYNC  
goes low, it enables the input shift register and data is transferred in on the falling edges of the following  
SYNC  
clocks. The DAC is updated following the 16th clock cycle, unless  
is taken high before this edge; in which  
SYNC  
case, the rising edge of  
acts as an interrupt, and the write sequence is ignored by the DAC.  
6
7
±
SCLK  
DIN  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data  
can be transferred at rates up to 30 MHz.  
Serial Data Input. This device has a 16-bit shift register. Data is clocked into the register on the falling edge of  
the serial clock input.  
GND  
Ground Reference Point for All Circuitry on the Part.  
Rev. PrA | Page ± of 20  
 
Preliminary Technical Data  
AD5620/AD5640  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
Rating  
VDD to GND  
Digital Input Voltage to GND  
VOUT to GND  
−0.3 V to +7 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Junction Temperature (TJ max)  
SOT-23 Package  
−40°C to +105°C  
−65°C to +150°C  
150°C  
Power Dissipation  
(TJ max − TA)/θJA  
240°C/W  
θJA Thermal Impedance  
Lead Temperature, Soldering  
Vapor Phase (60 s)  
215°C  
220°C  
Infrared (15 s)  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. PrA | Page 9 of 20  
 
AD5620/AD5640  
TERMINOLOGY  
Preliminary Technical Data  
Relative Accuracy  
Gain Error  
For the DAC, relative accuracy or integral nonlinearity (INL) is  
a measure of the maximum deviation, in LSBs, from a straight  
line passing through the endpoints of the DAC transfer  
function. A typical INL vs. code plot can be seen in Figure 4.  
This is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from ideal  
expressed as a percent of the full-scale range.  
Total Unadjusted Error (TUE)  
Differential Nonlinearity  
TUE is a measure of the output error taking all the various  
errors into account. A typical TUE vs. code plot can be seen in  
Figure 6.  
Differential nonlinearity (DNL) is the difference between the  
measured change and the ideal 1 LSB change between any two  
adjacent codes. A specified differential nonlinearity of 1 LSB  
maximum ensures monotonicity. This DAC is guaranteed  
monotonic by design. A typical DNL vs. code plot can be seen  
in Figure 5.  
Zero-Code Error Drift  
This is a measure of the change in zero-code error with a  
change in temperature. It is expressed in µV/°C.  
Gain Error Drift  
Zero-Code Error  
This is a measure of the change in gain error with changes in  
temperature. It is expressed in (ppm of full-scale range)/°C.  
It is a measure of the output error when zero code (0x000) is  
loaded to the DAC register. Ideally, the output should be 0 V.  
The zero-code error is always positive in the AD5620/AD5640  
because the output of the DAC cannot go below 0 V. It is due to  
a combination of the offset errors in the DAC and output  
amplifier. Zero-code error is expressed in mV. A plot of the  
zero-code error vs. temperature can be seen in Figure 8.  
Digital-to-Analog Glitch Impulse  
It is the impulse injected into the analog output when the input  
code in the DAC register changes state. It is normally specified  
as the area of the glitch in nV-secs and is measured when the  
digital input code is changed by 1 LSB at the major carry  
transition (0x7FF to 0x800). See Figure 21.  
Full-Scale Error  
It is a measure of the output error when full-scale code (0xFFF)  
is loaded to the DAC register. Ideally, the output should be  
VDD − 1 LSB. Full-scale error is expressed in percent of full-scale  
range. A plot of the full-scale error vs. temperature can be seen  
in Figure 8.  
Digital Feedthrough  
It is a measure of the impulse injected into the analog output of  
the DAC from the digital inputs of the DAC but is measured  
when the DAC output is not updated. It is specified in nV-secs  
and measured with a full-scale code change on the data bus, i.e.,  
from all 0s to all 1s and vice versa.  
Rev. PrA | Page 10 of 20  
 
Preliminary Technical Data  
AD5620/AD5640  
TYPICAL PERFORMANCE CHARACTERISTICS  
Figure 4. AD5620 Typical INL Plot  
Figure 7. INL Error and DNL Error vs. Temperature  
Figure 5. AD5620 Typical DNL Plot  
Figure 8. Zero-Scale Error and Full-Scale Error vs. Temperature  
Figure 6. AD5620 Typical Total Unadjusted Error (TUE) Plot  
Figure 9. IDD Histogram with VDD = 3 V and VDD = 5 V  
Rev. PrA | Page 11 of 20  
 
AD5620/AD5640  
Preliminary Technical Data  
Figure 10. Source and Sink Current Capability with VDD = 3 V  
Figure 13. Supply Current vs. Temperature  
Figure 11. Source and Sink Current Capability with VDD = 5 V  
Figure 14. Supply Current vs. Supply Voltage  
Figure 12. Supply Current vs. Code  
Figure 15. Power-Down Current vs. Supply Voltage  
Rev. PrA | Page 12 of 20  
 
 
Preliminary Technical Data  
Figure 16. Supply Current vs. Logic Input Voltage  
Figure 17. Full-Scale Settling Time  
AD5620/AD5640  
Figure 19. Power-On Reset to 0 V  
Figure 20. Exiting Power-Down (0x800 Loaded)  
Figure 18. Half-Scale Settling Time  
Figure 21. Digital-to-Analog Glitch Impulse  
Rev. PrA | Page 13 of 20  
 
AD5620/AD5640  
Preliminary Technical Data  
THEORY OF OPERATION  
D/A Section  
Resistor String  
The AD5620/AD5640 DAC is fabricated on a CMOS process.  
The architecture consists of a string DAC followed by an output  
buffer amplifier. The parts include an internal 1.25 V/2.5 V,  
10 ppm/°C reference with an internal gain of 2. Figure 22 shows  
a block diagram of the DAC architecture.  
The resistor string section is shown in Figure 23. It is simply a  
string of resistors, each of value R. The code loaded to the DAC  
register determines at which node on the string the voltage is  
tapped off to be fed into the output amplifier. The voltage is  
tapped off by closing one of the switches connecting the string  
to the amplifier. Because it is a string of resistors, it is  
guaranteed monotonic.  
V
DD  
V
FB  
REF (+)  
Output Amplifier  
RESISTOR  
STRING  
V
DAC REGISTER  
OUT  
The output buffer amplifier is capable of generating rail-to-rail  
voltages on its output, which gives an output range of 0 V to  
VDD. It is capable of driving a load of 2 kΩ in parallel with  
1000 pF to GND. The source and sink capabilities of the output  
amplifier can be seen in Figure 10 and Figure 11. The slew rate  
is 1 V/µs with a half-scale settling time of 8 µs with the output  
unloaded.  
REF (ٛ)  
OUTPUT  
AMPLIFIER  
GND  
Figure 22. DAC Architecture  
Since the input coding to the DAC is straight binary, the ideal  
output voltage is given by  
SERIAL INTERFACE  
D
65536  
SYNC  
The AD5620/AD5640 has a 3-wire serial interface (  
,
VOUT = 2×VREF×  
SCLK, and DIN), which is compatible with SPI, QSPI, and  
MICROWIRE interface standards as well as most DSPs. See  
Figure 2 for a timing diagram of a typical write sequence.  
where:  
D equals the decimal equivalent of the binary code that is  
loaded to the DAC register; 0 − 4095 for AD5620 (12 bit)  
and 0 − 16383 for AD5640 (14 bit).  
SYNC  
The write sequence begins by bringing the  
line low. Data  
from the DIN line is clocked into the 24-bit shift register on the  
falling edge of SCLK. The serial clock frequency can be as high  
as 30 MHz, making the AD5620/AD5640 compatible with high  
speed DSPs. On the 24th falling clock edge, the last data bit is  
clocked in and the programmed function is executed, i.e., a  
change in DAC register contents and/or a change in the mode  
N equals the DAC resolution.  
R
R
SYNC  
of operation. At this stage, the  
line can be kept low or can  
be brought high. In either case, it must be brought high for a  
minimum of 33 ns before the next write sequence so that a  
TO OUTPUT  
R
AMPLIFIER  
SYNC  
falling edge of  
can initiate the next write sequence. Since  
buffer draws more current when VIN = 2.4 V than it  
SYNC  
SYNC  
the  
does when VIN = 0.8 V,  
should be idled low between  
write sequences for even lower power operation of the part. As  
is mentioned previously, however, it must be brought high again  
just before the next write sequence.  
R
R
Input Shift Register  
The input shift register is 16 bits wide (see Figure 24 and  
Figure 25). The first two bits are control bits, which control the  
mode of operation that the part is in (normal mode or any one  
of the three power-down modes). For a more complete  
description of the various modes, see the Power-Down Modes  
section. The next 14/12 bits are the data bits. These are  
transferred to the DAC register on the 16th falling edge of  
SCLK.  
Figure 23. Resistor String  
Rev. PrA | Page 14 of 20  
 
 
 
Preliminary Technical Data  
AD5620/AD5640  
DB15 (MSB)  
DBO (LSB)  
PD1  
PD0  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X
X
DATA BITS  
Figure 24. AD5620 Input Register Contents  
DB15 (MSB)  
DBO (LSB)  
PD1  
PD0 D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DATA BITS  
Figure 25. AD5640 Input Register Contents  
SCLK  
SYNC  
DIN  
DB15  
DB0  
DB15  
DB0  
INVALID WRITE SEQUENCE:  
SYNC HIGH BEFORE 16TH FALLING EDGE  
VALID WRITE SEQUENCE, OUTPUT UPDATES  
ON THE 16TH FALLING EDGE  
SYNC  
Figure 26.  
Interrupt Facility  
Table 6. Modes of Operation for the AD5620/AD5640  
SYNC  
Interrupt  
Operating Mode  
Normal Operation  
Power-Down Modes  
1 kΩ to GND  
100 kΩ to GND  
Three-State  
DB15  
0
DB14  
0
SYNC  
In a normal write sequence, the  
least 16 falling edges of SCLK, and the DAC is updated on the  
SYNC  
line is kept low for at  
16th falling edge. However, if  
is brought high before the  
0
1
1
1
0
1
16th falling edge, this acts as an interrupt to the write sequence.  
The shift register is reset and the write sequence is seen as  
invalid. Neither an update of the DAC register contents or a  
change in the operating mode occurs (see Figure 26).  
When both bits are set to 0, the part works normally with its  
normal power consumption of 250 µA at 5 V. However, for the  
three power-down modes, the supply current falls to 200 nA at  
5 V and to 0 nA at 3 V. Not only does the supply current fall, but  
the output stage is internally switched from the output of the  
amplifier to a resistor network of known values. This has the  
advantage that the output impedance of the part is known while  
the part is in power-down mode. There are three different  
options. The output is connected internally to GND through a  
1 kΩ resistor, a 100 kΩ resistor, or left open-circuited (three-  
state). The output stage is illustrated in Figure 27.  
Power-On Reset  
The AD5620/AD5640 family contains a power-on-reset circuit,  
which controls the output voltage during power-up. The  
AD5620/AD5640x-1/AD5620/AD5640x-2 DAC output powers  
up to 0 V, and the AD5620/AD5640x-3 DAC output powers up  
to midscale. The output remains there until a valid write  
sequence is made to the DAC. This is useful in applications  
where it is important to know the state of the output of the DAC  
while it is in the process of powering up.  
Power-Down Modes  
V
FB  
The AD5620/AD5640 family contains four separate modes of  
operation. These modes are software-programmable by setting  
two bits, DB15 and DB14, in the control register. Table 6 shows  
how the state of the bits corresponds to the mode of operation  
of the device.  
AMPLIFIER  
V
OUT  
RESISTOR  
STRING DAC  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
Figure 27. Output Stage During Power-Down  
Rev. PrA | Page 15 of 20  
 
 
 
AD5620/AD5640  
Preliminary Technical Data  
The bias generator, the output amplifier, the resistor string, and  
the other associated linear circuitry are shut down when power-  
down mode is activated. However, the contents of the DAC  
register are unaffected when in power-down. The time to exit  
68HC11/68L11*  
AD5620/  
AD5640*  
PC7  
SCK  
SYNC  
SCLK  
DIN  
power-down is typically 2.5 µs for VDD = 5 V and 5 µs for VDD  
3 V. See Figure 20.  
=
MOSI  
*ADDITIONAL PINS OMITTED FOR CLARITY  
MICROPROCESSOR INTERFACING  
AD5620/AD5640 to ADSP-2101/ADSP-2103 Interface  
Figure 29. AD5620/AD5640 to 68HC11/68L11 Interface  
Figure 28 shows a serial interface between the AD5620/AD5640  
and the ADSP-2101/ADSP-2103. The ADSP-2101/ADSP-2103  
should be set up to operate in the SPORT transmit alternate  
framing mode. The ADSP-2101/ADSP-2103 SPORT is  
programmed through the SPORT control register and should be  
configured as follows: internal clock operation, active low  
framing, and 16-bit word length. Transmission is initiated by  
writing a word to the Tx register after SPORT is enabled.  
AD5620/AD5640 to 80C51/80L51 Interface  
Figure 30 shows a serial interface between the AD5620/AD5640  
and the 80C51/80L51 microcontroller. The setup for the  
interface is as follows: TXD of the 80C51/80L51 drives SCLK of  
the AD5620/AD5640, while RXD drives the serial data line of  
SYNC  
the part. The  
signal is again derived from a bit-  
programmable pin on the port. In this case, Port Line P3.3 is  
used. When data transmits to the AD5620/AD5640, P3.3 is  
taken low. The 80C51/80L51 transmits data only in 8-bit bytes;  
thus only eight falling clock edges occur in the transmit cycle.  
To load data to the DAC, P3.3 is left low after the first eight bits  
are transmitted, and a second write cycle is initiated to transmit  
the second byte of data. P3.3 is taken high following the  
completion of this cycle. The 80C51/80L51 outputs the serial  
data in a format that has the LSB first. The AD5620/AD5640  
requires its data with MSBfirst. The 80C51/80L51 transmit  
routine should take this into account.  
ADSP-2101/  
AD5620/  
ADSP-2103*  
AD5640*  
TFS  
DT  
SYNC  
DIN  
SCLK  
SCLK  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 28. AD5620/AD5640 to ADSP-2101/ADSP-2103 Interface  
AD5620/AD5640 to 68HC11/68L11 Interface  
AD5620/  
AD5640*  
80C51/80L51*  
Figure 29 shows a serial interface between the AD5620/AD5640  
and the 68HC11/68L11 microcontroller. SCK of the  
68HC11/68L11 drives the SCLK of the AD5620/AD5640, while  
P3.3  
TXD  
RXD  
SYNC  
SCLK  
DIN  
the MOSI output drives the serial data line of the DAC. The  
SYNC  
signal is derived from a port line (PC7). The set-up  
conditions for correct operation of this interface are as follows:  
the 68HC11/68L11 should be configured so that its CPOL bit is  
0 and its CPHA bit is 1. When data transmits to the DAC, the  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 30. AD5620/AD5640 to 80C51/80L51 Interface  
SYNC  
line is taken low (PC7). When the 68HC11/68L11 is  
AD5620/AD5640 to MICROWIRE Interface  
configured as above, data appearing on the MOSI output is  
valid on the falling edge of SCK. Serial data from the  
68HC11/68L11 transmits in 8-bit bytes with only eight falling  
clock edges occurring in the transmit cycle. Data transmits MSB  
first. In order to load data to the AD5620/AD5640, PC7 is left  
low after the first eight bits are transferred, and a second serial  
write operation is performed to the DAC and PC7 is taken high  
at the end of this procedure.  
Figure 31 shows an interface between the AD5320 and any  
MICROWIRE-compatible device. Serial data is shifted out on  
the falling edge of the serial clock and is clocked into the  
AD5320 on the rising edge of the SK.  
AD5620/  
AD5640*  
MICROWIRE*  
CS  
SK  
SO  
SYNC  
SCLK  
DIN  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 31. AD5620/AD5640 to MICROWIRE Interface  
Rev. PrA | Page 16 of 20  
 
 
 
 
 
Preliminary Technical Data  
AD5620/AD5640  
OUTLINE DIMENSIONS  
3.00  
BSC  
2.90 BSC  
8
1
7
2
6
3
5
4
8
5
4
4.90  
BSC  
3.00  
BSC  
1.60 BSC  
2.80 BSC  
PIN 1  
INDICATOR  
PIN 1  
0.65 BSC  
0.65 BSC  
1.95  
BSC  
1.30  
1.15  
0.90  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
1.45 MAX  
0.22  
0.08  
8°  
0°  
0.38  
0.22  
COPLANARITY  
0.10  
0.23  
0.08  
0.60  
0.45  
0.30  
8°  
4°  
0°  
SEATING  
PLANE  
0.38  
0.22  
0.15 MAX  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
COMPLIANT TO JEDEC STANDARDS MO-178BA  
Figure 33. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Figure 32. 8-Lead Small Outline Transistor Package [SOT-23]  
(RJ-8)  
Dimensions shown in millimeters  
Dimension shown in millimeters  
ORDERING GUIDE  
Power-On  
Internal  
Package  
Package  
Model  
Grade  
Reset to  
Reference  
Description  
Options  
Branding  
D2K  
D2L  
D2H  
D2J  
D2M  
D2N  
D2P  
Description  
AD5620ARJ-1  
AD5620ARJ-2  
AD5620BRJ-1  
AD5620BRJ-2  
AD5620CRJ-1  
AD5620CRJ-2  
AD5620CRJ-3  
AD5620CRM-1  
AD5620CRM-2  
AD5620CRM-3  
AD5640ARJ-1  
AD5640ARJ-2  
AD5640BRJ-1  
AD5640BRJ-2  
AD5640CRJ-1  
AD5640CRJ-2  
AD5640CRJ-3  
AD5640CRM-1  
AD5640CRM-2  
AD5640CRM-3  
A
A
B
B
C
C
C
C
C
C
A
A
B
B
C
C
C
C
C
C
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Midscale  
Zero  
Zero  
Midscale  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Midscale  
Zero  
Zero  
1.25 V  
2.5 V  
1.25 V  
2.5 V  
1.25 V  
2.5 V  
2.5 V  
1.25 V  
2.5 V  
2.5 V  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
MSOP  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RM-±  
RM-±  
RM-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
RJ-±  
±2 LSB INL, 25 ppm/°C Ref  
±2 LSB INL, 25 ppm/°C Ref  
±1 LSB INL, 25 ppm/°C Ref  
±1 LSB INL, 25 ppm/°C Ref  
±1 LSB INL, 25 ppm/°C Ref  
±1 LSB INL, 10 ppm/°C Ref  
±1 LSB INL, 10 ppm/°C Ref  
±1 LSB INL, 10 ppm/°C Ref  
±1 LSB INL, 10 ppm/°C Ref  
±1 LSB INL, 10 ppm/°C Ref  
±± LSB INL, 25 ppm/°C Ref  
±± LSB INL, 25 ppm/°C Ref  
±4 LSB INL, 25 ppm/°C Ref  
±4 LSB INL, 25 ppm/°C Ref  
±4 LSB INL, 25 ppm/°C Ref  
±4 LSB INL, 10 ppm/°C Ref  
±4 LSB INL, 10 ppm/°C Ref  
±4 LSB INL, 10 ppm/°C Ref  
±4 LSB INL, 10 ppm/°C Ref  
±4 LSB INL, 10 ppm/°C Ref  
D2M  
D2N  
D2P  
MSOP  
MSOP  
1.25 V  
2.5 V  
1.25 V  
2.5 V  
1.25 V  
2.5 V  
2.5 V  
1.25 V  
2.5 V  
2.5 V  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
MSOP  
D2S  
D2T  
D2Q  
D2R  
D2U  
D2V  
D2W  
D2U  
D2V  
D2W  
RM-±  
RM-±  
RM-±  
MSOP  
MSOP  
Midscale  
Rev. PrA | Page 17 of 20  
 
AD5620/AD5640  
NOTES  
Preliminary Technical Data  
Rev. PrA | Page 1± of 20  
Preliminary Technical Data  
NOTES  
AD5620/AD5640  
Rev. PrA | Page 19 of 20  
AD5620/AD5640  
NOTES  
Preliminary Technical Data  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR04781–0–10/04(PrA)  
Rev. PrA | Page 20 of 20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY