AD5644RBRMZ-5 [ADI]

Quad, 12-/14-/16-Bit nanoDACs with 5 ppm/C On-Chip Reference; 四, 12位/ 14位/ 16位nanoDACs 5 PPM / C片参考
AD5644RBRMZ-5
型号: AD5644RBRMZ-5
厂家: ADI    ADI
描述:

Quad, 12-/14-/16-Bit nanoDACs with 5 ppm/C On-Chip Reference
四, 12位/ 14位/ 16位nanoDACs 5 PPM / C片参考

文件: 总28页 (文件大小:1067K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, 12-/14-/16-Bit nanoDACs® with  
5 ppm/°C On-Chip Reference  
AD5624R/AD5644R/AD5664R  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
/V  
DD  
GND  
REFIN REFOUT  
Low power, smallest pin-compatible, quad nanoDACs  
AD5664R: 16 bits  
1.25V/2.5V REF  
AD5624R/AD5644R/AD5664R  
AD5644R: 14 bits  
AD5624R: 12 bits  
INPUT  
DAC  
STRING  
DAC A  
V
V
V
V
A
B
C
D
BUFFER  
BUFFER  
BUFFER  
BUFFER  
OUT  
OUT  
OUT  
OUT  
REGISTER  
REGISTER  
SCLK  
SYNC  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC B  
User selectable external or internal reference  
External reference default  
On-chip 1.25 V/2.5 V, 5 ppm/°C reference  
10-lead MSOP and 3 mm × 3 mm LFCSP_WD  
2.7 V to 5.5 V power supply  
INTERFACE  
LOGIC  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC C  
DIN  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC D  
Guaranteed monotonic by design  
Power-on reset to zero scale  
Per channel power-down  
POWER-ON  
RESET  
POWER-DOWN  
LOGIC  
Figure 1.  
Serial interface, up to 50 MHz  
Table 1. Related Devices  
Part No.  
Description  
APPLICATIONS  
Process control  
AD5624/AD5664  
2.7 V to 5.5 V quad, 12-/16-bit  
DACs, external reference  
AD5666  
2.7 V to 5.5 V quad 16-bit DAC,  
internal reference, LDAC, CLR pins  
Data acquisition systems  
Portable battery-powered instruments  
Digital gain and offset adjustment  
Programmable voltage and current sources  
Programmable attenuators  
GENERAL DESCRIPTION  
The AD5624R/AD5644R/AD5664R, members of the nanoDAC  
family, are low power, quad, 12-/14-/16-bit buffered voltage-out  
DACs. All devices operate from a single 2.7 V to 5.5 V supply  
and are guaranteed monotonic by design.  
while in power-down mode. The low power consumption of  
this part in normal operation makes it ideally suited to portable  
battery-operated equipment.  
The AD5624R/AD5644R/AD5664R use a versatile 3-wire serial  
interface that operates at clock rates up to 50 MHz, and is  
compatible with standard SPI®, QSPI™, MICROWIRE™, and  
DSP interface standards. The on-chip precision output amplifier  
enables rail-to-rail output swing.  
The AD5624R/AD5644R/AD5664R have an on-chip reference.  
The AD56x4R-3 has a 1.25 V, 5 ppm/°C reference, giving a full-  
scale output range of 2.5 V; the AD56x4R-5 has a 2.5 V,  
5 ppm/°C reference giving a full-scale output range of 5 V. The  
on-chip reference is off at power-up allowing the use of an  
external reference and all devices can be operated from a single  
2.7 V to 5.5 V supply. The internal reference is enabled via a  
software write.  
PRODUCT HIGHLIGHTS  
1. Quad 12-/14-/16-bit DACs.  
2. On-chip 1.25 V/2.5 V, 5 ppm/°C reference.  
The part incorporates a power-on reset circuit that ensures the  
DAC output powers up to 0 V and remains there until a valid  
write takes place. The part contains a per-channel power-down  
feature that reduces the current consumption of the device to  
480 nA at 5 V and provides software-selectable output loads  
3. Available in 10-lead MSOP and 10-lead, 3 mm × 3 mm,  
LFCSP_WD.  
4. Low power, typically consumes 1.32 mW at 3 V and  
2.25 mW at 5 V.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD5624R/AD5644R/AD5664R  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Internal Reference ...................................................................... 20  
External Reference ..................................................................... 20  
Serial Interface............................................................................ 20  
Input Shift Register .................................................................... 21  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AD5624R-5/AD5644R-5/AD5664R-5....................................... 3  
AD5624R-3/AD5644R-3/AD5664R-3....................................... 5  
AC Characteristics........................................................................ 6  
Timing Characteristics ................................................................ 7  
Timing Diagram ........................................................................... 7  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 18  
Theory of Operation ...................................................................... 20  
D/A Section................................................................................. 20  
Resistor String............................................................................. 20  
Output Amplifier........................................................................ 20  
SYNC  
Interrupt .......................................................................... 21  
Power-On Reset.......................................................................... 22  
Software Reset............................................................................. 22  
Power-Down Modes .................................................................. 22  
LDAC Function........................................................................... 23  
Internal Reference Setup ........................................................... 23  
Microprocessor Interfacing....................................................... 24  
Applications..................................................................................... 25  
Using a Reference as a Power Supply for the  
AD5624R/AD5644R/AD5664R ............................................... 25  
Bipolar Operation  
Using the AD5624R/AD5644R/AD5664R ............................. 25  
Using AD5624R/AD5644R/AD5664R  
with a Galvanically Isolated Interface...................................... 25  
Power Supply Bypassing and Grounding................................ 26  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 28  
REVISION HISTORY  
11/06—Rev. 0 to Rev A  
Changes to Reference Output Parameter in Table 2.................... 3  
Changes to Reference Output Parameter in Table 3.................... 5  
Added Note to Figure 3.................................................................... 9  
4/06—Revision 0: Initial Version  
Rev. A | Page 2 of 28  
 
AD5624R/AD5644R/AD5664R  
SPECIFICATIONS  
AD5624R-5/AD5644R-5/AD5664R-5  
VDD = 4.5 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN = VDD; all specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
B Grade1  
Parameter  
STATIC PERFORMANCE2  
Min  
Typ  
Max  
Unit  
Conditions/Comments  
AD5664R  
Resolution  
16  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5644R  
±8  
±16  
±1  
Guaranteed monotonic by design  
Guaranteed monotonic by design  
Resolution  
14  
12  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5624R  
±2  
±4  
±±.5  
Resolution  
Bits  
Relative Accuracy  
Differential Nonlinearity  
Zero-Code Error  
Offset Error  
Full-Scale Error  
Gain Error  
Zero-Code Error Drift  
Gain Temperature Coefficient  
DC Power Supply Rejection  
Ratio  
±±.5  
±1  
±±.25  
1±  
±1±  
±1  
±1.5  
LSB  
LSB  
mV  
mV  
% of FSR  
% of FSR  
μV/°C  
ppm  
dB  
Guaranteed monotonic by design  
All zeroes loaded to DAC register  
2
±1  
−±.1  
All ones loaded to DAC register  
±2  
±2.5  
−1±±  
Of FSR/°C  
DAC code = midscale ; VDD = 5 V ± 1±%  
DC Crosstalk  
(External Reference)  
1±  
μV  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
1±  
5
μV/mA  
μV  
Due to load current change  
Due to powering down (per channel)  
DC Crosstalk  
(Internal Reference)  
25  
μV  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
2±  
1±  
μV/mA  
μV  
Due to load current change  
Due to powering down (per channel)  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
±
VDD  
V
Capacitive Load Stability  
2
nF  
nF  
Ω
mA  
μs  
RL = ∞  
RL = 2 kΩ  
1±  
±.5  
3±  
4
DC Output Impedance  
Short-Circuit Current  
Power-Up Time  
VDD = 5 V  
Coming out of power-down mode; VDD = 5 V  
REFERENCE INPUTS  
Reference Current  
Reference Input Range  
Reference Input Impedance  
REFERENCE OUTPUT  
Output Voltage  
17±  
26  
2±±  
VDD  
μA  
V
kΩ  
VREF = VDD = 5.5 V  
±.75  
2.495  
2.5±5  
±1±  
V
At ambient  
MSOP package models  
LFCSP package models  
Reference TC3  
±5  
±1±  
7.5  
ppm/°C  
ppm/°C  
kΩ  
Output Impedance  
Rev. A | Page 3 of 28  
 
AD5624R/AD5644R/AD5664R  
B Grade1  
Typ  
Parameter  
LOGIC INPUTS3  
Min  
Max  
Unit  
Conditions/Comments  
Input Current  
±2  
±.8  
μA  
V
V
All digital inputs  
VDD = 5 V  
VDD = 5 V  
VINL, Input Low Voltage  
VINH, Input High Voltage  
Pin Capacitance  
2
3
pF  
POWER REQUIREMENTS  
VDD  
4.5  
5.5  
V
IDD (Normal Mode)4  
VDD = 4.5 V to 5.5 V  
VDD = 4.5 V to 5.5 V  
IDD (All Power-Down Modes)5  
VDD = 4.5 V to 5.5 V  
VIH = VDD, VIL = GND  
Internal reference off  
Internal reference on  
VIH = VDD, VIL = GND  
±.45  
±.95  
±.9  
1.2  
mA  
mA  
±.48  
1
μA  
1 Temperature range: B grade: −4±°C to +1±5°C.  
2 Linearity calculated using a reduced code range: AD5664R (Code 512 to Code 65,±24); AD5644R (Code 128 to Code 16,256); AD5624R (Code 32 to Code 4±64). Output  
unloaded.  
3 Guaranteed by design and characterization, not production tested.  
4 Interface inactive. All DACs active. DAC outputs unloaded.  
5 All DACs powered down.  
Rev. A | Page 4 of 28  
AD5624R/AD5644R/AD5664R  
AD5624R-3/AD5644R-3/AD5664R-3  
VDD = 2.7 V to 3.6 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN = VDD; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
B Grade1  
Parameter  
STATIC PERFORMANCE2  
Min  
Typ  
Max  
Unit  
Conditions/Comments  
AD5664R  
Resolution  
16  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5644R  
±8  
±16  
±1  
Guaranteed monotonic by design  
Guaranteed monotonic by design  
Resolution  
14  
12  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5624R  
±2  
±4  
±±.5  
Resolution  
Bits  
Relative Accuracy  
Differential Nonlinearity  
Zero-Code Error  
Offset Error  
Full-Scale Error  
Gain Error  
Zero-Code Error Drift  
Gain Temperature Coefficient  
DC Power Supply Rejection  
Ratio  
±±.5  
±1  
±±.25  
1±  
±1±  
±1  
±1.5  
LSB  
LSB  
mV  
mV  
% of FSR  
% of FSR  
μV/°C  
ppm  
dB  
Guaranteed monotonic by design  
All zeroes loaded to DAC register  
2
±1  
−±.1  
All ones loaded to DAC register  
±2  
±2.5  
−1±±  
Of FSR/°C  
DAC code = midscale; VDD = 3 V ± 1±%  
DC Crosstalk  
(External Reference)  
1±  
μV  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
1±  
5
μV/mA  
μV  
Due to load current change  
Due to powering down (per channel)  
DC Crosstalk  
(Internal Reference)  
25  
μV  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
2±  
1±  
μV/mA  
μV  
Due to load current change  
Due to powering down (per channel)  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
±
VDD  
V
Capacitive Load Stability  
2
nF  
nF  
Ω
mA  
μs  
RL = ∞  
RL = 2 kΩ  
1±  
±.5  
3±  
4
DC Output Impedance  
Short-Circuit Current  
Power-Up Time  
VDD = 3 V  
Coming out of power-down mode; VDD = 3 V  
REFERENCE INPUTS  
Reference Current  
Reference Input Range  
Reference Input Impedance  
REFERENCE OUTPUT  
Output Voltage  
17±  
26  
2±±  
VDD  
μA  
V
kΩ  
VREF = VDD = 3.6 V  
±
1.247  
1.253  
±15  
V
At ambient  
MSOP package models  
LFCSP package models  
Reference TC3  
±5  
±1±  
7.5  
ppm/°C  
ppm/°C  
kΩ  
Output Impedance  
Rev. A | Page 5 of 28  
 
AD5624R/AD5644R/AD5664R  
B Grade1  
Typ  
Parameter  
LOGIC INPUTS3  
Min  
Max  
Unit  
Conditions/Comments  
Input Current  
±2  
±.8  
μA  
V
V
All digital inputs  
VDD = 3 V  
VDD = 3 V  
VINL, Input Low Voltage  
VINH, Input High Voltage  
Pin Capacitance  
2
3
pF  
POWER REQUIREMENTS  
VDD  
2.7  
3.6  
V
IDD (Normal Mode)4  
VDD = 2.7 V to 3.6 V  
VDD = 2.7 V to 3.6 V  
IDD (All Power-Down Modes)5  
VDD = 2.7 V to 3.6 V  
VIH = VDD, VIL = GND  
Internal reference off  
Internal reference on  
VIH = VDD, VIL = GND  
±.44  
±.95  
±.85  
1.15  
mA  
mA  
±.2  
1
μA  
1 Temperature range: B grade: −4±°C to +1±5°C.  
2 Linearity calculated using a reduced code range: AD5664R (Code 512 to Code 65,±24); AD5644R (Code 128 to Code 16,256); AD5624R (Code 32 to Code 4±64). Output  
unloaded.  
3 Guaranteed by design and characterization, not production tested.  
4 Interface inactive. All DACs active. DAC outputs unloaded.  
5 All DACs powered down.  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V; RL = 2 kΩ to GND; CL = 200 pF to GND; VREFIN = VDD; all specifications TMIN to TMAX, unless otherwise noted.1  
Table 4.  
Parameter2  
Min  
Typ  
Max  
Unit  
Conditions/Comments3  
Output Voltage Settling Time  
AD5624R  
AD5644R  
3
3.5  
4
4.5  
5
7
μs  
μs  
μs  
¼ to ¾ scale settling to ±±.5 LSB  
¼ to ¾ scale settling to ±±.5 LSB  
¼ to ¾ scale settling to ±2 LSB  
AD5664R  
Slew Rate  
1.8  
1±  
±.1  
−9±  
±.1  
1
4
1
4
34±  
−8±  
12±  
1±±  
15  
V/μs  
nV-s  
nV-s  
dB  
nV-s  
nV-s  
nV-s  
nV-s  
nV-s  
kHz  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
Reference Feedthrough  
Digital Crosstalk  
Analog Crosstalk  
1 LSB change around major carry  
VREF = 2 V ± ±.1 V p-p, frequency 1± Hz to 2± MHz  
External reference  
Internal reference  
External reference  
Internal reference  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
Total Harmonic Distortion  
Output Noise Spectral Density  
VREF = 2 V ± ±.1 V p-p  
dB  
VREF = 2 V ± ±.1 V p-p, frequency = 1± kHz  
DAC code = midscale, 1 kHz  
DAC code = midscale, 1± kHz  
±.1 Hz to 1± Hz  
nV/√Hz  
nV/√Hz  
μV p-p  
Output Noise  
1 Guaranteed by design and characterization, not production tested.  
2 See the Terminology section.  
3 Temperature range is −4±°C to +1±5°C, typical at 25°C.  
Rev. A | Page 6 of 28  
 
AD5624R/AD5644R/AD5664R  
TIMING CHARACTERISTICS  
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2 (see Figure 2).  
DD = 2.7 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.1  
V
Table 5.  
Limit at TMIN, TMAX  
Parameter  
VDD = 2.7 V to 5.5 V  
Unit  
Conditions/Comments  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge setup time  
Data setup time  
2
t1  
2±  
9
9
13  
5
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t1±  
Data hold time  
±
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time  
SYNC rising edge to SCLK fall ignore  
SCLK falling edge to SYNC fall ignore  
15  
13  
±
1 Guaranteed by design and characterization, not production tested.  
2 Maximum SCLK frequency is 5± MHz at VDD = 2.7 V to 5.5 V.  
TIMING DIAGRAM  
t10  
t1  
t9  
SCLK  
t2  
t8  
t3  
t7  
t4  
SYNC  
DIN  
t6  
t5  
DB23  
DB0  
Figure 2. Serial Write Operation  
Rev. A | Page 7 of 28  
 
 
AD5624R/AD5644R/AD5664R  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 6.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to GND  
−±.3 V to +7 V  
VOUT to GND  
VREFIN/VREFOUT to GND  
−±.3 V to VDD + ±.3 V  
−±.3 V to VDD + ±.3 V  
−±.3 V to VDD + ±.3 V  
Digital Input Voltage to GND  
Operating Temperature Range  
Industrial  
Storage Temperature Range  
Junction Temperature (TJ max)  
Power Dissipation  
−4±°C to +1±5°C  
−65°C to +15±°C  
15±°C  
ESD CAUTION  
(TJ max − TA)/θJA  
LFCSP_WD Package (4-Layer Board)  
θJA Thermal Impedance  
MSOP Package (4-Layer Board)  
θJA Thermal Impedance  
θJC Thermal Impedance  
Reflow Soldering Peak Temperature  
Pb-Free  
61°C/W  
142°C/W  
43.7°C/W  
26±°C ± 5°C  
Rev. A | Page 8 of 28  
 
AD5624R/AD5644R/AD5664R  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
10  
9
V
V
A
B
V
V
/V  
OUT  
REFIN REFOUT  
AD5624R/  
AD5644R/  
AD5664R  
TOP VIEW  
(Not to Scale)  
OUT  
DD  
8
GND  
DIN  
7
V
V
C
SCLK  
SYNC  
OUT  
6
D
OUT  
EXPOSED PAD TIED TO  
GND ON LFCSP PACKAGE  
Figure 3. Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
4
5
6
VOUT  
VOUT  
GND  
A
B
Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Ground Reference Point for all Circuitry on the Part.  
Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.  
Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC goes low, it  
powers on the SCLK and DIN buffers and enables the input shift register. Data is transferred in on the falling  
edges of the next 24 clocks. If SYNC is taken high before the 24th falling edge, the rising edge of SYNC acts as an  
interrupt and the write sequence is ignored by the device.  
VOUTC  
VOUTD  
SYNC  
7
SCLK  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data  
can be transferred at rates up to 5± MHz.  
8
DIN  
Serial Data Input. This device has a 24-bit shift register. Data is clocked into the register on the falling edge of the  
serial clock input.  
9
VDD  
Power Supply Input. These parts can be operated from 2.7 V to 5.5 V, and the supply should be decoupled with a  
1± μF capacitor in parallel with a ±.1 μF capacitor to GND.  
1±  
VREFIN/VREFOUT  
The AD5624R/AD5644R/AD5664R have a common pin for reference input and reference output. When using the  
internal reference, this is the reference output pin. When using an external reference, this is the reference input  
pin. The default for this pin is as a reference input.  
Rev. A | Page 9 of 28  
 
AD5624R/AD5644R/AD5664R  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
10  
V
T
= V  
= 25°C  
= 5V  
V
T
= V  
= 25°C  
= 5V  
DD  
REF  
DD  
REF  
0.8  
0.6  
0.4  
0.2  
8
A
A
6
4
2
0
0
–2  
–4  
–0.2  
–0.4  
–0.6  
–6  
–8  
–0.8  
–1.0  
–10  
0
10k  
20k  
30k  
CODE  
40k  
50k  
60k  
0
5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k 65k  
CODE  
Figure 7. DNL AD5664R, External Reference  
Figure 4. INL AD5664R, External Reference  
0.5  
4
3
V
= V  
= 25°C  
= 5V  
V
T
= V  
= 25°C  
= 5V  
DD  
REF  
DD  
REF  
T
0.4  
0.3  
0.2  
0.1  
A
A
2
1
0
0
–0.1  
–1  
–2  
–3  
–4  
–0.2  
–0.3  
–0.4  
–0.5  
0
2500  
5000  
7500  
CODE  
10000  
12500  
15000  
0
2500  
5000  
7500  
CODE  
10000  
12500  
15000  
Figure 8. DNL AD5644R, External Reference  
Figure 5. INL AD5644R, External Reference  
0.20  
0.15  
0.10  
0.05  
0
1.0  
0.8  
V
T
= V  
= 25°C  
= 5V  
V
T
= V  
= 25°C  
= 5V  
DD  
REF  
DD  
REF  
A
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.05  
–0.10  
–0.15  
–0.20  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
0
500  
1000  
1500 2000  
CODE  
2500 3000 3500 4000  
Figure 9. DNL AD5624R, External Reference  
Figure 6. INL AD5624R, External Reference  
Rev. A | Page 1± of 28  
 
 
 
AD5624R/AD5644R/AD5664R  
1.0  
0.8  
0.6  
0.4  
0.2  
10  
8
V
V
T
= 5V  
V
V
= 5V  
DD  
DD  
= 2.5V  
= 2.5V  
REFOUT  
= 25°C  
REFOUT  
TA = 25°C  
A
6
4
2
0
0
–0.2  
–2  
–4  
–6  
–0.4  
–0.6  
–8  
–0.8  
–1.0  
–10  
CODE  
CODE  
Figure 10. INL AD5664R-5, Internal Reference  
Figure 13. DNL AD5664R-5, Internal Reference  
4
0.5  
0.4  
0.3  
0.2  
0.1  
V
V
= 5V  
= 2.5V  
= 25°C  
DD  
REFOUT  
V
V
= 5V  
= 2.5V  
= 25°C  
DD  
REFOUT  
3
2
T
A
T
A
1
0
0
–0.1  
–1  
–2  
–0.2  
–0.3  
–3  
–4  
–0.4  
–0.5  
CODE  
CODE  
Figure 11. INL AD5644R-5, Internal Reference  
Figure 14. DNL AD5644R-5, Internal Reference  
1.0  
0.20  
0.15  
0.10  
0.05  
V
V
= 5V  
V
V
T
= 5V  
= 2.5V  
= 25°C  
DD  
DD  
REFOUT  
= 2.5V  
0.8  
0.6  
0.4  
0.2  
REFOUT  
= 25°C  
T
A
A
0
–0.2  
–0.4  
–0.6  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.8  
–1.0  
0
500  
1000  
1500 2000 2500 3000  
CODE  
3500 4000  
0
500  
1000  
1500 2000 2500 3000  
CODE  
3500 4000  
Figure 12. INL AD5624R-5, Internal Reference  
Figure 15. DNL AD5624R-5, Internal Reference  
Rev. A | Page 11 of 28  
AD5624R/AD5644R/AD5664R  
10  
1.0  
V
V
= 3V  
= 1.25V  
= 25°C  
V
V
= 3V  
DD  
REFOUT  
DD  
REFOUT  
= 25°C  
8
6
0.8  
0.6  
= 1.25V  
T
T
A
A
4
0.4  
2
0.2  
0
0
–2  
–4  
–6  
–0.2  
–0.4  
–0.6  
–8  
–0.8  
–1.0  
–10  
CODE  
CODE  
Figure 16. INL AD5664R-3, Internal Reference  
Figure 19. DNL AD5664R-3, Internal Reference  
4
3
0.5  
0.4  
V
V
= 3V  
= 1.25V  
= 25°C  
V
V
T
= 3V  
= 1.25V  
= 25°C  
A
DD  
REFOUT  
DD  
REFOUT  
T
A
0.3  
2
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–1  
–2  
–3  
–4  
–0.4  
–0.5  
CODE  
CODE  
Figure 17. INL AD5644R-3, Internal Reference  
Figure 20. DNL AD5644R-3, Internal Reference  
1.0  
0.8  
0.20  
0.15  
0.10  
0.05  
0
V
V
= 3V  
V
V
= 3V  
DD  
DD  
REFOUT  
= 25°C  
= 1.25V  
= 1.25V  
REFOUT  
= 25°C  
T
T
A
A
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.05  
–0.10  
–0.15  
–0.20  
–0.8  
–1.0  
0
500  
1000 1500  
2000 2500  
CODE  
3000 3500 4000  
0
500  
1000 1500  
2000 2500  
CODE  
3000 3500 4000  
Figure 18. INL AD5624R-3, Internal Reference  
Figure 21. DNL AD5624R-3, Internal Reference  
Rev. A | Page 12 of 28  
AD5624R/AD5644R/AD5664R  
8
6
0
–0.02  
–0.04  
–0.06  
–0.08  
V
= 5V  
DD  
MAX INL  
V
= V = 5V  
REF  
DD  
GAIN ERROR  
4
2
MAX DNL  
MIN DNL  
0
–0.10  
–0.12  
–2  
–4  
–6  
–8  
–0.14  
–0.16  
FULL-SCALE ERROR  
MIN INL  
80  
–0.18  
–0.20  
–40  
–20  
0
20  
40  
60  
100  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 22. INL Error and DNL Error vs. Temperature  
Figure 25. Gain Error and Full-Scale Error vs. Temperature  
10  
1.5  
8
6
MAX INL  
1.0  
ZERO-SCALE ERROR  
0.5  
0
V
= 5V  
= 25°C  
DD  
4
T
A
2
MAX DNL  
MIN DNL  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
0
–2  
–4  
–6  
OFFSET ERROR  
MIN INL  
4.25  
–8  
–10  
0.75  
1.25  
1.75  
2.25  
2.75  
3.25  
(V)  
3.75  
4.75  
–40  
–20  
0
20  
40  
60  
80  
100  
V
TEMPERATURE (°C)  
REF  
Figure 26. Zero-Scale Error and Offset Error vs. Temperature  
Figure 23. INL Error and DNL Error vs. VREF  
1.0  
0.5  
8
6
MAX INL  
T
= 25°C  
A
4
2
GAIN ERROR  
0
MAX DNL  
MIN DNL  
FULL-SCALE ERROR  
–0.5  
0
–2  
–4  
–6  
–8  
–1.0  
MIN INL  
–1.5  
–2.0  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
V
V
DD  
DD  
Figure 27. Gain Error and Full-Scale Error vs. Supply  
Figure 24. INL Error and DNL Error vs. Supply  
Rev. A | Page 13 of 28  
 
 
AD5624R/AD5644R/AD5664R  
1.0  
8
7
6
5
4
3
2
1
0
V
= 3.6V  
= 25°C  
DD  
T
= 25°C  
A
T
A
0.5  
0
ZERO-SCALE ERROR  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
OFFSET ERROR  
0.39  
0.40  
0.41  
0.42  
0.43  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
I
(mA)  
DD  
V
DD  
Figure 31. IDD Histogram with External Reference, 3.6 V  
Figure 28. Zero-Scale Error and Offset Error vs. Supply  
8
V
T
= 5.5V  
= 25°C  
V
T
= 3.6V  
= 25°C  
DD  
DD  
6
A
A
7
6
5
4
3
2
1
0
5
4
3
2
1
0
0.92  
0.94  
(mA)  
0.96  
0.41  
0.42  
0.43  
(mA)  
0.44  
0.45  
0.90  
I
I
DD  
DD  
Figure 29. IDD Histogram with External Reference, 5.5 V  
Figure 32. IDD Histogram with Internal Reference, VREFOUT = 1.25 V  
0.5  
6
5
4
3
2
1
0
V
= 5.5V  
= 25°C  
DD  
DAC LOADED WITH  
FULL-SCALE  
DAC LOADED WITH  
ZERO-SCALE  
T
A
0.4  
0.3  
SOURCING CURRENT  
SINKING CURRENT  
0.2  
V
V
= 3V  
0.1  
DD  
REFOUT  
= 1.25V  
0
–0.1  
–0.2  
–0.3  
V
V
= 5V  
DD  
= 2.5V  
–2  
REFOUT  
–0.4  
–0.5  
0.92  
0.94  
0.96  
(mA)  
0.98  
–10  
–8  
–6  
–4  
0
2
4
6
8
10  
I
DD  
CURRENT (mA)  
Figure 33. Headroom at Rails vs. Source and Sink  
Figure 30. IDD Histogram with Internal Reference, VREFOUT = 2.5 V  
Rev. A | Page 14 of 28  
 
AD5624R/AD5644R/AD5664R  
6
5
4
3
V
V
= 5V  
DD  
REFOUT  
= 25°C  
FULL SCALE  
= 2.5V  
T
A
3/4 SCALE  
V
= V = 5V  
REF  
DD  
= 25°C  
T
A
MIDSCALE  
1/4 SCALE  
FULL-SCALE CODE CHANGE  
0x0000 TO 0xFFFF  
OUTPUT LOADED WITH 2k  
AND 200pF TO GND  
2
1
V
= 909mV/DIV  
OUT  
0
ZERO SCALE  
1
–1  
–30  
–20  
–10  
0
10  
20  
30  
CURRENT (mA)  
TIME BASE = 4µs/DIV  
Figure 34. AD56x4R-5 Source and Sink Capability  
Figure 37. Full-Scale Settling Time, 5 V  
4
3
2
1
V
V
= 3V  
V
T
= V = 5V  
REF  
DD  
REFOUT  
= 25°C  
DD  
= 25°C  
= 1.25V  
A
T
A
FULL SCALE  
3/4 SCALE  
MIDSCALE  
1/4 SCALE  
V
DD  
1
2
MAX(C2)  
420.0mV  
0
ZERO SCALE  
V
OUT  
CH2 500mV  
–1  
–30  
CH1 2.0V  
M100µs 125MS/s  
A CH1 1.28V  
8.0ns/pt  
–20  
–10  
0
10  
20  
30  
CURRENT (mA)  
Figure 35. AD56x4R-3 Source and Sink Capability  
Figure 38. Power-On Reset to 0 V  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
SYNC  
SLCK  
V
= V  
= 5V  
= 3V  
DD  
REFIN  
1
3
V
= V  
REFIN  
DD  
V
OUT  
V
= 5V  
DD  
2
T
= 25°C  
–20  
A
CH1 5.0V  
CH3 5.0V  
CH2 500mV  
M400ns  
A CH1  
1.4V  
–40  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
Figure 39. Exiting Power-Down to Midscale  
Figure 36. Supply Current vs. Temperature  
Rev. A | Page 15 of 28  
 
 
AD5624R/AD5644R/AD5664R  
2.538  
V
T
= V = 5V  
REF  
V
T
= V  
= 25°C  
= 5V  
DD  
= 25°C  
DD  
REF  
2.537  
2.536  
2.535  
2.534  
2.533  
2.532  
2.531  
2.530  
2.529  
2.528  
2.527  
2.526  
2.525  
2.524  
2.523  
2.522  
2.521  
A
A
DAC LOADED WITH MIDSCALE  
5ns/SAMPLE NUMBER  
GLITCH IMPULSE = 9.494nV  
1LSB CHANGE AROUND  
MIDSCALE (0x8000 TO 0x7FFF)  
1
Y AXIS = 2µV/DIV  
X AXIS = 4s/DIV  
0
50  
100 150 200 250 300 350 400 450  
SAMPLE NUMBER  
512  
Figure 40. Digital-to-Analog Glitch Impulse (Negative)  
Figure 43. 0.1 Hz to 10 Hz Output Noise Plot, External Reference  
2.498  
2.497  
2.496  
2.495  
2.494  
2.493  
2.492  
2.491  
V
V
= 5V  
= 2.5V  
= 25°C  
V
= V  
= 25°C  
= 5V  
DD  
REFOUT  
DD  
REF  
T
A
T
A
5ns/SAMPLE NUMBER  
ANALOG CROSSTALK = 0.424nV  
DAC LOADED WITH MIDSCALE  
1
0
50  
100 150 200 250 300 350 400 450  
SAMPLE NUMBER  
512  
5s/DIV  
Figure 41. Analog Crosstalk, External Reference  
Figure 44. 0.1 Hz to 10 Hz Output Noise Plot, 2.5 V Internal Reference  
2.496  
2.494  
2.492  
2.490  
2.488  
2.486  
2.484  
2.482  
2.480  
2.478  
2.476  
2.474  
2.472  
2.470  
2.468  
2.466  
2.464  
2.462  
2.460  
2.458  
2.456  
V
V
= 3V  
= 1.25V  
= 25°C  
DD  
REFOUT  
T
A
DAC LOADED WITH MIDSCALE  
1
V
V
= 5V  
= 2.5V  
= 25°C  
DD  
REFOUT  
T
A
5ns/SAMPLE NUMBER  
ANALOG CROSSTALK = 4.462nV  
0
50  
100 150 200 250 300 350 400 450  
SAMPLE NUMBER  
512  
4s/DIV  
Figure 42. Analog Crosstalk, Internal Reference  
Figure 45. 0.1 Hz to 10 Hz Output Noise Plot, 1.25 V Internal Reference  
Rev. A | Page 16 of 28  
 
AD5624R/AD5644R/AD5664R  
800  
700  
600  
500  
400  
300  
200  
16  
14  
12  
10  
8
T
= 25°C  
V
= V  
DD  
A
REF  
= 25°C  
MIDSCALE LOADED  
T
A
V
= 3V  
DD  
V
= 5V  
DD  
V
V
= 5V  
DD  
REFOUT  
= 2.5V  
6
4
100  
0
V
V
= 3V  
DD  
REFOUT  
= 1.25V  
1k  
100  
10k  
FREQUENCY (Hz)  
100k  
1M  
0
1
2
3
4
5
6
7
8
9
10  
CAPACITANCE (nF)  
Figure 48. Settling Time vs. Capacitive Load  
Figure 46. Noise Spectral Density, Internal Reference  
5
0
–20  
–30  
–40  
V
A
= 5V  
DD  
V
= 5V  
= 25°C  
DD  
T
= 25°C  
T
A
DAC LOADED WITH FULL SCALE  
= 2V ± 0.3V p-p  
V
5  
REF  
10  
15  
20  
25  
30  
35  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
2k  
4k  
6k  
8k  
10k  
FREQUENCY (Hz)  
Figure 47. Total Harmonic Distortion  
Figure 49. Multiplying Bandwidth  
Rev. A | Page 17 of 28  
 
AD5624R/AD5644R/AD5664R  
TERMINOLOGY  
Relative Accuracy or Integral Nonlinearity (INL)  
Output Voltage Settling Time  
For the DAC, relative accuracy or integral nonlinearity is a  
measurement of the maximum deviation, in LSBs, from a  
straight line passing through the endpoints of the DAC transfer  
function. A typical INL vs. code plot can be seen in Figure 4.  
This is the amount of time it takes for the output of a DAC to  
settle to a specified level for a ¼ to ¾ full-scale input change  
and is measured from the 24th falling edge of SCLK.  
Digital-to-Analog Glitch Impulse  
Differential Nonlinearity (DNL)  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-s,  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition (0x7FFF to 0x8000) (see  
Figure 40).  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. This DAC is guaranteed monotonic by  
design. A typical DNL vs. code plot can be seen in Figure 7.  
Zero-Code Error  
Digital Feedthrough  
Zero-scale error is a measurement of the output error when  
zero code (0x0000) is loaded to the DAC register. Ideally, the  
output should be 0 V. The zero-code error is always positive in  
the AD5664R because the output of the DAC cannot go below  
0 V due to a combination of the offset errors in the DAC and  
the output amplifier. Zero-code error is expressed in mV. A plot  
of zero-code error vs. temperature can be seen in Figure 26.  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC, but is measured when the DAC output is not updated. It  
is specified in nV-s, and measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s and vice versa.  
Reference Feedthrough  
Reference feedthrough is the ratio of the amplitude of the signal  
at the DAC output to the reference input when the DAC output  
is not being updated. It is expressed in dB.  
Full-Scale Error  
Full-scale error is a measurement of the output error when full-  
scale code (0xFFFF) is loaded to the DAC register. Ideally, the  
output should be VDD − 1 LSB. Full-scale error is expressed in  
percent of full-scale range. A plot of full-scale error vs.  
temperature can be seen in Figure 25.  
Noise Spectral Density  
This is a measurement of the internally generated random  
noise. Random noise is characterized as a spectral density  
(nV/√Hz). It is measured by loading the DAC to midscale and  
measuring noise at the output. It is measured in nV/√Hz. A plot  
of noise spectral density can be seen in Figure 46.  
Gain Error  
This is a measure of the span error of the DAC. It is the deviation  
in slope of the DAC transfer characteristic from the ideal  
expressed as % of FSR.  
DC Crosstalk  
DC crosstalk is the dc change in the output level of one DAC in  
response to a change in the output of another DAC. It is  
measured with a full-scale output change on one DAC (or soft  
power-down and power-up) while monitoring another DAC kept  
at midscale. It is expressed in ꢀV.  
Zero-Code Error Drift  
This is a measurement of the change in zero-code error with a  
change in temperature. It is expressed in μV/°C.  
Gain Temperature Coefficient  
This is a measurement of the change in gain error with changes  
in temperature. It is expressed in ppm of FSR/°C.  
DC crosstalk due to load current change is a measure of the  
impact that a change in load current on one DAC has to  
another DAC kept at midscale. It is expressed in ꢀV/mA.  
Offset Error  
Digital Crosstalk  
Offset error is a measure of the difference between VOUT (actual)  
and VOUT (ideal) expressed in mV in the linear region of the  
transfer function. Offset error is measured on the AD5664R  
with code 512 loaded in the DAC register. It can be negative or  
positive.  
This is the glitch impulse transferred to the output of one DAC  
at midscale in response to a full-scale code change (all 0s to all  
1s and vice versa) in the input register of another DAC. It is  
measured in standalone mode and is expressed in nV-s.  
DC Power Supply Rejection Ratio (PSRR)  
This indicates how the output of the DAC is affected by  
changes in the supply voltage. PSRR is the ratio of the change in  
VOUT to a change in VDD for full-scale output of the DAC. It is  
measured in dB. VREF is held at 2 V, and VDD is varied by 10%.  
Rev. A | Page 18 of 28  
 
AD5624R/AD5644R/AD5664R  
Analog Crosstalk  
Multiplying Bandwidth  
This is the glitch impulse transferred to the output of one DAC  
due to a change in the output of another DAC. It is measured by  
loading one of the input registers with a full-scale code change  
(all 0s to all 1s and vice versa). Then execute a software LDAC  
and monitor the output of the DAC whose digital code was not  
changed. The area of the glitch is expressed in nV-s.  
The amplifiers within the DAC have a finite bandwidth. The  
multiplying bandwidth is a measure of this. A sine wave on the  
reference (with full-scale code loaded to the DAC) appears on  
the output. The multiplying bandwidth is the frequency at  
which the output amplitude falls to 3 dB below the input.  
Total Harmonic Distortion (THD)  
DAC-to-DAC Crosstalk  
This is the difference between an ideal sine wave and its  
attenuated version using the DAC. The sine wave is used as the  
reference for the DAC, and the THD is a measurement of the  
harmonics present on the DAC output. It is measured in dB.  
This is the glitch impulse transferred to the output of one DAC  
due to a digital code change and subsequent analog output  
change of another DAC. It is measured by loading the attack  
channel with a full-scale code change (all 0s to all 1s and vice  
versa) using the command write to and update while  
monitoring the output of the victim channel that is at midscale.  
The energy of the glitch is expressed in nV-s.  
Rev. A | Page 19 of 28  
AD5624R/AD5644R/AD5664R  
THEORY OF OPERATION  
D/A SECTION  
R
The AD5624R/AD5644R/AD5664R DACs are fabricated on a  
CMOS process. The architecture consists of a string DAC  
followed by an output buffer amplifier. Figure 50 shows a block  
diagram of the DAC architecture.  
R
R
TO OUTPUT  
AMPLIFIER  
V
DD  
OUTPUT  
AMPLIFIER  
(GAIN = +2)  
REF (+)  
DAC  
REGISTER  
RESISTOR  
STRING  
V
OUT  
REF (–)  
R
R
GND  
Figure 50. DAC Architecture  
Because the input coding to the DAC is straight binary, the ideal  
output voltage when using an external reference is given by  
Figure 51. Resistor String  
D
VOUT = VREFIN  
×
INTERNAL REFERENCE  
2N  
The AD5624R/AD5644R/AD5664R on-chip reference is off at  
power-up and is enabled via a write to a control register. See the  
Internal Reference Setup section for details.  
The ideal output voltage when using the internal reference is  
given by  
D
The AD56x4R-3 has a 1.25 V, 5 ppm/°C reference giving a full-  
scale output of 2.5 V. The AD56x4R-5 has a 2.5 V, 5 ppm/°C  
reference giving a full-scale output of 5 V. The internal reference  
associated with each part is available at the VREFOUT pin.  
A buffer is required if the reference output is used to drive  
external loads. When using the internal reference, it is  
recommended that a 100 nF capacitor is placed between  
reference output and GND for reference stability.  
VOUT = 2×VREFOUT  
where:  
×
2N  
D is the decimal equivalent of the binary code that is loaded to  
the DAC register:  
0 to 4095 for AD5624R (12 bit).  
0 to 16,383 for AD5644R (14 bit).  
0 to 65,535 for AD5664R (16 bit).  
EXTERNAL REFERENCE  
The VREFIN pin on the AD56x4R-3 and AD56x4R-5 allows the  
use of an external reference if the application requires it. The  
default condition of the on-chip reference is off at power-up. All  
devices (AD56x4R-3 and the AD56x4R-5) can be operated from  
a single 2.7 V to 5.5 V supply.  
N is the DAC resolution.  
RESISTOR STRING  
The resistor string is shown in Figure 51. It is simply a string of  
resistors, each of value R. The code loaded to the DAC register  
determines at which node on the string the voltage is tapped off  
to be fed into the output amplifier. The voltage is tapped off by  
closing one of the switches connecting the string to the  
amplifier. Because it is a string of resistors, it is guaranteed  
monotonic.  
SERIAL INTERFACE  
The AD5624R/AD5644R/AD5664R have a 3-wire serial interface  
SYNC  
(
, SCLK, and DIN) that is compatible with SPI, QSPI, and  
MICROWIRE interface standards as well as with most DSPs. See  
Figure 2 for a timing diagram of a typical write sequence.  
OUTPUT AMPLIFIER  
The write sequence begins by bringing the  
line low. Data  
SYNC  
The output buffer amplifier can generate rail-to-rail voltages on  
its output, which gives an output range of 0 V to VDD. It can drive  
a load of 2 kꢁ in parallel with 1000 pF to GND. The source and  
sink capabilities of the output amplifier can be seen in Figure 33  
and Figure 34. The slew rate is 1.8 V/μs with a ¼ to ¾ full-scale  
settling time of 7 μs.  
from the DIN line is clocked into the 24-bit shift register on the  
falling edge of SCLK. The serial clock frequency can be as high as  
50 MHz, making the AD5624R/AD5644R/AD5664R compatible  
with high speed DSPs. On the 24th falling clock edge, the last data  
bit is clocked in and the programmed function is executed, that is, a  
change in DAC register contents and/or a change in the mode of  
operation.  
Rev. A | Page 2± of 28  
 
 
 
AD5624R/AD5644R/AD5664R  
At this stage, the  
line can be kept low or be brought high. In  
Table 8. Command Definition  
SYNC  
C2  
C1  
C0  
Command  
either case, it must be brought high for a minimum of 15 ns before  
the next write sequence so that a falling edge of  
the next write sequence.  
can initiate  
±
±
±
Write to input register n  
Update DAC register n  
Write to input register n, update all  
SYNC  
±
±
±
1
1
±
Since the  
buffer draws more current when VIN = 2 V than  
SYNC  
(software LDAC)  
it does when VIN = 0.8 V,  
should be idled low between  
±
1
1
1
1
1
±
±
1
1
1
±
1
±
1
Write to and update DAC channel n  
Power down DAC (power-up)  
Reset  
LDAC register setup  
Internal reference setup (on/off)  
SYNC  
write sequences for even lower power operation. As mentioned  
previously, it must, however, be brought high again just before  
the next write sequence.  
INPUT SHIFT REGISTER  
Table 9. Address Command  
A2  
The input shift register is 24 bits wide (see Figure 52). The first  
two bits are don’t care bits. The next three are the command  
bits, C2 to C0 (see Table 8), followed by the 3-bit DAC address,  
A2 to A0 (see Table 9), and then the 16-, 14-, 12-bit data-word.  
The data-word comprises the 16-, 14-, 12-bit input code  
followed by 0, 2, or 4 don’t care bits, for the AD5664R,  
AD5644R, and AD5624R, respectively (see Figure 52, Figure 53,  
and Figure 54). These data bits are transferred to the DAC  
register on the 24th falling edge of SCLK.  
A1  
A0  
Address (n)  
±
±
±
±
±
1
DAC A  
DAC B  
±
1
±
DAC C  
±
1
1
DAC D  
1
1
1
All DACs  
SYNC INTERRUPT  
SYNC  
In a normal write sequence, the  
line is kept low for at least  
24 falling edges of SCLK, and the DAC is updated on the 24th  
th  
SYNC  
falling edge. However, if  
is brought high before the 24  
falling edge, then this acts as an interrupt to the write sequence.  
The input shift register is reset and the write sequence is seen as  
invalid. Neither an update of the DAC register contents nor a  
change in the operating mode occurs (see Figure 55).  
DB23 (MSB)  
DB0 (LSB)  
X
X
C2  
C1  
C0  
A2  
A1  
A0 D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D3  
D1  
D4  
D2  
D0  
D3  
D1  
X
D2  
D0  
X
D1  
D0  
DATA BITS  
COMMAND BITS ADDRESS BITS  
Figure 52. AD5664R Input Shift Register Contents  
DB23 (MSB)  
DB0 (LSB)  
X
X
C2  
C1  
C0  
A2  
A1  
A0 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
X
X
DATA BITS  
COMMAND BITS ADDRESS BITS  
Figure 53. AD5644R Input Shift Register Contents  
DB23 (MSB)  
DB0 (LSB)  
X
X
C2  
C1  
C0  
A2  
A1  
A0 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
X
X
DATA BITS  
COMMAND BITS ADDRESS BITS  
Figure 54. AD5624R Input Shift Register Contents  
SCLK  
SYNC  
DIN  
DB23  
DB0  
DB23  
DB0  
INVALID WRITE SEQUENCE:  
TH  
VALID WRITE SEQUENCE, OUTPUT UPDATES  
TH  
SYNC HIGH BEFORE 24 FALLING EDGE  
ON THE 24 FALLING EDGE  
SYNC  
Figure 55.  
Interrupt Facility  
Rev. A | Page 21 of 28  
 
 
 
 
 
 
 
AD5624R/AD5644R/AD5664R  
POWER-ON RESET  
By executing the same Command 100, any combination of DACs  
can be powered up by setting the bits (DB5 and DB4) to normal  
operation mode. To select which combination of DAC channels  
to power-up, set the corresponding four bits (DB3, DB2, DB1,  
and DB0) to 1. See Table 13 for contents of the input shift register  
during power-down/power-up operation.  
The AD5624R/AD5644R/AD5664R family contains a power-on  
reset circuit that controls the output voltage during power-up.  
The AD5624R/AD5644R/AD5664R DACs output power up to  
0 V and the output remains there until a valid write sequence is  
made to the DACs. This is useful in applications where it is  
important to know the state of the output of the DACs while  
they are in the process of powering up.  
Table 11. Modes of Operation for the AD5624R/AD5644R/  
AD5664R  
DB5  
DB4  
Operating Mode  
Normal operation  
Power-down modes  
1 kΩ to GND  
1±± kΩ to GND  
Three-state  
SOFTWARE RESET  
±
±
The AD5624R/AD5644R/AD5664R contain a software reset  
function. Command 101 is reserved for the software reset  
function (see Table 8). The software reset command contains  
two reset modes that are software programmable by setting bit  
DB0 in the control register.  
±
1
1
1
±
1
When Bit DB5 and Bit DB4 are set to 0, the part works normally  
with its normal power consumption of 450 μA at 5 V. However,  
for the three power-down modes, the supply current falls to  
480 nA at 5 V (200 nA at 3 V). Not only does the supply current  
fall, but the output stage is also internally switched from the  
output of the amplifier to a resistor network of known values.  
This allows the output impedance of the part to be known while  
the part is in power-down mode. The outputs can either be  
connected internally to GND through a 1 kꢁ resistor, or left  
open-circuited (three-state) as shown in Figure 54.  
Table 10 shows how the state of the bit corresponds to the  
software reset modes of operation of the devices. Table 12 shows  
the contents of the input shift register during the software reset  
mode of operation.  
Table 10. Software Reset Modes for the  
AD5624R/AD5644R/AD5664R  
DB0  
Registers Reset to Zero  
±
DAC register  
Input shift register  
DAC register  
1 (Power-On Reset)  
Input shift register  
LDAC register  
RESISTOR  
STRING DAC  
AMPLIFIER  
V
OUT  
Power-down register  
Internal reference setup register  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
POWER-DOWN MODES  
The AD5624R/AD5644R/AD5664R contain four separate modes  
of operation. Command 100 is reserved for the power-down  
function (see Table 8). These modes are software programmable  
by setting two bits (DB5 and DB4) in the control register. Table  
11 shows how the state of the bits corresponds to the mode of  
operation of the device. All DACs, (DAC D to DAC A) can be  
powered down to the selected mode by setting the corresponding  
four bits (DB3, DB2, DB1, and DB0) to 1.  
Figure 56. Output Stage During Power-Down  
The bias generator, the output amplifier, the resistor string, and  
other associated linear circuitry are shutdown when power-  
down mode is activated. However, the contents of the DAC  
register are unaffected when in power-down. The time to exit  
power-down is typically 4 μs for VDD = 5 V and for VDD = 3 V  
(see Figure 39).  
Table 12. 24-Bit Input Shift Register Contents for Software Reset Command  
DB23 to DB22 (MSB)  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB1  
x
DB0 (LSB)  
x
1
±
1
x
x
x
1/±  
Don’t care  
Command bits (C2 to C±)  
Address bits (A2 to A±)  
Don’t care  
Determines software  
reset mode  
Table 13. 24-Bit Input Shift Register Contents of Power-Down/Power-Up Operation for the AD5624R/AD5644R/AD5664R  
DB23 to  
DB22  
(MSB)  
DB15  
to DB6 DB5  
DB0  
(LSB)  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB4  
DB3  
DB2  
DB1  
x
1
±
±
x
x
x
x
PD1  
PD±  
DAC D DAC C DAC B DAC A  
Don’t  
care  
Command bits (C2 to C±)  
Address bits (A2 to A±)  
Don’t care  
Don’t  
care  
Power-down  
mode  
Power-down/power-up channel  
selection, set bit to 1 to select channel  
Rev. A | Page 22 of 28  
 
 
 
 
 
AD5624R/AD5644R/AD5664R  
This flexibility is useful in applications where the user wants to  
update select channels simultaneously, while the rest of the  
channels update synchronously.  
LDAC FUNCTION  
The AD5624R/AD5644R/AD5664R DACs have double-  
buffered interfaces consisting of two banks of registers: input  
registers and DAC registers. The input registers are connected  
directly to the input shift register and the digital code is  
transferred to the relevant input register on completion of a  
valid write sequence. The DAC registers contain the digital  
code used by the resistor strings.  
Table 14. LDAC Register Mode of Operation  
Load DAC Register  
LDAC Bits  
(DB3 to DB0)  
LDAC Mode of Operation  
±
Normal operation (default), DAC register  
update is controlled by write command.  
The double-buffered interface is useful if the user requires  
simultaneous updating of all DAC outputs. The user can write  
to three of the input registers individually and then write to the  
remaining input register, updating all DAC registers simulta-  
neously. Command 010 is reserved for this software LDAC.  
1
The DAC registers are updated after new  
data is read in on the falling edge of the  
24th SCLK pulse.  
INTERNAL REFERENCE SETUP  
The on-chip reference is off at power-up by default. This  
reference can be turned on or off by setting a software  
programmable bit, DB0 in the control register. Table 15 shows  
how the state of the bit corresponds to the mode of operation.  
Command 111 is reserved for setting up the internal reference  
(see Table 8). Table 16 shows how the state of the bits in the  
input shift register corresponds to the mode of operation of the  
device during internal reference setup.  
Access to the DAC registers is controlled by the LDAC  
function. The LDAC register contains two modes of operation  
for each DAC channel. The DAC channels are selected by  
setting the bits of the 4-bit LDAC register (DB3, DB2, DB1, and  
DB0). Command 110 is reserved for setting up the LDAC  
register. When the LDAC bit register is set low, the  
corresponding DAC registers are latched and the input  
registers can change state without affecting the contents of the  
DAC registers. When the LDAC bit register is set high,  
however, the DAC registers become transparent and the  
contents of the input registers are transferred to them on the  
falling edge of the 24th SCLK pulse. This is equivalent to having  
Table 15. Reference Set-up Register  
Internal Reference  
Setup Register (DB0) Action  
±
1
Reference off (default)  
Reference on  
LDAC  
an  
hardware pin tied permanently low for the selected  
DAC channel, that is, synchronous update mode. See Table 14  
for the LDAC register mode of operation. See Table 16 for  
contents of the input shift register during the LDAC register  
setup command.  
Table 16. 24-Bit Input Shift Register Contents for LDAC Setup Command for the AD5624R/AD5644R/AD5664R  
DB23 to DB22  
(MSB)  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB4  
x
DB3  
DB2  
DB1  
DB0 (LSB)  
x
1
1
±
x
x
x
DAC D  
DAC C  
DAC B  
DAC A  
Don’t care  
Command bits  
(C2 to C±)  
Address bits  
(A2 to A±); don’t care  
Don’t care  
Set bit to ± or 1 for required mode of  
operation on respective channel  
Table 17. 24-Bit Input Shift Register Contents for Internal Reference Setup Command  
DB23 to DB22  
(MSB)  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB1  
DB0 (LSB)  
x
1
1
1
x
x
x
x
1/±  
Don’t care  
Command bits (C2 to C±)  
Address bits (A2 to A±)  
Don’t care  
Reference setup register  
Rev. A | Page 23 of 28  
 
 
 
 
 
AD5624R/AD5644R/AD5664R  
AD5624R/AD5644R/AD5664R to 80C51/80L51 Interface  
MICROPROCESSOR INTERFACING  
Figure 59 shows a serial interface between the AD5624R/  
AD5644R/AD5664R and the 80C51/80L51 microcontroller. The  
setup for the interface is that the TxD of the 80C51/80L51 drives  
SCLK of the AD5624R/AD5644R/AD5664R, while RxD drives the  
AD5624R/AD5644R/AD5664R to Blackfin® ADSP-BF53x  
Interface  
Figure 57 shows a serial interface between the AD5624R/  
AD5644R/AD5664R and the Blackfin ADSP-BF53x micro-  
processor. The ADSP-BF53x processor family incorporates two  
dual-channel synchronous serial ports, SPORT1 and SPORT0, for  
serial and multiprocessor communications. Using SPORT0 to  
connect to the AD5624R/AD5644R/AD5664R, the setup for the  
interface is that the DT0PRI drives the DIN pin of the AD5624R/  
AD5644R/AD5664R, while TSCLK0 drives the SCLK of the part.  
serial data line of the part. The  
signal is derived from a bit-  
SYNC  
programmable pin on the port. In this case, port line P3.3 is used.  
When data is transmitted to the AD5624R/AD5644R/AD5664R,  
P3.3 is taken low. The 80C51/80L51 transmits data in 8-bit bytes  
only; thus, only eight falling clock edges occur in the transmit cycle.  
To load data to the DAC, P3.3 is left low after the first eight bits are  
transmitted, and a second write cycle is initiated to transmit the  
second byte of data. P3.3 is taken high following the completion of  
this cycle. The 80C51/80L51 outputs the serial data in LSB first  
format. The AD5624R/ AD5644R/AD5664R must receive data  
with the MSB first. The 80C51/80L51 transmit routine should take  
this into account.  
The  
is driven from TFS0.  
SYNC  
1
AD5624R/  
AD5644R/  
AD5664R1  
ADSP-BF53x  
TFS0  
DTOPRI  
TSCLK0  
SYNC  
DIN  
SCLK  
1
AD5624R/  
AD5644R/  
AD5664R1  
80C51/80L51  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 57. Blackfin ADSP-BF53x Interface to AD5624R/AD5644R/AD5664R  
P3.3  
TxD  
RxD  
SYNC  
SCLK  
DIN  
AD5624R/AD5644R/AD5664R to 68HC11/68L11  
Interface  
1
Figure 58 shows a serial interface between the AD5624R/  
AD5644R/AD5664R and the 68HC11/68L11 microcontroller.  
SCK of the 68HC11/68L11 drives the SCLK of the AD5624R/  
AD5644R/AD5664R, while the MOSI output drives the serial  
data line of the DAC.  
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 59. 80C51/80L51 Interface to AD5624R/AD5644R/AD5664R  
AD5624R/AD5644R/AD5664R to MICROWIRE Interface  
Figure 60 shows an interface between the AD5624R/AD5644R/  
AD5664R and any MICROWIRE-compatible device. Serial data  
is shifted out on the falling edge of the serial clock and is  
clocked into the AD5624R/AD5644R/AD5664R on the rising  
edge of the SK.  
The  
signal is derived from a port line (PC7). The setup  
SYNC  
conditions for correct operation of this interface are that the  
68HC11/68L11 is configured with its CPOL bit as 0 and its  
CPHA bit as 1. When data is transmitted to the DAC, the  
SYNC  
1
AD5624R/  
AD5644R/  
AD5664R1  
MICROWIRE  
line is taken low (PC7). When the 68HC11/68L11 is configured  
as described above, data appearing on the MOSI output is valid  
on the falling edge of SCK. Serial data from the 68HC11/68L11  
is transmitted in 8-bit bytes with only eight falling clock edges  
occurring in the transmit cycle. Data is transmitted MSB first.  
In order to load data to the AD5624R/AD5644R/AD5664R,  
PC7 is left low after the first eight bits are transferred, and a  
second serial write operation is performed to the DAC; PC7 is  
taken high at the end of this procedure.  
CS  
SYNC  
SCLK  
DIN  
SK  
SO  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 60. MICROWIRE Interface to AD5624R/AD5644R/AD5664R  
1
AD5624R/  
AD5644R/  
AD5664R1  
68HC11/68L11  
PC7  
SCK  
SYNC  
SCLK  
DIN  
MOSI  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 58. 68HC11/68L11 Interface to AD5624R/AD5644R/AD5664R  
Rev. A | Page 24 of 28  
 
 
 
 
 
AD5624R/AD5644R/AD5664R  
APPLICATIONS  
This is an output voltage range of 5 V, with 0x0000 corre-  
sponding to a −5 V output, and 0xFFFF corresponding to a  
+5 V output.  
USING A REFERENCE AS A POWER SUPPLY FOR  
THE AD5624R/AD5644R/AD5664R  
Because the supply current required by the AD5624R/AD5644R/  
AD5664R is extremely low, an alternative option is to use a  
voltage reference to supply the required voltage to the part (see  
Figure 61). This is especially useful if the power supply is quite  
noisy, or if the system supply voltages are at some value other  
than 5 V or 3 V, for example, 15 V. The voltage reference  
outputs a steady supply voltage for the AD5624R/AD5644R/  
AD5664R (see Figure 59). If the low dropout REF195 is used, it  
must supply 450 μA of current to the AD5624R/AD5644R/  
AD5664R with no load on the output of the DAC. When the  
DAC output is loaded, the REF195 also needs to supply the  
current to the load. The total current required (with a 5 kΩ load  
on the DAC output) is  
R2 = 10k  
+5V  
+5V  
R1 = 10kΩ  
AD820/  
OP295  
±5V  
V
V
OUT  
DD  
10µF  
0.1µF  
AD5624R/  
AD5644R/  
AD5664R  
–5V  
3-WIRE  
SERIAL  
INTERFACE  
Figure 62. Bipolar Operation with the AD5624R/AD5644R/AD5664R  
USING AD5624R/AD5644R/AD5664R WITH A  
GALVANICALLY ISOLATED INTERFACE  
450 μA + (5 V/5 kΩ) = 1.45 mA  
The load regulation of the REF195 is typically 2 ppm/mA,  
resulting in a 2.9 ppm (14.5 μV) error for the 1.45 mA current  
drawn from it. This corresponds to a 0.191 LSB error.  
In process control applications in industrial environments, it is  
often necessary to use a galvanically isolated interface to protect  
and isolate the controlling circuitry from any hazardous  
common-mode voltages that might occur in the area where the  
DAC is functioning. Isocouplers provide isolation in excess of  
3 kV. The AD5624R/AD5644R/AD5664R use a 3-wire serial  
logic interface, so the ADuM130x 3-channel digital isolator  
provides the required isolation (see Figure 63). The power  
supply to the part also needs to be isolated, which is done by  
using a transformer. On the DAC side of the transformer, a 5 V  
regulator provides the 5 V supply required for the AD5624R/  
AD5644R/AD5664R.  
15V  
5V  
REF195  
V
DD  
SYNC  
SCLK  
DIN  
3-WIRE  
SERIAL  
INTERFACE  
AD5624R/  
AD5644R/  
AD5664R  
V
= 0V TO 5V  
OUT  
Figure 61. REF195 as Power Supply to the AD5624R/AD5644R/AD5664R  
5V  
REGULATOR  
BIPOLAR OPERATION USING THE  
AD5624R/AD5644R/AD5664R  
10µF  
0.1µF  
POWER  
The AD5624R/AD5644R/AD5664R has been designed for  
single-supply operation, but a bipolar output range is also  
possible using the circuit in Figure 62. The circuit gives an  
output voltage range of 5 V. Rail-to-rail operation at the  
amplifier output is achievable using an AD820 or an OP295 as  
the output amplifier.  
V
DD  
SCLK  
V
V
V
V
SCLK  
SYNC  
1A  
OA  
ADuM1300  
V
SDI  
OUT  
V
1B  
OB  
OC  
AD5624R/  
AD5644R/  
AD5664R  
The output voltage for any input code can be calculated as  
follows:  
V
DATA  
DIN  
1C  
GND  
D
65,536  
R1+ R2  
R1  
R2  
R1  
V = V  
×
×
V  
×
Figure 63. AD5624R/AD5644R/AD5664R with a Galvanica ly Isolated Interface  
O
DD  
DD  
where D represents the input code in decimal (0 to 65536).  
With VDD = 5 V, R1 = R2 = 10 kΩ,  
10×D  
65,536  
V =  
5 V  
O
Rev. A | Page 25 of 28  
 
 
 
 
AD5624R/AD5644R/AD5664R  
The power supply line itself should have as large a trace as  
possible to provide a low impedance path and to reduce glitch  
effects on the supply line. Clocks and other fast switching  
digital signals should be shielded from other parts of the board  
by digital ground. Avoid crossover of digital and analog signals  
if possible. When traces cross on opposite sides of the board,  
ensure that they run at right angles to each other to reduce  
feedthrough effects through the board. The best board layout  
technique is the microstrip technique where the component  
side of the board is dedicated to the ground plane only and the  
signal traces are placed on the solder side. However, this is not  
always possible with a 2-layer board.  
POWER SUPPLY BYPASSING AND GROUNDING  
When accuracy is important in a circuit, it is helpful to carefully  
consider the power supply and ground return layout on the  
board. The printed circuit board containing the AD5624R/  
AD5644R/AD5664R should have separate analog and digital  
sections, each having its own area of the board. If the AD5624R/  
AD5644R/AD5664R are in a system where other devices require  
an AGND-to-DGND connection, the connection should be  
made at one point only. This ground point should be as close as  
possible to the AD5624R/AD5644R/AD5664R.  
The power supply to the AD5624R/AD5644R/AD5664R should  
be bypassed with 10 μF and 0.1 μF capacitors. The capacitors  
should be located as close as possible to the device, with the  
0.1 μF capacitor ideally right up against the device. The 10 μF  
capacitor is the tantalum bead type. It is important that the  
0.1 μF capacitor have low effective series resistance (ESR) and  
effective series inductance (ESI), for example, common ceramic  
types of capacitors. This 0.1 μF capacitor provides a low  
impedance path to ground for high frequencies caused by  
transient currents due to internal logic switching.  
Rev. A | Page 26 of 28  
 
AD5624R/AD5644R/AD5664R  
OUTLINE DIMENSIONS  
INDEX  
AREA  
PIN 1  
INDICATOR  
3.00  
BSC SQ  
10  
1
1.50  
BCS SQ  
0.50  
BSC  
2.48  
2.38  
2.23  
EXPOSED  
PAD  
TOP VIEW  
(BOTTOM VIEW)  
6
5
0.50  
0.40  
0.30  
1.74  
1.64  
1.49  
0.80 MAX  
0.55 TYP  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SIDE VIEW  
SEATING  
PLANE  
0.30  
0.23  
0.18  
0.20 REF  
Figure 64. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]  
3 mm × 3 mm Body, Very Very Thin, Dual Lead  
(CP-10-9)  
Dimensions shown in millimeters  
3.10  
3.00  
2.90  
10  
6
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
1
5
PIN 1  
0.50 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.05  
0.33  
0.17  
SEATING  
PLANE  
0.23  
0.08  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 65. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
Rev. A | Page 27 of 28  
 
AD5624R/AD5644R/AD5664R  
ORDERING GUIDE  
Package  
Description  
Package  
Option  
Model  
Temperature Range  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
Accuracy  
Internal Reference  
1.25 V  
1.25 V  
1.25 V  
1.25 V  
2.5 V  
Branding  
D7L  
D7L  
D7L  
D7L  
D7V  
D7V  
D7E  
AD5624RBCPZ-3R21  
AD5624RBCPZ-3REEL71  
AD5624RBRMZ-31  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
±4 LSB INL  
±4 LSB INL  
±4 LSB INL  
±4 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
1±-Lead LFCSP_WD  
1±-Lead LFCSP_WD  
1±-Lead MSOP  
1±-Lead MSOP  
1±-Lead MSOP  
1±-Lead MSOP  
1±-Lead MSOP  
1±-Lead MSOP  
1±-Lead MSOP  
1±-Lead MSOP  
1±-Lead LFCSP_WD  
1±-Lead LFCSP_WD  
1±-Lead MSOP  
1±-Lead MSOP  
1±-Lead MSOP  
1±-Lead MSOP  
Evaluation Board  
CP-1±-9  
CP-1±-9  
RM-1±  
RM-1±  
RM-1±  
RM-1±  
RM-1±  
RM-1±  
RM-1±  
RM-1±  
CP-1±-9  
CP-1±-9  
RM-1±  
RM-1±  
RM-1±  
RM-1±  
AD5624RBRMZ-3REEL71  
AD5624RBRMZ-51  
AD5624RBRMZ-5REEL71  
AD5644RBRMZ-31  
AD5644RBRMZ-3REEL71  
AD5644RBRMZ-51  
AD5644RBRMZ-5REEL71  
AD5664RBCPZ-3R21  
AD5664RBCPZ-3REEL71  
AD5664RBRMZ-31  
2.5 V  
1.25 V  
1.25 V  
2.5 V  
D7E  
D7D  
D7D  
D73  
D73  
D73  
D73  
D75  
D75  
2.5 V  
1.25 V  
1.25 V  
1.25 V  
1.25 V  
2.5 V  
AD5664RBRMZ-3REEL71  
AD5664RBRMZ-51  
AD5664RBRMZ-5REEL71  
2.5 V  
EVAL-AD5664REB  
1 Z = Pb-free part.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05856-0-11/06(A)  
Rev. A | Page 28 of 28  
 
 
 

相关型号:

AD5644RBRMZ-5REEL7

Quad, 12-/14-/16-Bit nanoDACs with 5 ppm/C On-Chip Reference
ADI

AD5645R

Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On-chip Ref, I2C Interface
ADI

AD5645RBCPZ-250RL7

Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On-chip Ref, I2C Interface
ADI

AD5645RBCPZ-R2

Quad, 12-/14-/16-Bit nanoDACs with 5 ppm/°C On-Chip Reference, I2C Interface
ADI

AD5645RBCPZ-REEL7

Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On-chip Ref, I2C Interface
ADI

AD5645RBRUZ

Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On-chip Ref, I2C Interface
ADI

AD5645RBRUZ-REEL7

Quad, 12-/14-/16-Bit nanoDACs with 5ppm/∑C On-chip Ref, I2C Interface
ADI

AD5647R

Dual, 12-/14-/16-Bit nanoDACs with 5ppm/C On-Chip Ref, I2C Interface
ADI

AD5647RBCPZ-250RL7

Dual, 12-/14-/16-Bit nanoDACs with 5ppm/C On-Chip Ref, I2C Interface
ADI

AD5647RBCPZ-R2

Dual, 12-/14-/16-Bit nanoDACs® with 5 ppm/°C On-Chip Reference, I2C® Interface
ADI

AD5647RBCPZ-R2

SERIAL INPUT LOADING, 3.5 us SETTLING TIME, 14-BIT DAC, DSO10, 3 X 3 MM, LEAD FREE, LFCSP-10
ROCHESTER

AD5647RBCPZ-REEL7

Dual, 12-/14-/16-Bit nanoDACs with 5ppm/C On-Chip Ref, I2C Interface
ADI