AD565AKN/BIN [ADI]

AD565AKN/BIN;
AD565AKN/BIN
型号: AD565AKN/BIN
厂家: ADI    ADI
描述:

AD565AKN/BIN

转换器
文件: 总11页 (文件大小:154K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Speed 12-Bit  
Monolithic D/A Converters  
a
AD565A*/AD566A*  
FUNCTIONAL BLOCK DIAGRAMS  
FEATURES  
Single Chip Construction  
V
REF OUT  
CC  
BIPOLAR OFF  
Very High-Speed Settling to 1/2 LSB  
AD565A: 250 ns max  
AD566A: 350 ns max  
Full-Scale Switching Time: 30 ns  
Guaranteed for Operation with ؎12 V Supplies:  
AD565A with –12 V Supply: AD566A  
Linearity Guaranteed Over Temperature:  
1/2 LSB max (K, T Grades)  
20V SPAN  
10V  
AD565A  
5k⍀  
9.95k⍀  
10V SPAN  
DAC OUT  
19.95k⍀  
0.5mA  
REF  
IN  
5k⍀  
I
REF  
DAC  
I
=
20k⍀  
OUT  
4 
؋
 I  
I
REF  
GND  
8k⍀  
O
؋
 CODE  
REF  
CODE INPUT  
Monotonicity Guaranteed Over Temperature  
Low Power: AD566A = 180 mW max;  
AD565A = 225 mW max  
–V  
EE  
POWER  
GND  
MSB  
LSB  
BIPOLAR OFF  
Use with On-Board High-Stability Reference (AD565A)  
or with External Reference (AD566A)  
Low Cost  
20V SPAN  
AD566A  
5k⍀  
9.95k⍀  
10V SPAN  
DAC OUT  
19.95k⍀  
0.5mA  
MlL-STD-883-Compliant Versions Available  
REF  
IN  
5k⍀  
I
REF  
DAC  
PRODUCT DESCRIPTION  
I
=
20k⍀  
OUT  
4 
؋
 I  
I
REF  
GND  
8k⍀  
O
The AD565A and AD566A are fast 12-bit digital-to-analog  
converters that incorporate the latest advances in analog circuit  
design to achieve high speeds at low cost.  
؋
 CODE  
REF  
CODE INPUT  
The AD565A and AD566A use 12 precision, high-speed bipolar  
current-steering switches, control amplifier and a laser-trimmed  
thin-film resistor network to produce a very fast, high accuracy  
analog output current. The AD565A also includes a buried  
Zener reference that features low-noise, long-term stability and  
temperature drift characteristics comparable to the best discrete  
reference diodes.  
V  
EE  
POWER  
GND  
LSB  
MSB  
AD565A and AD566A are available in four performance  
grades. The J and K are specified for use over the 0°C to +70°C  
temperature range while the S and T grades are specified for the  
–55°C to +125°C range. The D grades are all packaged in a  
24-lead, hermetically sealed, ceramic, dual-in-line package. The  
JR grade is packaged in a 28-lead plastic SOIC.  
The combination of performance and flexibility in the AD565A  
and AD566A has resulted from major innovations in circuit  
design, an important new high-speed bipolar process, and con-  
tinuing advances in laser-wafer-trimming techniques (LWT).  
The AD565A and AD566A have a 10–90% full-scale transition  
time less than 35 ns and settle to within 1/2 LSB in 250 ns  
max (350 ns for AD566A). Both are laser-trimmed at the wafer  
level to 1/8 LSB typical linearity and are specified to 1/4 LSB  
max error (K and T grades) at +25°C. High speed and accuracy  
make the AD565A and AD566A the ideal choice for high-speed  
display drivers as well as fast analog-to-digital converters.  
PRODUCT HIGHLIGHTS  
1. The wide output compliance range of the AD565A and  
AD566A are ideally suited for fast, low noise, accurate volt-  
age output configurations without an output amplifier.  
2. The devices incorporate a newly developed, fully differential,  
nonsaturating precision current switching cell structure  
which combines the dc accuracy and stability first developed  
in the AD562/3 with very fast switching times and an  
optimally-damped settling characteristic.  
3. The devices also contain SiCr thin film application resistors  
which can be used with an external op amp to provide a  
precision voltage output or as input resistors for a successive  
approximation A/D converter. The resistors are matched to  
the internal ladder network to guarantee a low gain tempera-  
ture coefficient and are laser-trimmed for minimum  
full-scale and bipolar offset errors.  
The laser trimming process which provides the excellent linear-  
ity is also used to trim both the absolute value and the tempera-  
ture coefficient of the reference of the AD565A resulting in a  
typical full-scale gain TC of 10 ppm/°C. When tighter TC per-  
formance is required or when a system reference is available, the  
AD566A may be used with an external reference.  
*Covered by Patent Nos.: 3,803,590; RE 28,633; 4,213,806; 4,136,349;  
4,020,486; 3,747,088.  
4. The AD565A and AD566A are available in versions compli-  
ant with MIL-STD-883. Refer to the Analog Devices Mili-  
tary Products Databook or current /883B data sheet for  
detailed specifications.  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
AD565A–SPECIFICATIONS (TA = +25؇C, VCC = +15 V, VEE = +15 V, unless otherwise noted.)  
AD565AJ  
Typ  
AD565AK  
Typ  
Model  
Min  
Max  
Min  
Max  
Units  
DATA INPUTS1 (Pins 13 to 24)  
TTL or 5 Volt CMOS  
Input Voltage  
Bit ON Logic “1”  
+2.0  
+5.5  
+0.8  
+2.0  
+5.5  
+0.8  
V
V
Bit OFF Logic “0”  
Logic Current (Each Bit)  
Bit ON Logic “1”  
+120  
+35  
+300  
+100  
+120  
+35  
+300  
+100  
µA  
µA  
Bit OFF Logic “0”  
RESOLUTION  
12  
12  
Bits  
OUTPUT  
Current  
Unipolar (All Bits On)  
Bipolar (All Bits On or Off)  
Resistance (Exclusive of Span Resistors)  
Offset  
–1.6  
؎0.8  
6
–2.0  
1.0  
8
–2.4  
؎1.2  
10  
–1.6  
؎0.8  
6
–2.0  
1.0  
8
–2.4  
؎1.2  
10  
mA  
mA  
kΩ  
Unipolar  
0.01  
0.05  
25  
0.05  
0.15  
0.01  
0.05  
25  
0.05  
0.1  
% of F.S. Range  
% of F.S. Range  
pF  
Bipolar (Figure 3, R2 = 50 Fixed)  
Capacitance  
Compliance Voltage  
TMIN to TMAX  
–1.5  
+10  
–1.5  
+10  
V
ACCURACY (Error Relative to  
Full Scale) +25°C  
1/4  
؎1/2  
1/8  
؎1/4  
LSB  
(0.006)  
1/2  
(0.012)  
؎3/4  
(0.003)  
1/4  
(0.006)  
؎1/2  
% of F.S. Range  
LSB  
T
MIN to TMAX  
(0.012)  
(0.018)  
(0.006)  
(0.012)  
% of F.S. Range  
DIFFERENTIAL NONLINEARITY  
+25°C  
1/2  
؎3/4  
1/4  
؎1/2  
LSB  
TMIN to TMAX  
MONOTONICITY GUARANTEED  
MONOTONICITY GUARANTEED  
TEMPERATURE COEFFICIENTS  
With Internal Reference  
Unipolar Zero  
1
2
10  
50  
1
2
10  
20  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
Bipolar Zero  
5
5
Gain (Full Scale)  
Differential Nonlinearity  
15  
2
10  
2
SETTLING TIME TO 1/2 LSB  
All Bits ON-to-OFF or OFF-to-ON  
250  
400  
250  
400  
ns  
FULL-SCALE TRANSITION  
10% to 90% Delay plus Rise Time  
90% to 10% Delay plus Fall Time  
15  
30  
30  
50  
15  
30  
30  
50  
ns  
ns  
TEMPERATURE RANGE  
Operating  
Storage  
0
–65  
+70  
+150  
0
–65  
+70  
+150  
°C  
°C  
POWER REQUIREMENTS  
VCC, +11.4 to +16.5 V de  
VEE, –11.4 to –16.5 V dc  
3
5
3
5
mA  
mA  
–12  
–18  
–12  
–18  
POWER SUPPLY GAIN SENSITIVITY2  
VCC = +11.4 to +16.5 V dc  
3
15  
10  
25  
3
15  
10  
25  
ppm of F.S./%  
ppm of F.S./%  
VEE = –11.4 to –16.5 V dc  
PROGRAMMABLE OUTPUT RANGES  
(See Figures 2, 3, 4)  
0 to +5  
0 to +5  
V
V
V
V
V
–2.5 to +2.5  
0 to +10  
–2.5 to +2.5  
0 to +10  
–5 to +5  
–10 to +10  
–5 to +5  
–10 to +10  
EXTERNAL ADJUSTMENTS  
Gain Error with Fixed 50 Ω  
Resistor for R2 (Figure 2)  
0.1  
؎0.25  
؎0.15  
0.1  
؎0.25  
% of F.S. Range  
Bipolar Zero Error with Fixed  
50 Resistor for R1 (Figure 3)  
Gain Adjustment Range (Figure 2)  
Bipolar Zero Adjustment Range  
0.05  
0.05  
0.1  
% of F.S. Range  
% of F.S. Range  
% of F.S. Range  
0.25  
0.15  
0.25  
0.15  
REFERENCE INPUT  
Input Impedance  
15  
20  
25  
15  
20  
25  
kΩ  
REFERENCE OUTPUT  
Voltage  
9.90  
1.5  
10.00  
2.5  
10.10  
345  
9.90  
1.5  
10.00  
2.5  
10.10  
345  
V
Current (Available for External Loads)3  
mA  
POWER DISSIPATION  
225  
225  
mW  
NOTES  
1The digital inputs are guaranteed but not tested over the operating temperature range.  
2The power supply gain sensitivity is tested in reference to a VCC, VEE of 15 V dc.  
3For operation at elevated temperatures the reference cannot supply current for external loads. It, therefore, should be buffered if additional loads are to be supplied.  
Specifications subject to change without notice.  
–2–  
REV. D  
AD565A/AD566A  
AD565AS  
Typ  
AD565AT  
Typ  
Model  
Min  
+2.0  
Max  
Min  
+2.0  
Max  
Units  
DATA INPUTS1 (Pins 13 to 24)  
TTL or 5 Volt CMOS  
Input Voltage  
Bit ON Logic “1”  
Bit OFF Logic “0”  
+5.5  
+0.8  
+5.5  
+0.8  
V
V
Logic Current (Each Bit)  
Bit ON Logic “1”  
+120  
+35  
+300  
+100  
+120  
+35  
+300  
+100  
µA  
µA  
Bit OFF Logic “0”  
RESOLUTION  
12  
12  
Bits  
OUTPUT  
Current  
Unipolar (All Bits On)  
Bipolar (All Bits On or Off)  
Resistance (Exclusive of Span Resistors)  
Offset  
–1.6  
؎0.8  
6
–2.0  
1.0  
8
–2.4  
؎1.2  
10  
–1.6  
؎0.8  
6
–2.0  
1.0  
8
–2.4  
؎1.2  
10  
mA  
mA  
kΩ  
Unipolar  
0.01  
0.05  
25  
0.05  
0.15  
0.01  
0.05  
25  
0.05  
0.1  
% of F.S. Range  
% of F.S. Range  
pF  
Bipolar (Figure 3, R2 = 50 Fixed)  
Capacitance  
Compliance Voltage  
TMIN to TMAX  
–1.5  
+10  
–1.5  
+10  
V
ACCURACY (Error Relative to  
Full Scale) +25°C  
1/4  
؎1/2  
1/8  
؎1/4  
LSB  
(0.006)  
1/2  
(0.012)  
؎3/4  
(0.003)  
1/4  
(0.006)  
؎1/2  
% of F.S. Range  
LSB  
TMIN to TMAX  
(0.012)  
(0.018)  
(0.006)  
(0.012)  
% of F.S. Range  
DIFFERENTIAL NONLINEARITY  
+25°C  
1/2  
؎3/4  
1/4  
؎1/2  
LSB  
TMIN to TMAX  
MONOTONICITY GUARANTEED  
MONOTONICITY GUARANTEED  
TEMPERATURE COEFFICIENTS  
With Internal Reference  
Unipolar Zero  
1
2
10  
30  
1
2
10  
15  
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
Bipolar Zero  
5
5
Gain (Full Scale)  
Differential Nonlinearity  
15  
2
10  
2
SETTLING TIME TO 1/2 LSB  
All Bits ON-to-OFF or OFF-to-ON  
250  
400  
250  
400  
ns  
FULL-SCALE TRANSITION  
10% to 90% Delay plus Rise Time  
90% to 10% Delay plus Fall Time  
15  
30  
30  
50  
15  
30  
30  
50  
ns  
ns  
TEMPERATURE RANGE  
Operating  
Storage  
–55  
–65  
+125  
+150  
–55  
–65  
+125  
+150  
°C  
°C  
POWER REQUIREMENTS  
VCC, +11.4 to +16.5 V dc  
VEE, –11.4 to –16.5 V dc  
3
5
3
5
mA  
mA  
–12  
–18  
–12  
–18  
POWER SUPPLY GAIN SENSITIVITY2  
VCC = +11.4 to +16.5 V dc  
3
15  
10  
25  
3
15  
10  
25  
ppm of F.S./%  
ppm of F.S./%  
VEE = –11.4 to –16.5 V dc  
PROGRAMMABLE OUTPUT RANGES  
(See Figures 2, 3, 4)  
0 to +5  
0 to +5  
V
V
V
V
V
–2.5 to +2.5  
0 to +10  
–2.5 to +2.5  
0 to +10  
–5 to +5  
–10 to +10  
–5 to +5  
–10 to +10  
EXTERNAL ADJUSTMENTS  
Gain Error with Fixed 50 Ω  
Resistor for R2 (Figure 2)  
0.1  
؎0.25  
؎0.15  
0.1  
؎0.25  
؎0.1  
% of F.S. Range  
Bipolar Zero Error with Fixed  
50 Resistor for R1 (Figure 3)  
Gain Adjustment Range (Figure 2)  
Bipolar Zero Adjustment Range  
0.05  
0.05  
% of F.S. Range  
% of F.S. Range  
% of F.S. Range  
0.25  
0.15  
0.25  
0.15  
REFERENCE INPUT  
Input Impedance  
15  
20  
25  
15  
20  
25  
kΩ  
REFERENCE OUTPUT  
Voltage  
9.90  
1.5  
10.00  
2.5  
10.10  
9.90  
1.5  
10.00  
2.5  
10.10  
345  
V
Current (Available for External Loads)3  
mA  
POWER DISSIPATION  
225  
345  
225  
mW  
Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min  
and max specifications are guaranteed, although only those shown in boldface are tested on all production units.  
Specification subject to change without notice.  
REV. D  
–3–  
(T = +25؇C, V = –15 V, unless otherwise noted)  
AD566A–SPECIFICATIONS  
A
EE  
AD566AJ  
Typ  
AD566AK  
Typ  
Model  
Min  
Max  
Min  
Max  
Units  
DATA INPUTS1 (Pins 13 to 24)  
TTL or 5 Volt CMOS  
Input Voltage  
Bit ON Logic “1”  
+2.0  
0
+5.5  
+0.8  
+2.0  
0
+5.5  
+0.8  
V
V
Bit OFF Logic “0”  
Logic Current (Each Bit)  
Bit ON Logic “1”  
+120  
+35  
+300  
+100  
+120  
+35  
+300  
+100  
µA  
µA  
Bit OFF Logic “0”  
RESOLUTION  
12  
12  
Bits  
OUTPUT  
Current  
Unipolar (All Bits On)  
Bipolar (All Bits On or Off)  
Resistance (Exclusive of Span Resistors)  
Offset  
–1.6  
؎0.8  
6
–2.0  
1.0  
8
–2.4  
؎1.2  
10  
–1.6  
؎0.8  
6
–2.0  
1.0  
8
–2.4  
؎1.2  
10  
mA  
mA  
kΩ  
Unipolar (Adjustable to Zero per Figure 3)  
Bipolar (Figure 4, R1 and R2 = 50 Fixed)  
Capacitance  
Compliance Voltage  
TMIN to TMAX  
0.01  
0.05  
25  
0.05  
0.15  
0.01  
0.05  
25  
0.05  
0.1  
% of F.S. Range  
% of F.S. Range  
pF  
–1.5  
+10  
–1.5  
+10  
V
ACCURACY (Error Relative to  
Full Scale) +25°C  
1/4  
؎1/2  
1/8  
؎1/4  
LSB  
(0.006)  
1/2  
(0.012)  
؎3/4  
(0.003)  
1/4  
(0.006)  
؎1/2  
% of F.S. Range  
LSB  
T
MIN to TMAX  
(0.012)  
(0.018)  
(0.006)  
(0.012)  
% of F.S. Range  
DIFFERENTIAL NONLINEARITY  
+25°C  
1/2  
؎3/4  
1/4  
؎1/2  
LSB  
TMIN to TMAX  
MONOTONICITY GUARANTEED MONOTONICITY GUARANTEED  
TEMPERATURE COEFFICIENTS  
Unipolar Zero  
1
5
7
2
2
10  
10  
1
5
3
2
2
10  
5
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
Bipolar Zero  
Gain (Full Scale)  
Differential Nonlinearity  
SETTLING TIME TO 1/2 LSB  
All Bits ON-to-OFF or OFF-to-ON (Figure 8)  
250  
350  
250  
350  
ns  
FULL-SCALE TRANSITION  
10% to 90% Delay plus Rise Time  
90% to 10% Delay plus Fall Time  
15  
30  
30  
50  
15  
30  
30  
50  
ns  
ns  
POWER REQUIREMENTS  
VEE, –11.4 to –16.5 V dc  
POWER SUPPLY GAIN SENSITIVITY2  
VEE = –11.4 to –16.5 V dc  
–12  
15  
–18  
25  
–12  
15  
–18  
25  
mA  
ppm of F.S./%  
PROGRAMMABLE OUTPUT RANGES  
(see Figures 3, 4, 5)  
0 to +5  
0 to +5  
V
V
V
V
V
–2.5 to +2.5  
0 to +10  
–2.5 to +2.5  
0 to +10  
–5 to +5  
–10 to +10  
–5 to +5  
–10 to +10  
EXTERNAL ADJUSTMENTS  
Gain Error with Fixed 50 Ω  
Resistor for R2 (Figure 3)  
Bipolar Zero Error with Fixed  
50 Resistor for R1 (Figure 4)  
Gain Adjustment Range (Figure 3)  
Bipolar Zero Adjustment Range  
0.1  
؎0.25  
؎0.15  
0.1  
؎0.25  
؎0.1  
% of F.S. Range  
0.05  
0.05  
% of F.S. Range  
% of F.S. Range  
% of F.S. Range  
0.25  
0.15  
0.25  
0.15  
REFERENCE INPUT  
Input Impedance  
15  
20  
25  
15  
20  
25  
kΩ  
POWER DISSIPATION  
180  
300  
180  
300  
mW  
MULTIPLYING MODE PERFORMANCE (All Models)  
Quadrants  
Two (2): Bipolar Operation at Digital Input Only  
+1 V to +10 V, Unipolar  
10 Bits ( 0.05% of Reduced F.S.) for 1 V dc Reference Voltage  
Reference Voltage  
Accuracy  
Reference Feedthrough (Unipolar Mode,  
All Bits OFF, and 1 V to +10 V [p-p], Sine Wave  
Frequency for 1/2 LSB [p-p] Feedthrough)  
Output Slew Rate 10%–90%  
40 kHz typ  
5 mA/µs  
90%–10%  
1 mA/µs  
Output Settling Time (All Bits ON and a 0 V–10 V  
Step Change in Reference Voltage)  
1.5 µs to 0.01% F.S.  
CONTROL AMPLIFIER  
Full Power Bandwidth  
300 kHz  
1.8 MHz  
Small-Signal Closed-Loop Bandwidth  
NOTES  
1The digital input levels are guaranteed but not tested over the temperature range.  
2The power supply gain sensitivity is tested in reference to a VEE of –1.5 V dc.  
Specifications subject to change without notice.  
–4–  
REV. D  
AD565A/AD566A  
AD566AS  
Typ  
AD566AT  
Typ  
Model  
Min  
Max  
Min  
Max  
Units  
DATA INPUTS1 (Pins 13 to 24)  
TTL or 5 Volt CMOS  
Input Voltage  
Bit ON Logic “1”  
+2.0  
0
+5.5  
+0.8  
+2.0  
0
+5.5  
+0.8  
V
V
Bit OFF Logic “0”  
Logic Current (Each Bit)  
Bit ON Logic “1”  
+120  
+35  
+300  
+100  
+120  
+35  
+300  
+100  
µA  
µA  
Bit OFF Logic “0”  
RESOLUTION  
12  
12  
Bits  
OUTPUT  
Current  
Unipolar (All Bits On)  
Bipolar (All Bits On or Off)  
Resistance (Exclusive of Span Resistors)  
Offset  
–1.6  
؎0.8  
6
–2.0  
1.0  
8
–2.4  
؎1.2  
10  
–1.6  
؎0.8  
6
–2.0  
1.0  
8
–2.4  
؎1.2  
10  
mA  
mA  
kΩ  
Unipolar (Adjustable to Zero per Figure 3)  
Bipolar (Figure 4, R1 and R2 = 50 Fixed)  
Capacitance  
Compliance Voltage  
TMIN to TMAX  
0.01  
0.05  
25  
0.05  
0.15  
0.01  
0.05  
25  
0.05  
0.1  
% of F.S. Range  
% of F.S. Range  
pF  
–1.5  
+10  
–1.5  
+10  
V
ACCURACY (Error Relative to  
Full Scale) +25°C  
1/4  
؎1/2  
1/8  
؎1/4  
LSB  
(0.006)  
1/2  
(0.012)  
؎3/4  
(0.003)  
1/4  
(0.006)  
؎1/2  
% of F.S. Range  
LSB  
T
MIN to TMAX  
(0.012)  
(0.018)  
(0.006)  
(0.012)  
% of F.S. Range  
DIFFERENTIAL NONLINEARITY  
+25°C  
1/2  
؎3/4  
1/4  
؎1/2  
LSB  
TMIN to TMAX  
MONOTONICITY GUARANTEED  
MONOTONICITY GUARANTEED  
TEMPERATURE COEFFICIENTS  
Unipolar Zero  
1
5
7
2
2
10  
10  
1
5
3
2
2
10  
5
ppm/°C  
ppm/°C  
ppm/°C  
ppm/°C  
Bipolar Zero  
Gain (Full Scale)  
Differential Nonlinearity  
SETTLING TIME TO 1/2 LSB  
All Bits ON-to-OFF or OFF-to-ON (Figure 8)  
250  
350  
250  
350  
ns  
FULL-SCALE TRANSITION  
10% to 90% Delay plus Rise Time  
90% to 10% Delay plus Fall Time  
15  
30  
30  
50  
15  
30  
30  
50  
ns  
ns  
POWER REQUIREMENTS  
VEE, –11.4 to –16.5 V dc  
POWER SUPPLY GAIN SENSITIVITY2  
VEE = –11.4 to –16.5 V dc  
–12  
15  
–18  
25  
–12  
15  
–18  
25  
mA  
ppm of F.S./%  
PROGRAMMABLE OUTPUT RANGES  
(see Figures 3, 4, 5)  
0 to +5  
0 to +5  
V
V
V
V
V
–2.5 to +2.5  
0 to +10  
–2.5 to +2.5  
0 to +10  
–5 to +5  
–10 to +10  
–5 to +5  
–10 to +10  
EXTERNAL ADJUSTMENTS  
Gain Error with Fixed 50 Ω  
Resistor for R2 (Figure 3)  
Bipolar Zero Error with Fixed  
50 Resistor for R1 (Figure 4)  
Gain Adjustment Range (Figure 3)  
Bipolar Zero Adjustment Range  
0.1  
؎0.25  
؎0.15  
0.1  
؎0.25  
؎0.1  
% of F.S. Range  
0.05  
0.05  
% of F.S. Range  
% of F.S. Range  
% of F.S. Range  
0.25  
0.15  
0.25  
0.15  
REFERENCE INPUT  
Input Impedance  
15  
20  
25  
15  
20  
25  
kΩ  
POWER DISSIPATION  
180  
300  
180  
300  
mW  
MULTIPLYING MODE PERFORMANCE (All Models)  
Quadrants  
Two (2): Bipolar Operation at Digital Input Only  
+1 V to +10 V, Unipolar  
10 Bits ( 0.05% of Reduced F.S.) for 1 V dc Reference Voltage  
Reference Voltage  
Accuracy  
Reference Feedthrough (Unipolar Mode,  
All Bits OFF, and 1 V to +10 V [p-p], Sine Wave  
Frequency for l/2 LSB [p-p] Feedthrough)  
Output Slew Rate 10%–90%  
40 kHz typ  
5 mA/µs  
90%–10%  
1 mA/µs  
Output Settling Time (All Bits ON and a 0 V–10 V  
Step Change in Reference Voltage)  
1.5 µs to 0.01% F.S.  
CONTROL AMPLIFIER  
Full Power Bandwidth  
300 kHz  
1.8 MHz  
Small-Signal Closed-Loop Bandwidth  
NOTES  
Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate outgoing quality levels. All min and max  
specifications are guaranteed, although only those shown in boldface are tested on all production units.  
Specification subject to change without notice.  
REV. D  
–5–  
AD565A/AD566A  
GROUNDING RULES  
ABSOLUTE MAXIMUM RATINGS  
The AD565A and AD566A bring out separate reference and  
power grounds to allow optimum connections for low noise and  
high-speed performance. These grounds should be tied together  
at one point, usually the device power ground. The separate  
ground returns are provided to minimize current flow in  
low-level signal paths. In this way, logic return currents are not  
summed into the same return path with analog signals.  
VCC to Power Ground . . . . . . . . . . . . . . . . . . . . . 0 V to +18 V  
VEE to Power Ground (AD565A) . . . . . . . . . . . . 0 V to –18 V  
Voltage on DAC Output (Pin 9) . . . . . . . . . . . . –3 V to +12 V  
Digital Inputs (Pins 13 to 24) to  
Power Ground . . . . . . . . . . . . . . . . . . . . . . –1.0 V to +7.0 V  
REF IN to Reference Ground . . . . . . . . . . . . . . . . . . . . 12 V  
Bipolar Offset to Reference Ground . . . . . . . . . . . . . . . 12 V  
10 V Span R to Reference Ground . . . . . . . . . . . . . . . . 12 V  
20 V Span R to Reference Ground . . . . . . . . . . . . . . . . 24 V  
REF OUT (AD565A) . . . . . Indefinite Short to Power Ground  
Momentary Short to VCC  
CONNECTING THE AD565A FOR BUFFERED VOLTAGE  
OUTPUT  
The standard current-to-voltage conversion connections using  
an operational amplifier are shown here with the preferred  
trimming techniques. If a low offset operational amplifier  
(AD510L, AD517L, AD741L, AD301AL, AD OP07) is used,  
excellent performance can be obtained in many situations with-  
out trimming (an op amp with less than 0.5 mV max offset  
voltage should be used to keep offset errors below 1/2 LSB). If  
a 50 fixed resistor is substituted for the 100 trimmer, uni-  
polar zero will typically be within 1/2 LSB (plus op amp off-  
set), and full-scale accuracy will be within 0.1% (0.25% max).  
Substituting a 50 resistor for the 100 bipolar offset trimmer  
will give a bipolar zero error typically within 2 LSB (0.05%).  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . 1000 mW  
AD565A ORDERING GUIDE  
Max Gain  
Linearity  
T.C. (ppm Temperature  
of F.S./؇C) Range  
Error Max Package  
@ +25؇C  
Model1  
Options2  
AD565AJD 50  
AD565AJR 50  
AD565AKD 20  
AD565ASD 30  
AD565ATD 15  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
–55°C to +125°C  
–55°C to +125°C  
1/2 LSB  
1/2 LSB  
1/4 LSB  
1/2 LSB  
1/4 LSB  
Ceramic (D-24)  
SOIC (R-28)  
Ceramic (D-24)  
Ceramic (D-24)  
Ceramic (D-24)  
NOTES  
1For details on grade and package offerings screened in accordance with MIL-  
STD-883, refer to the Analog Devices Military Products Databook or current/  
883B data sheet.  
The AD509 is recommended for buffered voltage-output appli-  
cations which require a settling time to 1/2 LSB of one micro-  
second. The feedback capacitor is shown with the optimum  
value for each application; this capacitor is required to compen-  
sate for the 25 picofarad DAC output capacitance.  
2D = Ceramic DIP, R = SOIC.  
AD566A ORDERING GUIDE  
Max Gain  
Linearity  
T.C. (ppm Temperature  
of F.S./؇C) Range  
Error Max Package  
@ +25؇C  
Model1  
Option2  
AD566AJD 10  
AD566AKD  
AD566ASD 10  
0°C to +70°C  
1/2 LSB  
1/4 LSB  
1/2 LSB  
1/4 LSB  
Ceramic (D-24)  
Ceramic (D-24)  
Ceramic (D-24)  
Ceramic (D-24)  
3
0°C to +70°C  
–55°C to +125°C  
–55°C to +125°C  
AD566ATD  
3
NOTES  
1For details on grade and package offerings screened in accordance with MIL-  
STD-883, refer to the Analog Devices Military Products Databook or current/  
883B data sheet.  
2D = Ceramic DIP.  
–6–  
REV. D  
AD565A/AD566A  
PIN DESIGNATIONS  
24-Lead DIP  
1
2
24  
23  
22  
21  
20  
19  
18  
NC  
NC  
BIT 1 IN (MSB)  
BIT 2 IN  
1
2
24  
23  
22  
21  
20  
19  
18  
NC  
NC  
BIT 1 IN (MSB)  
BIT 2 IN  
BIT 3 IN  
BIT 4 IN  
BIT 5 IN  
BIT 6 IN  
3
3
REF GND  
BIT 3 IN  
V
CC  
4
4
AMP SUMMING JUNCTION  
REF V HI IN  
BIT 4 IN  
REF OUT (+10V 1ꢀ)  
5
5
BIT 5 IN  
REF GND  
REF IN  
AD566A  
AD565A  
TOP VIEW  
(Not to Scale)  
6
V 15V IN (20mA)  
BIT 6 IN  
6
EE  
TOP VIEW  
(Not to Scale)  
7
7
BIPOLAR OFFSET IN  
NC  
BIT 7 IN  
V  
BIT 7 IN  
EE  
8
17 BIT 8 IN  
8
BIPOLAR OFFSET IN  
DAC OUT (2mA F.S.)  
10V SPAN R  
17 BIT 8 IN  
DAC OUT (2mA F.S.)  
10V SPAN R  
9
BIT 9 IN  
16  
15  
9
BIT 9 IN  
16  
15  
10  
11  
BIT 10 IN  
10  
11  
BIT 10 IN  
20V SPAN R  
14 BIT 11 IN  
BIT 12 IN (LSB)  
13  
20V SPAN R  
14 BIT 11 IN  
BIT 12 IN (LSB)  
PWR GND 12  
NC = NO CONNECT  
PWR GND 12  
13  
NC = NO CONNECT  
28-Lead SOIC  
NC  
NC  
NC  
1
2
28 NC  
27  
BIT 1 (MSB)  
3
26  
25  
24  
BIT 2  
BIT 3  
BIT 4  
4
V
CC  
5
REF OUT (10V)  
6
REF GND  
REF IN  
NC  
23 BIT 5  
22  
AD565A  
TOP VIEW  
(Not to Scale)  
7
BIT 6  
8
21 BIT 7  
BIT 8  
20  
9
V  
EE  
BIT 9  
19  
10  
11  
12  
13  
14  
BIPOLAR OFFSET IN  
DAC OUT  
BIT 10  
18  
NC  
10V SPAN R  
20V SPAN R  
BIT 11  
17  
BIT 12 (LSB)  
16  
15  
PWR GND  
NC = NO CONNECT  
–7–  
REV. D  
AD565A/AD566A  
STEP I . . . OFFSET ADJUST  
Turn OFF all bits. Adjust 100 trimmer R1 to give –5.000  
volts output.  
FIGURE 1. UNIPOLAR CONFIGURATION  
This configuration will provide a unipolar 0 volt to +10 volt  
output range. In this mode, the bipolar terminal, Pin 8, should  
be grounded if not used for trimming.  
STEP II . . . GAIN ADJUST  
Turn ON All bits. Adjust 100 gain trimmer R2 to give a read-  
ing of +4.9976 volts.  
+15V  
100k  
R1  
50k⍀  
100⍀  
Please note that it is not necessary to trim the op amp to obtain  
full accuracy at room temperature. In most bipolar situations,  
an op amp trim is unnecessary unless the untrimmed offset drift  
of the op amp is excessive.  
15V  
REF  
OUT  
V
BIPOLAR OFF  
CC  
20V SPAN  
5k⍀  
5k⍀  
9.95k⍀  
10V SPAN  
FIGURE 3. OTHER VOLTAGE RANGES  
R2  
10V  
100⍀  
AD565A  
The AD565A can also be easily configured for a unipolar 0 volt  
to +5 volt range or 2.5 volt and 10 volt bipolar ranges by  
using the additional 5k application resistor provided at the 20  
volt span R terminal, Pin 11. For a 5 volt span (0 to +5 or  
2.5), the two 5k resistors are used in parallel by shorting Pin  
11 to Pin 9 and connecting Pin 10 to the op amp output and the  
bipolar offset either to ground for unipolar or to REF OUT for  
the bipolar offset either to ground for unipolar or to REF OUT  
for the bipolar range. For the 10 volt range (20 volt span) use  
the 5k resistors in series by connecting only Pin 11 to the op  
amp output and the bipolar offset connected as shown. The 10  
volt option is shown in Figure 3.  
10pF  
OUTPUT  
0V TO  
+10V  
19.95k⍀  
0.5mA  
DAC  
OUT  
I
O
8k⍀  
REF  
IN  
I
AD509  
2.4k⍀  
REF  
DAC  
I
=
OUT  
20k⍀  
REF  
GND  
4 
؋
 I  
REF  
؋
 CODE  
CODE  
INPUT  
POWER  
GND  
V  
EE  
MSB  
LSB  
Figure 1. 0 V to +10 V Unipolar Voltage Output  
STEP I . . . ZERO ADJUST  
Turn all bits OFF and adjust zero trimmer R1, until the output  
reads 0.000 volts (1 LSB = 2.44 mV). In most cases this trim is  
not needed, but Pin 8 should then be connected to Pin 12.  
R1  
REF  
V
100  
BIPOLAR OFF  
CC  
OUT  
20V SPAN  
10V SPAN  
5k⍀  
5k⍀  
9.95k⍀  
STEP II . . . GAIN ADJUST  
R2  
100⍀  
10V  
Turn all bits ON and adjust 100 gain trimmer R2, until the  
output is 9.9976 volts. (Full scale is adjusted to 1 LSB less than  
nominal full scale of 10.000 volts.) If a 10.2375 V full scale is  
desired (exactly 2.5 mV/bit), insert a 120 resistor in series  
with the gain resistor at Pin 10 to the op amp output.  
AD565A  
10pF  
OUTPUT  
10V TO  
+10V  
19.95k⍀  
0.5mA  
DAC  
OUT  
I
O
8k⍀  
REF  
IN  
I
AD509  
REF  
DAC  
I
=
OUT  
4 
؋
 I  
3.0k⍀  
20k⍀  
REF  
GND  
REF  
؋
 CODE  
FIGURE 2. BIPOLAR CONFIGURATION  
This configuration will provide a bipolar output voltage from  
–5.000 to +4.9976 volts, with positive full scale occurring with  
all bits ON (all 1s).  
CODE  
INPUT  
POWER  
GND  
V  
EE  
MSB  
LSB  
Figure 3. 10 V Voltage Output  
R1  
100⍀  
REF  
OUT  
V
BIPOLAR OFF  
CC  
20V SPAN  
10V SPAN  
5k⍀  
5k⍀  
9.95k⍀  
R2  
100⍀  
10V  
AD565A  
10pF  
OUTPUT  
5V TO  
+5V  
19.95k⍀  
0.5mA  
DAC  
OUT  
I
O
8k⍀  
REF  
IN  
I
AD509  
2.4k⍀  
REF  
DAC  
I
=
OUT  
4 
؋
 I  
20k⍀  
REF  
GND  
REF  
؋
 CODE  
CODE  
INPUT  
POWER  
GND  
V  
EE  
MSB  
LSB  
Figure 2. 5 V Bipolar Voltage Output  
–8–  
REV. D  
AD565A/AD566A  
CONNECTING THE AD566A FOR BUFFERED VOLTAGE  
OUTPUT  
FIGURE 5. BIPOLAR CONFIGURATION  
This configuration will provide a bipolar output voltage from  
–5.000 volts to +4.9976 volts, with positive full scale occurring  
with all bits ON (all 1s).  
The standard current-to-voltage conversion connections using  
an operational amplifier are shown here with the preferred trim-  
ming techniques. If a low offset operational amplifier (AD510L,  
AD517L, AD741L, AD301AL, AD OP07) is used, excellent  
performance can be obtained in many situations without trim-  
ming (an op amp with less than 0.5 mV max offset voltage  
should be used to keep offset errors below 1/2 LSB). If a 50 Ω  
fixed resistor is substituted for the 100 trimmer, unipolar zero  
will typically be within 1/2 LSB (plus op amp offset), and full  
scale accuracy will be within 0.1% (0.25% max). Substituting a  
50 resistor for the 100 bipolar offset trimmer will give a  
bipolar zero error typically within 2 LSB (0.05%).  
R1  
100⍀  
BIPOLAR OFF  
20V SPAN  
10V SPAN  
AD566A  
9.95k⍀  
5k⍀  
R2  
100⍀  
5k⍀  
10pF  
REF  
IN  
19.95k⍀  
0.5mA  
DAC  
OUT  
I
O
8k⍀  
I
REF  
DAC  
E
The AD509 is recommended for buffered voltage-output appli-  
cations which require a settling time to 1/2 LSB of one micro-  
second. The feedback capacitor is shown with the optimum  
value for each application; this capacitor is required to compen-  
sate for the 25 picofarad DAC output capacitance.  
REF  
AD509  
10V  
+V  
I
=
AD561  
OUT  
20k⍀  
2.4k⍀  
4 
؋
 I  
REF  
؋
 CODE  
REF  
GND  
CODE  
INPUT  
POWER  
GND  
V  
MSB  
LSB  
EE  
FIGURE 4. UNIPOLAR CONFIGURATION  
This configuration will provide a unipolar 0 volt to +10 volt  
output range. In this mode, the bipolar terminal, Pin 7, should  
be grounded if not used for trimming.  
Figure 5. 5 V Bipolar Voltage Output  
STEP I . . . OFFSET ADJUST  
+15V  
Turn OFF all bits. Adjust 100 trimmer R1 to give –5.000  
output volts.  
100⍀  
100k⍀  
R1  
50k⍀  
BIPOLAR OFF  
15V  
STEP II . . . GAIN ADJUST  
Turn ON all bits. Adjust 100 gain trimmer R2 to give a read-  
ing of +4.9976 volts.  
20V SPAN  
AD566A  
9.95k⍀  
5k⍀  
5k⍀  
10V SPAN  
Please note that it is not necessary to trim the op amp to obtain  
full accuracy at room temperature. In most bipolar situations,  
an op amp trim is unnecessary unless the untrimmed offset drift  
of the op amp is excessive.  
10pF  
REF  
IN  
R2  
100⍀  
19.95k⍀  
0.5mA  
DAC  
OUT  
I
O
8k⍀  
I
REF  
DAC  
E
REF  
AD509  
10V  
+V  
I
=
AD561  
OUT  
20k⍀  
2.4k⍀  
4 
؋
 I  
REF  
؋
 CODE  
REF  
GND  
CODE  
INPUT  
POWER  
GND  
V  
EE  
MSB  
LSB  
Figure 4. 0 V to +10 V Unipolar Voltage Output  
STEP I . . . ZERO ADJUST  
Turn all bits OFF and adjust zero trimmer, R1, until the output  
reads 0.000 volts (1 LSB = 2.44 mV). In most cases this trim is  
not needed, but Pin 7 should then be connected to Pin 12.  
STEP II . . . GAIN ADJUST  
Turn all bits ON and adjust 100 gain trimmer, R2, until the  
output is 9.9976 volts. (Full scale is adjusted to 1 LSB less than  
nominal full scale of 10.000 volts.) If a 10.2375 V full scale is  
desired (exactly 2.5 mV/bit), insert a 120 resistor in series  
with the gain resistor at Pin 10 to the op amp output.  
9–  
REV. D  
AD565A/AD566A  
FIGURE 6. OTHER VOLTAGE RANGES  
Table I. Digital Input Codes  
The AD566A can also be easily configured for a unipolar 0 volt  
to +5 volt range or 2.5 volt and 10 volt bipolar ranges by  
using the additional 5k application resistor provided at the 20  
volt span R terminal, Pin 11. For a 5 volt span (0 V to +5 V or  
2.5 V), the two 5k resistors are used in parallel by shorting Pin  
11 to Pin 9 and connecting Pin 10 to the op amp output and the  
bipolar offset resistor either to ground for unipolar or to VREF  
for the bipolar range. For the 10 volt range (20 volt span) use  
the 5k resistors in series by connecting only Pin 11 to the op  
amp output and the bipolar offset connected as shown. The  
10 volt option is shown in Figure 6.  
DIGITAL INPUT  
ANALOG OUTPUT  
MSB  
LSB  
Straight Binary  
Offset Binary  
Twos Compl.*  
0 0 0 0 0 0 0 0 0 0 0 0  
0 1 1 1 1 1 1 1 1 1 1 1  
1 0 0 0 0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1 1 1 1 1  
Zero  
–FS  
Zero  
Mid Scale – 1 LSB Zero – 1 LSB  
+FS – 1 LSB  
–FS  
+1/2 FS  
Zero  
+FS – l LSB  
+ FS – 1 LSB  
Zero – 1 LSB  
*Inverts the MSB of the offset binary code with an external inverter to obtain  
twos complement.  
R1  
5k  
BIPOLAR OFF  
20V SPAN  
10V SPAN  
AD566A  
9.95k⍀  
5k⍀  
5k⍀  
14k⍀  
10pF  
R2  
5k⍀  
REF  
IN  
19.95k⍀  
DAC  
OUT  
0.5mA  
I
O
8k⍀  
I
REF  
DAC  
E
REF  
AD509  
7.5V  
V  
I
=
AD561  
OUT  
20k⍀  
2.4k⍀  
4 
؋
 I  
REF  
؋
 CODE  
REF  
GND  
CODE  
INPUT  
POWER  
GND  
R3  
26k*  
V  
LSB  
EE  
MSB  
*
THE PARALLEL COMBINATION OF THE BIPOLAR OFFSET RESISTOR  
AND R3 ESTABLISHES A CURRENT TO BALANCE THE MSB CURRENT.  
THE EFFECT OF TEMPERATURE COEFFICIENT MISMATCH BETWEEN  
THE BIPOLAR RESISTOR COMBINATION AND DAC RESISTORS IS  
EXPANDED ON PREVIOUS PAGE.  
Fgure 6. 10 V Voltage Output  
10–  
REV. D  
AD565A/AD566A  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
Ceramic DIP (D-24)  
0.098 (2.49) MAX  
0.005 (0.13) MIN  
24  
13  
0.610 (15.49)  
0.500 (12.70)  
1
12  
0.620 (15.75)  
0.590 (14.99)  
PIN 1  
0.075 (1.91)  
0.015 (0.38)  
1.290 (32.77) MAX  
0.225 (5.72)  
MAX  
0.150  
(3.81)  
MIN  
0.015 (0.38)  
0.008 (0.20)  
0.200 (5.08)  
0.120 (3.05)  
SEATING  
PLANE  
0.070 (1.78)  
0.030 (0.76)  
0.023 (0.58)  
0.014 (0.36)  
0.100 (2.54)  
BSC  
SOIC (R-28) Package  
0.7125 (18.10)  
0.6969 (17.70)  
28  
15  
14  
1
PIN 1  
0.1043 (2.65)  
0.0926 (2.35)  
0.0291 (0.74)  
0.0098 (0.25)  
x 45°  
0.0500 (1.27)  
0.0157 (0.40)  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
0.0118 (0.30)  
0.0040 (0.10)  
SEATING  
PLANE  
0.0125 (0.32)  
0.0091 (0.23)  
11–  
REV. D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY