AD5676BRUZ-REEL7 [ADI]

Easy implementation;
AD5676BRUZ-REEL7
型号: AD5676BRUZ-REEL7
厂家: ADI    ADI
描述:

Easy implementation

文件: 总28页 (文件大小:1054K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Octal, 16-Bit nanoDAC+ with SPI Interface  
Data Sheet  
AD5676  
FEATURES  
GENERAL DESCRIPTION  
High performance  
The AD5676 is a low power, octal, 16-bit buffered voltage  
High relative accuracy (INL): 3 LSB maximum at 16 bits  
Total unadjusted error (TUE): 0.14% of FSR maximum  
Offset error: 1.5 mV maximum  
Gain error: 0.06% of FSR maximum  
Wide operating ranges  
output digital-to-analog converter (DAC). The device includes  
a gain select pin, giving a full-scale output of VREF (gain = 1) or  
2 × VREF (gain = 2). The AD5676 DAC operates from a single  
2.7 V to 5.5 V supply and is guaranteed monotonic by design.  
The AD5676 is available in 20-lead TSSOP and LFCSP packages.  
−40°C to +125°C temperature range  
2.7 V to 5.5 V power supply  
Easy implementation  
User selectable gain of 1 or 2 (GAIN pin/gain bit)  
Reset to zero scale or midscale (RSTSEL pin)  
1.8 V logic compatibility  
The internal power-on reset circuit and the RSTSEL pin of the  
AD5676 ensure that the output DACs power up to zero scale or  
midscale and then remain there until a valid write takes place. The  
AD5676 contains a per channel power-down mode that typically  
reduces the current consumption of the device to 1 µA.  
The AD5676 employs a versatile serial peripheral interface (SPI)  
that operates at clock rates up to 50 MHz, and contains a VLOGIC pin  
intended for 1.8 V to 5.5 V logic.  
50 MHz SPI with readback or daisy chain  
Robust 2 kV HBM and 1.5 kV FICDM ESD rating  
20-lead, TSSOP and LFCSP RoHS-compliant packages  
Table 1. Octal nanoDAC+® Devices  
APPLICATIONS  
Interface  
Reference  
Internal  
External  
Internal  
External  
16-Bit  
12-Bit  
Optical transceivers  
SPI  
AD5676R  
AD5676  
AD5675R  
AD5675  
AD5672R  
Base station power amplifiers  
Process control (PLC input/output cards)  
Industrial automation  
Not applicable  
AD5671R  
I2C  
Not applicable  
Data acquisition systems  
PRODUCT HIGHLIGHTS  
1. High relative accuracy (INL) 16-bit: 3 LSB maximum.  
2. −40°C to +125°C temperature range.  
3. 20-lead, TSSOP and LFCSP RoHS-compliant packages.  
FUNCTIONAL BLOCK DIAGRAM  
V
V
V
REF  
LOGIC  
DD  
AD5676  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
INPUT  
DAC  
STRING  
DAC 0  
V
V
V
V
V
V
V
V
0
1
2
3
4
5
6
7
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
REGISTER  
REGISTER  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC 1  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC 2  
SCLK  
SYNC  
SDI  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC 3  
INTERFACE  
LOGIC  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC 4  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC 5  
SDO  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC 6  
LDAC  
RESET  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC 7  
POWER-DOWN  
LOGIC  
POWER-ON RESET  
GAIN x1/x2  
GAIN  
RSTSEL  
GND  
Figure 1.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2015 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5676* Product Page Quick Links  
Last Content Update: 11/01/2016  
Comparable Parts  
Design Resources  
View a parametric search of comparable parts  
• AD5676 Material Declaration  
• PCN-PDN Information  
• Quality And Reliability  
• Symbols and Footprints  
Evaluation Kits  
• AD5676 and AD5676R Evaluation Board  
Documentation  
Data Sheet  
Discussions  
View all AD5676 EngineerZone Discussions  
• AD5676: Octal,16-Bit nanoDAC+ with SPI Interface Data  
Sheet  
Sample and Buy  
Visit the product page to see pricing options  
User Guides  
• UG-814: Evaluating the AD5676/AD5676R Octal, 16-Bit  
nanoDAC+  
Technical Support  
Submit a technical question or find your regional support  
number  
Tools and Simulations  
• AD5676/AD5676R IBIS Model  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to  
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be  
frequently modified.  
AD5676  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Standalone Operation................................................................ 21  
Write and Update Commands.................................................. 21  
Daisy-Chain Operation ............................................................. 21  
Readback Operation .................................................................. 22  
Power-Down Operation............................................................ 22  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Characteristics........................................................................ 5  
Timing Characteristics ................................................................ 6  
Daisy-Chain and Readback Timing Characteristics ............... 7  
Absolute Maximum Ratings............................................................ 8  
Thermal Resistance ...................................................................... 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 11  
Terminology .................................................................................... 17  
Theory of Operation ...................................................................... 19  
Digital-to-Analog Converter .................................................... 19  
Transfer Function ....................................................................... 19  
DAC Architecture....................................................................... 19  
Serial Interface ............................................................................ 20  
LDAC  
Load DAC (Hardware  
Pin)........................................... 23  
Mask Register ................................................................. 23  
Hardware Reset ( ) .......................................................... 24  
LDAC  
RESET  
Reset Select Pin (RSTSEL) ........................................................ 24  
Amplifier Gain Selection on LFCSP Package......................... 24  
Applications Information .............................................................. 25  
Power Supply Recommendations............................................. 25  
Microprocessor Interfacing....................................................... 25  
AD5676 to ADSP-BF531 Interface .......................................... 25  
AD5676 to SPORT Interface..................................................... 25  
Layout Guidelines....................................................................... 25  
Galvanically Isolated Interface ................................................. 26  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
REVISION HISTORY  
10/15—Rev. A to Rev. B  
Changes to Readback Operation Section.................................... 22  
Added 20-Lead LFCSP.......................................................Universal  
Changes to Features Section, General Description Section,  
Table 1, Product Highlights Section, and Figure 1....................... 1  
Changes to Table 2 ............................................................................ 3  
Deleted Figure 5; Renumbered Sequentially................................. 8  
Change to Table 5 ............................................................................. 8  
Added Table 6; Renumbered Sequentially .................................... 8  
Change to Table 7 ............................................................................. 9  
Added Figure 6 and Table 8........................................................... 10  
Change to Figure 10 to Figure 12 ................................................. 11  
Change to Figure 13 to Figure 18 ................................................. 12  
Changes to Figure 19, Figure 20, and Figure 22 ......................... 13  
Change to Figure 25, Figure 28, and Figure 30........................... 14  
Change to Figure 31, Figure 34, Figure 35, and Figure 36 ........ 15  
Change to Figure 37 and Figure 38 .............................................. 16  
Changes to Transfer Function Section and Output Amplifiers  
Section.............................................................................................. 19  
Change to Table 9 ........................................................................... 20  
Changes to Write to and Update DAC Channel n (Independent  
Changes to  
Mask Register Section and Table 14............ 23  
LDAC  
Changes to Reset Select Pin (RSTSEL) Section.......................... 24  
Added Amplifier Gain Selection on LFCSP Section, Table 16,  
and Table 17 .................................................................................... 24  
Added Figure 53, Outline Dimensions........................................ 27  
Changes to Ordering Guide.......................................................... 27  
2/15—Rev. 0 to Rev. A  
Changes to Table 2.............................................................................3  
RESET  
Change to  
Pulse Activation Time Parameter, Table 4.....6  
Change to Terminology Section................................................... 17  
Changes to Transfer Function Section and Output Amplifiers  
Section.............................................................................................. 19  
RESET  
Changes to Hardware Reset (  
) Section............................ 24  
Changes to Ordering Guide .......................................................... 27  
10/14—Revision 0: Initial Version  
of  
) Section ........................................................................... 21  
LDAC  
Rev. B | Page 2 of 27  
 
Data Sheet  
AD5676  
SPECIFICATIONS  
VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ 5.5 V, RL = 2 kΩ, CL = 200 pF, all specifications −40°C to +125°C, unless otherwise noted.  
Table 2.  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
STATIC PERFORMANCE1  
Min  
Max  
Min  
Max  
Unit  
Test Conditions/Comments  
Resolution  
16  
16  
Bits  
LSB  
LSB  
LSB  
Relative Accuracy (INL)2  
1.8  
1.7  
0.7  
8
8
1
1.8  
1.7  
0.7  
3
3
1
Gain = 1  
Gain = 2  
Gain = 1  
Differential Nonlinearity  
(DNL)2  
0.5  
0.8  
−0.75  
−0.1  
−0.018  
−0.013  
+0.04  
−0.02  
+0.03  
+0.006  
1
1
4
6
4
0.28  
0.14  
0.24  
0.12  
0.3  
0.5  
0.8  
−0.75  
−0.1  
−0.018  
−0.013  
+0.04  
−0.02  
+0.03  
+0.006  
1
1
1.6  
2
1.5  
0.14  
0.07  
0.12  
0.06  
0.18  
0.14  
LSB  
mV  
mV  
mV  
Gain = 2  
Gain = 1 or gain = 2  
Gain = 1  
Zero Code Error2  
Offset Error2  
Gain = 2  
Full-Scale Error2  
% of FSR Gain = 1  
% of FSR Gain = 2  
% of FSR Gain = 1  
% of FSR Gain = 2  
% of FSR Gain = 1  
% of FSR Gain = 2  
µV/°C  
Gain Error2  
Total Unadjusted Error (TUE)  
Offset Error Drift2, 3  
0.25  
DC Power Supply Rejection  
0.25  
0.25  
mV/V  
DAC code = midscale, VDD = 5 V  
10%  
Due to single channel, full-  
scale output change  
Ratio (PSRR)2, 3  
DC Crosstalk2, 3  
2
2
µV  
3
2
3
2
µV/mA  
µV  
Due to load current change  
Due to powering down (per  
channel)  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
0
0
VREF  
2 × VREF  
15  
0
0
VREF  
2 × VREF  
15  
V
V
mA  
nF  
Gain = 1  
Gain = 2  
Output Current Drive  
Capacitive Load Stability  
2
2
RL = ∞  
10  
10  
nF  
kΩ  
µV/mA  
RL = 1 kΩ  
Resistive Load4  
Load Regulation  
1
1
183  
177  
183  
177  
5 V 10%, DAC code = midscale,  
−30 mA ≤ IOUT ≤ +30 mA  
3 V 10%, DAC code = midscale,  
−20 mA ≤ IOUT ≤ +20 mA  
µV/mA  
Short-Circuit Current5  
Load Impedance at Rails6  
Power-Up Time  
40  
25  
2.5  
40  
25  
2.5  
mA  
µs  
Exiting power-down mode,  
VDD = 5 V  
REFERENCE INPUT  
Reference Input Current  
398  
789  
398  
789  
µA  
µA  
V
V
kΩ  
kΩ  
VREF = VDD = VLOGIC = 5.5 V, gain = 1  
VREF = VDD = VLOGIC = 5.5 V, gain = 2  
Gain = 1  
Gain = 2  
Gain = 1  
Gain = 2  
Reference Input Range  
1
1
VDD  
VDD/2  
1
1
VDD  
VDD/2  
Reference Input Impedance  
14  
7
14  
7
Rev. B | Page 3 of 27  
 
AD5676  
Data Sheet  
A Grade  
Typ  
B Grade  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Test Conditions/Comments  
LOGIC INPUTS3  
Input Current  
Input Voltage  
Low, VINL  
1
1
µA  
Per pin  
0.3 ×  
VLOGIC  
0.3 ×  
VLOGIC  
V
High, VINH  
0.7 ×  
VLOGIC  
0.7 ×  
VLOGIC  
V
Pin Capacitance  
LOGIC OUTPUTS (SDO)3  
Output Voltage  
Low, VOL  
3
4
3
4
pF  
0.4  
0.4  
V
V
ISINK = 200 μA  
ISOURCE = 200 μA  
High, VOH  
VLOGIC  
0.4  
VLOGIC  
0.4  
Floating State Output  
Capacitance  
pF  
POWER REQUIREMENTS  
VLOGIC  
ILOGIC  
1.8  
5.5  
3
3
3
3
1.8  
5.5  
3
3
3
3
V
µA  
µA  
µA  
µA  
V
Power-on, −40°C to +105°C  
Power-on, −40°C to +125°C  
Power-down, −40°C to +105°C  
Power-down, −40°C to +125°C  
Gain = 1  
VDD  
2.7  
VREF  
1.5  
5.5  
5.5  
2.7  
VREF  
1.5  
5.5  
5.5  
+
+
V
Gain = 2  
IDD  
Normal Mode7  
1.1  
1.1  
1
1.26  
1.3  
1.7  
1.1  
1.1  
1
1.26  
1.3  
1.7  
mA  
mA  
µA  
−40°C to +85°C  
−40°C to +105°C  
Three-state, −40°C to +85°C  
All Power-Down Modes8  
1
1.7  
1
1.7  
µA  
Power down to 1 kΩ, −40°C to  
+85°C  
1
1
2.5  
2.5  
1
1
2.5  
2.5  
µA  
µA  
Three-state, −40°C to +105°C  
Power down to 1 kΩ, −40°C to  
+105°C  
1
1
5.5  
5.5  
1
1
5.5  
5.5  
µA  
µA  
Three-state, −40°C to +125°C  
Power down to 1 kΩ, −40°C to  
+125°C  
1 DC specifications tested with the outputs unloaded, unless otherwise noted. Upper dead band = 10 mV and exists only when VREF = VDD with gain = 1 or when VREF/2 =  
VDD with gain = 2. Linearity calculated using a reduced code range of 256 to 65,280.  
2 See the Terminology section.  
3 Guaranteed by design and characterization; not production tested.  
4 Channel 0, Channel 1, Channel 2, and Channel 3 can together source/sink 40 mA. Similarly, Channel 4, Channel 5, Channel 6, and Channel 7 can together source/sink  
40 mA up to a junction temperature of 125°C.  
5 VDD = 5 V. The AD5676 includes current limiting that is intended to protect the device during temporary overload conditions. Junction temperature can be exceeded  
during current limit. Operation above the specified maximum operation junction temperature may impair device reliability.  
6 When drawing a load current at either rail, the output voltage headroom with respect to that rail is limited by the 25 Ω typical channel resistance of the output  
devices. For example, when sinking 1 mA, the minimum output voltage = 25 Ω × 1 mA = 25 mV.  
7 Interface inactive. All DACs active. DAC outputs unloaded.  
8 All DACs powered down.  
Rev. B | Page 4 of 27  
Data Sheet  
AD5676  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, 1.8 V ≤ VLOGIC ≤ 5.5 V, all specifications −40°C to +125°C, unless otherwise  
noted. Guaranteed by design and characterization, not production tested.  
Table 3.  
Parameter  
Output Voltage Settling Time1  
Min Typ  
Max Unit  
Test Conditions/Comments  
5
8
µs  
¼ to ¾ scale settling to 2 LSB  
Slew Rate  
0.8  
1.4  
0.13  
0.1  
V/µs  
Digital-to-Analog Glitch Impulse1  
Digital Feedthrough1  
Digital Crosstalk1  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
dB  
1 LSB change around major carry, gain = 1  
Analog Crosstalk1  
−0.25  
Gain = 1  
Gain = 2  
−1.3  
−2.0  
−80  
300  
6
90  
83  
80  
DAC-to-DAC Crosstalk1  
Total Harmonic Distortion (THD)1, 2  
Output Noise Spectral Density (NSD)1  
Output Noise  
TA = 25°C, bandwidth = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
nV/√Hz DAC code = midscale, bandwidth = 10 kHz, gain = 2  
µV p-p  
dB  
dB  
dB  
0.1 Hz to 10 Hz, gain = 1  
Signal-to-Noise Ratio (SNR)  
Spurious-Free Dynamic Range (SFDR)  
Signal-to-Noise-and-Distortion Ratio (SINAD)  
TA = 25°C, bandwidth = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
TA = 25°C, bandwidth = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
TA = 25°C, bandwidth = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
1 See the Terminology section.  
2 Digitally generated sine wave at 1 kHz.  
Rev. B | Page 5 of 27  
 
AD5676  
Data Sheet  
TIMING CHARACTERISTICS  
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. See Figure 2.  
DD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ 5.5 V, VREF = 2.5 V, all specifications −40°C to +125°C, unless otherwise noted.  
V
Table 4.  
1.8 V ≤ VLOGIC < 2.7 V  
Symbol Min Max  
2.7 V ≤ VLOGIC ≤ 5.5 V  
Parameter1  
Min  
20  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
μs  
SCLK Cycle Time  
SCLK High Time  
SCLK Low Time  
SYNC to SCLK Falling Edge Setup Time  
Data Setup Time  
t1  
20  
t2  
4
1.7  
4.3  
t3  
4.5  
t4  
15.1  
0.8  
10.1  
0.8  
−0.8  
1.25  
6.75  
9.7  
t5  
Data Hold Time  
t6  
t7  
+0.1  
0.95  
9.65  
4.75  
4.85  
41.25  
26.35  
4.8  
SCLK Falling Edge to SYNC Rising Edge  
Minimum SYNC High Time (Single, Combined, or All Channel Update)  
SYNC Falling Edge to SCLK Fall Ignore  
LDAC Pulse Width Low  
t8  
t9  
t10  
t11  
t12  
t13  
t14  
5.45  
25  
SCLK Falling Edge to LDAC Rising Edge  
SCLK Falling Edge to LDAC Falling Edge  
RESET Minimum Pulse Width Low  
RESET Pulse Activation Time  
Power-Up Time2  
20.3  
6.2  
132  
5.15  
80  
5.18  
1 Maximum SCLK frequency is 50 MHz at VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ VDD. Guaranteed by design and characterization; not production tested.  
2 Time to exit power-down to normal mode of AD5676 operation, 32nd clock edge to 90% of DAC midscale value, with output unloaded.  
t9  
t1  
SCLK  
t2  
t8  
t7  
t3  
t4  
SYNC  
SDI  
t6  
t5  
DB23  
DB0  
t12  
t10  
1
LDAC  
t11  
2
LDAC  
t13  
RESET  
t14  
V
x
OUT  
1
2
ASYNCHRONOUS LDAC UPDATE MODE.  
SYNCHRONOUS LDAC UPDATE MODE.  
Figure 2. Serial Write Operation  
Rev. B | Page 6 of 27  
 
 
 
Data Sheet  
AD5676  
DAISY-CHAIN AND READBACK TIMING CHARACTERISTICS  
All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. See Figure 4.  
DD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ 5.5 V, VREF = 2.5 V, all specifications −40°C to +125°C, unless otherwise noted.  
V
Table 5.  
1.8 V ≤ VLOGIC < 2.7 V  
Min Max  
2.7 V ≤ VLOGIC ≤ 5.5 V  
Min Max  
Parameter1  
Symbol  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK Cycle Time  
SCLK High Time  
SCLK Low Time  
SYNC to SCLK Falling Edge  
Data Setup Time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t10  
t11  
120  
33  
2.8  
83.3  
25.3  
3.25  
50  
75  
1.2  
0.3  
16.2  
55.1  
21.5  
24.4  
0.5  
0.4  
13  
Data Hold Time  
SCLK Falling Edge to SYNC Rising Edge  
Minimum SYNC High Time  
SDO Data Valid from SCLK Rising Edge  
SCLK Falling Edge to SYNC Rising Edge  
45  
22.7  
20.3  
SYNC Rising Edge to SCLK Rising Edge  
t12  
85.5  
54  
ns  
1 Maximum SCLK frequency is 25 MHz or 15 MHz at VDD = 2.7 V to 5.5 V, 1.8 V ≤ VLOGIC ≤ VDD. Guaranteed by design and characterization; not production tested.  
Circuit Diagram and Daisy-Chain and Readback Timing Diagrams  
200µA  
I
OL  
TO OUTPUT  
PIN  
V
(MIN)  
OH  
C
L
20pF  
200µA  
I
OH  
Figure 3. Load Circuit for Digital Output (SDO) Timing Specifications  
SCLK  
24  
48  
t11  
t8  
t12  
t4  
SYNC  
SDI  
t6  
t5  
DB23  
DB0  
DB23  
DB0  
INPUT WORD FOR DAC N  
INPUT WORD FOR DAC N + 1  
INPUT WORD FOR DAC N  
t10  
DB23  
DB0  
SDO  
UNDEFINED  
Figure 4. Daisy-Chain Timing Diagram  
Rev. B | Page 7 of 27  
 
 
AD5676  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
The design of the thermal board requires close attention. Thermal  
resistance is highly impacted by the printed circuit board (PCB)  
being used, layout, and environmental conditions.  
Table 5.  
Parameter  
Rating  
VDD to GND  
VLOGIC to GND  
VOUTx to GND  
VREF to GND  
Digital Input Voltage to GND  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
Reflow Soldering Peak Temperature,  
Pb-Free (J-STD-020)  
−0.3 V to +7 V  
−0.3 V to +7 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VLOGIC + 0.3 V  
−40°C to +125°C  
−65°C to +150°C  
125°C  
Table 6. Thermal Resistance  
Package Type  
θJA  
θJB  
θJC  
ΨJT  
ΨJB  
Unit  
20-Lead TSSOP  
(RU-20)1  
98.65 44.39 17.58 1.77 43.9  
°C/W  
20-Lead LFCSP  
(CP-20-8)2  
82  
16.67 32.5  
0.43 22  
°C/W  
1 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board. See JEDEC JESD51  
260°C  
2 Thermal impedance simulated values are based on a JEDEC 2S2P thermal  
test board with nine thermal vias. See JEDEC JESD51.  
ESD Ratings  
Human Body Model (HBM)  
2 kV  
Field-Induced Charged Device Model  
(FICDM)  
1.5 kV  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 8 of 27  
 
 
 
Data Sheet  
AD5676  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
1
V
2
OUT  
OUT  
2
V
0
V
3
OUT  
OUT  
REF  
3
V
V
DD  
AD5676  
4
V
RESET  
SDO  
LOGIC  
TOP VIEW  
(Not to Scale)  
5
SYNC  
SCLK  
SDI  
6
LDAC  
RSTSEL  
GND  
7
8
GAIN  
9
V
7
V
V
4
OUT  
OUT  
OUT  
OUT  
10  
V
6
5
Figure 5. 20-Lead TSSOP Pin Configuration  
Table 7. 20-Lead TSSOP Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
3
VOUT  
VOUT  
VDD  
1
0
Analog Output Voltage from DAC 1. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 0. The output amplifier has rail-to-rail operation.  
Power Supply Input. The AD5676 operates from 2.7 V to 5.5 V. Decouple VDD with a 10 µF capacitor in parallel with  
a 0.1 µF capacitor to GND.  
4
5
VLOGIC  
SYNC  
Digital Power Supply. Voltage ranges from 1.8 V to 5.5 V.  
Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC goes low, data  
transfers in on the falling edges of the next 24 clocks.  
6
7
8
SCLK  
SDI  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data  
transfers at rates of up to 50 MHz.  
Serial Data Input. The AD5676 has a 24-bit input shift register. Data is clocked into the register on the falling edge  
of the serial clock input.  
GAIN  
Span Set. When this pin is tied to GND, all eight DAC outputs have a span from 0 V to VREF. If this pin is tied to VLOGIC,  
all eight DACs output a span of 0 V to 2 × VREF  
.
9
VOUT  
VOUT  
VOUT  
VOUT  
GND  
RSTSEL  
7
6
5
4
Analog Output Voltage from DAC 7. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 6. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 5. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 4. The output amplifier has rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Device.  
10  
11  
12  
13  
14  
Power-On Reset. Tie this pin to GND to power up all eight DACs to zero scale. Tie this pin to VLOGIC to power up all  
eight DACs to midscale.  
15  
LDAC  
Load DAC. LDAC operates in two modes, asynchronously and synchronously. Pulsing this pin low allows any or all  
DAC registers to be updated if the input registers have new data. This allows all DAC outputs to update  
simultaneously. This pin can also be tied permanently low.  
16  
17  
SDO  
Serial Data Output. Use this pin to daisy-chain a number of devices together, or use it for readback. The serial data  
transfers on the rising edge of SCLK and is valid on the falling edge.  
Asynchronous Reset Input. The RESET input is falling edge sensitive. When RESET is low, all LDAC pulses are  
ignored. When RESET is activated, the input register and the DAC register are updated with zero scale or midscale,  
depending on the state of the RSTSEL pin.  
RESET  
18  
19  
20  
VREF  
VOUT  
VOUT  
Reference Input Voltage.  
Analog Output Voltage from DAC 3. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 2. The output amplifier has rail-to-rail operation.  
3
2
Rev. B | Page 9 of 27  
 
AD5676  
Data Sheet  
15  
V
REF  
V
1
2
3
4
5
DD  
14 RESET  
13 SDO  
V
LOGIC  
AD5676  
TOP VIEW  
(Not to Scale)  
SYNC  
SCLK  
SDI  
12 LDAC  
11 GND  
NIC = NOT INTERNALLY CONNECTED  
Figure 6. 20-Lead LFCSP Pin Configuration  
Table 8. 20-Lead LFCSP Pin Function Descriptions  
Pin No. Mnemonic Description  
1
VDD  
Power Supply Input. The AD5676 operate from 2.7 V to 5.5 V. Decouple VDD with a 10 µF capacitor in parallel with a  
0.1 µF capacitor to GND.  
2
3
VLOGIC  
SYNC  
Digital Power Supply. The voltage on this pin ranges from 1.8 V to 5.5 V.  
Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC goes low, data  
transfers in on the falling edges of the next 24 clocks.  
4
5
SCLK  
SDI  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data  
transfers at rates of up to 50 MHz.  
Serial Data Input. This device has a 24-bit input shift register. Data is clocked into the register on the falling edge of  
the serial clock input.  
6
7
8
9
VOUT  
VOUT  
VOUT  
VOUT  
NIC  
7
6
5
4
Analog Output Voltage from DAC 7. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 6. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 5. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 4. The output amplifier has rail-to-rail operation.  
Not Internally Connected  
10, 16  
11  
GND  
Ground Reference Point for All Circuitry on the Device.  
12  
LDAC  
Load DAC. LDAC operates in two modes, asynchronously and synchronously. Pulsing this pin low allows any or all  
DAC registers to be updated if the input registers have new data. That allows all DAC outputs to simultaneously  
update. This pin can also be tied permanently low.  
13  
14  
SDO  
Serial Data Output. This pin can be used to daisy-chain a number of devices together, or it can be used for  
readback. The serial data transfers on the rising edge of SCLK and is valid on the falling edge.  
Asynchronous Reset Input. The RESET input is falling edge sensitive. When RESET is low, all LDAC pulses are ignored.  
When RESET is activated, the input register and the DAC register are updated with zero scale or midscale, depending  
on the state of the RSTSEL pin.  
RESET  
15  
17  
18  
19  
20  
VREF  
Reference Input Voltage.  
VOUT  
VOUT  
VOUT  
VOUT  
3
2
1
0
Analog Output Voltage from DAC 3. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 2. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 1. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC 0. The output amplifier has rail-to-rail operation.  
Exposed Pad. The exposed pad must be tied to GND.  
EPAD  
Rev. B | Page 10 of 27  
Data Sheet  
AD5676  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.0  
10  
8
1.5  
1.0  
6
4
0.5  
2
0
0
–2  
–4  
–6  
–8  
–10  
–0.5  
–1.0  
–1.5  
–2.0  
V
= 5V  
= 25°C  
= 2.5V  
DD  
T
A
V
REF  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
CODE  
Figure 7. INL Error vs. Code  
Figure 10. INL Error vs. Temperature  
1.0  
10  
8
0.8  
0.6  
6
0.4  
4
0.2  
2
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
–8  
–10  
V
= 5V  
= 25°C  
= 2.5V  
DD  
T
A
V
REF  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
CODE  
TEMPERATURE (°C)  
Figure 8. DNL Error vs. Code  
Figure 11. DNL Error vs. Temperature  
0.04  
0.03  
0.02  
0.01  
0
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
V
= 5V  
= 25°C  
= 2.5V  
DD  
T
A
V
REF  
–0.01  
–0.02  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
TEMPERATURE (°C)  
CODE  
Figure 12. TUE vs. Temperature  
Figure 9. TUE vs. Code  
Rev. B | Page 11 of 27  
 
AD5676  
Data Sheet  
10  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
= 5V  
= 25°C  
DD  
8
6
T
A
V
= 2.5V  
REF  
4
2
FULL-SCALE ERROR  
GAIN ERROR  
0
–2  
–4  
–6  
–8  
–10  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
V
= 5V  
= 25°C  
DD  
T
A
V
= 2.5V  
REF  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 13. INL Error vs. Supply Voltage  
Figure 16. Gain Error and Full-Scale Error vs. Temperature  
10  
8
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
= 5V  
= 25°C  
= 2.5V  
DD  
T
A
V
6
REF  
4
2
GAIN ERROR  
0
–2  
–4  
–6  
–8  
–10  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
FULL-SCALE ERROR  
V
= 5V  
= 25°C  
= 2.5V  
DD  
T
A
V
REF  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 17. Gain Error and Full-Scale Error vs. Supply Voltage  
Figure 14. DNL Error vs. Supply Voltage  
1.8  
0.10  
V
= 5V  
DD  
0.08  
0.06  
0.04  
0.02  
0
1.5  
1.2  
0.9  
0.6  
0.3  
0
T = 25°C  
A
V
= 2.5V  
REF  
ZERO CODE ERROR  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
OFFSET ERROR  
V
= 5V  
= 25°C  
= 2.5V  
DD  
–0.3  
T
A
V
REF  
–0.6  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 18. Zero Code Error and Offset Error vs. Temperature  
Figure 15. TUE vs. Supply Voltage  
Rev. B | Page 12 of 27  
Data Sheet  
AD5676  
6
5
1.5  
1.0  
0.5  
0
ZERO CODE ERROR  
4
3
OFFSET ERROR  
2
1
–0.5  
0
V
T
V
= 5V  
= 25°C  
V
T
= 5V  
–1.0  
DD  
DD  
= 25°C  
0xFFFF  
0xC000  
0x8000  
0x4000  
0x0000  
–1  
A
A
GAIN = 2  
= 2.5V  
REF  
V
= 2.5V  
REF  
–1.5  
–2  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
–0.06  
–0.04  
–0.02  
0
0.02  
0.04  
0.06  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (A)  
Figure 19. Zero Code Error and Offset Error vs. Supply Voltage  
Figure 22. Source and Sink Capability at 5 V  
120  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
T
= 3V  
0xFFFF  
0xC000  
0x8000  
0x4000  
0x0000  
DD  
= 25°C  
V
T
V
= 5V  
= 25°C  
DD  
A
GAIN = 1  
A
100  
80  
60  
40  
20  
0
= 2.5V  
V
= 2.5V  
REF  
REF  
–0.5  
–1.0  
0.83 0.85 0.87 0.89 0.91 0.93 0.95 0.97 0.99 1.01  
FULL SCALE (mA)  
0.06  
0.04  
0.02  
0
0.02  
0.04  
0.06  
I
DD  
LOAD CURRENT (A)  
Figure 20. IDD Histogram with External Reference  
Figure 23. Source and Sink Capability at 3 V  
1.4  
1.0  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
DEVICE 1  
DEVICE 2  
DEVICE 3  
0.6  
0.2  
–0.2  
–0.6  
–1.0  
–1.4  
SINKING –2.7V  
SINKING –3V  
SINKING –5V  
SOURCING –5V  
SOURCING –3V  
SOURCING –2.7V  
0
10000  
20000  
30000  
40000  
50000  
60000  
70000  
0
0.005  
0.010  
0.015  
0.020  
0.025  
0.030  
CODE  
LOAD CURRENT (A)  
Figure 24. Supply Current (IDD) vs. Code  
Figure 21. Headroom/Footroom (∆VOUT) vs. Load Current  
Rev. B | Page 13 of 27  
AD5676  
Data Sheet  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
DAC 0  
DAC 1  
DAC 2  
DAC 3  
DAC 4  
DAC 5  
DAC 6  
DAC 7  
FULL SCALE  
ZERO CODE  
EXTERNAL REFERENCE, FULL SCALE  
V
= 5V  
DD  
GAIN = 1  
T
= 25°C  
= 2.5V  
A
V
REF  
1/4 TO 3/4 SCALE  
0.4  
–40  
80  
100  
120  
140  
160 180  
200  
–20  
0
20  
40  
60  
80  
100  
120  
TIME (µs)  
TEMPERATURE (°C)  
Figure 25. Supply Current (IDD) vs. Temperature  
Figure 28. Full-Scale Settling Time  
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
6
5
V
V
V
V
V
V
V
V
V
(V)  
DD  
0 (V)  
1 (V)  
2 (V)  
3 (V)  
4 (V)  
5 (V)  
6 (V)  
7 (V)  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
4
FULL SCALE  
3
ZERO CODE  
2
1
EXTERNAL REFERENCE, FULL SCALE  
0
–1  
–0.001  
0.010  
0.4  
2.7  
0
0.002  
0.004  
0.006  
0.008  
3.2  
3.7  
4.2  
4.7  
5.2  
TIME (Seconds)  
LOGIC INPUT VOLTAGE (V)  
Figure 26. Supply Current (IDD) vs. Supply Voltage  
Figure 29. Power-On Reset to 0 V and Midscale  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
MIDSCALE, GAIN = 2  
FULL SCALE  
SYNC  
ZERO CODE  
MIDSCALE, GAIN = 1  
EXTERNAL REFERENCE, FULL SCALE  
V
= 5V  
DD  
T
= 25°C  
A
V
= 2.5V  
REF  
0.4  
2.7  
3.2  
3.7  
4.2  
4.7  
5.2  
–5  
0
5
10  
LOGIC INPUT VOLTAGE (V)  
TIME (µs)  
Figure 27. Supply Current (IDD) vs. Logic Input Voltage  
Figure 30. Exiting Power-Down to Midscale  
Rev. B | Page 14 of 27  
Data Sheet  
AD5676  
0.004  
0.003  
0.002  
0.001  
0
1
–0.001  
–0.002  
–0.003  
V
= 5V  
DD  
GAIN = 1  
T
= 25°C  
A
V
= 2.5V  
REF  
CODE = 0x7FFF TO 0x8000  
ENERGY = 1.209376nV-sec  
–0.004  
CH1 5µV  
M1.0sec  
A CH1  
401mV  
15  
16  
17  
18  
19  
20  
21  
22  
TIME (µs)  
Figure 31. Digital-to-Analog Glitch Impulse  
Figure 34. 0.1 Hz to 10 Hz Output Noise  
0.003  
1200  
V
= 5V  
= 25°C  
DD  
0.002  
0.001  
0
T
A
1000  
800  
600  
400  
200  
0
GAIN = 1  
= 2.5V  
V
REF  
FULL SCALE  
MIDSCALE  
ZERO SCALE  
–0.001  
–0.002  
–0.003  
–0.004  
–0.005  
–0.006  
ATTACK CHANNEL 1  
ATTACK CHANNEL 2  
ATTACK CHANNEL 3  
ATTACK CHANNEL 4  
ATTACK CHANNEL 5  
ATTACK CHANNEL 6  
ATTACK CHANNEL 7  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
10  
100  
1k  
10k  
100k  
1M  
TIME (µs)  
FREQUENCY (Hz)  
Figure 35. Noise Spectral Density (NSD)  
Figure 32. Analog Crosstalk  
0
–20  
0.012  
0.010  
V
T
= 5V  
= 25°C  
= 2.5V  
DD  
ATTACK CHANNEL 1  
ATTACK CHANNEL 2  
ATTACK CHANNEL 3  
ATTACK CHANNEL 4  
ATTACK CHANNEL 5  
ATTACK CHANNEL 6  
ATTACK CHANNEL 7  
A
V
REF  
0.008  
0.006  
0.004  
0.002  
–40  
–60  
–80  
0
–100  
–120  
–140  
–160  
–180  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
FREQUENCY (kHz)  
TIME (µs)  
Figure 36. THD at 1 kHz  
Figure 33. DAC-to-DAC Crosstalk  
Rev. B | Page 15 of 27  
AD5676  
Data Sheet  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.3  
3
2
1
0
0nF  
0.1nF  
1nF  
RESET  
4.7nF  
10nF  
0.2  
MIDSCALE, GAIN = 1  
0.1  
V
= 5V  
DD  
GAIN = 1  
= 25°C  
T
A
V
= 2.5V  
REF  
ZERO SCALE, GAIN = 1  
0
60  
0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20  
–20  
0
20  
40  
TIME (ms)  
TIME (µs)  
Figure 37. Settling Time vs. Capacitive Load  
Figure 39. Hardware Reset  
2.0  
0
DAC 0  
DAC 1  
DAC 2  
DAC 3  
DAC 4  
DAC 5  
DAC 6  
DAC 7  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–10  
–20  
–30  
V
T
= 5V  
= 25°C  
DD  
V
= 5.5V  
A
DD  
GAIN = 1  
= 25°C  
EXTERNAL REFERENCE = 2.5V, ±0.1V  
GAIN = 1  
p-p  
T
A
V
= 2.5V  
REF  
V
= FULL SCALE  
OUT  
1/4 TO 3/4 SCALE  
80  
100  
120  
140  
160  
180  
200  
1K  
10K  
100K  
FREQUENCY (Hz)  
1M  
10M  
TIME (µs)  
Figure 38. Settling Time, 5.5 V  
Figure 40. Multiplying Bandwidth, External Reference  
Rev. B | Page 16 of 27  
Data Sheet  
AD5676  
TERMINOLOGY  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy or integral nonlinearity is a  
measurement of the maximum deviation, in LSBs, from a straight  
line passing through the endpoints of the DAC transfer function.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-sec,  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition (0x7FFF to 0x8000).  
Differential Nonlinearity (DNL)  
DNL is the difference between the measured change and the  
ideal 1 LSB change between any two adjacent codes. A specified  
DNL of 1 LSB maximum ensures monotonicity. The AD5676  
is guaranteed monotonic by design.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into the  
analog output of the DAC from the digital inputs of the DAC,  
but is measured when the DAC output is not updated. It is  
specified in nV-sec, and measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s and vice versa.  
Zero Code Error  
Zero code error is a measurement of the output error when zero  
code (0x0000) is loaded to the DAC register. Ideally, the output  
is 0 V. The zero code error is always positive because the output  
of the DAC cannot go below 0 V due to a combination of the offset  
errors in the DAC and the output amplifier. Zero code error is  
expressed in mV.  
Noise Spectral Density (NSD)  
NSD is a measurement of the internally generated random  
noise. Random noise is characterized as a spectral density  
(nV/√Hz). It is measured by loading the DAC to midscale and  
measuring noise at the output. It is measured in nV/√Hz.  
Full-Scale Error  
Full-scale error is a measurement of the output error when full-  
scale code (0xFFFF) is loaded to the DAC register. Ideally, the  
output should be VDD − 1 LSB. Full-scale error is expressed in  
percent of full-scale range (% of FSR).  
DC Crosstalk  
DC crosstalk is the dc change in the output level of one DAC in  
response to a change in the output of another DAC. It is measured  
with a full-scale output change on one DAC (or soft power-down  
and power-up) while monitoring another DAC kept at midscale.  
It is expressed i n μ V.  
Gain Error  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal expressed as % of FSR.  
DC crosstalk due to load current change is a measure of the  
impact that a change in load current on one DAC has to  
another DAC kept at midscale. It is expressed in μV/mA.  
Offset Error Drift  
Offset error drift is a measurement of the change in offset error  
with a change in temperature. It is expressed in µV/°C.  
Digital Crosstalk  
Digital crosstalk is the glitch impulse transferred to the output  
of one DAC at midscale in response to a full-scale code change  
(all 0s to all 1s and vice versa) in the input register of another DAC.  
It is measured in standalone mode and is expressed in nV-sec.  
Offset Error  
Offset error is a measure of the difference between VOUT (actual)  
and VOUT (ideal) expressed in mV in the linear region of the  
transfer function. Offset error is measured with Code 256  
loaded in the DAC register. It can be negative or positive.  
Analog Crosstalk  
Analog crosstalk is the glitch impulse transferred to the output  
of one DAC due to a change in the output of another DAC. To  
measure analog crosstalk, load one of the input registers with a full-  
scale code change (all 0s to all 1s and vice versa). Then, execute  
DC Power Supply Rejection Ratio (PSRR)  
PSRR indicates how the output of the DAC is affected by changes  
in the supply voltage. PSRR is the ratio of the change in VOUT to  
the change in VDD for full-scale output of the DAC. It is measured  
in mV/V. VREF is held at 2 V, and VDD is varied by 10%.  
LDAC  
a software  
and monitor the output of the DAC whose digital  
code was not changed. The area of the glitch is expressed in nV-sec.  
DAC-to-DAC Crosstalk  
Output Voltage Settling Time  
DAC-to-DAC crosstalk is the glitch impulse transferred to the  
output of one DAC due to a digital code change and subsequent  
analog output change of another DAC. It is measured by  
loading the attack channel with a full-scale code change (all 0s  
to all 1s and vice versa), using the write to and update  
commands while monitoring the output of the victim channel  
that is at midscale. The energy of the glitch is expressed in nV-sec.  
Output voltage settling time is the amount of time it takes for the  
output of a DAC to settle to a specified level for a ¼ to ¾ full-scale  
SYNC  
input change and is measured from the rising edge of  
.
Rev. B | Page 17 of 27  
 
AD5676  
Data Sheet  
Multiplying Bandwidth  
Total Harmonic Distortion (THD)  
The amplifiers within the DAC have a finite bandwidth. The  
multiplying bandwidth is a measure of this. A sine wave on the  
reference with full-scale code loaded to the DAC appears on the  
output. The multiplying bandwidth is the frequency at which  
the output amplitude falls to 3 dB below the input.  
THD is the difference between an ideal sine wave and its  
attenuated version using the DAC. The sine wave is used as the  
reference for the DAC, and the THD is a measurement of the  
harmonics present on the DAC output. THD is measured in  
decibels.  
Rev. B | Page 18 of 27  
Data Sheet  
AD5676  
THEORY OF OPERATION  
Figure 42 shows the simplified segmented resistor string DAC  
structure. The code loaded to the DAC register determines the  
switch on the string that is connected to the output buffer.  
DIGITAL-TO-ANALOG CONVERTER  
The AD5676 is an octal 16-bit, serial input, voltage output DAC.  
The device operates from supply voltages of 2.7 V to 5.5 V. Data  
is written to the AD5676 in a 24-bit word format via a 3-wire  
serial interface. The AD5676 incorporates a power-on reset  
circuit to ensure that the DAC output powers up to a known  
output state. The device also has a software power-down mode that  
reduces the typical current consumption to typically 1 µA.  
Because each resistance in the string has the same value, R, the  
string DAC is guaranteed monotonic.  
V
REF  
R
R
TRANSFER FUNCTION  
The gain of the output amplifier can be set to ×1 or ×2 using the  
gain select pin (GAIN) on the TSSOP package or the gain bit on  
the LFCSP package. When the GAIN pin is tied to GND, all eight  
DAC outputs have a span from 0 V to VREF. When the GAIN pin  
TO OUTPUT  
R
AMPLIFIER  
is tied to VLOGIC, all eight DACs output a span of 0 V to 2 × VREF  
When using the LFCSP package, the gain bit in the gain setup  
register is used to set the gain of the output amplifier. The gain  
bit is 0 by default. When the gain bit is 0 the output span of all  
eight DACs is 0 V to VREF. When the gain bit is 1 the output  
.
R
R
span of all eight DACs is 0 V to 2 × VREF. The gain bit is ignored  
on the TSSOP package.  
DAC ARCHITECTURE  
Figure 42. Simplified Resistor String Structure  
The DAC architecture implements a segmented string DAC  
with an internal output buffer. Figure 41 shows the internal  
block diagram.  
Output Amplifiers  
The output buffer amplifier generates rail-to-rail voltages on its  
output, which gives an output range of 0 V to VDD. The actual  
range depends on the value of VREF, the gain setting, the offset error,  
and the gain error.  
V
REF  
REF (+)  
INPUT  
REGISTER  
DAC  
REGISTER  
RESISTOR  
STRING  
V
x
OUT  
The output amplifiers can drive a load of 1 kΩ in parallel with  
10 nF to GND. The slew rate is 0.8 V/µs with a typical ¼ to ¾  
scale settling time of 5 µs.  
REF (–)  
GAIN  
(GAIN = 1 OR 2)  
GND  
Figure 41. Single DAC Channel Architecture Block Diagram  
Rev. B | Page 19 of 27  
 
 
 
 
 
 
AD5676  
Data Sheet  
Table 9. Command Bit Definitions  
Command  
SERIAL INTERFACE  
SYNC  
The AD5676 has a 3-wire serial interface (  
, SCLK, and  
C3 C2 C1 C0 Description  
SDI) that is compatible with SPI, QSPI™, and MICROWIRE  
interface standards as well as most DSPs. See Figure 2 for a  
timing diagram of a typical write sequence. The AD5676 contains  
an SDO pin that allows the user to daisy chain multiple devices  
together (see the Daisy-Chain Operation section) or for readback.  
0
0
0
0
0
0
0
1
No operation  
Write to Input Register n (where n = 1 to 8,  
depending on the DAC selected from the  
address bits in Table 10), dependent  
on LDAC  
0
0
1
0
Update the DAC register with contents of  
Input Register n  
Write to and update DAC Channel n  
Power down/power up the DAC  
Hardware LDAC mask register  
Input Shift Register  
The input shift register of the AD5676 is 24 bits wide. Data  
is loaded MSB first (DB23), and the first four bits are the  
command bits, C3 to C0 (see Table 9), followed by the 4-bit  
DAC address bits, A3 to A0 (see Table 10), and finally, the 16-  
bit data-word.  
0
0
0
0
0
1
0
1
1
1
1
0
1
0
0
1
1
0
1
0
1
0
1
0
Software reset (power-on reset)  
Gain setup register (LFCSP package only)  
Set up the DCEN register (daisy-chain  
enable)  
Set up the readback register (readback  
enable)  
Update all channels of the input register  
simultaneously with the input data  
The data-word comprises 16-bit input code, followed by zero, two,  
or four don’t care bits. These data bits are transferred to the input  
register on the 24 falling edges of SCLK and are updated on the  
SYNC  
1
1
1
0
0
0
0
1
1
1
0
1
rising edge of  
.
Commands execute on individual DAC channels, combined DAC  
channels, or on all DACs, depending on the address bits selected.  
Update all channels of the DAC register  
and input register simultaneously with  
the input data  
1
1
0
0
Reserved  
1
1
1
1
Reserved  
Table 10. Address Bits and Selected DACs  
Address Bits  
Selected Output DAC  
Channel1  
A3  
0
A2  
0
A1  
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
DAC 0  
DAC 1  
DAC 2  
DAC 3  
DAC 4  
DAC 5  
DAC 6  
DAC 7  
0
0
0
0
0
0
0
1
0
1
0
1
0
1
1 Any combination of DAC channels can be selected using the address bits.  
DB23 (MSB)  
DB0 (LSB)  
C3 C2 C1 C0 A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DATA BITS  
COMMAND BITS  
ADDRESS BITS  
Figure 43. Input Shift Register Content  
Rev. B | Page 20 of 27  
 
 
 
Data Sheet  
AD5676  
STANDALONE OPERATION  
AD5676  
68HC11*  
SYNC  
The write sequence begins by bringing the  
from the SDI line is clocked into the 24-bit input shift register  
on the falling edge of SCLK. After the last of the 24 data bits is  
line low. Data  
SDI  
MOSI  
SCK  
PC7  
PC6  
SCLK  
SYNC  
LDAC  
SYNC  
clocked in, bring  
high. The programmed function is then  
LDAC  
executed, that is, an  
dependent change in the DAC  
SDO  
SDI  
MISO  
register contents and/or a change in the mode of operation  
occurs.  
th  
SYNC  
If  
is taken high at a clock before the 24 clock, it is  
AD5676  
considered a valid frame, and invalid data may be loaded to the  
SYNC  
DAC. Bring  
channel, see t8 in Table 4) before the next write sequence so that  
SYNC  
high for a minimum of 9.65 ns (single  
SCLK  
SYNC  
LDAC  
a falling edge of  
can initiate the next write sequence.  
at the rails between write sequences for even lower  
SYNC  
SYNC  
Idle  
power operation. The  
of SCLK, and the DAC is updated on the rising edge of  
When data is transferred into the input register of the addressed  
LDAC  
SDO  
SDI  
line is kept low for 24 falling edges  
SYNC  
.
AD5676  
DAC, all DAC registers and outputs update by taking  
SYNC  
low  
while the  
line is high.  
SCLK  
SYNC  
LDAC  
WRITE AND UPDATE COMMANDS  
Write to Input Register n (Dependent on  
)
LDAC  
SDO  
Command 0001 allows the user to write to the dedicated input  
LDAC  
register for each DAC individually. When  
input register is transparent (if not controlled by the  
mask register).  
is low, the  
LDAC  
*ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 44. Daisy-Chaining the AD5676  
Update DAC Register with Contents of Input Register n  
The SCLK pin is continuously applied to the input shift register  
SYNC  
when  
is low. If more than 24 clock pulses are applied, the  
Command 0010 loads the DAC registers and outputs with the  
contents of the selected input registers and updates the DAC  
outputs directly.  
data ripples out of the input shift register and appears on the  
SDO line. This data is clocked out on the rising edge of SCLK  
and is valid on the falling edge. By connecting this line to the  
SDI input on the next DAC in the chain, a daisy-chain interface is  
constructed. Each DAC in the system requires 24 clock pulses.  
Therefore, the total number of clock cycles must equal 24 × N,  
Write to and Update DAC Channel n (Independent of  
)
LDAC  
Command 0011 allows the user to write to the DAC registers  
and updates the DAC outputs directly. Bit D7 to Bit D0  
determine which DACs have data from the input register  
transferred to the DAC register. Setting a bit to 1 transfers data  
from the input register to the appropriate DAC register.  
SYNC  
where N is the total number of devices updated. If  
is  
taken high at a clock that is not a multiple of 24, it is considered  
a valid frame, and invalid data may be loaded to the DAC.  
SYNC  
When the serial transfer to all devices is complete,  
goes  
DAISY-CHAIN OPERATION  
high, which latches the input data in each device in the daisy  
chain and prevents any further data from being clocked into the  
input shift register. The serial clock can be continuous or a gated  
For systems that contain several DACs, the SDO pin can daisy  
chain several devices together and is enabled through a software  
executable daisy-chain enable (DCEN) command. Command 1000  
is reserved for this DCEN function (see Table 9). The daisy-chain  
mode is enabled by setting Bit DB0 in the DCEN register. The  
default setting is standalone mode, where DB0 = 0. Table 11  
shows how the state of the bit corresponds to the mode of  
operation of the device.  
SYNC  
clock. If  
is held low for the correct number of clock  
cycles, a continuous SCLK source is used. In gated clock mode,  
use a burst clock containing the exact number of clock cycles,  
SYNC  
and take  
high after the final clock to latch the data.  
Table 11. Daisy-Chain Enable (DCEN) Register  
DB0  
Description  
0
1
Standalone mode (default)  
DCEN mode  
Rev. B | Page 21 of 27  
 
 
 
 
AD5676  
Data Sheet  
Table 12. Modes of Operation  
Operating Mode  
Normal Operation  
Power-Down Modes  
1 kΩ to GND  
READBACK OPERATION  
PD1  
PD0  
Readback mode is invoked through a software executable  
readback command. If the SDO output is disabled via the daisy-  
chain mode disable bit in the control register, it is enabled  
automatically for the duration of the read operation, after which  
it is disabled again. Command 1001 is reserved for the readback  
function. This command, in association with the address bits,  
A3 to A0, selects the DAC input register to read. Note that,  
during readback, only one DAC register can be selected. The  
remaining data bits in the write sequence are don’t care bits.  
During the next SPI write, the data appearing on the SDO output  
contains the data from the previously addressed register.  
0
0
0
1
1
1
Three-State  
Any or all DACs (DAC 0 to DAC 7) power down to the selected  
mode by setting the corresponding bits. See Table 13 for the  
contents of the input shift register during the power-down/  
power-up operation.  
When both Bit PD1 and Bit PD0 in the input shift register are set to  
0, the device works normally with its normal power consumption  
of 1.1 mA typically. However, for the two power-down modes,  
the supply current falls to 1 µA typically. Not only does the  
supply current fall, but the output stage is also internally switched  
from the output of the amplifier to a resistor network of known  
values. This has the advantage that the output impedance of the  
devices are known while the devices are in power-down mode.  
There are two different power-down options. The output is  
connected internally to GND through either a 1 kΩ resistor, or  
it is left open-circuited (three-state). The output stage is shown in  
Figure 45.  
For example, to read back the DAC register for Channel 0,  
implement the following sequence:  
1. Write 0x900000 to the AD5676 input register. This  
configures the device for read mode with the DAC register  
of Channel 0 selected. Note that all data bits, DB15 to DB0,  
are don’t care bits.  
2. Follow this with a second write, a no operation (NOP)  
condition, 0x000000. During this write, the data from the  
register is clocked out on the SDO line. DB23 to DB20  
contain undefined data, and the last 16 bits contain the  
DB19 to DB4 DAC register contents.  
AMPLIFIER  
When  
is high the SDO pin is driven by a weak latch  
V
x
OUT  
SYNC  
DAC  
which holds the last data bit. The SDO pin can be overdriven by  
the SDO pin of another device, thus allowing multiple devices  
to be read using the same SPI interface.  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
POWER-DOWN OPERATION  
The AD5676 provides two separate power-down modes.  
Command 0100 is designated for the power-down function (see  
Table 9). These power-down modes are software programmable  
by setting 16 bits, Bit DB15 to Bit DB0, in the input shift register.  
There are two bits associated with each DAC channel. Table 12  
shows how the state of the two bits corresponds to the mode of  
operation of the device.  
Figure 45. Output Stage During Power-Down  
The bias generator, output amplifier, resistor string, and other  
associated linear circuitry shut down when power-down mode is  
activated. However, the contents of the DAC register are  
unaffected when in power-down. The DAC register updates  
while the device is in power-down mode. The time required to  
exit power-down is typically 5 µs for VDD = 5 V.  
Table 13. 24-Bit Input Shift Register Contents of Power-Down/Power-Up Operation1  
DAC 7  
DAC 6  
DAC 5  
DAC 4  
DAC 3  
DAC 2  
DAC 1  
DAC 0  
[DB23:DB20] DB19 [DB18:DB16] [DB15: B14]  
[DB13: B12]  
[PD1:PD0]  
[DB11: B10]  
[PD1:PD0]  
[DB9:DB8]  
[PD1:PD0]  
[DB7:DB6]  
[PD1:PD0]  
[DB5:DB4]  
[PD1:PD0]  
[DB3:DB2]  
[PD1:PD0]  
[DB1:DB0]  
[PD1:PD0]  
0100  
0
XXX  
[PD1:PD0]  
1 X means don’t care.  
Rev. B | Page 22 of 27  
 
 
 
 
 
Data Sheet  
AD5676  
LOAD DAC (HARDWARE LDAC PIN)  
LDAC MASK REGISTER  
The AD5676 DAC has a double buffered interface consisting of  
two banks of registers: input registers and DAC registers. The  
user can write to any combination of the input registers.  
LDAC  
function.  
Address bits are ignored. Writing to the DAC using  
Command 0101 is reserved for this hardware  
LDAC  
Command 0101 loads the 8-bit  
register (DB7 to DB0).  
LDAC  
Updates to the DAC register are controlled by the  
pin.  
LDAC  
The default for each channel is 0; that is, the  
normally. Setting the bits to 1 forces this DAC channel to ignore  
LDAC  
pin works  
OUTPUT  
AMPLIFIER  
transitions on the  
pin, regardless of the state of the  
pin. This flexibility is useful in applications  
where the user wants to select which channels respond to  
16-BIT  
DAC  
V
REF  
V
x
OUT  
LDAC  
hardware  
DAC  
REGISTER  
LDAC  
the  
pin.  
LDAC  
LDAC  
Table 14.  
Overwrite Definition  
Load LDAC Register  
INPUT  
REGISTER  
LDAC Bits  
(DB7 to DB0)  
00000000  
LDAC Pin LDAC Operation  
SCLK  
SYNC  
SDI  
1 or 0  
X1  
Determined by the LDAC pin.  
INTERFACE  
LOGIC  
SDO  
11111111  
DAC channels update and  
override the LDAC pin. DAC  
channels see LDAC as 1.  
Figure 46. Simplified Diagram of Input Loading Circuitry for a Single DAC  
LDAC  
Instantaneous DAC Updating (  
Held Low)  
is held low while data is clocked into the input register  
using Command 0001. Both the addressed input register and  
1 X means don’t care.  
LDAC  
LDAC  
The  
register gives the user extra flexibility and control  
LDAC  
LDAC  
pin (see Table 14). Setting the  
over the hardware  
bits (DB0 to DB7) to 0 for a DAC channel means that the  
update for this channel is controlled by the hardware  
SYNC  
the DAC register are updated on the rising edge of  
the output begins to change (see Table 15).  
and  
LDAC  
pin.  
LDAC  
Deferred DAC Updating (  
is Pulsed Low)  
is held high while data is clocked into the input register  
using Command 0001. All DAC outputs are asynchronously  
LDAC SYNC  
LDAC  
updated by taking  
update occurs on the falling edge of  
low after  
is taken high. The  
LDAC  
.
1
LDAC  
Table 15. Write Commands and  
Pin Truth Table  
Hardware LDAC Pin State  
Command Description  
Input Register Contents DAC Register Contents  
0001  
0010  
Write to Input Register n  
(dependent on LDAC)  
VLOGIC  
GND2  
VLOGIC  
GND  
Data update  
Data update  
No change  
No change  
No change (no update)  
Data update  
Update the DAC register  
with contents of Input  
Register n  
Updated with input register contents  
Updated with input register contents  
0011  
Write to and update DAC  
Channel n  
VLOGIC  
GND  
Data update  
Data update  
Data update  
Data update  
1
LDAC  
A high to low hardware  
pin transition always updates the contents of the DAC register with the contents of the input register on channels that are not masked  
mask register.  
is permanently tied low, the  
LDAC  
(blocked) by the  
2
LDAC  
LDAC  
mask bits are ignored.  
When  
Rev. B | Page 23 of 27  
 
 
 
 
AD5676  
Data Sheet  
The RSTSEL pin is only available on the TSSOP package. When  
the AD5676 LFCSP package is used the outputs power up to 0 V.  
HARDWARE RESET (  
)
RESET  
RESET  
The  
be cleared to either zero scale or midscale. The clear code value  
RESET  
pin is an active low reset that allows the outputs to  
AMPLIFIER GAIN SELECTION ON LFCSP PACKAGE  
is user selectable via the  
select pin. It is necessary to keep  
pin low for a minimum time (see Table 4) to complete  
RESET  
The output amplifier gain setting for the LFCSP package is  
determined by the state of Bit DB2 in the Gain setup register  
(see Table 16 and Table 17).  
RESET  
the  
the operation (see Figure 2). When the  
high, the output remains at the cleared value until a new value is  
RESET  
signal is returned  
Table 16. Gain Setup Register  
programmed. While the  
pin is low, the outputs cannot be  
Bit  
Description  
updated with a new value. A software executable reset function  
is also available that resets the DAC to the power-on reset code.  
Command 0110 is designated for this software reset function  
(see Table 9). Any events on the  
power-on reset are ignored.  
DB2  
Amplifier gain setting  
DB2 = 0; amplifier gain = 1 (default)  
DB2 = 1; amplifier gain = 2  
LDAC RESET  
or  
pins during  
RESET SELECT PIN (RSTSEL)  
The AD5676 contains a power-on reset circuit that controls the  
output voltage during power-up. By connecting the RSTSEL pin  
low, the output powers up to zero scale. Note that this is outside  
the linear region of the DAC; by connecting the RSTSEL pin  
high, VOUTx power up to midscale. The output remains powered  
up at this level until a valid write sequence is made to the DAC.  
Table 17. 24-Bit Input Shift Register Contents for Gain Setup Command  
DB23 (MSB)  
DB22  
DB21  
DB20  
DB19 to DB3  
DB2  
DB1  
DB0 (LSB)  
Reserved; set to 0  
0
1
1
1
Don’t care  
Gain  
Reserved; set to 0  
Rev. B | Page 24 of 27  
 
 
 
 
 
Data Sheet  
AD5676  
APPLICATIONS INFORMATION  
POWER SUPPLY RECOMMENDATIONS  
AD5676 TO SPORT INTERFACE  
The AD5676 is typically powered by the following supplies: VDD  
3.3 V and VLOGIC = 1.8 V.  
=
The Analog Devices ADSP-BF527 has one SPORT serial port.  
Figure 49 shows how a SPORT interface controls the AD5676.  
The ADP7118 can be used to power the VDD pin. The ADP160  
can be used to power the VLOGIC pin. This setup is shown in  
Figure 47. The ADP7118 can operate from input voltages up to  
20 V. The ADP160 can operate from input voltages up to 5.5 V.  
AD5676  
ADSP-BF527  
SPORT_TFS  
SPORT_TSCK  
SPORT_DTO  
SYNC  
SCLK  
SDI  
ADP7118  
3.3V: V  
5V INPUT  
DD  
LDO  
GPIO0  
GPIO1  
LDAC  
ADP160  
LDO  
1.8V: V  
LOGIC  
RESET  
Figure 47. Low Noise Power Solution for the AD5676  
Figure 49. SPORT Interface  
MICROPROCESSOR INTERFACING  
LAYOUT GUIDELINES  
Microprocessor interfacing to the AD5676 is via a serial bus  
that uses a standard protocol that is compatible with DSP  
processors and microcontrollers. The communications channel  
requires a 3-wire or 4-wire interface consisting of a clock signal,  
a data signal, and a synchronization signal. The AD5676 requires a  
In any circuit where accuracy is important, careful consideration of  
the power supply and ground return layout helps to ensure the  
rated performance. Design the printed circuit board (PCB) on  
which the AD5676 is mounted so that the AD5676 lies on the  
analog plane.  
SYNC  
24-bit data-word with data valid on the rising edge of  
.
The AD5676 must have ample supply bypassing of 10 μF in  
parallel with 0.1 μF on each supply, located as close to the package  
as possible, ideally right up against the device. The 10 μF  
capacitors are the tantalum bead type. The 0.1 μF capacitor  
must have low effective series resistance (ESR) and low effective  
series inductance (ESI), such as the common ceramic types, which  
provide a low impedance path to ground at high frequencies to  
handle transient currents due to internal logic switching.  
AD5676 TO ADSP-BF531 INTERFACE  
The SPI interface of the AD5676 can easily connect to industry-  
standard DSPs and microcontrollers. Figure 48 shows the  
AD5676 connected to the Analog Devices, Inc. Blackfin® DSP.  
The Blackfin has an integrated SPI port that can connect  
directly to the SPI pins of the AD5676.  
In systems where many devices are on one board, it is often useful  
to provide some heat sinking capability to allow the power to  
dissipate easily.  
AD5676  
ADSP-BF531  
The GND plane on the device can be increased (as shown in  
Figure 50) to provide a natural heat sinking effect.  
SPISELx  
SCK  
SYNC  
SCLK  
SDI  
MOSI  
AD5676  
PF9  
PF8  
LDAC  
RESET  
Figure 48. ADSP-BF531 Interface  
GND  
PLANE  
BOARD  
Figure 50. Pad Connection to Board  
Rev. B | Page 25 of 27  
 
 
 
 
 
 
 
 
 
 
AD5676  
Data Sheet  
ADuM14001  
CONTROLLER  
GALVANICALLY ISOLATED INTERFACE  
V
V
V
V
V
V
V
V
IA  
IB  
IC  
ID  
OA  
OB  
OC  
OD  
TO  
SERIAL  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled to protect and isolate the controlling circuitry from  
any hazardous common-mode voltages that may occur. iCoupler®  
products from Analog Devices provide voltage isolation in excess  
of 2.5 kV. The serial loading structure of the AD5676 makes the  
device ideal for isolated interfaces because the number of interface  
lines is kept to a minimum. Figure 51 shows a 4-channel  
isolated interface to the AD5676 using an ADuM1400. For  
further information, visit www.analog.com/icoupler.  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
SCLK  
CLOCK IN  
TO  
SDI  
SERIAL  
DATA OUT  
ENCODE  
ENCODE  
ENCODE  
TO  
SYNC  
SYNC OUT  
LOAD DAC  
OUT  
TO  
LDAC  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 51. Isolated Interface  
Rev. B | Page 26 of 27  
 
 
Data Sheet  
AD5676  
OUTLINE DIMENSIONS  
6.60  
6.50  
6.40  
20  
11  
10  
4.50  
4.40  
4.30  
6.40 BSC  
1
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-153-AC  
Figure 52. 20-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-20)  
Dimensions shown in millimeters  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
16  
15  
20  
0.50  
BSC  
1
EXPOSED  
PAD  
2.75  
2.60 SQ  
2.35  
11  
5
6
BOTTOM VIEW  
10  
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.  
Figure 53. 20-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 4 mm Body and 0.75 mm Package Height  
(CP-20-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Option  
Model1  
Resolution  
Accuracy  
8 LSB INL  
8 LSB INL  
3 LSB INL  
3 LSB INL  
8 LSB INL  
8 LSB INL  
3 LSB INL  
8 LSB INL  
Package Description  
AD5676ARUZ  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
16 Bits  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Thin Shrink Small Outline Package [TSSOP]  
20-Lead Lead Frame Chip Scale Package [LFCSP]  
20-Lead Lead Frame Chip Scale Package [LFCSP]  
20-Lead Lead Frame Chip Scale Package [LFCSP]  
20-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
RU-20  
AD5676ARUZ-REEL7  
AD5676BRUZ  
RU-20  
RU-20  
AD5676BRUZ-REEL7  
AD5676ACPZ-REEL7  
AD5676ACPZ-RL  
AD5676BCPZ-REEL7  
AD5676BCPZ-RL  
EVAL-AD5676SDZ  
RU-20  
CP-20-8  
CP-20-8  
CP-20-8  
CP-20-8  
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2014–2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12549-0-10/15(B)  
Rev. B | Page 27 of 27  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY