AD5678 [ADI]

4 】 12-Bit and 4 】 16-Bit Octal DAC with On-Chip Reference in 14-Lead TSSOP; 4 】 12位和4 】 16位八通道DAC,具有片内基准14引脚TSSOP
AD5678
型号: AD5678
厂家: ADI    ADI
描述:

4 】 12-Bit and 4 】 16-Bit Octal DAC with On-Chip Reference in 14-Lead TSSOP
4 】 12位和4 】 16位八通道DAC,具有片内基准14引脚TSSOP

文件: 总28页 (文件大小:890K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4 × 12-Bit and 4 × 16-Bit Octal DAC with  
On-Chip Reference in 14-Lead TSSOP  
AD5678  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
V
/V  
V
REFIN REFOUT  
DD  
Low power octal DAC with  
Four 16-bit DACs  
AD5678  
1.25V/2.5V  
REF  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
Four 12-bit DACs  
14-lead/16-lead TSSOP  
DAC  
STRING  
DAC A  
INPUT  
V
V
V
V
V
V
V
V
A
B
C
D
E
F
LDAC  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
REGISTER  
REGISTER  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC B  
On-chip 1.25 V/2.5 V, 5 ppm/°C reference  
Power down to 400 nA @ 5 V, 200 nA @ 3 V  
2.7 V to 5.5 V power supply  
Guaranteed monotonic by design  
Power-on reset to zero scale  
3 power-down functions  
Hardware LDAC and LDAC override function  
CLR function to programmable code  
Rail-to-rail operation  
DAC  
REGISTER  
STRING  
DAC C  
INPUT  
REGISTER  
SCLK  
SYNC  
DIN  
INTERFACE  
LOGIC  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC D  
DAC  
REGISTER  
STRING  
DAC E  
INPUT  
REGISTER  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC F  
DAC  
REGISTER  
STRING  
DAC G  
INPUT  
REGISTER  
G
H
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC H  
POWER-DOWN  
POWER-ON  
RESET  
LOGIC  
GND  
1
1
LDAC CLR  
APPLICATIONS  
1
RU-16 PACKAGE ONLY  
Figure 1.  
Process control  
Data acquisition systems  
Portable battery-powered instruments  
Digital gain and offset adjustment  
Programmable voltage current sources  
Programmable attenuators  
GENERAL DESCRIPTION  
The AD5678 is a low power, octal, buffered voltage-output  
DAC with four 12-bit DACs and four 16-bit DACs in a single  
package. All devices operate from a single 2.7 V to 5.5 V supply  
and are guaranteed monotonic by design.  
The outputs of all DACs can be updated simultaneously using  
the function, with the added functionality of user-  
LDAC  
selectable DAC channels to simultaneously update. There is  
also an asynchronous that clears all DACs to a software-  
CLR  
selectable code—0 V, midscale, or full scale.  
The AD5678 has an on-chip reference with an internal gain of 2.  
The AD5678-1 has a 1.25 V 5 ppm/°C reference, giving a full-  
scale output of 2.5 V; the AD5678-2 has a 2.5 V 5 ppm/°C  
reference, giving a full-scale output of 5 V. The on-board  
reference is off at power-up, allowing the use of an external  
reference. The internal reference is enabled via a software write.  
The AD5678 utilizes a versatile 3-wire serial interface that  
operates at clock rates of up to 50 MHz and is compatible with  
standard SPI®, QSPI™, MICROWIRE™, and DSP interface  
standards. The on-chip precision output amplifier enables rail-  
to-rail output swing.  
The part incorporates a power-on reset circuit that ensures that  
the DAC output powers up to 0 V and remains powered up at  
this level until a valid write takes place. The part contains a  
power-down feature that reduces the current consumption of  
the device to 400 nA at 5 V and provides software-selectable  
output loads while in power-down mode for any or all DAC  
channels.  
PRODUCT HIGHLIGHTS  
1. Octal DAC (four 12-bit DACs and four 16-bit DACs).  
2. On-chip 1.25 V/2.5 V, 5 ppm/°C reference.  
3. Available in 14-lead/16-lead TSSOP.  
4. Power-on reset to 0 V.  
5. Power-down capability. When powered down, the DAC  
typically consumes 200 nA at 3 V and 400 nA at 5 V.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
AD5678  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
D/A Section................................................................................. 20  
Resistor String............................................................................. 20  
Internal Reference ...................................................................... 20  
Output Amplifier........................................................................ 21  
Serial Interface............................................................................ 21  
Input Shift Register .................................................................... 22  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Characteristics........................................................................ 7  
Timing Characteristics ................................................................ 8  
Absolute Maximum Ratings............................................................ 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 11  
Terminology .................................................................................... 18  
Theory of Operation ...................................................................... 20  
Interrupt .......................................................................... 22  
SYNC  
Internal Reference Register....................................................... 23  
Power-On Reset.......................................................................... 23  
Power-Down Modes .................................................................. 23  
Clear Code Register ................................................................... 23  
Function .......................................................................... 25  
LDAC  
Power Supply Bypassing and Grounding................................ 25  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 26  
REVISION HISTORY  
11/05—Rev. 0 to Rev. A  
Change to General Description...................................................... 1  
Change to Specifications.................................................................. 3  
Replaced Figure 48 ......................................................................... 22  
Change to the Power-Down Modes Section............................... 23  
10/05—Revision 0: Initial Version  
Rev. A | Page 2 of 28  
 
AD5678  
SPECIFICATIONS  
VDD = 4.5 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, VREFIN = VDD. All specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
A Grade1  
Typ Max  
B Grade1  
Typ Max  
Parameter  
Min  
Min  
Unit  
Conditions/Comments  
STATIC PERFORMANCE2  
AD5678 (DAC C, D, E, F)  
Resolution  
12  
12  
Bits  
LSB  
±±.25 LSB  
Relative Accuracy  
Differential Nonlinearity  
±±.5 ±2  
±±.25  
±±.5 ±1  
See Figure 11  
Guaranteed monotonic by design  
(see Figure 12)  
AD5678 (DAC A, B, G, H)  
Resolution  
16  
16  
Bits  
Relative Accuracy  
Differential Nonlinearity  
Zero-Code Error  
Zero-Code Error Drift  
Full-Scale Error  
Gain Error  
Gain Temperature  
Coefficient  
±8  
±32  
±1  
9
±8  
±16  
±1  
9
LSB  
LSB  
mV  
μV/°C  
% FSR  
% FSR  
ppm  
See Figure 5  
Guaranteed monotonic by design (see Figure 6)  
All ±s loaded to DAC register (see Figure 17)  
1
±2  
−±.2 −1  
±1  
±2.5  
1
±2  
−±.2 −1  
±1  
±2.5  
All 1s loaded to DAC register (see Figure 18)  
Of FSR/°C  
Offset Error  
DC Power Supply Rejection  
Ratio  
±1  
–8±  
±9  
±1  
–8±  
±9  
mV  
dB  
VDD ± 1±%  
DC Crosstalk  
(External Reference)  
1±  
1±  
μV  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
5
1±  
25  
5
1±  
25  
μV/mA  
μV  
μV  
Due to load current change  
Due to powering down (per channel)  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
DC Crosstalk  
(Internal Reference)  
1±  
1±  
μV/mA  
Due to load current change  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
±
VDD  
±
VDD  
V
Capacitive Load Stability  
2
2
nF  
nF  
Ω
mA  
μs  
RL = ∞  
RL = 2 kΩ  
1±  
±.5  
3±  
4
1±  
±.5  
3±  
4
DC Output Impedance  
Short-Circuit Current  
Power-Up Time  
VDD = 5 V  
Coming out of power-down mode; VDD = 5 V  
REFERENCE INPUTS  
Reference Input Voltage  
Reference Current  
Reference Input Range  
Reference Input Impedance  
REFERENCE OUTPUT  
Output Voltage  
AD5678-2  
Reference TC3  
Reference Output Impedance  
LOGIC INPUTS3  
VDD  
35  
VDD  
35  
V
μA  
V
±1% for specified performance  
VREF = VDD = 5.5 V (per DAC channel)  
45  
VDD  
45  
VDD  
±
±
14.6  
14.6  
kΩ  
Per DAC channel  
At ambient  
2.495  
2.5±5 2.495  
±1±  
2.5±5  
±1±  
V
±5  
7.5  
±5  
7.5  
ppm/°C  
kΩ  
Input Current  
±3  
±.8  
2
±3  
±.8  
μA  
V
V
All digital inputs  
VDD = 5 V  
VDD = 5 V  
Input Low Voltage, VINL  
Input High Voltage, VINH  
Pin Capacitance  
2
3
3
pF  
Rev. A | Page 3 of 28  
 
AD5678  
A Grade1  
Typ Max  
B Grade1  
Typ Max  
Parameter  
Min  
Min  
Unit  
Conditions/Comments  
POWER REQUIREMENTS  
VDD  
4.5  
5.5  
4.5  
5.5  
V
All digital inputs at ± or VDD,  
DAC active, excludes load current  
IDD (Normal Mode)4  
VDD = 4.5 V to 5.5 V  
VDD = 4.5 V to 5.5 V  
IDD (All Power-Down Modes)5  
VIH = VDD and VIL = GND  
Internal reference off  
Internal reference on  
1.3  
2
1.8  
2.5  
1.3  
2
1.8  
2.5  
mA  
mA  
VDD = 4.5 V to 5.5 V  
±.4  
1
±.4  
1
μA  
VIH = VDD and VIL = GND  
1 Temperature range is −4±°C to +1±5°C, typical at 25°C.  
2 Linearity calculated using a reduced code range of AD5678 12-bit DACs (Code 32 to Code 4,±64) and AD5678 16-bit DACs (Code 512 to Code 65,±24). Output  
unloaded.  
3 Guaranteed by design and characterization; not production tested.  
4 Interface inactive. All DACs active. DAC outputs unloaded.  
5 All eight DACs powered down.  
Rev. A | Page 4 of 28  
AD5678  
VDD = 2.7 V to 3.6 V, RL = 2 kΩ to GND, CL = 200 pF to GND, VREFIN = VDD. All specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
A Grade1  
Typ Max  
B Grade1  
Typ Max  
Parameter  
Min  
Min  
Unit  
Conditions/Comments  
STATIC PERFORMANCE2  
AD5678 (DAC C, D, E, F)  
Resolution  
12  
12  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
±±.5 ±2  
±1  
±±.5 ±1  
±1  
See Figure 11  
Guaranteed monotonic by design  
(see Figure 12)  
AD5678 (DAC A, B, G, H)  
Resolution  
16  
16  
Bits  
Relative Accuracy  
Differential Nonlinearity  
Zero-Code Error  
±32  
±1  
9
±16  
±1  
9
LSB  
LSB  
mV  
See Figure 5  
Guaranteed monotonic by design (See Figure 6)  
All ±s loaded to DAC register (See Figure 17)  
1
1
Zero-Code Error Drift  
Full-Scale Error  
Gain Error  
Gain Temperature Coefficient  
Offset Error  
±2  
−±.2 −1  
±1  
±2.5  
±1  
±2  
−±.2 −1  
±1  
±2.5  
±1  
μV/°C  
% FSR  
% FSR  
ppm  
mV  
All 1s loaded to DAC register (See Figure 18)  
Of FSR/°C  
±9  
±9  
Offset Temperature Coefficient  
DC Power Supply Rejection  
Ratio  
1.7  
–8±  
1.7  
–8±  
μV/°C  
dB  
VDD ± 1±%  
DC Crosstalk  
(External Reference)  
1±  
1±  
μV  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
4.5  
1±  
25  
4.5  
1±  
25  
μV/mA  
μV  
μV  
Due to load current change  
Due to powering down (per channel)  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
DC Crosstalk  
(Internal Reference)  
4.5  
4.5  
μV/mA  
Due to load current change  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
±
VDD  
±
VDD  
V
Capacitive Load Stability  
2
2
nF  
nF  
Ω
mA  
μs  
RL = ∞  
RL = 2 kΩ  
1±  
±.5  
3±  
4
1±  
±.5  
3±  
4
DC Output Impedance  
Short-Circuit Current  
Power-Up Time  
VDD = 3 V  
Coming out of power-down mode; VDD = 3 V  
REFERENCE INPUTS  
Reference Input Voltage  
Reference Current  
Reference Input Range  
Reference Input Impedance  
REFERENCE OUTPUT  
Output Voltage  
AD5678-1  
Reference TC3  
Reference Output Impedance  
VDD  
2±  
VDD  
2±  
V
μA  
V
±1% for specified performance  
VREF = VDD = 3.6 V (per DAC channel)  
2±  
VDD  
2±  
VDD  
±
±
14.6  
14.6  
kΩ  
Per DAC channel  
At ambient  
1.247  
1.253 1.247  
±15  
1.253  
±15  
V
±5  
7.5  
±5  
7.5  
ppm/°C  
kΩ  
Rev. A | Page 5 of 28  
AD5678  
A Grade1  
Typ Max  
B Grade1  
Typ Max  
Parameter  
LOGIC INPUTS3  
Min  
Min  
Unit  
Conditions/Comments  
Input Current  
±3  
±.8  
±3  
±.8  
μA  
V
V
All digital inputs  
VDD = 3 V  
VDD = 3 V  
Input Low Voltage, VINL  
Input High Voltage, VINH  
Pin Capacitance  
POWER REQUIREMENTS  
VDD  
2
2
3
3
pF  
2.7  
3.6  
2.7  
3.6  
V
All digital inputs at ± or VDD,  
DAC active, excludes load current  
IDD (Normal Mode)4  
VDD = 2.7 V to 3.6 V  
VDD = 2.7 V to 3.6 V  
IDD (All Power-Down Modes)5  
VIH = VDD and VIL = GND  
Internal reference off  
Internal reference on  
1.2  
1.7  
1.5  
2.25  
1.2  
1.7  
1.5  
2.25  
mA  
mA  
VDD = 2.7 V to 3.6 V  
±.2  
1
±.2  
1
μA  
VIH = VDD and VIL = GND  
1 Temperature range is −4±°C to +1±5°C, typical at 25°C.  
2 Linearity calculated using a reduced code range of AD5678 12-bit DACs (Code 32 to Code 4,±64) and AD5678 16-bit DACs (Code 512 to Code 65,±24). Output  
unloaded.  
3 Guaranteed by design and characterization; not production tested.  
4 Interface inactive. All DACs active. DAC outputs unloaded.  
5 All eight DACs powered down.  
Rev. A | Page 6 of 28  
AD5678  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, VREFIN = VDD. All specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter1, 2  
Min Typ  
Max  
Unit  
μs  
V/μs  
nV-s  
nV-s  
dB  
nV-s  
nV-s  
nV-s  
kHz  
Conditions/Comments3  
Output Voltage Settling Time  
Slew Rate  
Digital-to-Analog Glitch Impulse  
Digital Feedthrough  
Reference Feedthrough  
Digital Crosstalk  
6
1.5  
4
1±  
¼ to ¾ scale settling to ±2 LSB  
1 LSB change around major carry (see Figure 34)  
VREF = 2 V ± ±.1 V p-p, frequency = 1± Hz to 2± MHz  
±.1  
−9±  
±.5  
2.5  
3
34±  
−8±  
12±  
1±±  
15  
Analog Crosstalk  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
Total Harmonic Distortion  
Output Noise Spectral Density  
VREF = 2 V ± ±.2 V p-p  
dB  
VREF = 2 V ± ±.1 V p-p, frequency = 1± kHz  
DAC code = ±x84±±, 1 kHz  
DAC code = ±x84±±, 1± kHz  
±.1 Hz to 1± Hz  
nV/√Hz  
nV/√Hz  
ꢀV p-p  
Output Noise  
1 Guaranteed by design and characterization; not production tested.  
2 See the Terminology section.  
3 Temperature range is −4±°C to +1±5°C, typical at 25°C.  
Rev. A | Page 7 of 28  
 
AD5678  
TIMING CHARACTERISTICS  
All input signals are specified with tr = tf = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2. See Figure 2.  
VDD = 2.7 V to 5.5 V. All specifications TMIN to TMAX, unless otherwise noted.  
Table 4.  
Limit at TMIN, TMAX  
Parameter  
VDD = 2.7 V to 5.5 V  
Unit  
Conditions/Comments  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC to SCLK falling edge set-up time  
Data set-up time  
1
t1  
t2  
t3  
t4  
2±  
8
8
13  
4
4
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns typ  
t5  
t6  
t7  
Data hold time  
±
SCLK falling edge to SYNC rising edge  
Minimum SYNC high time  
SYNC rising edge to SCLK fall ignore  
SCLK falling edge to SYNC fall ignore  
LDAC pulse width low  
t8  
15  
13  
±
t9  
t1±  
t11  
t12  
t13  
t14  
t15  
1±  
15  
5
SCLK falling edge to LDAC rising edge  
CLR pulse width low  
±
SCLK falling edge to LDAC falling edge  
CLR pulse activation time  
3±±  
1 Maximum SCLK frequency is 5± MHz at VDD = 2.7 V to 5.5 V. Guaranteed by design and characterization; not production tested.  
t10  
t1  
t9  
SCLK  
t2  
t8  
t7  
t3  
t4  
SYNC  
DIN  
t6  
t5  
DB31  
DB0  
t14  
t11  
1
LDAC  
LDAC  
t12  
2
t13  
CLR  
t15  
V
OUT  
1
2
ASYNCHRONOUS LDAC UPDATE MODE.  
SYNCHRONOUS LDAC UPDATE MODE.  
Figure 2. Serial Write Operation  
Rev. A | Page 8 of 28  
 
 
AD5678  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 5.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VDD to GND  
−±.3 V to +7 V  
−±.3 V to VDD + ±.3 V  
−±.3 V to VDD + ±.3 V  
Digital Input Voltage to GND  
VREFIN/VREFOUT to GND  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
−4±°C to +1±5°C  
−65°C to +15±°C  
+15±°C  
Junction Temperature (TJ MAX  
)
TSSOP Package  
Power Dissipation  
θJA Thermal Impedance  
(TJ MAX − TA)/θJA  
15±.4°C/W  
Lead Temperature, Soldering  
SnPb  
Pb Free  
24±°C  
26±°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4±±± V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 9 of 28  
 
AD5678  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
LDAC  
SYNC  
SCLK  
DIN  
1
2
3
4
5
6
7
SYNC  
14  
13  
12  
11  
10  
9
SCLK  
DIN  
V
V
GND  
DD  
DD  
AD5678  
TOP VIEW  
(Not to Scale)  
V
A
GND  
V
A
V
V
V
V
B
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
AD5678  
TOP VIEW  
(Not to Scale)  
V
C
E
V
V
V
V
B
V
C
E
D
F
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
D
F
V
V
OUT  
OUT  
G
G
H
OUT  
OUT  
8
V
/V  
H
REFIN REFOUT  
V
/V  
REFIN REFOUT  
CLR  
Figure 3. 14-Lead TSSOP (RU-14)  
Figure 4. 16-Lead TSSOP (RU-16)  
Table 6. Pin Function Descriptions  
Pin No.  
14-Lead  
TSSOP  
16-Lead  
TSSOP  
Mnemonic  
Description  
1
LDAC  
Pulsing this pin low allows any or all DAC registers to be updated if the input registers have  
new data. This allows all DAC outputs to simultaneously update. Alternatively, this pin can be  
tied permanently low.  
1
2
SYNC  
Active Low Control Input. This is the frame synchronization signal for the input data. When  
SYNC goes low, it powers on the SCLK and DIN buffers and enables the input shift register.  
Data is transferred in on the falling edges of the next 32 clocks. If SYNC is taken high before  
the 32nd falling edge, the rising edge of SYNC acts as an interrupt and the write sequence is  
ignored by the device.  
2
3
VDD  
Power Supply Input. These parts can be operated from 2.7 V to 5.5 V, and the supply should  
be decoupled with a 1± μF capacitor in parallel with a ±.1 μF capacitor to GND.  
3
11  
4
1±  
7
4
13  
5
12  
8
VOUT  
VOUT  
VOUT  
VOUT  
A
B
C
D
Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.  
The AD5678 has a common pin for reference input and reference output. When using the  
internal reference, this is the reference output pin. When using an external reference, this is  
the reference input pin. The default for this pin is as a reference input.  
VREFIN/VREFOUT  
9
CLR  
Asynchronous Clear Input. The CLR input is falling edge sensitive. When CLR is low, all LDAC  
pulses are ignored. When CLR is activated, the input register and the DAC register are  
updated with the data contained in the CLR code register—zero, midscale, or full scale.  
Default setting clears the output to ± V.  
5
9
6
8
12  
13  
6
11  
7
1±  
14  
15  
VOUT  
VOUT  
VOUT  
VOUT  
GND  
DIN  
E
F
G
H
Analog Output Voltage from DAC E. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC F. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC G. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC H. The output amplifier has rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Part.  
Serial Data Input. This device has a 32-bit shift register. Data is clocked into the register on  
the falling edge of the serial clock input.  
14  
16  
SCLK  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial  
clock input. Data can be transferred at rates of up to 5± MHz.  
Rev. A | Page 1± of 28  
 
AD5678  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.0  
0.8  
0.6  
0.4  
0.2  
10  
V
V
= 5V  
DD  
V
T
= V  
= 25°C  
= 5V  
DD  
REF  
= 2.5V  
REFOUT  
8
A
TA = 25°C  
6
4
2
0
0
–2  
–4  
–0.2  
–0.4  
–0.6  
–6  
–8  
–0.8  
–1.0  
–10  
0
5k 10k 15k 20k 25k 30k 35k 40k 45k 50k 55k 60k 65k  
CODE  
CODE  
Figure 5. INL—16-Bit DAC  
Figure 8. DNL 16-Bit DAC, 2.5 V Internal Reference  
10  
V
V
= 3V  
= 1.25V  
= 25°C  
DD  
REFOUT  
1.0  
8
6
V
= V  
= 5V  
DD  
REF  
T
A
0.8  
0.6  
0.4  
0.2  
T = 25°C  
A
4
2
0
0
–2  
–4  
–6  
–0.2  
–0.4  
–0.6  
–8  
–0.8  
–1.0  
–10  
0
10k  
20k  
30k  
CODE  
40k  
50k  
60k  
CODE  
Figure 6. DNL—16-Bit DAC  
Figure 9. INL—16-Bit DAC, 1.25 V Internal Reference  
10  
8
V
= 5V  
DD  
V
= 2.5V  
REFOUT  
TA = 25°C  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
CODE  
Figure 7. INL—16-Bit DAC, 2.5 V Internal Reference  
Rev. A | Page 11 of 28  
 
 
 
 
AD5678  
1.0  
1.0  
V
V
T
= 3V  
= 1.25V  
= 25°C  
V
V
T
= 5V  
DD  
REFOUT  
DD  
REFOUT  
= 25°C  
0.8  
0.6  
= 2.5V  
0.8  
0.6  
0.4  
0.2  
A
A
0.4  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.8  
–1.0  
0
500  
1000  
1500 2000 2500 3000  
CODE  
3500 4000  
CODE  
Figure 13. INL—12-Bit DAC, 2.5 V Internal Reference  
Figure 10. DNL—16-Bit DAC, 1.25 V Internal Reference  
0.20  
0.15  
0.10  
0.05  
1.0  
0.8  
V
V
= 5V  
DD  
V
T
= V  
= 25°C  
= 5V  
DD  
REF  
= 2.5V  
REFOUT  
A
TA = 25°C  
0.6  
0.4  
0.2  
0
0
–0.05  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.10  
–0.15  
–0.20  
0
500  
1000  
1500 2000 2500 3000  
CODE  
3500 4000  
0
500  
1000  
1500 2000  
CODE  
2500 3000 3500 4000  
Figure 14. DNL 12-Bit DAC, 2.5 V Internal Reference  
Figure 11. INL—12-Bit DAC  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
V
= 3V  
DD  
REFOUT  
0.20  
0.15  
0.10  
0.05  
0
= 1.25V  
V
= V  
= 25°C  
= 5V  
DD  
REF  
T
= 25°C  
A
T
A
–0.2  
–0.4  
–0.6  
–0.05  
–0.10  
–0.15  
–0.20  
–0.8  
–1.0  
0
500  
1000 1500  
2000 2500  
CODE  
3000 3500 4000  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
Figure 15. INL—12-Bit DAC, 1.25 V Internal Reference  
Figure 12. DNL—12-Bit DAC  
Rev. A | Page 12 of 28  
 
 
AD5678  
0.20  
0.15  
0.10  
0.05  
0
1.0  
V
V
= 3V  
DD  
REFOUT  
= 1.25V  
T
= 25°C  
A
0.5  
0
GAIN ERROR  
FULL-SCALE ERROR  
–0.5  
–1.0  
–0.05  
–0.10  
–1.5  
–2.0  
–0.15  
–0.20  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
0
500  
1000 1500  
2000 2500  
CODE  
3000 3500 4000  
V
DD  
Figure 16. DNL—12-Bit DAC, 1.25 V Internal Reference  
Figure 19. Gain Error and Full-Scale Error vs. Supply Voltage  
0
–0.02  
–0.04  
–0.06  
–0.08  
1.0  
V
= 5V  
T
= 25°C  
DD  
A
0.5  
0
ZERO-SCALE ERROR  
GAIN ERROR  
–0.5  
–1.0  
–1.5  
–0.10  
–0.12  
–0.14  
–0.16  
FULL-SCALE ERROR  
–2.0  
–2.5  
OFFSET ERROR  
–0.18  
–0.20  
–40  
–20  
0
20  
40  
60  
80  
100  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
TEMPERATURE (  
°C)  
V
DD  
Figure 17. Gain Error and Full-Scale Error vs. Temperature  
Figure 20. Zero-Scale Error and Offset Error vs. Supply Voltage  
1.5  
20  
V
V
= 3.6V  
= 5.5V  
DD  
DD  
18  
16  
14  
12  
10  
8
1.0  
ZERO-SCALE ERROR  
0.5  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
6
4
OFFSET ERROR  
2
0
–40  
–20  
0
20  
40  
60  
80  
100  
1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.38 1.40 1.42  
1.44  
TEMPERATURE (  
°C)  
I
(mA)  
DD  
Figure 18. Zero-Scale Error and Offset Error vs. Temperature  
Figure 21. IDD Histogram with External Reference  
Rev. A | Page 13 of 28  
 
 
AD5678  
14  
12  
10  
8
4.00  
3.00  
2.00  
1.00  
V
V
= 3.6V  
= 5.5V  
DD  
DD  
V
V
= 3V  
DD  
= 1.25V  
REFOUT  
= 25°C  
T
A
FULL SCALE  
V
= 1.25V  
V
= 2.5V  
REFOUT  
REFOUT  
3/4 SCALE  
MIDSCALE  
1/4 SCALE  
6
4
0
ZERO SCALE  
2
0
–1.00  
2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18 2.20 2.22 2.24 2.26 2.28  
(mA)  
–30  
–20  
–10  
0
10  
20  
30  
I
DD  
CURRENT (mA)  
Figure 22. IDD Histogram with Internal Reference  
Figure 25. AD5678-1 Source and Sink Capability  
0.50  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
V
= V  
= 5V  
DAC LOADED WITH  
FULL-SCALE  
SOURCING CURRENT  
DAC LOADED WITH  
ZERO-SCALE  
SINKING CURRENT  
A
DD  
REF  
0.40  
0.30  
0.20  
0.10  
0
V
V
= 3V  
DD  
REFOUT  
V
= V  
= 3V  
= 1.25V  
DD  
REF  
–0.10  
–0.20  
–0.30  
V
V
= 5V  
DD  
= 2.5V  
–2  
REFOUT  
–0.40  
–0.50  
–10  
–8  
–6  
–4  
0
2
4
6
8
10  
512  
10512  
20512  
30512  
CODE  
40512  
50512  
60512  
CURRENT (mA)  
Figure 23. Headroom at Rails vs. Source and Sink  
Figure 26. Supply Current vs. Code  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
1.6  
1.4  
1.2  
V
= V = 5.5V  
REFIN  
DD  
V
V
= 5V  
DD  
FULL SCALE  
= 2.5V  
REFOUT  
= 25°C  
T
A
3/4 SCALE  
V
= V = 3.6V  
REFIN  
DD  
1.0  
0.8  
MIDSCALE  
1/4 SCALE  
0.6  
0.4  
0
ZERO SCALE  
0.2  
0
–1.00  
–30  
–20  
–10  
0
10  
20  
30  
–40  
–20  
0
20  
40  
60  
80  
100  
CURRENT (mA)  
TEMPERATURE (°C)  
Figure 24. AD5678-2 Source and Sink Capability  
Figure 27. Supply Current vs. Temperature  
Rev. A | Page 14 of 28  
 
 
AD5678  
1.6  
1.4  
T
= 25°C  
A
V
= V = 5V  
REF  
DD  
= 25°C  
T
A
1.2  
1.0  
0.8  
V
DD  
0.6  
0.4  
1
2
MAX(C2)*  
420.0mV  
0.2  
0
V
OUT  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
CH1 2.0V  
CH2 500mV  
M100μs 125MS/s  
A CH1 1.28V  
8.0ns/pt  
V
DD  
Figure 31. Power-On Reset to 0 V  
Figure 28. Supply Current vs. Supply Voltage  
8
7
6
T
= 25°C  
A
V
= V  
REF  
= 5V  
DD  
= 25°C  
T
A
5
4
V
DD  
1
2
V
= 5V  
DD  
3
2
1
0
V
OUT  
V
= 3V  
DD  
0
1
2
3
4
5
6
CH1 2.0V  
CH2 1.0V  
M100μs 125MS/s  
A CH1 1.28V  
8.0ns/pt  
V
(V)  
LOGIC  
Figure 32. Power-On Reset to Midscale  
Figure 29. Supply Current vs. Logic Input Voltage  
SYNC  
SLCK  
1
3
V
= V = 5V  
REF  
DD  
= 25°C  
T
A
FULL-SCALE CODE CHANGE  
0x0000 TO 0xFFFF  
OUTPUT LOADED WITH 2k  
AND 200pF TO GND  
V
OUT  
V
= 909mV/DIV  
OUT  
V
= 5V  
DD  
2
1
CH1 5.0V  
CH3 5.0V  
CH2 500mV  
M400ns  
A CH1  
1.4V  
TIME BASE = 4μs/DIV  
Figure 33. Exiting Power-Down to Midscale  
Figure 30. Full-Scale Settling Time, 5 V  
Rev. A | Page 15 of 28  
 
 
AD5678  
2.505  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
2.494  
2.493  
2.492  
2.491  
2.490  
2.489  
2.488  
2.487  
2.486  
V
V
T
= 5V  
DD  
REFOUT  
= 25°C  
= 2.5V  
V
= V = 5V  
REF  
A
DD  
= 25°C  
4ns/SAMPLE NUMBER  
GLITCH IMPULSE = 3.55nV-s  
1 LSB CHANGE AROUND  
MIDSCALE (0x8000 TO 0x7FFF)  
T
A
DAC LOADED WITH MIDSCALE  
1
Y AXIS = 2μV/DIV  
X AXIS = 4s/DIV  
2.485  
0
64  
128  
192  
256  
320  
384  
448  
512  
SAMPLE  
Figure 37. 0.1 Hz to 10 Hz Output Noise Plot, External Reference  
Figure 34. Digital-to-Analog Glitch Impulse (Negative)  
2.5000  
V
V
= 5V  
DD  
REFOUT  
= 25°C  
2.4995  
2.4990  
2.4985  
2.4980  
2.4975  
2.4970  
2.4965  
2.4960  
2.4955  
2.4950  
= 2.5V  
T
A
DAC LOADED WITH MIDSCALE  
1
V
V
= 5V  
DD  
REFOUT  
= 25°C  
= 2.5V  
T
A
4ns/SAMPLE NUMBER  
0
64  
128  
192  
256  
SAMPLE  
320 384 448 512  
5s/DIV  
Figure 38. 0.1 Hz to 10 Hz Output Noise Plot, Internal Reference  
Figure 35. Analog Crosstalk  
2.4900  
2.4895  
2.4890  
2.4885  
2.4880  
2.4875  
2.4870  
2.4865  
2.4860  
2.4855  
V
V
= 3V  
DD  
REFOUT  
= 25°C  
= 1.25V  
T
A
DAC LOADED WITH MIDSCALE  
1
V
V
= 5V  
DD  
REFOUT  
= 25°C  
= 2.5V  
T
A
4ns/SAMPLE NUMBER  
0
64  
128  
192  
256  
SAMPLE  
320 384 448  
512  
4s/DIV  
Figure 39. 0.1 Hz to 10 Hz Output Noise Plot, Internal Reference  
Figure 36. DAC-to-DAC Crosstalk  
Rev. A | Page 16 of 28  
AD5678  
800  
700  
600  
500  
400  
300  
200  
T
= 25°C  
A
MIDSCALE LOADED  
CLR  
3
V
F
OUT  
V
V
= 5V  
DD  
REFOUT  
= 2.5V  
V
B
OUT  
4
2
100  
0
V
V
= 3V  
DD  
REFOUT  
= 1.25V  
1000  
100  
10000  
100000  
1000000  
CH2 1.0V  
CH4 1.0V  
M200ns A CH3  
1.10V  
CH3 5.0V  
FREQUENCY (Hz)  
CLR  
Figure 40. Noise Spectral Density, Internal Reference  
Figure 43. Hardware  
–20  
–30  
–40  
V
= 5V  
= 25°C  
DD  
T
A
DAC LOADED WITH FULL SCALE  
V = 2V ± 0.3V p-p  
REF  
5
0
V
A
= 5V  
DD  
= 25°C  
T
–50  
–60  
–70  
5  
10  
15  
20  
25  
30  
35  
–40  
–80  
–90  
–100  
2k  
4k  
6k  
8k  
10k  
FREQUENCY (Hz)  
Figure 41. Total Harmonic Distortion  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 44. Multiplying Bandwidth  
16  
14  
12  
10  
8
V
= V  
DD  
= 25°C  
REF  
T
A
V
= 3V  
DD  
V
= 5V  
DD  
6
4
0
1
2
3
4
5
6
7
8
9
10  
CAPACITANCE (nF)  
Figure 42. Settling Time vs. Capacitive Load  
Rev. A | Page 17 of 28  
 
AD5678  
TERMINOLOGY  
Relative Accuracy  
Full-Scale Error  
For the DAC, relative accuracy, or integral nonlinearity (INL), is  
a measure of the maximum deviation in LSBs from a straight  
line passing through the endpoints of the DAC transfer  
function. Figure 5, Figure 7, and Figure 9 show plots of typical  
INL vs. code.  
Full-scale error is a measure of the output error when full-scale  
code (0xFFFF) is loaded into the DAC register. Ideally, the  
output should be VDD − 1 LSB. Full-scale error is expressed as a  
percentage of the full-scale range. Figure 17 shows a plot of  
typical full-scale error vs. temperature.  
Differential Nonlinearity  
Digital-to-Analog Glitch Impulse  
Differential nonlinearity (DNL) is the difference between the  
measured change and the ideal 1 LSB change between any two  
adjacent codes. A specified differential nonlinearity of 1 LSB  
maximum ensures monotonicity. This DAC is guaranteed mono-  
tonic by design. Figure 6, Figure 8, and Figure 10 show plots of  
typical DNL vs. code.  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-s  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition (0x7FFF to 0x8000). See  
Figure 34.  
Offset Error  
DC Power Supply Rejection Ratio (PSRR)  
Offset error is a measure of the difference between the actual  
PSRR indicates how the output of the DAC is affected by changes  
in the supply voltage. PSRR is the ratio of the change in VOUT to  
a change in VDD for full-scale output of the DAC. It is measured  
in decibels. VREF is held at 2 V, and VDD is varied 10%.  
VOUT and the ideal VOUT, expressed in millivolts in the linear  
region of the transfer function. Offset error is measured on the  
AD5678 with Code 512 loaded into the DAC register. It can be  
negative or positive and is expressed in millivolts.  
DC Crosstalk  
Zero-Code Error  
DC crosstalk is the dc change in the output level of one DAC in  
response to a change in the output of another DAC. It is measured  
with a full-scale output change on one DAC (or soft power-down  
and power-up) while monitoring another DAC. It is expressed  
in microvolts.  
Zero-code error is a measure of the output error when zero  
code (0x0000) is loaded into the DAC register. Ideally, the  
output should be 0 V. The zero-code error is always positive in  
the AD5678, because the output of the DAC cannot go below 0 V.  
It is due to a combination of the offset errors in the DAC and  
output amplifier. Zero-code error is expressed in millivolts.  
Figure 18 shows a plot of typical zero-code error vs.  
temperature.  
DC crosstalk due to load current change is a measure of the  
impact that a change in load current on one DAC has to another  
DAC kept at midscale. It is expressed in microvolts per milliamp.  
Reference Feedthrough  
Reference feedthrough is the ratio of the amplitude of the signal  
at the DAC output to the reference input when the DAC output  
is not being updated (that is,  
decibels.  
Gain Error  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal, expressed as a percentage of the full-scale range.  
is high). It is expressed in  
LDAC  
Zero-Code Error Drift  
Channel-to-Channel Isolation  
Zero-code error drift is a measure of the change in zero-code  
error with a change in temperature. It is expressed in μV/°C.  
Channel-to-channel isolation is the ratio of the amplitude of the  
signal at the output of one DAC to a sine wave on the reference  
input of another DAC. It is measured in decibels.  
Gain Error Drift  
Digital Feedthrough  
Gain error drift is a measure of the change in gain error with  
changes in temperature. It is expressed in (ppm of full-scale  
range)/°C.  
Digital feedthrough is a measure of the impulse injected into  
the analog output of a DAC from the digital input pins of the  
device, but is measured when the DAC is not being written to  
(
held high). It is specified in nV-s and measured with a  
SYNC  
full-scale change on the digital input pins, that is, from all 0s to  
all 1s or vice versa.  
Rev. A | Page 18 of 28  
 
AD5678  
Digital Crosstalk  
Multiplying Bandwidth  
Digital crosstalk is the glitch impulse transferred to the output  
of one DAC at midscale in response to a full-scale code change  
(all 0s to all 1s or vice versa) in the input register of another  
DAC. It is measured in standalone mode and is expressed in  
nV-s.  
The amplifiers within the DAC have a finite bandwidth. The  
multiplying bandwidth is a measure of this. A sine wave on the  
reference (with full-scale code loaded to the DAC) appears on  
the output. The multiplying bandwidth is the frequency at  
which the output amplitude falls to 3 dB below the input.  
Analog Crosstalk  
Total Harmonic Distortion (THD)  
Analog crosstalk is the glitch impulse transferred to the output  
of one DAC due to a change in the output of another DAC. It is  
measured by loading one of the input registers with a full-scale  
Total harmonic distortion is the difference between an ideal  
sine wave and its attenuated version using the DAC. The sine  
wave is used as the reference for the DAC, and the THD is a  
measure of the harmonics present on the DAC output. It is  
measured in decibels.  
code change (all 0s to all 1s or vice versa) while keeping  
LDAC  
high, and then pulsing  
low and monitoring the output of  
LDAC  
the DAC whose digital code has not changed. The area of the  
glitch is expressed in nV-s.  
DAC-to-DAC Crosstalk  
DAC-to-DAC crosstalk is the glitch impulse transferred to the  
output of one DAC due to a digital code change and subsequent  
output change of another DAC. This includes both digital and  
analog crosstalk. It is measured by loading one of the DACs  
with a full-scale code change (all 0s to all 1s or vice versa) with  
low and monitoring the output of another DAC. The  
LDAC  
energy of the glitch is expressed in nV-s.  
Rev. A | Page 19 of 28  
AD5678  
THEORY OF OPERATION  
D/A SECTION  
R
R
R
The AD5678 DAC is fabricated on a CMOS process. The archi-  
tecture consists of a string of DACs followed by an output buffer  
amplifier. The parts include an internal 1.25 V/2.5 V, 5 ppm/°C  
reference with an internal gain of 2. Figure 45 shows a block  
diagram of the DAC architecture.  
TO OUTPUT  
AMPLIFIER  
V
DD  
REF (+)  
RESISTOR  
STRING  
V
DAC REGISTER  
OUT  
REF (–)  
OUTPUT  
AMPLIFIER  
(GAIN = +2)  
R
R
GND  
Figure 45. DAC Architecture  
Because the input coding to the DAC is straight binary, the ideal  
output voltage when using an external reference is given by  
Figure 46. Resistor String  
INTERNAL REFERENCE  
D
VOUT =VREFIN  
×
2N  
The AD5678 has an on-chip reference with an internal gain of  
2. The AD5678-1 has a 1.25 V 5 ppm/°C reference, giving a full-  
scale output of 2.5 V. The AD5678-2 has a 2.5 V 5 ppm/°C  
reference, giving a full-scale output of 5 V. The on-board  
reference is off at power-up, allowing the use of an external  
reference. The internal reference is enabled via a write to a  
control register. See Table 7.  
the ideal output voltage when using an internal reference is  
given by  
D
VOUT = 2×VREFOUT  
×
2N  
where:  
The internal reference associated with each part is available at  
the VREFOUT pin. A buffer is required if the reference output is  
used to drive external loads. When using the internal reference,  
it is recommended that a 100 nF capacitor be placed between  
the reference output and GND for reference stability.  
D = decimal equivalent of the binary code that is loaded to the  
DAC register.  
0 to 4,095 for AD5678 DAC C, D, E, F (12 bits).  
0 to 65,535 for AD5678 DAC A, B, G, H (16 bits).  
N = the DAC resolution.  
Individual channel power-down is not supported while using  
the internal reference.  
RESISTOR STRING  
The resistor string section is shown in Figure 46. It is simply a  
string of resistors, each of value R. The code loaded into the  
DAC register determines at which node on the string the  
voltage is tapped off to be fed into the output amplifier. The  
voltage is tapped off by closing one of the switches connecting  
the string to the amplifier. Because it is a string of resistors, it is  
guaranteed monotonic.  
Rev. A | Page 2± of 28  
 
 
 
AD5678  
Table 7. Command Definitions  
Command  
OUTPUT AMPLIFIER  
The output buffer amplifier can generate rail-to-rail voltages on  
its output, which gives an output range of 0 V to VDD. The  
amplifier is capable of driving a load of 2 kΩ in parallel with  
1,000 pF to GND. The source and sink capabilities of the output  
amplifier can be seen in Figure 24 and Figure 25. The slew rate  
is 1.5 V/ꢀs with a ¼ to ¾ scale settling time of 10 ꢀs.  
C3 C2 C1 C0 Description  
±
±
±
±
±
±
±
±
1
±
1
±
Write to Input Register n  
Update DAC Register n  
Write to Input Register n, update all  
(software LDAC)  
±
±
±
±
±
1
1
1
±
1
1
1
1
±
±
1
1
±
±
1
1
±
±
1
1
±
1
±
1
±
1
1
Write to and update DAC Channel n  
Power down/power up DAC  
Load clear code register  
Load LDAC register  
Reset (power-on reset)  
Set up internal REF register  
Reserved  
SERIAL INTERFACE  
The AD5678 has a 3-wire serial interface (  
, SCLK, and  
SYNC  
DIN) that is compatible with SPI, QSPI, and MICROWIRE  
interface standards as well as most DSPs. See Figure 2 for a  
timing diagram of a typical write sequence.  
Reserved  
Reserved  
The write sequence begins by bringing the  
line low. Data  
SYNC  
from the DIN line is clocked into the 32-bit shift register on the  
falling edge of SCLK. The serial clock frequency can be as high  
as 50 MHz, making the AD5678 compatible with high speed  
DSPs. On the 32nd falling clock edge, the last data bit is clocked  
in and the programmed function is executed, that is, a change  
in DAC register contents and/or a change in the mode of  
operation. At this stage, the  
brought high. In either case, it must be brought high for a  
minimum of 15 ns before the next write sequence so that a  
Table 8. Address Commands  
Address (n)  
Selected DAC  
Channel  
A3  
±
A2  
±
A1  
±
A0  
±
1
±
1
±
1
±
1
DAC A (16 bits)  
DAC B (16 bits)  
DAC C (12 bits)  
DAC D (12 bits)  
DAC E (12 bits)  
DAC F (12 bits)  
DAC G (16 bits)  
DAC H (16 bits)  
All DACs  
line can be kept low or be  
SYNC  
±
±
±
±
±
1
±
±
1
falling edge of  
can initiate the next write sequence.  
SYNC  
±
1
±
Because the  
buffer draws more current when VIN = 2 V  
SYNC  
±
1
±
than it does when VIN = 0.8 V,  
should be idled low  
SYNC  
between write sequences for even lower power operation of the  
part. As is mentioned previously, however, must be  
±
1
1
±
1
1
SYNC  
brought high again just before the next write sequence.  
1
1
1
1
Rev. A | Page 21 of 28  
 
 
 
AD5678  
INTERRUPT  
SYNC  
INPUT SHIFT REGISTER  
In a normal write sequence, the  
line is kept low for  
SYNC  
32 falling edges of SCLK, and the DAC is updated on the 32nd  
falling edge and rising edge of . However, if is  
The input shift register is 32 bits wide. The first four bits are  
don’t cares. The next four bits are the command bits, C3 to C0  
(see Table 7), followed by the 4-bit DAC address bits, A3 to A0  
(see Table 8), and finally the 16-/12-bit data-word. The data-  
word comprises the 16-/12-bit input code followed by four or  
eight don’t care bits for the AD5678 DAC A, B, G, H and  
AD5678 DAC C, D, E, F, respectively (See Figure 47 and Figure  
48). These data bits are transferred to the DAC register on the  
32nd falling edge of SCLK.  
SYNC  
SYNC  
brought high before the 32nd falling edge, this acts as an  
interrupt to the write sequence. The shift register is reset, and  
the write sequence is seen as invalid. Neither an update of the  
DAC register contents nor a change in the operating mode  
occurs—see Figure 49.  
DB31 (MSB)  
DB0 (LSB)  
X
X
X
X
C3 C2 C1 C0 A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
DATA BITS  
COMMAND BITS  
ADDRESS BITS  
Figure 47. AD5678 Input Register Content for DAC A, B, G , H  
DB31 (MSB)  
DB0 (LSB)  
X
X
X
X
C3 C2 C1 C0 A3 A2 A1 A0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
X
X
X
X
DATA BITS  
COMMAND BITS  
ADDRESS BITS  
Figure 48. AD5678 Input Register Content for DAC C, D, E, F  
SCLK  
SYNC  
DIN  
DB31  
DB0  
DB31  
DB0  
INVALID WRITE SEQUENCE:  
SYNC HIGH BEFORE 32ND FALLING EDGE  
VALID WRITE SEQUENCE, OUTPUT UPDATES  
ON THE 32ND FALLING EDGE  
SYNC  
Figure 49.  
Interrupt Facility  
Rev. A | Page 22 of 28  
 
 
 
 
AD5678  
the part is in power-down mode. There are three different  
INTERNAL REFERENCE REGISTER  
options. The output is connected internally to GND through  
either a 1 kΩ or a 100 kΩ resistor, or it is left open-circuited  
(three-state). The output stage is illustrated in Figure 50.  
The on-board reference is off at power-up by default. This  
allows the use of an external reference if the application requires  
it. The on-board reference can be turned on/off by a user-  
programmable internal REF register by setting Bit DB0 high or  
low (see Table 9). Command 1000 is reserved for this internal  
REF set-up command (see Table 7). Table 11 shows the state of  
the bits in the input shift register corresponds to the mode of  
operation of the device.  
The bias generator of the selected DAC(s), output amplifier,  
resistor string, and other associated linear circuitry are shut  
down when the power-down mode is activated. However, the  
contents of the DAC register are unaffected when in power-  
down. The time to exit power-down is typically 5 ꢀs for  
VDD = 5 V and for VDD = 3 V, see Figure 33.  
POWER-ON RESET  
Any combination of DACs can be powered up by setting PD1  
and PD0 to 0 (normal operation). The output powers up to the  
The AD5678 contains a power-on reset circuit that controls the  
output voltage during power-up. The AD5678 output powers up  
to 0 V, and the output remains powered up at this level until a  
valid write sequence is made to the DAC. This is useful in  
applications where it is important to know the state of the  
output of the DAC while it is in the process of powering up.  
There is also a software executable reset function that resets the  
DAC to the power-on reset code. Command 0111 is reserved  
value in the input register (  
low) or to the value in the  
LDAC  
DAC register before powering down (  
high).  
LDAC  
CLEAR CODE REGISTER  
The AD5678 has a hardware  
pin that is an asynchronous  
CLR  
clear input. The  
input is falling edge sensitive . Bringing  
CLR  
for this reset function—see Table 7. Any events on  
or  
LDAC  
the  
line low clears the contents of the input register and the  
CLR  
DAC registers to the data contained in the user-configurable  
register and sets the analog outputs accordingly. This  
during power-on reset are ignored.  
CLR  
CLR  
POWER-DOWN MODES  
function can be used in system calibration to load zero scale,  
midscale, or full scale to all channels together. These clear code  
values are user-programmable by setting two bits, Bit DB1 and Bit  
The AD5678 contains four separate modes of operation.  
Command 0100 is reserved for the power-down function. See  
Table 7. These modes are software-programmable by setting  
two bits, Bit DB9 and Bit DB8, in the control register.  
DB0, in the  
control register. See Table 13. The default  
CLR  
setting clears the outputs to 0 V. Command 0101 is reserved for  
loading the clear code register, see Table 7.  
Table 11 shows how the state of the bits corresponds to the  
mode of operation of the device. Any or all DACs (DAC H to  
DAC A) can be powered down to the selected mode by setting  
the corresponding eight bits (DB7 to DB0) to 1. See Table 12 for  
the contents of the input shift register during power-down/power-  
up operation. When using the internal reference, only all channel  
power-down to the selected modes is supported.  
The part exits clear code mode on the 32nd falling edge of the  
next write to the part. If  
is activated during a write  
CLR  
sequence, the write is aborted.  
The pulse activation time—the falling edge of  
to when  
CLR  
CLR  
the output starts to change—is typically 280 ns. However, if the  
value is outside the linear region, it typically takes 520 ns after  
When both bits are set to 0, the part works normally with its  
normal power consumption of 1.3 mA at 5 V. However, for the  
three power-down modes, the supply current falls to 400 nA at  
5 V (200 nA at 3 V). Not only does the supply current fall, but  
the output stage is also internally switched from the output of  
the amplifier to a resistor network of known values. This has the  
advantage that the output impedance of the part is known while  
executing  
for the output to start changing. See Figure 43.  
CLR  
See Table 14 for contents of the input shift register during the  
loading clear code register operation.  
Rev. A | Page 23 of 28  
 
AD5678  
Table 9. Internal Reference Register  
Internal REF Register (DB0)  
Action  
±
1
Reference off (default)  
Reference on  
Table 10. 32-Bit Input Shift Register Contents for Reference Set-Up Function  
MSB  
LSB  
DB0  
1/±  
DB31 to DB28  
X
DB27  
DB26  
DB25  
DB24  
DB23  
DB22  
DB21  
DB20  
DB19 to DB1  
X
1
±
±
±
X
X
X
X
Don’t cares  
Command bits (C3 to C±)  
Address bits (A3 to A±)  
Don’t cares  
Internal REF  
register  
Table 11. Power-Down Modes of Operation  
DB9  
DB8  
Operating Mode  
Normal operation  
Power-down modes  
1 kΩ to GND  
1±± kΩ to GND  
Three-state  
±
±
±
1
1
1
±
1
Table 12. 32-Bit Input Shift Register Contents for Power-Down/Power-Up Function  
MSB  
LSB  
DB31  
to  
DB28  
DB19  
to  
DB10  
DB27  
DB26  
DB25  
DB24  
DB23  
DB22  
DB21  
DB20  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
X
±
1
±
±
X
X
X
X
X
PD1  
PD±  
DAC  
H
DAC  
G
DAC  
F
DAC  
E
DAC  
D
DAC  
C
DAC  
B
DAC  
A
Don’t  
cares  
Command bits (C3 to C±)  
Address bits (A3 to A±)—  
don’t cares  
Don’t  
cares  
Power-  
down mode  
Power-down/power-up channel selection—set bit to 1 to select  
V
FB  
AMPLIFIER  
V
OUT  
RESISTOR  
STRING DAC  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
Figure 50. Output Stage During Power-Down  
Table 13. Clear Code Register  
Clear Code Register  
DB1  
CR1  
±
DB0  
CR0  
±
Clears to Code  
±x±±±±  
±
1
±x8±±±  
1
±
±xFFFF  
1
1
No operation  
Table 14. 32-Bit Input Shift Register Contents for Clear Code Function  
MSB  
LSB  
DB0  
CR±  
DB31 to DB28  
X
DB27  
DB26  
DB25  
DB24  
DB23  
DB22  
DB21  
DB20  
DB19 to DB2  
X
DB1  
±
1
±
1
X
X
X
X
CR1  
Don’t cares  
Command bits (C3 to C±)  
Address bits (A3 to A±)—don’t cares  
Don’t cares  
Clear code register  
Rev. A | Page 24 of 28  
 
 
 
 
 
 
AD5678  
pin. See Table 16 for the contents of the input shift register  
during the load register mode of operation.  
FUNCTION  
LDAC  
LDAC  
The outputs of all DACs can be updated simultaneously using  
the hardware  
pin.  
LDAC  
POWER SUPPLY BYPASSING AND GROUNDING  
When accuracy is important in a circuit, it is helpful to carefully  
consider the power supply and ground return layout on the  
board. The printed circuit board containing the AD5678 should  
have separate analog and digital sections. If the AD5678 is in a  
system where other devices require an AGND-to-DGND  
connection, the connection should be made at one point only.  
This ground point should be as close as possible to the AD5678.  
Synchronous  
: After new data is read, the DAC registers  
LDAC  
are updated on the falling edge of the 32nd SCLK pulse.  
can be permanently low or pulsed as in Figure 2.  
LDAC  
Asynchronous  
time that the input registers are written to. When  
low, the DAC registers are updated with the contents of the  
input register.  
: The outputs are not updated at the same  
LDAC  
goes  
LDAC  
The power supply to the AD5678 should be bypassed with 10 ꢀF  
and 0.1 ꢀF capacitors. The capacitors should physically be as  
close as possible to the device, with the 0.1 ꢀF capacitor ideally  
right up against the device. The 10 ꢀF capacitors are the tantalum  
bead type. It is important that the 0.1 ꢀF capacitor has low effective  
series resistance (ESR) and low effective series inductance (ESI),  
such as is typical of common ceramic types of capacitors. This  
0.1 ꢀF capacitor provides a low impedance path to ground for  
high frequencies caused by transient currents due to internal  
logic switching.  
Alternatively, the outputs of all DACs can be updated simulta-  
neously using the software  
function by writing to Input  
LDAC  
Register n and updating all DAC registers. Command 0011 is  
reserved for this software function.  
LDAC  
register gives the user extra flexibility and control  
An  
LDAC  
over the hardware  
pin. This register allows the user to  
LDAC  
select which combination of channels to simultaneously update  
when the hardware pin is executed. Setting the bit  
LDAC  
register to 0 for a DAC channel means that this channels update  
is controlled by the pin. If this bit is set to 1, this channel  
LDAC  
The power supply line should have as large a trace as possible to  
provide a low impedance path and reduce glitch effects on the  
supply line. Clocks and other fast switching digital signals should  
be shielded from other parts of the board by digital ground. Avoid  
crossover of digital and analog signals if possible. When traces  
cross on opposite sides of the board, ensure that they run at right  
angles to each other to reduce feedthrough effects through the  
board. The best board layout technique is the microstrip technique,  
where the component side of the board is dedicated to the ground  
plane only and the signal traces are placed on the solder side.  
However, this is not always possible with a 2-layer board.  
LDAC  
updates synchronously; that is, the DAC register is updated  
after new data is read, regardless of the state of the pin. It  
LDAC  
pin as being tied low. (See Table 15  
effectively sees the  
LDAC  
for the  
register mode of operation.) This flexibility is  
LDAC  
useful in applications where the user wants to simultaneously  
update select channels while the rest of the channels are  
synchronously updating.  
Writing to the DAC using command 0110 loads the 8-bit  
LDAC  
register (DB7 to DB0). The default for each channel is 0; that is,  
the pin works normally. Setting the bits to 1 means the  
LDAC  
DAC channel is updated regardless of the state of the  
LDAC  
Table 15.  
Register  
LDAC  
Load DAC Register  
LDAC Bits (DB7 to DB0)  
LDAC Pin  
1/±  
LDAC Operation  
±
1
Determined by LDAC pin  
X—don’t care  
DAC channels update, overriding the LDAC pin. DAC channels see LDAC as ±.  
Table 16. 32-Bit Input Shift Register Contents for  
Overwrite Function  
LDAC  
MSB  
LSB  
DB31  
to  
DB19  
to  
DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
X
±
1
1
±
X
X
X
X
X
DAC  
H
DAC  
G
DAC  
F
DAC  
E
DAC  
D
DAC  
C
DAC  
B
DAC  
A
Don’t  
cares  
Command bits (C3 to C±)  
Address bits (A3 to A±)—  
don’t cares  
Don’t  
cares  
LDAC  
LDAC  
pin  
Setting  
bit to 1 overrides  
Rev. A | Page 25 of 28  
 
 
 
AD5678  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
MAX  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 51. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 52. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Option  
Power-On  
Reset to Code  
Internal  
Reference  
Model  
Temperature Range  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
−4±°C to +1±5°C  
Package Description  
14-Lead TSSOP  
14-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
Accuracy  
AD5678BRUZ-11  
AD5678BRUZ-1REEL71  
AD5678BRUZ-21  
AD5678BRUZ-2REEL71  
AD5678ARUZ-21  
AD5678ARUZ-2REEL71  
RU-14  
RU-14  
RU-16  
RU-16  
RU-16  
RU-16  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±16 LSB INL  
±32 LSB INL  
±32 LSB INL  
1.25 V  
1.25 V  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
1 Z = Pb-free part.  
Rev. A | Page 26 of 28  
 
AD5678  
NOTES  
Rev. A | Page 27 of 28  
AD5678  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05299–0–11/05(A)  
Rev. A | Page 28 of 28  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY