AD5750 [ADI]

Industrial Current/Voltage Output Driver, Programmable Ranges; 工业电流/电压输出驱动器,可编程范围
AD5750
型号: AD5750
厂家: ADI    ADI
描述:

Industrial Current/Voltage Output Driver, Programmable Ranges
工业电流/电压输出驱动器,可编程范围

驱动器
文件: 总25页 (文件大小:252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Industrial Current/Voltage  
Output Driver,  
Programmable Ranges  
Preliminary Technical Data  
AD5750  
Voltage output is provided from a separate pin that can be  
configured to provide 0V to 5V, 0V to 10V, ±5V or ±10V  
output ranges. An over-range of 20% is available on the voltage  
ranges.  
FEATURES  
Current Output Ranges: 4–20mA, 0–20mA or 0–24mA,  
20ma, 24ma  
B Grade - 0.1% Total Unadjusted Error (TUE)  
A Grade - 0.3% Total Unadjusted Error (TUE)  
5ppm/°C Output Drift  
Analog outputs are short and open circuit protected and can  
drive capacitive loads of 1uF and inductive loads of 0.1H.  
The device is specified to operate with a power supply range  
from ±12 V to ±24 V. Output loop compliance is 0 V to AVDD  
– 2.5 V.  
Voltage Output Ranges: 0-5V, 0-10V, 5V, 10V,  
20% over-range  
B Grade - 0.1% Total Unadjusted Error (TUE)  
A Grade - 0.3% Total Unadjusted Error (TUE)  
Flexible Serial Digital Interface  
On-Chip Output Fault Detection  
PEC Error Checking  
The flexible serial interface is SPI and MICROWIRE  
compatible and can be operated in 3-wire mode to minimize the  
digital isolation required in isolated applications. The interface  
also features an optional PEC error checking feature using  
CRC-8 error checking, useful in industrial environments where  
data communication corruption can occur.  
Asynchronous CLEAR Function  
Power Supply Range  
AVDD : = +12V to +24V (+/-10%)  
AVSS : = -12V to -24V (+/-10%)  
Output Loop Compliance to AVDD – 2.5 V  
Temperature Range: -40°C to +105°C  
LFCSP Packages  
The device also includes a power-on-reset function ensuring  
that the device powers up in a known state and an  
asynchronous CLEAR pin which sets the outputs to zero-scale /  
mid-scale voltage output or the low end of the selected current  
range.  
APPLICATIONS  
A HW SELECT pin is used to configure the part for hardware  
or software mode on power up.  
Process Control  
Actuator Control  
PLC  
The total output error is typically ±0.1% in both current mode  
and voltage mode.  
GENERAL DESCRIPTION  
The AD5750 is a single channel, low-cost, precision,  
voltage/current output driver with hardware or software  
programmable output ranges. The software ranges are  
configured via an SPI/Microwire compatible serial interface.  
The AD5750 targets applications in PLC and industrial process  
control. The analog input to the AD5750 is provided from a  
low voltage, single supply digital-to-analog converter and is  
internally conditioned to provide the desired output  
current/voltage range.  
Table 1. Related Devices  
Part Number  
Description  
AD5422  
Single Channel, 16-Bit, Serial  
Input Current Source and  
Voltage Output DAC  
The output current range is programmable across five current  
ranges - 4–20mA, 0–20mA or 0–24mA, 20mꢀ ꢀnd 24mꢀ.  
Rev. PrC  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
AD5750  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
HARDWARE CONTROL:........................................................ 20  
Transfer Function....................................................................... 21  
Features............................................................................................ 22  
output fault alert – SOFTWARE MODE ................................ 22  
output fault alert – HARDWARE MODE............................... 22  
voltage output short circuit protection.................................... 22  
Asynchronous Clear (CLEAR)................................................. 22  
External current setting resistor............................................... 22  
Applications Information.............................................................. 24  
Transient voltage protection ..................................................... 24  
Layout Guidelines....................................................................... 24  
Galvanically Isolated Interface ................................................. 24  
Microprocessor Interfacing....................................................... 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Timing Characteristics ................................................................ 8  
Absolute Maximum Ratings.......................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 13  
Terminology .................................................................................... 14  
Theory of Operation ...................................................................... 15  
CURRENT OUTPUT Architecture......................................... 17  
OUTEN........................................................................................ 17  
Software control:......................................................................... 18  
REVISION HISTORY  
PrC – Preliminary Version. May 6, 2008  
Rev. PrC | Page 2 of 25  
Preliminary Technical Data  
FUNCTIONAL BLOCK DIAGRAM  
AD5750  
GND  
AVDD  
COMP1 COMP2  
DVCC GND  
CLEAR  
CLRSEL  
VSENSE+  
INPUT SHIFT  
REGISTER  
AND  
CONTROL  
LOGIC  
SCLK/OUTEN*  
SDIN/R0*  
SYNC/RSEL*  
SDO/VFAULT*  
VOUT RANGE  
SCALING  
VOUT  
VOUT SHORT FAULT  
VSENSE-  
HW SELECT  
VIN  
STATUS REG  
VDD  
R2  
R3  
VREF  
IOUT RANGE  
SCALING  
RESET  
REXT1  
REXT2  
RSET  
Vx  
IOUT  
OVERTEMP  
VOUT SHORT FAULT  
IOUT OPEN FAULT  
FAULT/TEMP*  
NC/IFAULT*  
POWER  
ON  
RESET  
VSS  
OUTPUT RANGE ERROR  
AD5750  
IOUT OPEN FAULT  
AVSS  
AD1/R2* AD0/R3*  
AD2/R1*  
Figure 1. Functional Block Diagram  
* Denotes shared pin. Software mode denoted by regular text, hardware mode denoted by bold  
text. E.G. for FAULT/TEMP pin, in software mode this pin will take on FAULT function. In  
Hardware mode, this pin will take on TEMP function.  
Rev. PrC | Page 3 of 25  
AD5750  
Preliminary Technical Data  
SPECIFICATIONS  
AVDD/AVSS=±±2V ꢀ(/ꢁ±0ꢂ% to ±2ꢃV ꢀ(/ꢁ±0ꢂ% , DVCC =2.7 V to 5.5 V, GND = 0 V. R  
L
= 2 kΩ, C  
L
= 200 pF, IOUT : R  
L
= 300Ω,  
HL =  
50mH; All specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
Parameter  
B grade1  
A grade2  
Unit  
Test Conditions/Comments  
0 to 4.096  
1
0 to 4.096  
1
V
INPUT VOLTAGE RANGE  
Input Leakage Current  
uA max  
VOLTAGE OUTPUT  
Output Voltage Ranges  
0 to 5  
0 to 10  
0 to 5  
0 to 10  
V
V
AVDD needs to have minimum 1.1v headroom, or  
> +11.1v.  
-5 to +5  
-10 to +10  
-5 to +5  
-10 to +10  
V
V
AVDD/AVSS needs to have minimum 1.1v  
headroom, or > +/-11.1v.  
ACCURACY  
Output unloaded  
Bipolar Output  
Total Unadjusted Error  
(TUE)  
0.1  
0.3  
% FSR max  
Over temperature and supplies.  
Relative Accuracy (INL)  
Bipolar Zero Error  
Bipolar Zero TC  
Offset Error  
Zero Scale Error  
Zero Scale TC  
Gain Error  
Gain Error TC  
Full Scale Error  
Full Scale Error TC  
0.02  
0.01  
TBD  
0.015  
0.015  
TBD  
0.005  
TBD  
0.02  
0.01  
TBD  
0.015  
0.015  
TBD  
0.005  
TBD  
% FSR max  
% FSR typ  
ppm % FSR max  
% FSR typ  
% FSR typ  
ppm % FSR max  
% FSR typ  
ppm % FSR max  
% FSR typ  
Error at analog input = mid scale  
Error at analog input = 10mv  
Error at analog input = 0.0v  
(Ideal Span – Measured Span)/Ideal Span  
Error at analog input = 4.096v (FS)  
0.015  
TBD  
0.015  
TBD  
ppm % FSR max  
Unipolar Output  
Total Unadjusted Error  
(TUE)  
0.1  
0.1  
% FSR max  
Over temperature and supplies.  
Relative Accuracy (INL)  
Offset Error  
Zero Scale Error  
Zero Scale TC  
Gain Error  
Gain Error TC  
0.02  
0.01  
0.015  
TBD  
0.003  
TBD  
0.01  
0.02  
0.01  
0.015  
TBD  
0.003  
TBD  
0.01  
% FSR max  
% FSR typ  
% FSR typ  
ppm % FSR max  
% FSR typ  
ppm % FSR max  
% FSR typ  
ppm % FSR max  
Error at analog input = 10mv  
Error at analog input = 0.0v  
(Ideal Span – Measured Span)/Ideal Span  
Error at analog input = 4.096v (FS)  
Full Scale Error  
Full Scale Error TC  
TBD  
TBD  
Output Voltage Over-Ranges  
0 to 6  
0 to 6  
V
Programmable Over-Ranges.  
See Features Section.  
0 to 12  
0 to 12  
-6 to +6  
-12 to +12  
0.02  
V
V
V
-6 to +6  
-12 to +12  
Overrange  
Relative Accuracy (INL)  
OUTPUT CHARACTERISTICS  
0.02  
% FSR max  
Rev. PrC | Page 4 of 25  
Preliminary Technical Data  
AD5750  
Parameter  
B grade1  
A grade2  
Unit  
Test Conditions/Comments  
Short-Circuit Current  
Load Conditions  
Resistance  
15  
15  
mA max  
1
1
K Ohm min  
For Specified Performance  
Capacitance Load Stability  
RL = ∞  
RL = 2 kΩ  
20  
TBD  
1
20  
TBD  
1
nF max  
nF max  
μF max  
RL = ∞  
External compensation capacitor of 4nF  
connected.  
0.1% Settling Time  
10  
10  
Us  
Specified with 200pF load  
Slew Rate  
1
1
V/μs typ  
Output Noise  
TBD  
80  
100  
TBD  
80  
100  
μV rms max  
μV rms max  
nV/√Hz typ  
0.1 Hz to 10 Hz Bandwidth  
100 kHz Bandwidth  
Measured at 10KHz  
Output Noise Spectral  
Density  
DC Output Impedance  
DC PSRR  
AC PSRR  
0.3  
10  
TBD  
0.3  
10  
TBD  
Ω typ  
μV/V  
dB  
200mV 50/60Hz Sinewavesuperimposed on  
power supply voltage.  
Power-On Glitch Energy  
CURRENT OUTPUT  
10  
10  
nV-sec typ  
Output Current Ranges  
0 to 24  
0 to 20  
4 to 20  
20  
0 to 24  
0 to 20  
4 to 20  
20  
mA  
mA  
mA  
mA  
mA  
24  
24  
ACCURACY  
Total Unadjusted Error (TUE)  
TUE TC  
0.1  
5
0.3  
5
% FSR max  
ppm max  
With External Precision Resistor  
With External Precision Resistor  
Bipolar Output  
Relative Accuracy (INL)  
Bipolar Zero Error  
Bipolar Zero TC  
Offset Error  
0.02  
0.0325  
TBD  
0.0175  
0.0175  
TBD  
0.01  
TBD  
0.0125  
TBD  
0.02  
0.0325  
TBD  
0.0175  
0.0175  
TBD  
0.01  
TBD  
0.0125  
TBD  
% FSR max  
% FSR typ  
ppm % FSR max  
% FSR typ  
% FSR typ  
ppm % FSR max  
% FSR typ  
ppm % FSR max  
% FSR typ  
Error at analog input = mid scale  
Error at analog input = 10mv  
Error at analog input = 0.0v  
Zero Scale Error  
Zero Scale TC  
Gain Error  
Gain Error TC  
Full Scale Error  
Full Scale Error TC  
(Ideal Span – Measured Span)/Ideal Span  
Error at analog input = 4.096v (FS)  
ppm % FSR max  
Unipolar Output  
Relative Accuracy (INL)  
Offset Error  
0.02  
0.01  
0.01  
TBD  
0.15  
TBD  
0.01  
TBD  
0.02  
0.01  
0.01  
TBD  
0.15  
TBD  
0.01  
TBD  
% FSR max  
% FSR typ  
% FSR typ  
ppm % FSR max  
% FSR typ  
ppm % FSR max  
% FSR typ  
ppm % FSR max  
Error at analog input = 10mv  
Error at analog input = 0.0v  
Zero Scale Error  
Zero Scale TC  
Gain Error  
Gain Error TC  
Full Scale Error  
Full Scale Error TC  
(Ideal Span – Measured Span)/Ideal Span  
Error at analog input = 4.096v (FS)  
Rev. PrC | Page 5 of 25  
AD5750  
Preliminary Technical Data  
Parameter  
B grade1  
A grade2  
Unit  
Test Conditions/Comments  
Total Unadjusted Error (TUE)  
TUE TC  
0.3  
20  
50  
0.3  
20  
50  
% FSR max  
ppm typ  
ppm max  
With Internal Resistor  
With Internal Resistor  
Bipolar Output  
Relative Accuracy (INL)  
Bipolar Zero Error  
Bipolar Zero TC  
Offset Error  
0.02  
0.0325  
TBD  
0.01  
0.01  
TBD  
0.003  
TBD  
0.01  
TBD  
0.02  
0.0325  
TBD  
0.01  
0.01  
TBD  
0.003  
TBD  
0.01  
TBD  
% FSR max  
% FSR typ  
ppm % FSR max  
% FSR typ  
% FSR typ  
ppm % FSR max  
% FSR typ  
ppm % FSR max  
% FSR typ  
Error at analog input = mid scale  
Error at analog input = 10mv  
Error at analog input = 0.0v  
Zero Scale Error  
Zero Scale TC  
Gain Error  
Gain Error TC  
Full Scale Error  
Full Scale Error TC  
(Ideal Span – Measured Span)/Ideal Span  
Error at analog input = 4.096v (FS)  
ppm % FSR max  
Unipolar Output  
Relative Accuracy (INL)  
Offset Error  
0.02  
0.01  
0.01  
TBD  
0.005  
TBD  
0.01  
TBD  
0.02  
0.01  
0.01  
TBD  
0.005  
TBD  
0.01  
TBD  
% FSR max  
% FSR typ  
% FSR typ  
ppm % FSR max  
% FSR typ  
ppm % FSR max  
% FSR typ  
ppm % FSR max  
Error at analog input = 10mv  
Error at analog input = 0.0v  
Zero Scale Error  
Zero Scale TC  
Gain Error  
Gain Error TC  
Full Scale Error  
Full Scale Error TC  
(Ideal Span – Measured Span)/Ideal Span  
Error at analog input = 4.096v (FS)  
CURRENT MODE  
OVERRANGES  
0 to 24.5  
0 to 24.5  
mA  
SEE FEATURES SECTION  
0 to 20.4  
4 to 20.4  
0 to 20.4  
4 to 20.4  
mA  
mA  
SEE FEATURES SECTION  
SEE FEATURES SECTION  
OUTPUT CHARACTERISTICS  
Current Loop Compliance  
Voltage  
AVDD – 2.5  
AVDD – 2.5  
V max  
Resistive Load  
See  
See  
kΩ max  
Chosen such that compliance is not exceeded.  
Comment  
Comment  
Inductive Load  
0.1% Settling Time  
0.1  
10  
0.1  
10  
H max  
us  
DC PSRR  
Output Impedance  
1
25  
1
25  
μA/V max  
MΩ typ  
REFERENCE INPUT  
Reference Input  
Reference Input Voltage  
Input Leakage Current  
DIGITAL INPUTS  
4.096  
1
4.096  
1
V nom  
uA max  
1% for specified performance  
DVCC = 2.7 V to 5.5 V, JEDEC compliant  
VIH, Input High Voltage  
VIL, Input Low Voltage  
Input Current  
2
0.8  
1
2
0.8  
1
V min  
V max  
μA max  
pF typ  
Per pin  
Per pin  
Pin Capacitance  
10  
10  
Rev. PrC | Page 6 of 25  
Preliminary Technical Data  
AD5750  
Parameter  
B grade1  
A grade2  
Unit  
Test Conditions/Comments  
DIGITAL OUTPUTS  
FAULT, IFAULT, TEMP, VFAULT  
VOL, Output Low Voltage  
VOL, Output Low Voltage  
VOH, Output High Voltage  
0.4  
0.6  
3.6  
0.4  
0.6  
3.6  
V max  
V typ  
V min  
10kΩ pull-up resistor to DVCC  
@ 2.5 Ma  
10kΩ pull-up resistor to DVCC  
SDO  
VOL, Output Low Voltage  
VOH, Output High Voltage  
High Impedance Leakage  
current  
0.5  
DVCC-0.5  
TBD  
0.5  
DVCC-0.5  
TBD  
V max  
V min  
ua max  
Sinking 200ua  
Sourcing 200ua  
High Impedance Output  
Capacitance  
20  
20  
pF max  
POWER REQUIREMENTS  
AVDD  
AVSS  
12 to 24  
-12 to 24  
12 to 24  
-12 to 24  
V min to V max  
V min to V max  
+/-10%  
+/-10%  
DVCC  
Input Voltage  
AVDD  
2.7 to 5.5  
TBD  
2.7 to 5.5  
TBD  
V min to V max  
mA  
Internal supply disabled  
Output unloaded  
AVSS  
TBD  
TBD  
mA  
Output unloaded  
DICC  
TBD  
TBD  
TBD  
TBD  
mA max  
mW typ  
VIH = DVCC, VIL = GND, TBD mA typ  
Power Dissipation  
1 Temperature range: -40°C to +105°C; typical at +25°C.  
2 Temperature range: -40°C to +105°C; typical at +25°C.  
Rev. PrC | Page 7 of 25  
AD5750  
Preliminary Technical Data  
TIMING CHARACTERISTICS  
AVDD/AVSS=±±2V ꢀ(/ꢁ±0ꢂ% to ±2ꢃV ꢀ(/ꢁ±0ꢂ% , DVCC =2.7 V to 5.5 V, GND = 0 V. R  
L
= 2 kΩ, C  
L
= 200 pF, IOUT : R  
L
= 300Ω,  
HL =  
50mH; All specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter1, 2  
Limit at TMIN, TMAX  
Unit  
Description  
t1  
t2  
t3  
t4  
33  
13  
13  
13  
13  
13  
6
0
1
25  
25  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
μs max  
ns min  
ns max  
SCLK cycle time  
SCLK high time  
SCLK low time  
SYNC falling edge to SCLK falling edge setup time  
16th SCLK falling edge to SYNC rising edge  
Minimum SYNC high time (WRITE MODE)  
Data setup time  
t5  
t6  
t7  
t8  
t10 , t9  
t11  
t12  
Data hold time  
CLEAR pulse high/low activation time  
Minimum SYNC high time (READ MODE)  
SCLK rising edge to SDO valid (SDO CL=20pf)  
1 Guaranteed by characterization. Not production tested.  
2 All input signals are specified with tR = tF = 5 ns (10% to 90% of DVCC) and timed from a voltage level of 1.2 V.  
200µA  
I
OL  
TO OUTPUT  
PIN  
VOH(min)-VOL(max)  
2
C
L
15pF  
200µA  
I
OH  
SDO Load Timing.  
Rev. PrC | Page 8 of 25  
Preliminary Technical Data  
AD5750  
t1  
SCLK  
1
2
16  
t2  
t3  
t6  
t5  
t4  
SYNC  
SDIN  
t8  
t7  
DB15  
DB0  
CLEAR  
t10  
V
OUT  
t9  
Figure 2. Write Mode Timing Diagram  
16  
1
2
SCLK  
SYNC  
t11  
X
A1  
A0  
X
X
X
X
X
A2  
X
X
X
X
R=1  
0
X
SDIN  
SDO  
t12  
X
OVER  
TEMP  
VOUT  
Fault  
PEC  
Error  
IOUT  
Fault  
CLRSEL  
OUTEN  
RSEL  
R0  
X
X
X
R3  
R2  
R1  
X
Figure 3. Readback Mode Timing Diagram  
Rev. PrC | Page 9 of 25  
AD5750  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C unless otherwise noted.  
Transient currents of up to 100 mA do not cause SCR latch-up.  
Table ꢃ.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
AVDD to GND  
AVSS to GND  
AVDD to AVSS  
DVCC to GND  
+VSENSE to GND  
-VSENSE to GND  
Digital Inputs to GND  
−0.3V to 30v  
+0.3 V to -30v  
-0.3V to 60v  
−0.3 V to +7 V  
AVSS to AVDD  
+/-5.0v  
ESD CAUTION  
−0.3 V to DVCC + 0.3 V or 7 V  
(whichever is less)  
Digital Outputs to GND  
−0.3 V to DVCC + 0.3 V or 7V  
(whichever is less)  
REFIN/REFOUT to GND  
VIN to GND  
−0.3 V to +5 V  
−0.3 V to +5 V  
VOUT to GND  
AVSS to AVDD  
IOUT to GND  
−0.3V to AVDD, +0.3V to AVSS  
Operating Temperature Range  
Industrial  
−40°C to +105°C  
−65°C to +150°C  
125°C  
Storage Temperature Range  
Junction Temperature (TJ max)  
32-Lead LFCSP Package  
θJA Thermal Impedance  
Lead Temperature  
Soldering  
28°C/W  
JEDEC Industry Standard  
J-STD-020  
Rev. PrC | Page 10 of 25  
Preliminary Technical Data  
AD5750  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
24 VSENSE+  
SDO/VFAULT  
CLRSEL  
PIN 1  
INDICATOR  
VOUT  
VSENSE-  
23  
22  
CLEAR  
DVCC  
GND  
21 AVSS  
COMP1  
COMP2  
IOUT  
20  
19  
18  
17  
TOP VIEW  
SYNC/RSEL  
SCLK/OUTEN  
SDIN/R0  
AVDD  
NC = NO CONNECT  
Figure 4. LFCSP Pin Configuration  
Table 5. Pin Function Descriptions  
LFCSP Pin No.  
Mnemonic  
Description  
1
SDO/VFAULT  
In Software Mode, Serial Data Output. Used to clock data from the serial register in  
readback mode. Data is clocked out on the rising edge of SCLK and is valid on the  
falling edge of SCLK. Open Drain Output, must be connected to a pull up resistor.  
In Hardware mode, acts as a SHORT circuit Fault alert pin. This pin is asserted low when  
an SHORT circuit. Error is detected. Open drain output, must be connected to a pull-up  
resistor.  
2
3
CLRSEL  
CLEAR  
In Hardware or software mode, selects the clear value, either zero-scale or mid-scale  
code. In Software mode, this pin is implemented as a logic OR with the internal CLRSEL  
bit.  
Active High Input. Asserting this pin sets the Output Current/Voltage to zero-scale code  
or mid-scale code of range selected (user-selectable). CLEAR is a LOGIC OR with the  
internal CLEAR bit.  
4
5
6
DVCC  
Digital Power Supply  
Ground Connection.  
GND  
SYNC/RSEL  
In Software Mode, Positive edge sensitive latch, a rising edge will parallel load the input  
shift register data into the INPUT register, also updating the output.  
In Hardware mode, this pin chooses whether internal/external current sense resistor is  
used  
7
8
9
SCLK/OUTEN  
SDIN/RO  
In Software Mode, Serial Clock Input. Data is clocked into the shift register on the falling  
edge of SCLK. This operates at clock speeds up to 30 MHz.  
In Hardware mode, this pin acts as an output enable pin.  
In Software Mode, Serial Data Input. Data must be valid on the falling edge of SCLK.  
In Hardware Mode, R0 is Range Decode Bit. This pin, in conjunction with R2, R3, R1  
choose the output current/voltage range setting on the part.  
AD2/R1  
In Software Mode, AD2 is Device Addressing bit. This pin, in conjunction with AD1, AD0  
allow up to 8 devices to be addressed on one bus.  
In Hardware Mode, R1 is Range Decode Bit. This pin, in conjunction with R2, R3, R0  
choose the output current/voltage range setting on the part.  
10  
AD1/R2  
In Software Mode, AD1 is Device Addressing bit. This pin, in conjunction with AD2, AD0  
allow up to 8 devices to be addressed on one bus.  
Rev. PrC | Page 11 of 25  
AD5750  
Preliminary Technical Data  
LFCSP Pin No.  
Mnemonic  
AD0/R3  
Description  
In Hardware Mode, R2 is Range Decode Bit. This pin, in conjunction with R3, R1, R0  
choose the output current/voltage range setting on the part.  
11  
In Software Mode, AD0 is Device Addressing bit. This pin, in conjunction with AD1, AD2  
allow up to 8 devices to be addressed on one bus.  
In Hardware Mode, R3 is Range Decode Bit. This pin, in conjunction with R2, R1, R0  
choose the output current/voltage range setting on the part.  
12  
13  
REXT1  
REXT 2  
An external current setting resistor can be connected to this pin to improve the IOUT  
temperature drift performance.  
When using the Internal RSET resistor these pins must be left floating.  
Reference Input  
14  
15  
16  
17  
18  
19  
20  
21  
22  
VREF  
VIN  
Analog Input (0-4.096v)  
GND  
Ground Connection.  
AVDD  
Positive Analog Supply Pin.  
IOUT  
COMP1  
COMP2  
AVSS  
Current Output Pin  
Optional compensation capacitor connection for the voltage output buffer  
Optional compensation capacitor connection for the voltage output buffer  
Negative Analog Supply Pin.  
-VSENSE  
Sense connection for the negative voltage output load connection. This pin must stay  
within +/-3.0v of ground for correct operation.  
23  
VOUT  
Buffered Analog Output Voltage.  
24  
+VSENSE  
NC  
Sense connection for the positive voltage output load connection.  
No Connect Pin. Can be tied to GND.  
25,26,27,28  
29  
HW SELECT  
This part is used to configure the part to hardware/software mode.  
HW SELECT = 0 selects Software Control.  
HW SELECT = 1 selects Hardware Control.  
30  
31  
RESET  
Resets the part to its power on state.  
FAULT/TEMP  
In Software mode, acts as a general Fault alert pin. This pin is asserted low when an  
open circuit, short circuit, over temperature or PEC Interface Error is detected. Open  
drain output, must be connected to a pull-up resistor.  
In Hardware mode, acts as an over temp FAULT pin. This pin is asserted low when an  
over temperature Error is detected. Open drain output, must be connected to a pull-up  
resistor.  
32  
NC/IFAULT  
In Hardware mode, acts as a OPEN circuit Fault alert pin. This pin is asserted low when  
an OPEN circuit. Error is detected. Open drain output, must be connected to a pull-up  
resistor.  
In Software mode, is a NC. Tie to GND.  
Rev. PrC | Page 12 of 25  
Preliminary Technical Data  
AD5750  
TYPICAL PERFORMANCE CHARACTERISTICS  
Figure 5.  
Figure 8.  
Figure 6.  
Figure 9.  
Figure 7.  
Figure 10  
Rev. PrC | Page 13 of 25  
AD5750  
Preliminary Technical Data  
TERMINOLOGY  
Output Voltage Settling Time  
Current Loop Voltage Compliance  
Output voltage settling time is the amount of time it takes for  
the output to settle to a specified level for a full-scale input  
change. A plot of settling time can be seen in Table TBD  
The maximum voltage at the IOUT pin for which the output  
currnet will be equal to the programmed value.  
PowerꢁOn Glitch Energy  
Slew Rate  
Power-on glitch energy is the impulse injected into the analog  
output when the AD5750 is powered-on. It is specified as the area  
of the glitch in nV-sec.  
The slew rate of a device is a limitation in the rate of change of  
the output voltage. Slew rate is measured from 10% to 90% of  
the output signal and is given in V/μs.  
Power Supply Rejection Ratio ꢀPSRR%  
PSRR indicates how the output is affected by changes in the  
power supply voltage.  
Total Unadjusted Error  
Total unadjusted error (TUE) is a measure of the output error  
taking all the various errors into account. TUE is expressed in %  
FSR.  
Rev. PrC | Page 14 of 25  
AD5750  
Preliminary Technical Data  
THEORY OF OPERATION  
Figures 11 and 12 shows a typical configuration of AD5750 in Software Mode (Figure 11) and in Hardware mode (Figure 12) in an  
output module system. The HW SELECT pin chooses whether the part is configured in software or hardware mode. The analog input to  
the AD5750 is provided from a low voltage, single supply digital-to-analog converter such as the AD5061 which provides an output  
range of 0-4.096V. The supply and reference for the DAC, as well as the reference for the AD5750 can be supplied from a reference  
such as the ADR392. The AD5750 can operate from supplies up to +26.4 volts.  
In current mode, software selectable output ranges include ±20mA, ±24mA, 0-20 mA, 4mA–20mA or 0mA–24mA.  
In voltage mode, software selectable output ranges include 0V–5V, 0V–10V, ±5V or ±10V. The current and voltage outputs are  
available on separate pins. Only one output can be enabled at one time. The output range is selected by programming the range bits in  
the control register.  
VSS  
VDD AGND  
ADP1720  
VSENSE+  
VSENSE-  
AD5750  
ADR392  
REFIN  
VIN  
VOUT  
0-5V, 0-10V,  
+/-5V, +/-10V  
VOUT  
RANGE  
SCALE  
VDD  
REFIN  
SCLK  
SDI  
SDO  
SYNC1  
AD566X  
IOUT  
MCU  
IOUT  
0-20ma, 0-24ma,  
4-20ma, +/-20ma,  
+/-24ma.  
RANGE  
SCALE  
SERIAL  
INTERFACE  
VOUT SHORT FAULT  
IOUT OPEN FAULT  
OVERTEMP FAULT  
RANGE ERROR  
SYNC2  
STATUS REGISTER  
HW SELECT  
FAULT  
Figure 11. Typical System Configuration in Software Mode .Pull up resistors not shown for open drain outputs.  
Rev. PrC | Page 15 of 25  
AD5750  
Preliminary Technical Data  
VSS  
VDD AGND  
ADP1720  
VSENSE+  
VSENSE-  
AD5750  
ADR392  
REFIN  
VIN  
VOUT  
0-5V, 0-10V,  
+/-5V, +/-10V  
VOUT  
RANGE  
SCALE  
VDD  
REFIN  
SCLK  
SDI  
SDO  
SYNC1  
AD566X  
IOUT  
MCU  
IOUT  
0-20ma, 0-24ma,  
4-20ma, +/-20ma,  
+/-24ma.  
RANGE  
SCALE  
HW SELECT  
OUTEN  
DVCC  
R3  
R2  
R1  
OUTPUT  
RANGE  
SELECT  
PINS  
R0  
IFAULT*  
VFAULT*  
TEMP  
Figure 12. Typical System Configuration in Hardware Mode. Pull up resistors not shown for open drain outputs.  
Rev. PrC | Page 16 of 25  
Preliminary Technical Data  
AD5750  
Driving Large Capacitive Loads  
CURRENT OUTPUT ARCHITECTURE  
The voltage input from the analog input VIN core (0-4.096v) is  
either converted to a current (see Figure 12) which is then  
mirrored to the supply rail so that the application simply sees a  
current source output with respect to an internal reference  
voltage or it is buffered and scaled to output a software  
selectable unipolar or bipolar voltage range (See Figure 13).  
The Reference is used to provide internal offsets for range and  
gain scaling. The selectable output range is programmable  
through the digital interface.  
The voltage output amplifier is capable of driving capacative  
loads of up to 1uF with the addition of a non-polarised 4nF  
compensation capacitor between the CCOMP1 and CCOMP2 pins.  
Without the compensation capacitor, up to 20nF capacitive  
loads can be driven.  
POWER ON STATE OF AD5750  
On Power-up, the AD5750 will sense whether hardware or  
software mode is loaded and set the power up conditions  
accordingly.  
VDD  
R2  
R3  
RANGE DECODE  
FROM INTERFACE  
In software SPI mode, the part will power up with all outputs  
disabled (OUTEN bit=0). In disabled mode, both the current  
and voltage outputs are put into tri-state mode. The user will  
have to set the OUTEN bit in the control register to enable the  
output and in the same write the user will also set the output  
range configuration using the range bits.  
REXT1  
VIN  
IOUT  
RANGE  
SCALING  
RSET  
VREF  
REXT2  
IOUT  
VINT  
R1  
If hardware mode is selected, the part will power up to the  
conditions defined by the range bits and the status of the  
OUTEN pin. It is recommended to keep the output disabled  
when powering up the part in hardware mode.  
VSS  
R4  
IOUT OPEN FAULT  
Figure 11. Current Output Configuration  
RESET:  
The AD5750 contains a reset function.  
RANGE DECODE  
FROM INTERFACE  
In Software mode, the part can be reset using the RESET pin  
(active low) or the RESET bit (RESET=1). A reset will disable  
both the current and voltage outputs and put them in tri-state  
mode. The user will have to write to the OUTEN bit to enable  
the output and in the same write the user will also set the output  
range configuration. The RESET pin is a level sensitive input -  
the part will stay in RESET mode as long as RESET pin is low.  
The RESET bit will clear to zero following a RESET command  
to the control register.  
+VSENSE  
VOUT  
VIN  
(0-4.096V)  
VOUT RANGE  
SCALING  
VOUT SHORT FAULT  
VREF  
-VSENSE  
Figure 12. Voltage Output  
Voltage Output Amplifier  
The voltage output amplifier is capable of generating both  
unipolar and bipolar output voltages. It is capable of driving a  
load of 1 kΩ in parallel with 1.2 uF. The source and sink  
capabilities of the output amplifier can be seen in Figure TBD.  
The slew rate is 1 V/μs with a full-scale settling time of 10  
μs.(10V step).  
In hardware mode, there is no RESET. If using the part in  
hardware mode the RESET pin should be tied high.  
OUTEN  
In Software mode, the output can be enabled/disabled using the  
OUTEN bit in the control register. When the output is disabled,  
both the current and voltage channels both go into tri-state. The  
user will have to set the OUTEN bit to enable the output and at  
this time the user will also set the output range configuration.  
The current and voltage are output on separate pins and cannot  
be output simultaneously. This allows the user to tie both the  
current and voltage output pins together and configuring the  
end system as “one channel” output.  
In Hardware mode, the output can be enabled/disabled using  
the OUTEN pin. When the output is disabled, both the current  
and voltage channels both go into tri-state. The user will have  
to write to the OUTEN pin to enable the output. It is  
recommended that the output be disabled when changing the  
ranges.  
Rev. PrC | Page 17 of 25  
AD5750  
Preliminary Technical Data  
SOFTWARE CONTROL:  
Software control is enabled by connecting the HW SELECT pin to ground. In software mode, the AD5750 is controlled over a versatile 3-  
wire serial interface that operates at clock rates up to 30 MHz. It is compatible with SPI®, QSPI™, MICROWIRE™, and DSP standards The  
input shift register is 16 bits wide. Data is loaded into the device MSB first as a 16-bit word under the control of a serial clock input,  
SCLK. Data is clocked in on the falling edge of SCLK. The input register consists of 16 control bits as shown in Table 5. The timing  
diagram for this operation is shown in Figure 2. The first 3 bits of the Input Register are used to set the hardware address of the AD5750  
device on the PCB board. Up to 8 devices can be addressed per board.  
Bits D11, D1, D0 must always be set to 0 during any write sequence.  
Table 3. Input Shift Register Format  
MSB  
D15  
A2  
LSB  
D1 D0  
D14 D13 D12  
A1 A0  
D11 D10 D9 D8 D7 D6  
D5  
D4  
D3  
D2  
0
R3 R2 R1 R0 CLRSEL OUTEN  
CLEAR RSEL RESET  
0
0
R/W  
Table 6. Input Shift Register Decoded  
Register  
A2, A1, A0  
Used in association with External Pins AD2, AD1, AD0 to determine which part is  
being addressed by the system controller.  
A2  
0
A1  
0
A0  
0
Function  
Addresses Part with pins AD2=0, AD1=0, AD0=0  
Addresses Part with pins AD2=0, AD1=0, AD0=1  
Addresses Part with pins AD2=0, AD1=1, AD0=0  
Addresses Part with pins AD2=0, AD1=1, AD0=1  
Addresses Part with pins AD2=1, AD1=0, AD0=0  
Addresses Part with pins AD2=1, AD1=0, AD0=1  
Addresses Part with pins AD2=1, AD1=1, AD0=0  
Addresses Part with pins AD2=1, AD1=1, AD0=1  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
W
Indicates a read from or a write to the addressed register.  
R/  
CLEAR  
Software Clear Bit – Active High.  
CLRSEL  
Sets Clear Mode to zero scale or midscale. See Text.  
CLRSEL  
0
1
Clear to Zero Volts  
Clear to Mid Scale in Unipolar Mode, Clear to Zero Scale in Bipolar Mode.  
OUTEN  
RSEL  
Output Enable Bit. This bit must be set to 1 to enable the outputs.  
Select Internal/External Current Sense Resistor.  
RSEL  
1
0
Select Internal Current Sense Resistor /*used with Range bits to select Range */  
Select External Current Sense Resistor /*used with Range bits to select Range */  
R3,R2,R1,R0  
Selects output Configuration in conjunction with RSEL.  
RSEL  
R3  
0
0
0
0
0
0
0
0
1
1
1
1
R2  
0
0
0
0
1
1
1
1
0
0
0
0
R1  
0
0
1
1
0
0
1
1
0
0
1
1
R0  
0
1
0
1
0
1
0
1
0
1
0
1
Output Configuration  
0
0
0
0
0
0
0
0
0
0
0
0
4-20MA  
0-20MA  
0-24MA  
+/-20MA  
+/-24MA  
0-5V  
External Current Sense Resistor 15k ohm.  
External Current Sense Resistor 15k ohm.  
External Current Sense Resistor 15k ohm.  
External Current Sense Resistor 15k ohm.  
External Current Sense Resistor 15k ohm.  
0-10V  
+/-5V  
+/-10V  
0-6.0V (20% over range)  
0-12.0V (20% over range)  
+/-6.0V (20% over range)  
Rev. PrC | Page 18 of 25  
Preliminary Technical Data  
AD5750  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
+/-12.0V (20% over range)  
+/-2.5v  
N/A. If selected output will drive 0V.  
N/A. If selected output will drive 0V.  
4-20MA Internal Current Sense Resistor.  
0-20MA Internal Current Sense Resistor.  
0-24MA Internal Current Sense Resistor.  
+/-20MA  
+/-24MA  
0-5V  
0-10V  
+/-5V  
+/-10V  
0-6.0V (20% over range)  
0-12.0V (20% over range)  
+/-6.0V (20% over range)  
+/-12.0V (20% over range)  
3.92ma – 20.4ma Internal Current Sense Resistor.  
0ma – 20.4ma  
0ma – 24.5ma  
Internal Current Sense Resistor.  
Internal Current Sense Resistor.  
Reset  
Resets the part to its Power on State  
Readback Operation  
Readback mode is invoked by selecting the correct device address (A2,A1,A0) and then setting the R/W bit to 1. By default the SDO pin is  
disabled, after having addressed the AD5750 for a read operation, setting R/W to 1 will enable the SDO pin and SDO data will be clocked  
out on the 5th rising edge of SCLK. After the data has been clocked out on SDO, a rising edge on SYNC will disable (tri- state) the SDO  
pin once again. STATUS and CONTROL register data will be both available during the same read cycle. See Table 7 below.  
Table 7. Input Shift Register Contents for a read operation  
MSB  
D15  
A2  
LSB  
D14  
D13  
D12  
1
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A1  
A0  
0
R3  
R2  
R1  
R0  
CLRSEL  
OUTEN  
RSEL  
OVER TEMP  
IOUT Fault  
Vout Fault  
PEC Error Bit  
The STATUS bits are 4 read only bits. They are used to notify the user of specific fault conditions that have arisen, such as open or short  
circuit on the output, over temperature, or an interface error. If any one of these fault conditions occur a hardware FAULT is also asserted  
low which can be used as a hardware interrupt to the controller.  
Full explanation of fault conditions are given in the Features sections.  
Table 9. STATUS Bits Options  
Option  
Description  
PEC ERROR  
VOUT FAULT  
IOUT FAULT  
OVER TEMP  
Bit Set if there is an Interface Error detected by CRC-8 Error Checking. See features section.  
Bit set if there is a short Circuit on VOUT pin.  
Bit set is there is an open circuit on IOUT pin.  
This bit will be set if the AD5750 core temperature exceeds approx. 150°C.  
Rev. PrC | Page 19 of 25  
AD5750  
Preliminary Technical Data  
HARDWARE CONTROL:  
Hardware control is enabled by connecting the HW SELECT pin to DVCC. In this mode, pins R3,R2,R1,R0 along with RSEL pin are used  
to configure the output range as per Table.  
RSEL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
R3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
R2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
R1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
R0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Output Configuration  
4-20MA  
0-20MA  
0-24MA  
+/-20MA  
+/-24MA  
0-5V  
External Current Sense Resistor 15k ohm.  
External Current Sense Resistor 15k ohm.  
External Current Sense Resistor 15k ohm.  
External Current Sense Resistor 15k ohm.  
External Current Sense Resistor 15k ohm.  
0-10V  
+/-5V  
+/-10V  
0-6.0V (20% over range)  
0-12.0V (20% over range)  
+/-6.0V (20% over range)  
+/-12.0V (20% over range)  
+/-2.5v  
N/A. If selected output will drive 0V.  
N/A. If selected output will drive 0V.  
4-20MA Internal Current Sense Resistor.  
0-20MA Internal Current Sense Resistor.  
0-24MA Internal Current Sense Resistor.  
+/-20MA  
+/-24MA  
0-5V  
0-10V  
+/-5V  
+/-10V  
0-6.0V (20% over range)  
0-12.0V (20% over range)  
+/-6.0V (20% over range)  
+/-12.0V (20% over range)  
3.92ma – 20.4ma Internal Current Sense Resistor.  
0ma – 20.4ma  
0ma – 24.5ma  
Internal Current Sense Resistor.  
Internal Current Sense Resistor.  
Rev. PrC | Page 20 of 25  
Preliminary Technical Data  
AD5750  
In hardware mode there is no status register. The fault  
conditions; open circuit, short circuit and over temperature are  
available on pins IFAULT, VFAULT and TEMP. If any one of  
these fault conditions are set then a low is asserted on the  
specific fault pin. IFAULT, VFAULT and TEMP are open drain  
outputs and therefore can be connected together to allow the  
user generate one interrupt to the system controller to  
communicate a fault. If hardwired in this way, it will not be  
possible to isolate which fault occurred in the system.  
Vout = GAIN x VIN  
For a bipolar voltage output range, the output voltage expression is  
given by  
Vout = ꢀGAIN x VIN – ꢀGAIN x ꢀVREF/2%% x VIN%  
where:  
VREF is the reference voltage applied at the REFIN pin.  
Gain is an internal gain whose value depends on the output  
range selected by the user as shown in  
DEFAULT CONFIGURATION:  
On initial power-up of the AD5750 the power-on-reset circuit  
ensures that all registers are loaded with zero-code, as such the  
default output is the current output with the 4mA to 20mA  
range selected, the current output until a value is programmed  
is 0mA. The voltage output pin will be in three-state. An  
alternative current range or a voltage output range may be  
selected via the CONTROL register.  
Current Output  
For a given current output range, the current output range is  
chosen setting the bits R3,R2,R1,R10 in the Input Register or  
pins. Transfer function will change depending on current range  
selected.  
TRANSFER FUNCTION  
Voltage Output  
For a unipolar voltage output range, the output voltage  
expression is given by  
Rev. PrC | Page 21 of 25  
AD5750  
Preliminary Technical Data  
FEATURES  
feedback loop of the output amplifier, the output  
accuracy is maintained by its open-loop gain and an  
output error does not occur before the FAULT output  
becomes active.  
OUTPUT FAULT ALERT – SOFTWARE MODE  
In Software mode, the AD5750 is equipped with one FAULT  
pin, this is an open-drain output allowing several AD5750  
devices to be connected together to one pull-up resistor for  
global fault detection. In software control mode, the FAULT pin  
is forced active high by any one of the following fault scenarios;  
If this fault is detected the IFAULT pin is forced low.  
2) A short is detected on the voltage output pin. Short  
circuit current limited to 25ma. If this fault is detected  
the VFAULT pin is forced low.  
1) The Voltage at IOUT attempts to rise above the  
compliance range, due to an open-loop circuit or  
insufficient power supply voltage. The internal  
circuitry that develops the fault output avoids using a  
comparator with “window limits” since this would  
require an actual output error before the FAULT  
output becomes active. Instead, the signal is generated  
when the internal amplifier in the output stage has less  
than approximately one volt of remaining drive  
capability. Thus the FAULT output activates slightly  
before the compliance limit is reached. Since the  
comparison is made within the feedback loop of the  
output amplifier, the output accuracy is maintained by  
its open-loop gain and an output error does not occur  
before the FAULT output becomes active.  
3) If the core temperature of the AD5750 exceeds approx.  
150°C. If this fault is detected the TEMP pin is forced  
low.  
VOLTAGE OUTPUT SHORT CIRCUIT PROTECTION  
Under normal operation the voltage output will sink/source  
5mA and maintain specified operation. The maximum current  
that the voltage output will deliver is 15mA, this is the short  
circuit current.  
ASYNCHRONOUS CLEAR (CLEAR)  
CLEAR is an active high clear that allows the voltage output to  
be cleared to either zero-scale code or mid-scale code, user-  
selectable via the CLRSEL pin or the CLRSEL bit of the INPUT  
register as described in Table 6. (The Clear select feature is a  
logical OR function of the CLR SELECT pin and the CLRSEL  
bit). The Current loop output will clear to the bottom of its  
programmed range. It is necessary to maintain CLEAR high for a  
minimum amount of time (see Figure 2) to complete the  
operation. When the CLEAR signal is returned low, the output  
returns to its programmed value or a new value if programmed.  
A clear operation can also be performed via the CLEAR  
command in the control register.  
2) A short is detected on the voltage output pin. Short  
circuit current limited to 25ma.  
3) An interface error is detected due to the PEC error  
checking failure. See PEC error checking section.  
4) A range change is detected without the user writing to  
the Interface.  
5) If the core temperature of the AD5750 exceeds approx.  
150°C.  
Table ±±. CLEAR SELECT Options  
OUTPUT FAULT ALERT – HARDWARE MODE  
CLR  
Output CLR Value  
SELECT  
In hardware mode, the AD5750 is equipped with 3 FAULT pins,  
VFAULT, IFAULT, TEMP. These are an open-drain outputs  
allowing several AD5750 devices to be connected together to  
one pull-up resistor for global fault detection. In hardware  
control mode, these fault pins are forced active by any one of  
the following fault scenarios;  
Unipolar Output Voltage  
Range  
Bipolar Output  
Range  
0
1
0 V  
Negative Full-Scale  
0 V  
Mid-Scale  
Unipolar Current Output  
Range  
Bipolar Current  
Output Range  
1) Open Circuit Detect. The Voltage at IOUT attempts to  
rise above the compliance range, due to an open-loop  
circuit or insufficient power supply voltage. The  
internal circuitry that develops the fault output avoids  
using a comparator with “window limits” since this  
would require an actual output error before the  
FAULT output becomes active. Instead, the signal is  
generated when the internal amplifier in the output  
stage has less than approximately one volt of  
0
1
Zero-Scale e.g.  
4ma on 4-20ma  
0ma on 0-20ma etc...  
Zero Scale e.g.  
-24ma on +/-24ma  
Mid-Scale e.g.  
12ma on 4-20ma  
10ma on 0-20ma  
Mid-Scale e.g.  
0ma on +/-24ma  
EXTERNAL CURRENT SETTING RESISTOR  
Referring to Figure 1, RSET is an internal sense resistor as part  
of the voltage to current conversion circuitry. The nominal  
value of internal current sense resistor is 15k ohm. To allow for  
overrange capability in current mode, the user can also select  
remaining drive capability. Thus the FAULT output  
activates slightly before the compliance limit is  
reached. Since the comparison is made within the  
Rev. PrC | Page 22 of 25  
Preliminary Technical Data  
AD5750  
the internal current sense resistor to be 14.7K, giving a nominal  
2% overrange capability. This feature is available in the 0-20ma,  
4-20ma, +/-20ma current ranges.  
PACKET ERROR CHECKING  
To verify that data has been received correctly in noisy  
environments, the AD5750 offers the option of error  
checking based on an 8-bit (CRC-8) cyclic redundancy check.  
The device controlling the AD5750 should generate an 8-bit  
frame check sequence using the polynomial  
The stability of the output current value over temperature is  
dependent on the stability of the value of RSET. As a method of  
improving the stability of the output current over temperature  
an external low drift resistor can be connected to the RSET1 &  
RSET2 pins of the AD5750 to be used instead of the internal  
resistor RSET. The external resistor is selected via the input  
register. If the external resistor option is not used the RSET1  
and RSET2 pins should be left floating.  
C(x) = x  
8
+ x  
2
+ x +1.  
1
This is added to the end of the data word, and 24 data  
bits are sent to the AD5750 before taking SYNC high.  
If the AD5750 sees a 24-bit data frame, it will perform  
the error check when SYNC goes high. If the check is valid,  
then the data will be written to the selected register. If the error  
check fails, the FAULT will go high and bit D4 of the Status  
Register is set. After reading this register, this error flag is  
cleared automatically and PEC goes high again.  
PROGRAMMABLE OVER-RANGE MODES  
The AD5750 contains an over range mode for most of the  
available ranges. In voltage mode the over-range is typically  
20% and in current mode the over-range is typically 2%. The  
overranges are selected by configuring R3, R1, R1, R0 bits/pins  
accordingly.  
UPDATE ON SYNC HIGH  
SYNC  
In voltage mode the overranges are typically 20% providing  
programmable output ranges of 0-6v, 0-12v, +/-6v and +/-12v.  
The 0-4.096v analog input remains the same.  
In current mode the overranges are typically 2%. In current  
mode the overrange capability is only available on 3 ranges, 0-  
20ma, 0-24ma, 4-20ma. For these ranges the analog input will  
also vary, according to the table below.  
SCLK  
MSB  
D15  
LSB  
D0  
DIN  
16-BIT DATA  
16-BIT DATATRANSFER - NO ERROR CHECKING  
UPDATE AFTER SYNC HIGH  
ONLY IF ERROR CHECK PASSED  
SYNC  
Over Range  
0-20.4ma  
3.92-20.4ma  
0-24.5ma  
Analog Input  
0.075v – 4.096v  
0.06v-4.096v  
0.065-4.096v  
SCLK  
DIN  
MSB  
D23  
LSB  
D8  
D0  
8-BIT FCS  
D7  
16 BIT DATA  
PEC GOES LOW IF  
ERROR CHECK FAILS  
PEC  
16-BIT DATA TRANSFER WITH ERROR CHECKING  
For example, in 0-20.4ma range, an analog input of 0.075v will  
output 0ma and 4.096v will output full scale 20.4ma.  
Figure 13. PEC Error Checking Timing  
Rev. PrC | Page 23 of 25  
AD5750  
Preliminary Technical Data  
APPLICATIONS INFORMATION  
TRANSIENT VOLTAGE PROTECTION  
The AD5750 contains ESD protection diodes which prevent  
damage from normal handling. The industrial control  
environment can, however, subject I/O circuits to much higher  
transients. In order to protect the AD5750 from excessively high  
voltage transients , external power diodes and a surge current  
limiting resistor may be required, as shown in Figure 15. The  
constraint on the resistor value is that during normal operation  
the output level at IOUT must remain within its voltage  
compliance limit of AVDD – 2.0V and the two protection diodes  
and resistor must have appropriate power ratings.  
separate ground plane, but separating the lines helps). It is  
essential to minimize noise on the REFIN line.  
Avoid crossover of digital and analog signals. Traces on  
opposite sides of the board should run at right angles to each  
other. This reduces the effects of feed through the board. A  
microstrip technique is by far the best, but not always possible  
with a double-sided board. In this technique, the component  
side of the board is dedicated to ground plane, while signal  
traces are placed on the solder side.  
GALVANICALLY ISOLATED INTERFACE  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled to protect and isolate the controlling circuitry from  
any hazardous common-mode voltages that might occur. The  
iCoupler® family of products from Analog Devices provides  
voltage isolation in excess of 2.5 kV. The serial loading structure  
of the AD5750 make it ideal for isolated interfaces because the  
number of interface lines is kept to a minimum. Figure 16 shows  
a 4-channel isolated interface to the AD5750 using an  
ADuM1400. For further information, visit  
AV  
DD  
AV  
DD  
R
P
AD5750  
I
OUT  
R
LOAD  
AV  
SS  
http://www.analog.com/icouplers.  
Figure 15. Output Transient Voltage Protection  
LAYOUT GUIDELINES  
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure  
the rated performance. The printed circuit board on which the  
AD5750 is mounted should be designed so that the AD5750 lies  
on the analog plane.  
Controller  
ADuM1400 *  
V
V
OA  
IA  
To SCLK  
Serial Clock Out  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
V
V
V
V
V
IB  
IC  
ID  
OB  
To SDIN  
Serial Data Out  
SYNC Out  
ENCODE  
ENCODE  
ENCODE  
OC  
To SYNC  
To CLEAR  
The AD5750 should have ample supply bypassing of 10 μF in  
parallel with 0.1 μF on each supply located as close to the  
package as possible, ideally right up against the device. The 10  
μF capacitors are the tantalum bead type. The 0.1 μF capacitor  
should have low effective series resistance (ESR) and low  
effective series inductance (ESI) such as the common ceramic  
types, which provide a low impedance path to ground at high  
frequencies to handle transient currents due to internal logic  
switching.  
V
OD  
Control out  
*ADDITIONAL PINS OMITTED FOR CLARITY  
Figure16. Isolated Interface  
MICROPROCESSOR INTERFACING  
Microprocessor interfacing to the AD5750 is via a serial bus that  
uses protocol compatible with microcontrollers and DSP  
processors. The communications channel is a 3-wire  
(minimum) interface consisting of a clock signal, a data signal,  
and a sync signal. The AD5750 require a 16-bit data-word with  
data valid on the falling edge of SCLK.  
The power supply lines of the AD5750 should use as large a  
trace as possible to provide low impedance paths and reduce the  
effects of glitches on the power supply line. Fast switching  
signals such as clocks should be shielded with digital ground to  
avoid radiating noise to other parts of the board and should  
never be run near the reference inputs. A ground line routed  
between the SDIN and SCLK lines helps reduce crosstalk  
between them (not required on a multilayer board that has a  
Rev. PRC | Page 24 of 25  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
AD5750  
5.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
25  
24  
32  
1
PIN 1  
INDICATOR  
0.50  
BSC  
TOP  
VIEW  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
(BOTTOM VIEW)  
4.75  
BSC SQ  
0.50  
0.40  
0.30  
17  
16  
8
9
0.25 MIN  
3.50 REF  
0.80 MAX  
0.65 TYP  
12° MAX  
0.05 MAX  
0.02 NOM  
1.00  
0.85  
0.80  
0.30  
0.23  
0.18  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 17. 32-Lead Lead Frame Chip Scale Package  
(CP-32-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
TUE Accuracy  
Temperature Range  
Package Description  
Package Option  
AD5750ACPZ  
AD5750BCPZ  
0.3 %  
0.1%  
-40°C to 105°C  
-40°C to 105°C  
32 Lead LFCSP  
32 Lead LFCSP  
CP-32-2  
CP-32-2  
Rev. PrC | Page 25 of 25  
PR07268-0-5/08(PrC)  

相关型号:

AD5750-1

Industrial Current/Voltage Output Driver with Programmable Ranges
ADI

AD5750-1ACPZ

Industrial Current/Voltage Output Driver
ADI

AD5750-1ACPZ-REEL

Industrial Current/Voltage Output Driver with Programmable Ranges
ADI

AD5750-1ACPZ-REEL7

Industrial Current/Voltage Output Driver with Programmable Ranges
ADI

AD5750-1BCPZ

Industrial Current/Voltage Output Driver
ADI

AD5750-1BCPZ-REEL

Industrial Current/Voltage Output Driver with Programmable Ranges
ADI

AD5750-1BCPZ-REEL7

Industrial Current/Voltage Output Driver with Programmable Ranges
ADI

AD5750-2

Industrial Current/Voltage Output Driver
ADI

AD5750-2BCPZ

Industrial Current/Voltage Output Driver
ADI

AD5750-2BCPZ-RL7

Industrial Current/Voltage Output Driver
ADI

AD5750ACPZ

Industrial Current/Voltage Output Driver, Programmable Ranges
ADI

AD5750ACPZ-REEL

Industrial Current/Voltage Output Driver with Programmable Ranges
ADI