AD5790_18 [ADI]

Voltage Output DAC;
AD5790_18
型号: AD5790_18
厂家: ADI    ADI
描述:

Voltage Output DAC

文件: 总27页 (文件大小:965K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
System Ready, 20-Bit, 2 LSB INL,  
Voltage Output DAC  
Data Sheet  
AD5790  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
V
REFP  
CC  
DD  
Single 20-bit voltage output DAC, 2 LSB INL  
8 nV/√Hz output noise spectral density  
0.1 LSB long-term linearity error stability  
0.018 ppm/°C gain error temperature coefficient  
2.5 µs output voltage settling time  
6.8kΩ 6.8kΩ  
R1  
A1  
R
IOV  
CC  
FB  
R
FB  
INV  
SDIN  
SCLK  
SYNC  
SDO  
INPUT  
SHIFT  
20  
20  
20-BIT  
DAC  
DAC  
REG  
V
OUT  
REGISTER  
AND  
3.5 nV-sec midscale glitch impulse  
CONTROL  
LOGIC  
Integrated precision reference buffers  
Operating temperature range: −40°C to +125°C  
4 mm × 5 mm LFCSP package  
Wide power supply range of up to 16.5 V  
35 MHz Schmitt-triggered digital interface  
1.8 V compatible digital interface  
6kΩ  
LDAC  
CLR  
POWER-ON-RESET  
AND CLEAR LOGIC  
RESET  
AD5790  
DGND  
V
AGND  
V
REFN  
SS  
Figure 1.  
APPLICATIONS  
Medical instrumentation  
Test and measurement  
Industrial control  
Scientific and aerospace instrumentation  
Data acquisition systems  
Digital gain and offset adjustment  
Power supply control  
GENERAL DESCRIPTION  
The AD57901 is a single, 20-bit, unbuffered voltage output digital-  
to-analog converter (DAC) that operates from a bipolar supply of  
up to 33 V. T h e AD5790 accepts a positive reference input in the  
range of 5 V to VDD − 2.5 V and a negative reference input in the  
range of VSS + 2.5 V to 0 V. T h e AD5790 offers a relative  
accuracy specification of 2 LSB maximum range, and  
operation is guaranteed monotonic with a −1 LSB to +3 LSB  
differential nonlinearity (DNL) specification.  
PRODUCT HIGHLIGHTS  
1. 20-bit resolution.  
2. Wide power supply range of up to 16.5 V.  
3. −40°C to +125°C operating temperature range.  
4. Low 8 nV/√Hz noise.  
5. Low 0.018 ppm/°C gain error temperature coefficient.  
COMPANION PRODUCTS  
Output Amplifier Buffer: AD8675, ADA4898-1, ADA4004-1  
External Reference: ADR445, ADR4550  
The part uses a versatile 3-wire serial interface that operates at  
clock rates of up to 35 MHz and is compatible with standard  
serial peripheral interface (SPI), QSPI™, MICROWIRE™, and  
DSP interface standards. Reference buffers are also provided on  
chip. The part incorporates a power-on reset circuit that ensures  
the DAC output powers up to 0 V in a known output impedance  
state and remains in this state until a valid write to the device  
takes place. The part provides a disable feature that places the  
output in a defined load state. The part provides an output  
clamp feature that places the output in a defined load state.  
DC-to-DC Design Tool: ADIsimPower™  
Additional companion products on the AD5790 product page.  
Table 1. Related Devices  
Part No.  
AD5791  
AD5780  
Description  
20-bit, 1 LSB accurate DAC  
18-bit, 1 LSB INL, voltage output DAC ,  
buffered reference inputs  
AD5781  
AD5760  
18-bit, 1 LSB INL, voltage Output DAC ,  
unbuffered reference inputs  
16-bit, 0.5 LSB INL, voltage Output DAC  
AD5541A/AD5542A 16-bit, 1 LSB accurate 5 V DAC  
1 Protected by U.S. Patent No. 7,884,747 and 8,089,380.  
Rev. E  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2011-2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
 
 
AD5790  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Serial Interface............................................................................ 18  
Standalone Operation................................................................ 19  
Hardware Control Pins.............................................................. 19  
On-Chip Registers...................................................................... 19  
AD5790 Features ............................................................................ 23  
Power-On to 0 V......................................................................... 23  
Power-Up Sequence ................................................................... 23  
Configuring the AD5790 .......................................................... 23  
DAC Output State ...................................................................... 23  
Output Amplifier Configuration.............................................. 23  
Applications Information.............................................................. 25  
Typical Operating Circuit ......................................................... 25  
Evaluation Board........................................................................ 26  
Outline Dimensions....................................................................... 27  
Ordering Guide .......................................................................... 27  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Companion Products....................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ............................................. 9  
Terminology .................................................................................... 17  
Theory of Operation ...................................................................... 18  
DAC Architecture....................................................................... 18  
REVISION HISTORY  
4/2018—Rev. D to Rev. E  
2/2012—Rev. A to Rev. B  
Added Power-Up Sequence Section and Figure 50; Renumbered  
Sequentially ..................................................................................... 23  
Updated Outline Dimensions ....................................................... 27  
Changes to Ordering Guide .......................................................... 27  
Deleted Linearity Compensation Section ................................... 24  
12/2011—Rev. 0 to Rev. A  
Changes to Table 1.............................................................................1  
Changes to Table 2.............................................................................4  
Changes to Figure 48...................................................................... 17  
Changes to DAC Register Section................................................ 21  
Changes to Table 11 ....................................................................... 22  
Updated Outline Dimensions....................................................... 28  
7/2013—Rev. C to Rev. D  
Changes to t1 Test Conditions/Comments and Endnote 2 ......... 5  
Deleted Figure 4................................................................................ 7  
Changes to Pin 11 Description ....................................................... 8  
Deleted Daisy-Chain Operation Section..................................... 19  
11/2011—Revision 0: Initial Version  
7/2012—Rev. B to Rev. C  
Changes to Companion Products Section and to Endnote 1 ..... 1  
Changes to Terminology Section.................................................. 18  
Changes to Figure 53...................................................................... 24  
Added Figure 55.............................................................................. 26  
Rev. E | Page 2 of 27  
 
Data Sheet  
AD5790  
SPECIFICATIONS  
VDD = +12.5 V to +16.5 V, VSS = −16.5 V to −12.5 V, VREFP = +1 0 V, V REFN = −10 V, VCC = +2.7 V to +5.5 V, IOVCC = +1.71 V to +5.5 V,  
RL = unloaded, CL = unloaded, TMIN to TMAX, unless otherwise noted.  
Table 2.  
B Version1  
Parameter  
STATIC PERFORMANCE2  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Resolution  
Integral Nonlinearity Error (Relative  
Accuracy)  
20  
−2  
Bits  
LSB  
1.2  
+2  
VREFP = +10 V, VREFN = −10 V, TA = 0°C to 105°C  
VREFP = +10 V, VREFN = −10 V, TA =−40°C to +105°C  
−3  
−4  
−1  
−1  
1.2  
1.2  
+3  
+4  
+2  
+3  
LSB  
LSB  
LSB  
LSB  
VREFx  
VREFP = +10 V, VREFN = −10 V, TA = 0°C to 105°C  
VREFx 10 V, +10 V, and +5 V  
= 10 V, +10 V, and +5 V  
Differential Nonlinearity Error  
=
Long-Term Linearity Error Stability3  
Full-Scale Error  
0.1  
3.8  
2.7  
1.8  
3.8  
2.7  
1.8  
0.026  
1.3  
0.7  
0.9  
1.3  
0.7  
0.9  
0.025  
2.3  
1.9  
0.9  
2.3  
2.9  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
LSB  
LSB  
LSB  
After 750 hours at TA = 135°C  
VREFP = +10 V, VREFN = −10 V  
VREFP = 10 V, VREFN = 0 V  
−12  
−22  
−40  
−9  
−12  
−22  
+12  
+22  
+40  
+9  
+12  
+22  
VREFP = 5 V, VREFN = 0 V  
VREFP = +10 V, VREFN = −10 V, TA = 0°C to 105°C  
VREFP = 10 V, VREFN = 0 V, TA = 0°C to 105°C  
VREFP = 5 V, VREFN = 0 V, TA = 0°C to 105°C  
VREFP = +10 V, VREFN = −10 V  
VREFP = +10 V, VREFN = −10 V  
VREFP = 10 V, VREFN = 0 V  
Full-Scale Error Temperature Coefficient  
Zero-Scale Error  
−19  
−40  
−82  
−8  
−13  
−22  
+19  
+40  
+82  
+8  
+13  
+22  
VREFP = 5 V, VREFN = 0 V  
VREFP = +10 V, VREFN = −10 V, TA = 0°C to 105°C  
VREFP = 10 V, VREFN = 0 V, TA = 0°C to 105°C  
VREFP = 5 V, VREFN = 0 V, TA = 0°C to 105°C  
VREFP = +10 V, VREFN = −10 V  
VREFP = +10 V, VREFN = −10 V  
VREFP = 10 V, VREFN = 0 V  
LSB  
Zero-Scale Error Temperature Coefficient  
Gain Error  
ppm/°C  
ppm FSR  
ppm FSR  
ppm FSR  
ppm FSR  
ppm FSR  
ppm FSR  
ppm/°C  
%
−19  
−35  
−68  
−9  
−15  
−22  
+19  
+35  
+68  
+9  
+15  
+22  
VREFP = 5 V, VREFN = 0 V  
VREFP = +10 V, VREFN = −10 V, TA = 0°C to 105°C  
VREFP = 10 V, VREFN = 0 V, TA = 0°C to 105°C  
VREFP = 5 V, VREFN = 0 V, TA = 0°C to 105°C  
VREFP = +10 V, VREFN = −10 V  
0.9  
0.018  
0.015  
Gain Error Temperature Coefficient  
R1, RFB Matching  
OUTPUT CHARACTERISTICS  
Output Voltage Range  
VREFN  
VREFP  
V
Output Voltage Settling Time  
2.5  
µs  
10 V step to 0.02%, using the ADA4898-1 buffer  
in unity-gain mode  
3.5  
8
8
1.1  
14  
3.5  
4
14  
3.5  
4
µs  
500 code step to 1 LSB4  
Output Noise Spectral Density  
nV/√Hz  
nV/√Hz  
µV p-p  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
nV-sec  
At 1 kHz, DAC code = midscale  
At 10 kHz, DAC code = midscale  
DAC code = midscale, 0.1 Hz to 10 Hz bandwidth  
VREFP = +10 V, VREFN = −10 V  
Output Voltage Noise  
Midscale Glitch Impulse4  
VREFP = 10 V, VREFN = 0 V  
VREFP = 5 V, VREFN = 0 V  
MSB Segment Glitch Impulse4  
VREFP = +10 V, VREFN = −10 V, see Figure 42  
V
REFP = 10 V, VREFN = 0 V, see Figure 43  
REFP = 5 V, VREFN = 0 V, see Figure 44  
V
Rev. E | Page 3 of 27  
 
AD5790  
Data Sheet  
B Version1  
Parameter  
Min  
Typ  
57  
0.27  
3.4  
6
Max  
Unit  
nV-sec  
nV-sec  
kΩ  
Test Conditions/Comments  
Output Enabled Glitch Impulse  
Digital Feedthrough  
DC Output Impedance (Normal Mode)  
DC Output Impedance (Output  
Clamped to Ground)  
On removal of output ground clamp  
kΩ  
REFERENCE INPUTS  
VREFP Input Range  
VREFN Input Range  
Input Bias Current  
5
VDD − 2.5  
0
+20  
+4  
V
V
nA  
VSS + 2.5  
−20  
−4  
−0.63  
−0.63  
1
TA = 0°C to 105°C  
VREFP, VREFN  
Input Capacitance  
pF  
LOGIC INPUTS  
Input Current5  
Input Low Voltage, VIL  
−1  
+1  
0.3 × IOVCC  
µA  
V
IOVCC = 1.71 V to 5.5 V  
IOVCC = 1.71 V to 5.5 V  
Input High Voltage, VIH  
0.7 × IOVCC  
V
Pin Capacitance  
5
3
pF  
LOGIC OUTPUT (SDO)  
Output Low Voltage, VOL  
Output High Voltage, VOH  
High Impedance Leakage Current  
0.4  
1
V
V
µA  
pF  
IOVCC = 1.71 V to 5.5 V, sinking 1 mA  
IOVCC = 1.71 V to 5.5 V, sourcing 1 mA  
IOVCC − 0.5  
High Impedance Output Capacitance  
POWER REQUIREMENTS  
All digital inputs at DGND or IOVCC  
VDD  
VSS  
VCC  
7.5  
VDD − 33  
2.7  
VSS + 33  
−2.5  
5.5  
V
V
V
IOVCC  
1.71  
5.5  
V
IOVCC ≤ VCC  
IDD  
ISS  
ICC  
IOICC  
10.3  
−10  
600  
52  
7.5  
1.5  
90  
14  
mA  
mA  
µA  
µA  
µV/V  
µV/V  
dB  
dB  
−14  
900  
140  
SDO disabled  
∆VDD 10%, VSS = −15 V  
∆VSS 10%, VDD = 15 V  
∆VDD 200 mV, 50 Hz/60 Hz, VSS = −15 V  
∆VSS 200 mV, 50 Hz/60 Hz, VDD = 15 V  
DC Power Supply Rejection Ratio  
AC Power Supply Rejection Ratio  
90  
1 Temperature range: −40°C to +125°C, typical conditions: TA = +25°C, VDD = +15 V, VSS = −15 V, VREFP = +10 V, VREFN = −10 V.  
2 Performance characterized with the AD8675ARZ output buffer.  
3 Linearity error refers to both INL error and DNL error, either parameter can be expected to drift by the amount specified after the length of time specified.  
4 The AD5790 is configured in unity-gain mode with a low-pass RC filter on the output. R = 300 Ω, C = 143 pF (total capacitance seen by the output buffer, lead  
capacitance, and so forth).  
5 Current flowing in an individual logic pin.  
Rev. E | Page 4 of 27  
Data Sheet  
AD5790  
TIMING CHARACTERISTICS  
VCC = 2.7 V to 5.5 V; all specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Limit1  
Parameter  
IOVCC = 1.71 V to 3.3 V  
IOVCC = 3.3 V to 5.5 V  
Unit  
Test Conditions/Comments  
SCLK cycle time  
SCLK cycle time (readback mode)  
SCLK high time  
2
t1  
40  
92  
15  
9
28  
60  
10  
5
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns typ  
ns typ  
ns min  
ns typ  
ns min  
t2  
t3  
t4  
SCLK low time  
5
5
SYNC to SCLK falling edge setup time  
SCLK falling edge to SYNC rising edge hold time  
Minimum SYNC high time  
t5  
2
2
t6  
48  
8
40  
6
t7  
SYNC rising edge to next SCLK falling edge ignore  
Data setup time  
Data hold time  
LDAC falling edge to SYNC falling edge  
SYNC rising edge to LDAC falling edge  
LDAC pulse width low  
t8  
t9  
9
7
7
12  
13  
20  
14  
130  
130  
50  
140  
0
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
t21  
t22  
10  
16  
11  
130  
130  
50  
140  
0
LDAC falling edge to output response time  
SYNC rising edge to output response time (LDAC tied low)  
CLR pulse width low  
CLR pulse activation time  
SYNC falling edge to first SCLK rising edge  
65  
62  
0
60  
45  
0
ns max SYNC rising edge to SDO tristate (CL = 50 pF)  
ns max SCLK rising edge to SDO valid (CL = 50 pF)  
ns min  
ns typ  
ns typ  
SYNC rising edge to SCLK rising edge ignore  
RESET pulse width low  
35  
150  
35  
150  
RESET pulse activation time  
1 All input signals are specified with tR = tF = 1 ns/V (10% to 90% of IOVCC) and timed from a voltage level of (VIL + VIH)/2.  
2 Maximum SCLK frequency is 35 MHz for write mode and 16 MHz for readback mode.  
Rev. E | Page 5 of 27  
 
AD5790  
Data Sheet  
t1  
t7  
SCLK  
1
2
24  
t3  
t2  
t6  
t4  
t5  
SYNC  
SDIN  
t9  
t8  
DB23  
DB0  
t12  
t10  
t11  
LDAC  
t13  
V
V
OUT  
OUT  
t14  
t15  
CLR  
t16  
V
OUT  
t21  
RESET  
t22  
V
OUT  
Figure 2. Write Mode Timing Diagram  
t20  
t1  
t17  
t7  
SCLK  
1
2
24  
1
2
24  
t3  
t2  
t6  
t17  
t5  
t5  
t4  
SYNC  
SDIN  
t9  
t8  
DB23  
DB0  
INPUT WORD SPECIFIES  
REGISTER TO BE READ  
NOP CONDITION  
t18  
t19  
DB23  
DB0  
SDO  
REGISTER CONTENTS CLOCKED OUT  
Figure 3. Readback Mode Timing Diagram  
Rev. E | Page 6 of 27  
 
Data Sheet  
AD5790  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Transient currents of up to 100 mA do not cause SCR latch-up.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 4.  
Parameter  
VDD to AGND  
VSS to AGND  
VDD to VSS  
VCC to DGND  
IOVCC to DGND  
Rating  
−0.3 V to +34 V  
−34 V to +0.3 V  
−0.3 V to +34 V  
−0.3 V to +7 V  
−0.3 V to VCC + 3 V or +7 V  
(whichever is less)  
This device is a high performance integrated circuit with an  
ESD rating of <1.6 kV, and it is ESD sensitive. Proper  
precautions must be taken for handling and assembly.  
Digital Inputs to DGND  
−0.3 V to IOVCC + 0.3 V or  
+7 V (whichever is less)  
ESD CAUTION  
VOUT to AGND  
VREFP to AGND  
VREFN to AGND  
DGND to AGND  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
VSS − 0.3 V to + 0.3 V  
−0.3 V to +0.3 V  
Operating Temperature Range, TA  
Industrial  
Storage Temperature Range  
Maximum Junction Temperature,  
TJ max  
−40°C to +125°C  
−65°C to +150°C  
150°C  
Power Dissipation  
LFCSP Package  
(TJ max − TA)/θJA  
θJA Thermal Impedance  
Lead Temperature  
Soldering  
31.0°C/W  
JEDEC industry standard  
J-STD-020  
ESD (Human Body Model)  
1.6 kV  
Rev. E | Page 7 of 27  
 
 
AD5790  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
V
AGND  
1
2
3
19  
18  
17  
16  
15  
14  
13  
OUT  
V
V
SS  
REFP  
V
V
DD  
SS  
AD5790  
TOP VIEW  
(Not to Scale)  
V
RESET 4  
V
REFN  
5
DGND  
SYNC  
SCLK  
DD  
CLR 6  
LDAC 7  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
2. NEGATIVE ANALOG SUPPLY CONNECTION (V ).  
SS  
A VOLTAGE IN THE RANGE OF –16.5 V TO –2.5 V  
CAN BE CONNECTED. V SHOULD BE DECOUPLED  
SS  
CTRICALLY  
TO AGND. THE PADDLE CAN BE LEFT ELE  
UNCONNECTED PROVIDED THAT A SUPPLY  
CONNECTION IS MADE AT THE VSS PINS. IT IS  
RECOMMENDED THAT THE PADDLE BE THERMALLY  
CONNECTED TO A COPPER PLANE FOR ENHANCED  
THERMAL PERFORMANCE.  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
VOUT  
Analog Output Voltage.  
2
VREFP  
Positive Reference Voltage Input. A voltage in the range of 5 V to VDD − 2.5 V can be connected.  
3, 5  
VDD  
Positive Analog Supply Connection. A voltage in the range of 7.5 V to 16.5 V can be connected. VDD must be  
decoupled to AGND.  
4
6
RESET  
CLR  
Active Low Reset. Asserting this pin returns the AD5790 to its power-on status.  
Active Low Input. Asserting this pin sets the DAC register to a user defined value (see Table 12) and updates the  
DAC output. The output value depends on the DAC register coding that is being used, either binary or twos  
complement.  
7
LDAC  
Active Low Load DAC Logic Input. This is used to update the DAC register and, consequently, the analog output.  
SYNC LDAC  
When tied permanently low, the output is updated on the rising edge of  
. If  
is held high during the  
LDAC  
write cycle, the input register is updated, but the output update is held off until the falling edge of  
LDAC  
. The  
pin should not be left unconnected.  
Digital Supply. Voltage range is from 2.7 V to 5.5 V. VCC should be decoupled to DGND.  
8
9
VCC  
IOVCC  
Digital Interface Supply. Digital threshold levels are referenced to the voltage applied to this pin. Voltage range is  
from 1.71 V to 5.5 V  
10, 21, 22, 23  
11  
12  
DNC  
SDO  
SDIN  
Do Not Connect. Do not connect to these pins.  
Serial Data Output. Data is clocked out on the rising edge of the serial clock input.  
Serial Data Input. This device has a 24-bit input shift register. Data is clocked into the register on the falling edge  
of the serial clock input.  
13  
14  
SCLK  
SYNC  
Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data  
can be transferred at rates of up to 35 MHz.  
Level-Triggered Control Input (Active Low). This is the frame synchronization signal for the input data. When  
SYNC  
goes low, it enables the input shift register, and data is then transferred in on the falling edges of the  
SYNC  
following clocks. The DAC is updated on the rising edge of  
.
15  
16  
17, 18  
DGND  
VREFN  
VSS  
Ground Reference Pin for Digital Circuitry.  
Negative Reference Voltage Input.  
Negative Analog Supply Connection. A voltage in the range of −16.5 V to −2.5 V can be connected. VSS must be  
decoupled to AGND.  
19  
20  
24  
EPAD  
AGND  
RFB  
INV  
VSS  
Ground Reference Pin for Analog Circuitry.  
Feedback Connection for External Amplifier. See the AD5790 Features section for further details.  
Inverting Input Connection for External Amplifier. See the AD5790 Features section for further details.  
Negative Analog Supply Connection (VSS). A voltage in the range of −16.5 V to −2.5 V can be connected. VSS must  
be decoupled to AGND. The paddle can be left electrically unconnected provided that a supply connection is  
made at the VSS pins. It is recommended that the paddle be thermally connected to a copper plane for enhanced  
thermal performance.  
Rev. E | Page 8 of 27  
 
Data Sheet  
AD5790  
TYPICAL PERFORMANCE CHARACTERISTICS  
AD8675 OUTPUT BUFFER  
2.0  
1.5  
AD8675 OUTPUT BUFFER  
= 25°C  
T
= 25°C  
1.25  
A
T
A
0.75  
1.0  
0.5  
0.25  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–0.25  
–0.75  
–1.25  
–1.75  
V
V
V
V
= +10V  
= –10V  
REFP  
REFN  
DD  
SS  
V
V
V
V
= +5V  
= 0V  
REFP  
REFN  
DD  
SS  
= +15V  
= +15V  
= –15V  
= –15V  
0
200000  
400000  
600000  
DAC CODE  
800000 1000000 1200000  
0
200000  
400000  
600000  
800000 1000000 1200000  
DAC CODE  
Figure 5. Integral Nonlinearity Error vs. DAC Code, ±±1 V Span  
Figure 8. Integral Nonlinearity Error vs. DAC Code, 5 V Span, ×2 Gain Mode  
2.5  
2.0  
AD8675 OUTPUT BUFFER  
= 25°C  
AD8675 OUTPUT BUFFER  
A
T
A
T
= 25°C  
2.0  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
V
V
V
V
= +10V  
= 0V  
REFP  
REFN  
DD  
SS  
V
V
V
V
= +10V  
= –10V  
REFP  
REFN  
DD  
SS  
= +15V  
= +15V  
= –15V  
= –15V  
0
200000  
400000  
600000  
800000 1000000 1200000  
0
200000  
400000  
600000  
800000 1000000 1200000  
DAC CODE  
DAC CODE  
Figure 9. Differential Nonlinearity Error vs. DAC Code, ± ±1 V Span  
Figure 6. Integral Nonlinearity Error vs. DAC Code, ±1 V Span  
2.0  
2.0  
AD8675 OUTPUT BUFFER  
A
AD8675 OUTPUT BUFFER  
= 25°C  
T
= 25°C  
T
A
1.5  
1.0  
1.5  
1.0  
0.5  
0
0.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
0
–0.5  
–1.0  
–1.5  
V
V
V
V
= +10V  
= 0V  
REFP  
REFN  
DD  
SS  
V
V
V
V
= +5V  
= 0V  
REFP  
REFN  
DD  
SS  
= +15V  
= +15V  
= –15V  
= –15V  
0
200000  
400000  
600000  
800000 1000000 1200000  
0
200000  
400000  
600000  
800000 1000000 1200000  
DAC CODE  
DAC CODE  
Figure ±1. Differential Nonlinearity Error vs. DAC Code, ±1 V Span  
Figure 7. Integral Nonlinearity Error vs. DAC Code, 5 V Span  
Rev. E | Page 9 of 27  
 
 
 
AD5790  
Data Sheet  
3.0  
±10V SPAN MAX DNL  
+10V SPAN MAX DNL  
+5V SPAN MAX DNL  
±10V SPAN MIN DNL  
+10V SPAN MIN DNL  
+5V SPAN MIN DNL  
AD8675 OUTPUT BUFFER  
= 25°C  
V
V
V
V
= +5V  
= 0V  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
REFP  
REFN  
DD  
SS  
T
A
= +15V  
= –15V  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= +15V  
= –15V  
DD  
SS  
AD8675 OUTPUT BUFFER  
–0.5  
–1.0  
–0.2  
–40  
–20  
0
20  
40  
60  
80  
100  
0
200000  
400000  
600000  
800000 1000000 1200000  
TEMPERATURE (°C)  
DAC CODE  
Figure 14. Differential Nonlinearity Error vs. Temperature  
Figure 11. Differential Nonlinearity Error vs. DAC Code, 5 V Span  
1.5  
2.5  
AD8675 OUTPUT BUFFER  
= 25°C  
V
V
V
V
= +5V  
= 0V  
REFP  
REFN  
DD  
SS  
T
A
INL MAX  
= +15V  
= –15V  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.5  
T
= 25°C  
A
V
= +10V  
0
REFP  
REFN  
V
= –10V  
AD8675 OUTPUT BUFFER  
–0.5  
–1.0  
–1.5  
INL MIN  
15.5  
–0.5  
–1.0  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
16.0  
16.5  
0
200000  
400000  
600000  
800000 1000000 1200000  
V
/|V | (V)  
DAC CODE  
DD SS  
Figure 12. Differential Nonlinearity Error vs. DAC Code, 5 V Span, ×2 Gain  
Mode  
Figure 15. Integral Nonlinearity Error vs. Supply Voltage, 10 V Span  
1.8  
2.5  
±10V SPAN MAX INL  
+10V SPAN MAX INL  
+5V SPAN MAX INL  
±10V SPAN MIN INL  
+10V SPAN MIN INL  
+5V SPAN MIN INL  
INL MAX  
1.3  
2.0  
1.5  
0.8  
0.3  
–0.2  
–0.7  
–1.2  
–1.7  
–2.2  
T
= 25°C  
1.0  
A
V
= 5V  
REFP  
REFN  
V
= 0V  
AD8675 OUTPUT BUFFER  
0.5  
V
V
= +15V  
= –15V  
DD  
SS  
0
AD8675 OUTPUT BUFFER  
INL MIN  
–0.5  
–1.0  
–1.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
–40  
–20  
0
20  
40  
60  
80  
100  
V
TEMPERATURE (°C)  
DD SS  
Figure 16. Integral Nonlinearity Error vs. Supply Voltage, 5 V Span  
Figure 13. Integral Nonlinearity Error vs. Temperature  
Rev. E | Page 10 of 27  
Data Sheet  
AD5790  
1.4  
1.2  
1.0  
11  
9
T
V
V
= 25°C  
A
= 5V  
REFP  
REFN  
DNL MAX  
= 0V  
AD8675 OUTPUT BUFFER  
7
T
= 25°C  
0.8  
0.6  
0.4  
0.2  
0
5
A
V
V
= +10V  
REFP  
REFN  
= –10V  
AD8675 OUTPUT BUFFER  
3
1
–1  
–3  
–5  
DNL MIN  
15.0  
–0.2  
12.5  
13.0  
13.5  
14.0  
14.5  
15.5  
16.0  
16.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
V
/|V | (V)  
V
DD SS  
DD SS  
Figure 17. Differential Nonlinearity Error vs. Supply Voltage, 10 V Span  
Figure 20. Zero-Scale Error vs. Supply Voltage, 5 V Span  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
–1.8  
–2.0  
1.4  
T
V
V
= 25°C  
A
DNL MAX  
= +10V  
= –10V  
REFP  
REFN  
1.2  
AD8675 OUTPUT BUFFER  
1.0  
0.8  
T
= 25°C  
A
0.6  
0.4  
0.2  
0
V
V
= 5V  
REFP  
REFN  
= 0V  
AD8675 OUTPUT BUFFER  
DNL MIN  
–0.2  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
V
/|V | (V)  
V
DD SS  
DD SS  
Figure 18. Differential Nonlinearity Error vs. Supply Voltage, 5 V Span  
Figure 21. Midscale Error vs. Supply Voltage, 10 V Span  
10  
8
T
V
V
= 25°C  
T
V
V
= 25°C  
A
A
= 5V  
= +10V  
REFP  
REFN  
REFP  
REFN  
1.0  
0.5  
= 0V  
= –10V  
AD8675 OUTPUT BUFFER  
AD8675 OUTPUT BUFFER  
6
4
2
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2  
–4  
–6  
–8  
–10  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
V
/|V | (V)  
V
/|V | (V)  
DD SS  
DD SS  
Figure 19. Zero-Scale Error vs. Supply Voltage, 10 V Span  
Figure 22. Midscale Error vs. Supply Voltage, 5 V Span  
Rev. E | Page 11 of 27  
AD5790  
Data Sheet  
2.0  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
T
= 25°C  
A
V
= +10V  
REFP  
REFN  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= –10V  
AD8675 OUTPUT BUFFER  
T
= 25°C  
A
V
= 5V  
REFP  
REFN  
V
= 0V  
AD8675 OUTPUT BUFFER  
7.5 8.5 9.5 10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
V
/|V | (V)  
V
DD SS  
DD SS  
Figure 23. Full-Scale Error vs. Supply Voltage, ±±0 V Span  
Figure 26. Gain Error vs. Supply Voltage, 5 V Span  
1.25  
0.75  
8
T
= 25°C  
A
V
= 5V  
REFP  
INL MAX  
6
4
V
= 0V  
REFN  
AD8675 OUTPUT BUFFER  
2
0.25  
T
= 25°C  
DD  
SS  
A
V
= +15V  
= –15V  
0
V
AD8675 OUTPUT BUFFER  
–2  
–4  
–6  
–8  
–10  
–12  
–0.25  
–0.75  
–1.25  
–1.75  
INL MIN  
7.5  
8.5  
9.5  
10.5 11.5 12.5 13.5 14.5 15.5 16.5  
/|V | (V)  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
V
V
| (V)  
DD SS  
REFP  
REFN  
Figure 24. Full-Scale Error vs. Supply Voltage, 5 V Span  
Figure 27. Integral Nonlinearity Error vs. Reference Voltage  
1.5  
1.0  
0.5  
0
T
= 25°C  
1.15  
A
V
V
= +10V  
REFP  
= –10V  
REFN  
INL MAX  
AD8675 OUTPUT BUFFER  
0.95  
0.75  
T
= 25°C  
DD  
SS  
0.55  
A
V
V
= +15V  
= –15V  
AD8675 OUTPUT BUFFER  
0.35  
0.15  
–0.5  
–1.0  
INL MIN  
–0.05  
–0.25  
12.5  
13.0  
13.5  
14.0  
14.5  
15.0  
15.5  
16.0  
16.5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
V
/|V | (V)  
V
| (V)  
DD SS  
REFP  
REFN  
Figure 25. Gain Error vs. Supply Voltage, ±±0 V Span  
Figure 28. Differential Nonlinearity Error vs. Reference Voltage  
Rev. E | Page 12 of 27  
Data Sheet  
AD5790  
–4.0  
–4.5  
–5.0  
–5.5  
–6.0  
–6.5  
–7.0  
–7.5  
T
V
V
= 25°C  
T
= 25°C  
A
A
V
–0.1  
–0.3  
–0.5  
–0.7  
–0.9  
–1.1  
–1.3  
–1.5  
= +15V  
= –15V  
= +15V  
DD  
SS  
DD  
SS  
V
= –15V  
AD8675 OUTPUT BUFFER  
AD8675 OUTPUT BUFFER  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
V
| (V)  
V
| (V)  
REFP  
REFN  
REFP  
REFN  
Figure 32. Gain Error vs. Reference Voltage  
Figure 29. Zero-Scale Error vs. Reference Voltage  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
T
V
V
= 25°C  
V
V
= +15V  
= –15V  
A
DD  
SS  
= +15V  
= –15V  
REFP  
REFN  
AD8675 OUTPUT BUFFER  
AD8675 OUTPUT BUFFER  
±10V SPAN  
+10V SPAN  
+5V SPAN  
–40  
–20  
0
20  
40  
60  
80  
100  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
TEMPERATURE (°C)  
V
| (V)  
REFP  
REFN  
Figure 33. Full-Scale Error vs. Temperature  
Figure 30. Midscale Error vs. Reference Voltage  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3
2
V
V
= +15V  
= –15V  
T
= 25°C  
= +15V  
SS  
±10V SPAN  
+10V SPAN  
+5V SPAN  
DD  
SS  
A
DD  
V
V
= –15V  
AD8675 OUTPUT BUFFER  
AD8675 OUTPUT BUFFER  
1
0
–1  
–2  
–3  
–4  
–5  
5.0  
5.5  
6.0  
6.5  
7.0  
7.5  
/|V  
8.0  
8.5  
9.0  
9.5 10.0  
–40  
–20  
0
20  
40  
60  
80  
100  
V
| (V)  
REFP  
REFN  
TEMPERATURE (°C)  
Figure 31. Full-Scale Error vs. Reference Voltage  
Figure 34. Midscale Error vs. Temperature  
Rev. E | Page 13 of 27  
AD5790  
Data Sheet  
0.010  
0.008  
0.006  
0.004  
0.002  
0
5
V
SS  
= +15V  
= –15V  
±10V SPAN  
+10V SPAN  
+5V SPAN  
DD  
V
3
1
AD8675 OUTPUT BUFFER  
I
DD  
–1  
–3  
–5  
–7  
–9  
–11  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
I
SS  
–40  
–20  
0
20  
40  
60  
80  
100  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
V
/V (V)  
DD SS  
TEMPERATURE (°C)  
Figure 38. Power Supply Currents vs. Power Supply Voltages  
Figure 35. Zero-Scale Error vs. Temperature  
6
4
0
–2  
V
V
= +15V  
= –15V  
±10V SPAN  
+10V SPAN  
+5V SPAN  
DD  
SS  
AD8675 OUTPUT BUFFER  
2
–4  
0
–6  
–2  
–4  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–10  
–1  
0
1
2
3
4
5
–40  
–20  
0
20  
40  
60  
80  
100  
TIME (µs)  
TEMPERATURE (°C)  
Figure 36. Gain Error vs. Temperature  
Figure 39. Rising Full-Scale Voltage Step  
6
4
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
IOV = 5V, LOGIC VOLTAGE  
CC  
INCREASING  
T
= 25°C  
A
IOV = 5V, LOGIC VOLTAGE  
CC  
DECREASING  
IOV = 3V, LOGIC VOLTAGE  
CC  
2
INCREASING  
IOV = 3V, LOGIC VOLTAGE  
CC  
0
DECREASING  
–2  
–4  
–6  
–8  
–10  
–1  
0
1
2
3
4
5
0
1
2
3
4
5
6
TIME (µs)  
LOGIC INPUT VOLTAGE (V)  
Figure 40. Falling Full-Scale Voltage Step  
Figure 37. IOICC vs. Logic Input Voltage  
Rev. E | Page 14 of 27  
Data Sheet  
AD5790  
10  
9
8
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
V
= 5V  
= 0V  
NEGATIVE  
POSITIVE  
REFP  
REFN  
UNITY GAIN MODE  
ADA4898-1  
RC LOW-PASS FILTER  
V
V
= +10V  
= –10V  
REFP  
REFN  
RC LOW-PASS FILTER  
UNITY GAIN MODE  
ADA4898-1  
–1  
0
1
2
3
4
5
TIME (µs)  
CODE  
Figure 41. 500 Code Step Settling Time  
Figure 44. 6 MSB Segment Glitch Energy for 5 V VREF  
55  
25  
±10V SPAN  
+10V SPAN  
+5V SPAN  
NEGATIVE  
POSITIVE  
V
V
= +10V  
= –10V  
V
V
= +10V  
= –10V  
REFP  
REFP  
REFN  
REFN  
45  
35  
UNITY GAIN MODE  
RC LOW-PASS FILTER  
UNITY GAIN MODE  
ADA4898-1  
ADA4898-1  
20  
15  
10  
5
RC LOW-PASS FILTER  
NEGATIVE CODE  
CHANGE  
POSITIVE CODE  
CHANGE  
25  
15  
5
–5  
–15  
–25  
0
1
0
1
2
3
TIME (µs)  
CODE  
Figure 42. 6 MSB Segment Glitch Energy for 10 V VREF  
Figure 45. Midscale Peak-to-Peak Glitch for 10 V  
800  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= 10V  
= 0V  
T
V
V
V
V
= 25°C  
REFP  
REFN  
A
MIDSCALE CODE LOADED  
OUTPUT UNBUFFERED  
AD8676 REFERENCE BUFFERS  
= +15V  
= –15V  
DD  
SS  
UNITY GAIN MODE  
600  
400  
ADA4898-1  
= +10V  
= –10V  
REFP  
REFN  
RC LOW-PASS FILTER  
NEGATIVE  
POSITIVE  
200  
0
–200  
–400  
–600  
0
1
2
3
4
5
6
7
8
9
10  
TIME (Seconds)  
CODE  
Figure 43. 6 MSB Segment Glitch Energy for 10 V VREF  
Figure 46. Voltage Output Noise, 0.1 Hz to 10 Hz Bandwidth  
Rev. E | Page 15 of 27  
 
 
 
AD5790  
Data Sheet  
200  
180  
160  
140  
120  
100  
80  
100  
V
V
V
V
= +15V  
= –15V  
REFP  
REFN  
V
= +15V  
= –15V  
DD  
SS  
DD  
SS  
V
V
V
= +10V  
= –10V  
= +10V  
= –10V  
REFP  
REFN  
UNITY GAIN  
ADA4898-1  
10  
60  
40  
20  
0
–20  
1
0.1  
1
10  
100  
1k  
10k  
0
1
2
3
4
5
6
FREQUENCY (Hz)  
TIME (µs)  
Figure 48. Glitch Impulse on Removal of Output Clamp  
Figure 47. Noise Spectral Density vs. Frequency  
Rev. E | Page 16 of 27  
 
Data Sheet  
AD5790  
TERMINOLOGY  
Output Voltage Settling Time  
Relative Accuracy  
Output voltage settling time is the amount of time it takes for  
the output voltage to settle to a specified level for a specified  
change in voltage. For fast settling applications, a high speed  
buffer amplifier is required to buffer the load from the 3.4 kΩ  
output impedance of the AD5790, in which case, it is the  
amplifier that determines the settling time.  
Relative accuracy, or integral nonlinearity (INL), is a measure of  
the maximum deviation, in LSB, from a straight line passing  
through the endpoints of the DAC transfer function. A typical  
INL error vs. code plot is shown in Figure 5.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent  
codes. A specified differential nonlinearity of 1 LSB maximum  
ensures monotonicity. This DAC is guaranteed monotonic. A  
typical DNL error vs. code plot is shown in Figure 9.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is specified as the area of the glitch in nV-sec and is  
measured when the digital input code is changed by 1 LSB at  
the major carry transition. See Figure 48.  
Long-Term Linearity Error Stability  
Linearity error long-term stability is a measure of the stability of  
the linearity of the DAC over a long period of time. It is speci-  
fied in LSB for a time period of 500 hours and 1000 hours at an  
elevated ambient temperature.  
Output Enabled Glitch Impulse  
Output enabled glitch impulse is the impulse injected into the  
analog output when the clamp to ground on the DAC output is  
removed. It is specified as the area of the glitch in nV-sec (see  
Figure 48).  
Zero-Scale Error  
Zero-scale error is a measure of the output error when zero-scale  
code (0x00000) is loaded to the DAC register. Ideally, the output  
voltage should be VREFN. Zero-scale error is expressed in LSBs.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC but is measured when the DAC output is not updated. It is  
specified in nV-sec and measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s, and vice versa.  
Zero-Scale Error Temperature Coefficient  
Zero-scale error temperature coefficient is a measure of the  
change in zero-scale error with a change in temperature. It is  
expressed in ppm FSR/°C.  
Total Harmonic Distortion (THD)  
Full-Scale Error  
Total harmonic distortion is the ratio of the rms sum of the  
harmonics of the DAC output to the fundamental value. Only  
the second to fifth harmonics are included.  
Full-scale error is a measure of the output error when full-scale  
code (0xFFFFF) is loaded to the DAC register. Ideally, the  
output voltage should be VREFP − 1 LSB. Full-scale error is  
expressed in LSBs.  
DC Power Supply Rejection Ratio  
DC power supply rejection ratio is a measure of the rejection of  
the output voltage to dc changes in the power supplies applied  
to the DAC. It is measured for a given dc change in power  
supply voltage and is expressed in µV/V.  
Full-Scale Error Temperature Coefficient  
Full-scale error temperature coefficient is a measure of the  
change in full-scale error with a change in temperature. It is  
expressed in ppm FSR/°C.  
AC Power Supply Rejection Ratio (AC PSRR)  
Gain Error  
AC power supply rejection ratio is a measure of the rejection of  
the output voltage to ac changes in the power supplies applied  
to the DAC. It is measured for a given amplitude and frequency  
change in power supply voltage and is expressed in decibels.  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal, expressed in ppm of the full-scale range.  
Gain Error Temperature Coefficient  
Gain error temperature coefficient is a measure of the change  
in gain error with a change in temperature. It is expressed in  
ppm FSR/°C.  
Midscale Error  
Midscale error is a measure of the output error when midscale  
code (0x80000) is loaded to the DAC register. Ideally, the output  
voltage should be (VREFP − VREFN)/2 + VREFN. Midscale error is  
expressed in LSBs.  
Rev. E | Page 17 of 27  
 
AD5790  
Data Sheet  
THEORY OF OPERATION  
R
R
R
V
The AD5790 is a high accuracy, fast settling, single, 20-bit,  
serial input, voltage-output DAC. It operates from a VDD supply  
voltage of 7 V to 16.5 V and a VSS supply of −16.5 V to −2.5 V.  
Data is written to the AD5790 in a 24-bit word format via a 3-wire  
serial interface. The AD5790 incorporates a power-on reset  
circuit that ensures the DAC output powers up to 0 V with the  
OUT  
..........  
.....................  
.....................  
2R  
2R  
E0  
2R  
S0  
2R  
S1  
2R  
S13  
2R  
.........  
E61  
E62  
V
REFP  
V
REFN  
VOUT pin clamped to AGND through a ~6 kΩ internal resistor.  
14-BIT R-2R LADDER  
SIX MSBs DECODED INTO  
63 EQUAL SEGMENTS  
DAC ARCHITECTURE  
Figure 49. DAC Ladder Structure  
The architecture of the AD5790 consists of two matched DAC  
sections. A simplified circuit diagram is shown in Figure 49.  
The six MSBs of the 20-bit data-word are decoded to drive  
63 switches, E0 to E62. Each of these switches connects one of  
63 matched resistors to either the buffered VREFP or buffered  
VREFN voltage. The remaining 14 bits of the data-word drive  
Switches S0 to S13 of a 14-bit voltage mode R-2R ladder  
network.  
SERIAL INTERFACE  
The AD5790 has a 3-wire serial interface (  
, SCLK, and  
SYNC  
SDIN) that is compatible with SPI, QSPI, and MICROWIRE  
interface standards, as well as most DSPs (see Figure 2 for a  
timing diagram).  
Input Shift Register  
The input shift register is 24 bits wide. Data is loaded into the  
device MSB first as a 24-bit word under the control of a serial  
clock input, SCLK, which can operate at up to 35 MHz. The  
W
input register consists of a R/ bit, three address bits and  
20 data bits as shown in Table 6. The timing diagram for this  
operation is shown in Figure 2.  
Table 6. Input Shift Register Format  
MSB  
LSB  
DB23  
DB22  
DB21  
Register address  
DB20  
DB19 to DB0  
R/W  
Register data  
Table 7. Decoding the Input Shift Register  
R/W  
X1  
0
0
0
0
1
1
Register Address  
Description  
0
0
0
0
1
0
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No operation (NOP). Used in readback operations.  
Write to the DAC register.  
Write to the control register.  
Write to the clearcode register.  
Write to the software control register.  
Read from the DAC register.  
Read from the control register.  
Read from the clearcode register.  
1
1 X is don’t care.  
Rev. E | Page 18 of 27  
 
 
 
 
 
 
Data Sheet  
AD5790  
Synchronous DAC Update  
STANDALONE OPERATION  
The serial interface works with both a continuous and noncon-  
tinuous serial clock. A continuous SCLK source can be used  
LDAC  
In this mode,  
is held low while data is being clocked into  
the input shift register. The DAC output is updated on the rising  
SYNC  
SYNC  
only if  
In gated clock mode, a burst clock containing the exact number  
SYNC  
is held low for the correct number of clock cycles.  
edge of  
Asynchronous DAC Update  
LDAC  
.
of clock cycles must be used, and  
must be taken high  
In this mode,  
into the input shift register. The DAC output is asynchronously  
LDAC SYNC  
is held high while data is being clocked  
after the final clock to latch the data. The first falling edge of  
SYNC  
starts the write cycle. Exactly 24 falling clock edges must  
updated by taking  
The update now occurs on the falling edge of  
RESET  
low after  
has been taken high.  
SYNC  
be applied to SCLK before  
SYNC  
is brought high again. If  
LDAC  
.
th  
is brought high before the 24 falling SCLK edge, the  
Reset Function (  
The AD5790 can be reset to its power-on state by two means:  
RESET  
)
data written is invalid. If more than 24 falling SCLK edges are  
SYNC  
applied before  
invalid.  
is brought high, the input data is also  
either by asserting the  
control function (see Table 13). If the  
hardwire it to IOVCC  
Asynchronous Clear Function (CLR)  
pin or by using the software reset  
RESET  
pin is not used,  
SYNC  
must be brought  
The input shift register is updated on the rising edge of  
SYNC  
.
.
For another serial transfer to take place,  
low again. After the end of the serial data transfer, data is  
automatically transferred from the input shift register to the  
addressed register. When the write cycle is complete, the output  
CLR  
The  
pin is an active low clear that allows the output to  
be cleared to a user defined value. The 20-bit clear code value  
is programmed to the clearcode register (see Table 12). It is  
LDAC  
SYNC  
can be updated by taking  
low while  
is high.  
CLR  
necessary to maintain  
to complete the operation (see Figure 2).When the  
is returned high the output remains at the clear value (if  
low for a minimum amount of time  
Readback  
CLR  
signal  
LDAC  
The contents of all the on-chip registers can be read back via  
the SDO pin. Table 7 outlines how the registers are decoded.  
After a register has been addressed for a read, the next 24 clock  
cycles clock the data out on the SDO pin. The clocks must be  
is high) until a new value is loaded to the DAC register. The  
CLR  
output cannot be updated with a new value while the  
pin is  
SYNC  
SYNC  
low. A clear operation can also be performed by setting the CLR  
bit in the software control register (see Table 13).  
applied while  
is low. When  
is returned high, the  
SDO pin is placed in tristate. For a read of a single register, the  
NOP function can be used to clock out the data. Alternatively,  
if more than one register is to be read, the data of the first  
register to be addressed can be clocked out at the same time  
the second register to be read is being addressed. The SDO pin  
must be enabled to complete a readback operation. The SDO  
pin is enabled by default.  
ON-CHIP REGISTERS  
DAC Register  
Table 9 outlines how data is written to and read from the DAC  
register.  
The following equation describes the ideal transfer function of  
the DAC:  
HARDWARE CONTROL PINS  
(
VREFP VREFN × D  
)
LDAC  
Load DAC Function (  
)
VOUT  
where:  
=
+VREFN  
220  
After data has been transferred into the input register of the  
DAC, there are two ways to update the DAC register and DAC  
SYNC  
LDAC  
V
V
REFN is the negative voltage applied at the VREFN input pin.  
REFP is the positive voltage applied at the VREFP input pin.  
output. Depending on the status of both  
and  
, one  
of two update modes is selected: synchronous DAC update or  
asynchronous DAC update.  
D is the 20-bit code programmed to the DAC.  
Rev. E | Page 19 of 27  
 
 
 
AD5790  
Data Sheet  
Table 8. Hardware Control Pins Truth Table  
LDAC  
CLR  
RESET  
Function  
X1  
X1  
0
0
1
X1  
X1  
0
1
0
1
0
1
0
0
The AD5790 is in reset mode. The device cannot be programmed.  
The AD5790 is returned to its power-on state. All registers are set to their default values.  
The DAC register is loaded with the clearcode register value and the output is set accordingly.  
The output is set according to the DAC register value.  
The DAC register is loaded with the clearcode register value and the output is set accordingly.  
The output is set according to the DAC register value.  
The output remains at the clearcode register value.  
The output remains set according to the DAC register value.  
The output remains at the clearcode register value.  
The DAC register is loaded with the clearcode register value and the output is set accordingly.  
The DAC register is loaded with the clearcode register value and the output is set accordingly.  
The output remains at the clearcode register value.  
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
The output is set according to the DAC register value.  
1 X is don’t care.  
Table 9. DAC Register  
MSB  
LSB  
DB23  
R/W  
DB22  
DB21  
DB20  
DB19 to DB0  
Register address  
0
DAC register data  
20 bits of data  
R/W  
0
1
Rev. E | Page 20 of 27  
 
Data Sheet  
AD5790  
Control Register  
Clearcode Register  
The clearcode register sets the value to which the DAC output is  
set when the pin or CLR bit in the software control register  
The control register controls the mode of operation of the  
AD5790.  
CLR  
is asserted. The output value depends on the DAC coding that is  
being used, either binary or twos complement. The default  
register value is 0.  
Table 10. Control Register  
MSB  
LSB  
DB23 DB22 DB21 DB20 DB19 to DB11 DB10  
DB9 DB8 DB7 DB6 DB5  
Control register data  
SDODIS BIN/2sC DACTRI OPGND RBUF Reserved  
DB4  
DB3  
DB2  
DB1  
DB0  
W
Register address  
R/  
R/  
W
0
1
0
Reserved  
Reserved  
0000  
Table 11. Control Register Functions  
Bit Name  
Reserved  
RBUF  
Description  
These bits are reserved and should be programmed to zero.  
Output amplifier configuration control.  
0: the internal amplifier, A1, is powered up and Resistors RFB and R1 are connected in series, as shown in Figure 53. This  
allows an external amplifier to be connected in a gain of two configuration. See the AD5790 Features section for further  
details.  
1: (default) the internal amplifier, A1, is powered down and Resistors RFB and R1 are connected in parallel, as shown in Figure 52,  
so that the resistance between the RFB and INV pins is 3.4 kΩ, equal to the resistance of the DAC. This allows the RFB and INV  
pins to be used for input bias current compensation for an external unity-gain amplifier. See the AD5790 Features section  
for further details.  
OPGND  
Output ground clamp control.  
0: the DAC output clamp to ground is removed and the DAC is placed in normal mode.  
1: (default) the DAC output is clamped to ground through a ~6 kΩ resistance, and the DAC is placed in tristate mode.  
Resetting the part puts the DAC in OPGND mode, where the output ground clamp is enabled and the DAC is tristated.  
Setting the OPGND bit to 1 in the control register overrules any write to the DACTRI bit.  
DACTRI  
BIN/2sC  
SDODIS  
R/W  
DAC tristate control.  
0: the DAC is in normal operating mode.  
1: (default) DAC is in tristate mode.  
DAC register coding selection.  
0: (default) the DAC register uses twos complement coding.  
1: the DAC register uses offset binary coding.  
SDO pin enable/disable control.  
0: (default) the SDO pin is enabled.  
1: the SDO pin is disabled (tristate).  
Read/write select bit.  
0: AD5790 is addressed for a write operation.  
1: AD5790 is addressed for a read operation.  
Table 12. Clearcode Register  
MSB  
LSB  
DB23  
R/W  
DB22  
DB21  
DB20  
DB19 to DB0  
Register address  
1
Clearcode register data  
20 bits of data  
R/W  
0
1
Rev. E | Page 21 of 27  
 
AD5790  
Data Sheet  
Software Control Register  
This is a write only register in which writing a 1 to a particular bit has the same effect as pulsing the corresponding pin low.  
Table 13. Software Control Register  
MSB  
LSB  
DB23  
R/W  
0
DB22  
DB21  
DB20  
DB19 to DB3  
DB2  
Software control register data  
Reset  
CLR1  
DB1  
DB0  
Register address  
0
1
0
Reserved  
LDAC2  
1
LDAC  
CLR  
The CLR function has no effect when the  
The LDAC function has no effect when the  
pin is low.  
pin is low.  
2
Table 14. Software Control Register Functions  
Bit Name  
Description  
LDAC  
Setting this bit to 1 updates the DAC register and consequently the DAC output.  
CLR  
Setting this bit to 1 sets the DAC register to a user defined value (see Table 12) and updates the DAC output. The output  
value depends on the DAC register coding that is being used, either binary or twos complement.  
Reset  
Setting this bit to 1 returns the AD5790 to its power-on state.  
Rev. E | Page 22 of 27  
 
Data Sheet  
AD5790  
AD5790 FEATURES  
POWER-ON TO 0 V  
OUTPUT AMPLIFIER CONFIGURATION  
There are a number of different ways that an output amplifier  
can be connected to the AD5790, depending on the voltage  
references applied and the desired output voltage span.  
The AD5790 contains a power-on reset circuit that, as well as  
resetting all registers to their default values, controls the output  
voltage during power-up. Upon power-on, the DAC is placed in  
tristate (its reference inputs are disconnected), and its output is  
clamped to AGND through a ~6 kΩ resistor. The DAC remains  
in this state until programmed otherwise via the control register.  
This is a useful feature in applications where it is important to  
know the state of the DAC output while it is in the process of  
powering up.  
Unity-Gain Configuration  
Figure 51 shows an output amplifier configured for unity gain.  
In this configuration, the output spans from VREFN to VREFP  
.
V
REFP  
6.8kΩ 6.8kΩ  
R1  
R
FB  
A1  
AD8675  
ADA4898-1  
ADA4004-1  
R
POWER-UP SEQUENCE  
FB  
INV  
OUT  
To power up the part in a known safe state, ensure that VCC does  
not come up while VDD is unpowered during power-on by  
powering up the VDD supply before the VCC supply. If this  
cannot be achieved, connect an external Schottky diode across  
the VDD and VCC supplies as shown in Figure 50.  
V
20-BIT  
DAC  
V
OUT  
AD5790  
V
REFN  
V
V
CC  
DD  
Figure 51. Output Amplifier in Unity-Gain Configuration  
A second unity-gain configuration for the output amplifier is  
one that removes an offset from the input bias currents of the  
amplifier. It does this by inserting a resistance in the feedback  
path of the amplifier that is equal to the output resistance of the  
DAC. The DAC output resistance is 3.4 kΩ. By connecting R1  
and RFB in parallel, a resistance equal to the DAC resistance is  
available on chip. Because the resistors are all on one piece of  
silicon, they are temperature coefficient matched. To enable this  
mode of operation the RBUF bit of the control register must be  
set to Logic 1. Figure 52 shows how the output amplifier is  
connected to the AD5790. In this configuration, the output  
amplifier is in unity gain and the output spans from VREFN to  
V
V
CC  
DD  
AD5790  
Figure 50. Schottky Diode Connection  
CONFIGURING THE AD5790  
After power-on, the AD5790 must be configured for normal  
operating mode before programming the output. To do this, the  
control register must be programmed. The DAC is removed  
from tristate by clearing the DACTRI bit, and the output clamp  
is removed by clearing the OPGND bit. At this point, the output  
goes to VREFN, unless an alternative value is first programmed to  
the DAC register.  
VREFP. This unity-gain configuration allows a capacitor to be placed  
in the amplifier feedback path to improve dynamic performance.  
V
REFP  
DAC OUTPUT STATE  
R
FB  
The DAC output can be placed in one of three states, controlled  
by the DACTRI and OPGND bits of the control register, as  
shown in Table 15.  
R
6.8kΩ  
R1  
6.8kΩ  
FB  
10pF  
INV  
OUT  
V
OUT  
V
20-BIT  
DAC  
AD8675  
Table 15. Output State Truth Table  
DACTRI OPGND Output State  
ADA4898-1  
ADA4004-1  
AD5790  
0
0
1
1
0
1
0
1
Normal operating mode  
Output is clamped via ~6 kΩ to AGND  
Output is in tristate  
V
REFN  
Figure 52. Output Amplifier in Unity Gain with Amplifier Input Bias Current  
Compensation  
Output is clamped via ~6 kΩ to AGND  
Rev. E | Page 23 of 27  
 
 
 
 
 
 
 
 
 
 
AD5790  
Data Sheet  
V
REFP  
Gain of Two Configuration (×2 Gain Mode)  
Figure 53 shows an output amplifier configured for a gain of  
two. The gain is set by the internal matched 6.8 kΩ resistors,  
which are exactly twice the DAC resistance, having the effect of  
removing an offset from the input bias current of the external  
amplifier. In this configuration, the output spans from 2 ×  
6.8kΩ 6.8kΩ  
R1  
R
FB  
A1  
R
10pF  
FB  
INV  
OUT  
V
OUT  
V
20-BIT  
DAC  
AD8675  
ADA4898-1  
ADA4004-1  
V
REFN − VREFP to VREFP. This configuration is used to generate a  
bipolar output span from a single ended reference input with  
REFN = 0 V. For this mode of operation, the RBUF bit of the  
control register must be cleared to Logic 0.  
AD5790  
V
V
REFN  
Figure 53. Output Amplifier in Gain of Two Configuration  
Rev. E | Page 24 of 27  
 
Data Sheet  
AD5790  
APPLICATIONS INFORMATION  
TYPICAL OPERATING CIRCUIT  
5
0 5 9 - 0 2 1 3  
Figure 54. Typical Operating Circuit  
Rev. E | Page 25 of 27  
 
 
 
AD5790  
Data Sheet  
Figure 54 shows a typical operating circuit for the AD5790  
using an AD8675 as an output buffer. Because the output  
impedance of the AD5790 is 3.4 kΩ, an output buffer is  
required for driving low resistive, high capacitive loads.  
The evaluation board interfaces to the USB port of a PC. Soft-  
ware is available with the evaluation board to allow the user to  
easily program the AD5790. The software runs on any PC that  
has Microsoft® Windows® XP (SP2), or Vista (32-bit or 64-bit),  
or Windows 7 installed. The AD5790 user guide, UG-342, is  
available, which gives full details on the operation of the  
evaluation board.  
EVALUATION BOARD  
An evaluation board is available for the AD5790 to aid  
designers in evaluating the high performance of the part  
with minimum effort. The AD5790 evaluation kit includes  
a populated and tested AD5790 printed circuit board (PCB).  
Rev. E | Page 26 of 27  
 
Data Sheet  
AD5790  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
2.75  
2.65  
2.50  
4.10  
4.00  
3.90  
PIN 1  
INDICATOR  
PIN 1  
INDIC AT  
(SEE DETAIL A)  
OR AREA OPTIONS  
24  
20  
1
19  
0.50  
BSC  
5.10  
5.00  
4.90  
3.75  
3.65  
3.50  
EXPOSED  
PAD  
13  
7
12  
8
0.50  
0.40  
0.30  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
1.00  
0.90  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SEATING  
PLANE  
0.30  
0.25  
0.20  
SECTION OF THIS DATA SHEET.  
0.20 REF  
Figure 55. 24-Lead Lead Frame Chip Scale Package [LFCSP]  
4 mm × 5 mm Body and 0.90 mm Package Height  
(CP-24-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
INL  
4 LSB  
4 LSB  
Package Description  
Package Option  
CP-24-5  
CP-24-5  
AD5790BCPZ  
AD5790BCPZ-RL7  
EVAL-AD5790SDZ  
−40°C to +125°C  
−40°C to +125°C  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
24-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2011-2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10239-0-4/18(E)  
Rev. E | Page 27 of 27  
 
 

相关型号:

AD5791

System Ready, 18-Bit ±1 LSB INL
ADI

AD5791ARUZ

1 ppm 20-Bit, 1 LSB INL, Voltage Output DAC
ADI

AD5791BRUZ

1 ppm 20-Bit, 1 LSB INL, Voltage Output DAC
ADI

AD5791_13

1 ppm 20-Bit, 1 LSB INL, Voltage Output DAC
ADI

AD5791_18

Voltage Output DAC
ADI

AD579JN

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD579KN

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD579TD

VERY FAST, COMPLETE 10- OR 12-BIT A/D CONVERTERS
ADI

AD579TD/883B

IC 2-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, CDIP32, SIDE BRAZED, CERAMIC, DIP-32, Analog to Digital Converter
ADI

AD579ZJN

Analog-to-Digital Converter, 10-Bit
ETC

AD579ZKN

IC 2-CH 10-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, CDIP32, SIDE BRAZED, CERAMIC, DIP-32, Analog to Digital Converter
ADI

AD579ZTD

Analog-to-Digital Converter, 10-Bit
ETC