AD584TH883B [ADI]

Pin Programmable, Precision Voltage Reference; 引脚可编程,高精度电压基准
AD584TH883B
型号: AD584TH883B
厂家: ADI    ADI
描述:

Pin Programmable, Precision Voltage Reference
引脚可编程,高精度电压基准

文件: 总12页 (文件大小:515K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Pin Programmable,  
Precision Voltage Reference  
AD584  
Data Sheet  
FEATURES  
PIN CONFIGURATIONS  
TAB  
Four programmable output voltages  
10.000 V, 7.500 V, 5.000 V, and 2.500 V  
Laser-trimmed to high accuracies  
8
10.0V  
1
7
CAP  
V+  
AD584  
2
6
5.0V  
V
TOP VIEW  
BG  
No external components required  
(Not to Scale)  
Trimmed temperature coefficient  
3
5
STROBE  
2.5V  
15 ppm/°C maximum, 0°C to 70°C (AD584K)  
15 ppm/°C maximum, −55°C to +125°C (AD584T)  
Zero output strobe terminal provided  
2-terminal negative reference: capability (5 V and above)  
Output sources or sinks current  
4
COMMON  
Figure 1. 8-Pin TO-99  
10.0V  
1
2
3
4
8
7
6
5
V+  
5.0V  
2.5V  
CAP  
AD584  
TOP VIEW  
V
Low quiescent current: 1.0 mA maximum  
10 mA current output capability  
BG  
(Not to Scale)  
COMMON  
STROBE  
MIL-STD-883 compliant versions available  
Figure 2. 8-Lead PDIP  
GENERAL DESCRIPTION  
The AD584 is an 8-terminal precision voltage reference offering  
pin programmable selection of four popular output voltages:  
10.000 V, 7.500 V, 5.000 V and 2.500 V. Other output voltages,  
above, below, or between the four standard outputs, are available by  
the addition of external resistors. The input voltage can vary  
between 4.5 V and 30 V.  
The AD584J and AD584K are specified for operation from 0°C  
to +70°C, and the AD584S and AD584T are specified for the  
−55°C to +125°C range. All grades are packaged in a hermetically  
sealed, eight-terminal TO-99 metal can, and the AD584J and  
AD584K are also available in an 8-lead PDI P.  
PRODUCT HIGHLIGHTS  
Laser wafer trimming (LWT) is used to adjust the pin  
programmable output levels and temperature coefficients,  
resulting in the most flexible high precision voltage reference  
available in monolithic form.  
1. The flexibility of the AD584 eliminates the need to design-  
in and inventory several different voltage references.  
Furthermore, one AD584 can serve as several references  
simultaneously when buffered properly.  
In addition to the programmable output voltages, the AD584  
offers a unique strobe terminal that permits the device to be  
turned on or off. When the AD584 is used as a power supply  
reference, the supply can be switched off with a single, low power  
signal. In the off state, the current drained by the AD584 is reduced  
to approximately 100 µA. In the on state, the total supply current is  
typically 750 µA, including the output buffer amplifier.  
2. Laser trimming of both initial accuracy and temperature  
coefficient results in very low errors overtemperature  
without the use of external components.  
3. The AD584 can be operated in a 2-terminal Zener mode at  
a 5 V output and above. By connecting the input and the  
output, the AD584 can be used in this Zener configuration  
as a negative reference.  
4. The output of the AD584 is configured to sink or source  
currents. This means that small reverse currents can be  
tolerated in circuits using the AD584 without damage to  
the reference and without disturbing the output voltage  
(10 V, 7.5 V, and 5 V outputs).  
5. The AD584 is available in versions compliant with MIL-STD-  
883. Refer to the Analog Devices current AD584/883B data  
sheet for detailed specifications. This can be found under the  
Additional Data Sheets section of the AD584 product page.  
The AD584 is recommended for use as a reference for 8-, 10-,  
or 12-bit digital-to-analog converters (DACs) that require an  
external precision reference. In addition, the device is ideal for  
analog-to-digital converters (ADCs) of up to 14-bit accuracy,  
either successive approximation or integrating designs, and in  
general, it can offer better performance than that provided by  
standard self-contained references.  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1978–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD584  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Output Current Characteristics...................................................7  
Dynamic Performance..................................................................7  
Noise Filtering ...............................................................................8  
Using the Strobe Terminal ...........................................................8  
Percision High Current Supply....................................................8  
The AD584 as a Current Limiter.................................................9  
Negative Reference Voltages from an AD584 ...............................9  
10 V Reference with Multiplying CMOS DACs or ADCs.......9  
Precision DAC Reference .......................................................... 10  
Outline Dimensions....................................................................... 11  
Ordering Guide .......................................................................... 12  
Pin Configurations ........................................................................... 1  
General Description ......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Theory of Operation ........................................................................ 6  
Applying the AD584 .................................................................... 6  
Performance over Temperature.................................................. 7  
REVISION HISTORY  
5/12—Rev. B to Rev. C  
Deleted AD584L .................................................................Universal  
Changes to Features Section, General Description Section and  
Product Highlights Section ............................................................. 1  
Deleted Metalization Photograph .................................................. 4  
Changes to 10 V Reference with Multiplying CMOS DACs or  
ADCs Section.................................................................................... 9  
Changes to Precision DAC Reference Section and Figure 19... 10  
Updated Outline Dimensions....................................................... 11  
Changes to Ordering Guide .......................................................... 12  
7/01—Rev. A to Rev. B  
Rev. C | Page 2 of 12  
 
Data Sheet  
AD584  
SPECIFICATIONS  
VIN = 15 V and 25°C, unless otherwise noted.  
Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate  
outgoing quality levels. All minimum and maximum specifications are guaranteed; although, only those shown in boldface are tested on  
all production units.  
Table 1.  
AD584J  
Min Typ  
AD584K  
Min Typ  
Model  
Max  
Max  
Unit  
OUTPUT VOLTAGE TOLERANCE  
Maximum Error at Pin 1 for Nominal  
Outputs of  
10.000 V  
7.500 V  
5.000 V  
2.500 V  
30  
20  
15  
7.5  
10  
8
6
mV  
mV  
mV  
mV  
3.5  
OUTPUT VOLTAGE CHANGE  
Maximum Deviation from 25°C Value, TMIN to TMAX  
10.000 V, 7.500 V, and 5.000 V Outputs  
2.500 V Output  
Differential Temperature Coefficients Between Outputs  
QUIESCENT CURRENT  
Temperature Variation  
TURN-ON SETTLING TIME TO 0.1%  
NOISE (0.1 Hz TO 10 Hz)  
LONG-TERM STABILITY  
SHORT-CIRCUIT CURRENT  
LINE REGULATION (NO LOAD)  
15 V ≤ VIN ≤ 30 V  
1
30  
30  
15  
15  
ppm/°C  
ppm/°C  
ppm/°C  
mA  
5
3
0.75  
1.5  
200  
50  
1.0  
0.75  
1.5  
200  
50  
1.0  
µA/°C  
µs  
µV p-p  
ppm/1000 Hrs  
mA  
25  
25  
30  
30  
0.002  
0.005  
0.002 %/V  
0.005 %/V  
(VOUT + 2.5 V) ≤ VIN ≤ 15 V  
LOAD REGULATION  
0 ≤ IOUT ≤ 5 mA, All Outputs  
OUTPUT CURRENT  
20  
50  
20  
50  
ppm/mA  
VIN ≥ VOUT + 2.5 V  
Source at 25°C  
Source TMIN to TMAX  
Sink TMIN to TMAX  
10  
5
5
10  
5
5
mA  
mA  
mA  
TEMPERATURE RANGE  
Operating  
Storage  
0
−65  
70  
+175  
0
−65  
70  
+175  
°C  
°C  
PACKAGE OPTION  
8-Pin Metal Header (TO-99, H-08)  
8-Lead Plastic Dual In-Line Package (PDIP, N-8)  
AD584JH  
AD584JN  
AD584KH  
AD584KN  
1 Calculated as average over the operating temperature range.  
Rev. C | Page 3 of 12  
 
 
AD584  
Data Sheet  
Specifications shown in boldface are tested on all production units at final electrical test. Results from those tests are used to calculate  
outgoing quality levels. All minimum and maximum specifications are guaranteed; although, only those shown in boldface are tested on  
all production units.  
Table 2.  
AD584S  
Min Typ  
AD584T  
Min Typ  
Model  
Max  
Max  
Unit  
OUTPUT VOLTAGE TOLERANCE  
Maximum Error at Pin 1 for Nominal  
Outputs of  
10.000 V  
7.500 V  
5.000 V  
2.500 V  
30  
20  
15  
7.5  
10  
8
6
mV  
mV  
mV  
mV  
3.5  
OUTPUT VOLTAGE CHANGE  
Maximum Deviation from 25°C Value, TMIN to TMAX  
10.000 V, 7.500 V, and 5.000 V Outputs  
2.500 V Output  
Differential Temperature Coefficients Between Outputs  
QUIESCENT CURRENT  
Temperature Variation  
TURN-ON SETTLING TIME TO 0.1%  
NOISE (0.1 Hz TO 10 Hz)  
LONG-TERM STABILITY  
SHORT-CIRCUIT CURRENT  
LINE REGULATION (NO LOAD)  
15 V ≤ VIN ≤ 30 V  
1
30  
30  
15  
20  
ppm/°C  
ppm/°C  
ppm/°C  
mA  
5
3
0.75  
1.5  
200  
50  
1.0  
0.75  
1.5  
200  
50  
1.0  
µA/°C  
µs  
µV p-p  
ppm/1000 Hrs  
mA  
25  
25  
30  
30  
0.002  
0.005  
0.002 %/V  
0.005 %/V  
(VOUT + 2.5 V) ≤ VIN ≤ 15 V  
LOAD REGULATION  
0 ≤ IOUT ≤ 5 mA, All Outputs  
OUTPUT CURRENT  
20  
50  
20  
50  
ppm/mA  
VIN ≥ VOUT + 2.5 V  
Source at 25°C  
Source TMIN to TMAX  
Sink TMIN to TMAX  
10  
5
5
10  
5
5
mA  
mA  
mA  
TEMPERATURE RANGE  
Operating  
Storage  
−55  
−65  
+125  
+175  
−55  
−65  
+125  
+175  
°C  
°C  
PACKAGE OPTION  
8-Pin Metal Header (TO-99, H-08)  
AD584SH  
AD584TH  
1 Calculated as average over the operating temperature range.  
Rev. C | Page 4 of 12  
 
Data Sheet  
AD584  
ABSOLUTE MAXIMUM RATINGS  
ESD CAUTION  
Table 3.  
Parameter  
Rating  
Input Voltage VIN to Ground  
Power Dissipation at 25°C  
Operating Junction Temperature Range  
Lead Temperature (Soldering 10 sec)  
Thermal Resistance  
40 V  
600 mW  
−55°C to +125°C  
300°C  
Junction-to-Ambient (H-08A)  
150°C/W  
Stresses above those listed under Absolute Maximum Ratings may  
cause permanent damage to the device. This is a stress rating  
only; functional operation of the device at these or any other  
conditions above those indicated in the operational section of  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device  
reliability.  
Rev. C | Page 5 of 12  
 
 
AD584  
Data Sheet  
THEORY OF OPERATION  
approximately 20 V, even for the large values of R1. Do not  
APPLYING THE AD584  
omit R2; choose its value to limit the output to a value that can  
be tolerated by the load circuits. If R2 is zero, adjusting R1 to its  
lower limit results in a loss of control over the output voltage.  
When precision voltages are set at levels other than the standard  
outputs, account for the 20% absolute tolerance in the internal  
resistor ladder.  
With power applied to Pin 8 and Pin 4 and all other pins open,  
the AD584 produces a buffered nominal 10.0 V output between  
Pin 1 and Pin 4 (see Figure 3). The stabilized output voltage can  
be reduced to 7.5 V, 5.0 V, or 2.5 V by connecting the programming  
pins as shown in Table 4.  
Table 4.  
Output  
Voltage (V) Pin Programming  
Alternatively, the output voltage can be raised by loading the  
2.5 V tap with R3 alone. The output voltage can be lowered by  
connecting R4 alone. Either of these resistors can be a fixed  
resistor selected by test or an adjustable resistor. In all cases, the  
resistors should have a low temperature coefficient to match the  
AD584 internal resistors, which have a negative temperature  
coefficient less than 60 ppm/°C. If both R3 and R4 are used,  
these resistors should have matching temperature coefficients.  
7.5  
5.0  
2.5  
Join the 2.5 V (Pin 3) and 5.0 V (Pin 2) pins.  
Connect the 5.0 V pin (Pin 2) to the output pin (Pin 1).  
Connect the 2.5 V pin (Pin 3) to the output pin (Pin 1).  
The options shown in Table 4 are available without the use of any  
additional components. Multiple outputs using only one AD584  
can be provided by buffering each voltage programming pin  
with a unity-gain, noninverting op amp.  
When only small adjustments or trims are required, the circuit  
in Figure 4 offers better resolution over a limited trim range. The  
circuit can be programmed to 5.0 V, 7.5 V, or 10 V, and it can be  
adjusted by means of R1 over a range of about 200 m V. To trim  
the 2.5 V output option, R2 (see Figure 4) can be reconnected to  
the band gap reference (Pin 6). In this configuration, limit the  
adjustment to 100 mV to avoid affecting the performance of  
the AD584.  
V
SUPPLY  
8
AD584  
V
OUT  
10V  
1
2
3
6
1.215V  
24kΩ  
R4  
5V  
*
V+  
12kΩ  
2.5V  
R1  
R2  
8
V
OUT  
10.0V  
5.0V  
2.5V  
6kΩ  
6kΩ  
1
2
3
6
V
R3  
BG  
R2  
300kΩ  
AD584  
R1  
10kΩ  
COMMON  
4
V
BG  
*THE 2.5V TAP IS USED INTERNALLY AS A BIAS POINT  
AND SHOULD NOT BE CHANGED BY MORE THAN 100mV  
IN ANY TRIM CONFIGURATION.  
4
COMMON  
Figure 3. Variable Output Options  
Figure 4. Output Trimming  
The AD584 can also be programmed over a wide range of output  
voltages, including voltages greater than 10 V, by the addition  
of one or more external resistors. Figure 3 illustrates the general  
adjustment procedure, with approximate values given for the  
internal resistors of the AD584. The AD584 may be modeled  
as an op amp with a noninverting feedback connection, driven  
by a high stability 1.215 V band gap reference (see Figure 5 for  
schematic).  
V+  
R40  
Q10  
R41  
Q20  
Q7  
STROBE  
Q8  
Q15  
Q11  
C52  
C51  
R42  
Q12  
OUT 10V  
5V TAP  
R34  
R37  
Q6  
Q14  
Q5  
2.5V TAP  
Q16  
Q13  
R35  
SUB  
CAP  
When the feedback ratio is adjusted with external resistors, the  
output amplifier can be made to multiply the reference voltage  
by almost any convenient amount, making popular outputs of  
10.24 V, 5.12 V, 2.56 V, or 6.3 V easy to obtain. The most general  
adjustment (which gives the greatest range and poorest resolution)  
uses R1 and R2 alone (see Figure 3). As R1 is adjusted to its upper  
limit, the 2.5V pin (Pin 3) is connected to the output, which  
reduces to 2.5 V. As R1 is adjusted to its lower limit, the output  
voltage rises to a value limited by R2. For example, if R2 is  
approximately 6 kΩ, the upper limit of the output range is  
C50  
R33  
R32  
Q3  
Q4  
R38  
Q2  
R30  
R31  
V
BG  
Q1  
R36  
R39  
V–  
Figure 5. Schematic Diagram  
Rev. C | Page 6 of 12  
 
 
 
 
 
 
Data Sheet  
AD584  
supply or ground. Figure 7 shows the output voltage vs. the  
PERFORMANCE OVER TEMPERATURE  
output current characteristics of the device. Source current is  
displayed as negative current in the figure, and sink current is  
displayed as positive current. The short-circuit current (that is,  
0 V output) is about 28 mA; however, when shorted to 15 V, the  
sink current goes to approximately 20 mA.  
Each AD584 is tested at three temperatures over the −55°C to  
+125°C range to ensure that each device falls within the maximum  
error band (see Figure 6) specified for a particular grade (that is, S  
and T grades); three-point measurement guarantees performance  
within the error band from 0°C to 70°C (that is, J and K grades).  
The error band guaranteed for the AD584 is the maximum  
deviation from the initial value at 25°C. Thus, given the grade  
of the AD584, the maximum total error from the initial tolerance  
plus the temperature variation can easily be determined. For  
example, for the AD584T, the initial tolerance is 10 mV, and  
the error band is 15 mV. Therefore, the unit is guaranteed to  
be 10.000 V 25 mV from −55°C to +125°C.  
+V = 15V  
S
T
= 25°C  
A
14  
12  
10  
8
6
10.005  
4
2
0
–20 –15 –10  
SOURCE  
–5  
0
5
10  
SINK  
15  
20  
10.000  
OUTPUT CURRENT (mA)  
Figure 7. Output Voltage vs. Output Current (Sink and Source)  
DYNAMIC PERFORMANCE  
Many low power instrument manufacturers are becoming  
increasingly concerned with the turn-on characteristics of the  
components being used in their systems. Fast turn-on components  
often enable the end user to keep power off when not needed  
and yet respond quickly when the power is turned on. Figure 8  
displays the turn-on characteristic of the AD584. Figure 8 is  
generated from cold-start operation and represents the true  
turn-on waveform after an extended period with the supplies off.  
Figure 8 shows both the coarse and fine transient characteristics of  
the device; the total settling time to within  10 mV is about  
180 µs, and there is no long thermal tail appearing after the point.  
9.995  
–55  
0
25  
70  
125  
TEMPERATURE (°C)  
Figure 6. Typical Temperature Characteristic  
OUTPUT CURRENT CHARACTERISTICS  
The AD584 has the capability to either source or sink current  
and provide good load regulation in either direction; although,  
it has better characteristics in the source mode (positive current  
into the load). The circuit is protected for shorts to either positive  
12V  
10.03V  
OUTPUT  
11V  
10.02V  
OUTPUT  
10.01V  
10.00V  
10V  
20V  
POWER  
10V  
SUPPLY  
INPUT  
0V  
0
50  
100 150 200 250  
SETTLING TIME (µs)  
Figure 8. Output Settling Characteristic  
Rev. C | Page 7 of 12  
 
 
 
 
 
 
AD584  
Data Sheet  
NOISE FILTERING  
USING THE STROBE TERMINAL  
The bandwidth of the output amplifier in the AD584 can be  
reduced to filter output noise. A capacitor ranging between 0.01 µF  
and 0.1 µF connected between the CAP and VBG terminals further  
reduces the wideband and feedthrough noise in the output of  
the AD584, as shown in Figure 9 and Figure 10. However, this  
tends to increase the turn-on settling time of the device; therefore,  
allow for ample warm-up time.  
The AD584 has a strobe input that can be used to zero the output.  
This unique feature permits a variety of new applications in  
signal and power conditioning circuits.  
Figure 11 illustrates the strobe connection. A simple NPN switch  
can be used to translate a TTL logic signal into a strobe of the  
output. The AD584 operates normally when there is no current  
drawn from Pin 5. Bringing this terminal low, to less than 200 mV,  
allows the output voltage to go to zero. In this mode, the AD584  
is not required to source or sink current (unless a 0.7 V residual  
output is permissible). If the AD584 is required to sink a transient  
current while strobe is off, limit the strobe terminal input current  
by a 100 Ω resistor, as shown in Figure 11.  
SUPPLY  
V+  
8
CAP  
7
6
1
10.0V  
0.01µF*  
TO  
0.1µF  
AD584  
V
BG  
V+  
8
4
10.0V  
STROBE  
5
1
2
3
COMMON  
*INCREASES TURN-ON TIME  
100Ω  
AD584  
Figure 9. Additional Noise Filtering with an External Capacitor  
20kΩ  
10kΩ  
HI = OFF  
LO = ON  
LOGIC  
INPUT  
1000  
4
2N2222  
NOISE SPECTRAL DENSITY (nV/ Hz)  
100pF  
COMMON  
NO CAP  
Figure 11. Use of the Strobe Terminal  
1000pF  
0.01µF  
100  
10  
1
The strobe terminal tolerates up to 5 µA leakage, and its driver  
should be capable of sinking 500 µA continuous. A low leakage,  
open collector gate can be used to drive the strobe terminal directly,  
provided the gate can withstand the AD584 output voltage plus 1 V.  
NO CAP  
TOTAL NOISE (µV rms) UP TO  
SPECIFIED FREQUENCY  
PERCISION HIGH CURRENT SUPPLY  
The AD584 can be easily connected to a power PNP or power  
PNP Darlington device to provide much greater output current  
capability. The circuit shown in Figure 12 delivers a precision  
10 V output with up to 4 A supplied to the load. If the load has a  
significant capacitive component, the 0.1 µF capacitor is required.  
If the load is purely resistive, improved high frequency, supply  
rejection results from removing the capacitor.  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 10. Spectral Noise Density and Total RMS Noise vs. Frequency  
V
≥ 15V  
IN  
470Ω  
2N6040  
0.1µF  
V+  
8
10.0V  
V
OUT  
1
AD584  
10V @ 4A  
4
COMMON  
Figure 12. High Current Precision Supply  
Rev. C | Page 8 of 12  
 
 
 
 
 
 
Data Sheet  
AD584  
The AD584 can also use an NPN or NPN Darlington transistor to  
boost its output current. Simply connect the 10 V output terminal  
of the AD584 to the base of the NPN booster and take the  
output from the booster emitter, as shown in Figure 13. The  
5.0V pin or the 2.5V pin must connect to the actual output in  
this configuration. Variable or adjustable outputs (as shown in  
Figure 3 and Figure 4) can be combined with a 5.0 V connection to  
obtain outputs above 5.0 V.  
The temperature characteristics and long-term stability of the  
device is essentially the same as that of a unit used in standard  
3-terminal mode.  
ANALOG  
GND  
V+  
8
V
OUT  
1
2
1µF  
AD584  
5.0V  
TAP  
RAW SUPPLY (≈5V > V  
)
OUT  
4
COMMON  
V
REF  
–5V  
DARLINGTON  
NPN 2N6057  
R
2.4kΩ  
5%  
S
–15V  
V+  
8
Figure 15. 2-Terminal, −5 V Reference  
10.0V  
5.0V  
2.5V  
1
2
3
V
OUT  
The AD584 can also be used in 2-terminal mode to develop a  
positive reference. VIN and VOUT are tied together and to the  
positive supply through an appropriate supply resistor. The  
performance characteristics are similar to those of a negative  
2-terminal connection. The only advantage of this connection  
over the standard 3-terminal connection is that a lower primary  
supply can be used, as low as 0.5 V above the desired output  
voltage. This type of operation requires considerable attention  
to load and to the primary supply regulation to ensure that the  
AD584 always remains within its regulating range of 1 mA to  
5 mA (2 mA to 5 mA for operation beyond 85°C).  
(5V, 12A  
AS SHOWN)  
AD584  
1kΩ  
4
COMMON  
Figure 13. NPN Output Current Booster  
THE AD584 AS A CURRENT LIMITER  
The AD584 represents an alternative to current limiter diodes  
that require factory selection to achieve a desired current. Use of  
current limiting diodes often results in temperature coefficients  
of 1%/°C. Use of the AD584 in this mode is not limited to a set  
current limit; it can be programmed from 0.75 mA to 5 mA  
with the insertion of a single external resistor (see Figure 14).  
The minimum voltage required to drive the connection is 5 V.  
10 V REFERENCE WITH MULTIPLYING CMOS DACs  
OR ADCs  
The AD584 is ideal for application with the AD7533 10-bit  
multiplying CMOS DAC, especially for low power applications.  
It is equally suitable for the AD7574 8-bit ADC. In the standard  
hook-up, as shown in Figure 16, the standard output voltages are  
inverted by the amplifier/DAC configuration to produce converted  
voltage ranges. For example, a +10 V reference produces a 0 V to  
−10 V range. If an OP1177 amplifier is used, total quiescent  
supply current is typically 2 mA.  
V+  
8
V
= 2.5V  
OUT  
1
3
2.5V  
R
AD584  
i
+ 0.75mA  
2.5V  
TAP  
=
R
LOAD  
4
COMMON  
+15V  
Figure 14. A Two-Component Precision Current Limiter  
V+  
8
NEGATIVE REFERENCE VOLTAGES FROM AN AD584  
10.0V  
1
AD584  
The AD584 can also be used in a 2-terminal Zener mode to  
provide a precision −1 0 V, 7.5 V, or −5.0 V reference. As shown in  
Figure 15, the VIN and VOUT terminals are connected together to  
the positive supply (in this case, ground). The AD584 COMMON  
pin is connected through a resistor to the negative supply. The  
output is now taken from the COMMON pin instead of VOUT. With  
1 mA flowing through the AD584 in this mode, a typical unit  
shows a 2 mV increase in the output level over that produced in  
3-terminal mode. Also, note that the effective output impedance in  
this connection increases from 0.2 Ω typical to 2 Ω. It is essential  
to arrange the output load and the supply resistor, RS, so that  
the net current through the AD584 is always between 1 mA  
and 5 mA (between 2 mA and 5 mA for operation beyond 85°C).  
4
COMMON  
V
REF  
15  
14  
R
BIT 1 (MSB)  
FB  
4
5
16  
1
DIGITAL  
INPUT  
+15V  
I
I
1
2
OUT  
AD7533  
V
OUT  
OUT  
0V TO –10V  
–15V  
COMMON  
13  
2
3
BIT 10 (LSB)  
Figure 16. Low Power 10-Bit CMOS DAC Application  
Rev. C | Page 9 of 12  
 
 
 
 
 
 
 
AD584  
Data Sheet  
The AD584 is normally used in the −10 V mode with the AD7574  
to give a 0 V to +10 V ADC range. This is shown in Figure 17.  
Bipolar output applications and other operating details can be  
found in the data sheets for the CMOS products.  
scale temperature coefficient of 18 ppm/°C more than the  
commercial range. The 10 V reference also supplies the normal  
1 mA bipolar offset current through the 9.95 kΩ bipolar offset  
resistor. The bipolar offset temperature coefficient thus depends  
only on the temperature coefficient matching of the bipolar offset  
resistor to the input reference resistor and is guaranteed to  
3 ppm/°C. Figure 18 demonstrates the flexibility of the AD584  
applied to another popular digital-to-analog configuration.  
–15V  
+15V  
R3  
1.2kΩ  
GAIN TRIM  
R2 2kΩ*  
1
2
3
4
5
18  
AD584  
AD7574  
V+  
5%  
COMMON  
0.1µF  
(TOP VIEW)  
8
4
–10V REF  
DIGITAL  
SUPPLY  
RETURN  
R1  
2kΩ 10%*  
SIGNAL  
V+  
1
V+  
INPUT  
10.0V  
0V TO +10V  
GROUND  
INTERTIE  
8
V
V
(+)  
(–)  
REF  
10.0V  
2.5V  
13  
1
3
A1 (MSB)  
A2  
5
14  
15  
*R1 AND R2 CAN BE OMITTED IF  
GAIN TRIM IS NOT REQUIRED.  
ANALOG  
GROUND  
R14  
R15  
REF  
6
AD584  
A3  
7
Figure 17. AD584 as −10 V Reference for CMOS ADC  
AD  
DAC08  
A4  
8
4
R14 = R15  
A5  
9
COMMON  
PRECISION DAC REFERENCE  
A6  
10  
11  
12  
16  
R
L
A7  
4
1
The AD565A, like many DACs, can operate with an external  
10 V reference element (see Figure 19). This 10 V reference  
voltage is converted into a reference current of approximately  
I
O
A8 (LSB)  
COMP  
V
LC  
3
2
C
0.5 mA via the internal 19.95 kΩ resistor (in series with the external  
100 Ω trimmer). The gain temperature coefficient of the AD565A  
is primarily governed by the temperature tracking of the 19.95 kΩ  
resistor and the 5 kΩ/10 kΩ span resistors; this gain temperature  
coefficient is guaranteed to 3 ppm/°C. Therefore, using the AD584K  
(at 5 ppm/°C) as the 10 V reference guarantees a maximum full-  
V–  
I
OUT  
Figure 18. Current Output, 8-Bit Digital-to-Analog Configuration  
BIPOLAR OFFSET  
ADJUST  
15T  
R1  
100Ω  
+15V  
0.1µF  
REF OUT  
V
CC  
BIPOLAR OFF  
+15V  
8
20V SPAN  
10V  
AD565A  
GAIN  
5kΩ  
ADJUST  
REF  
IN  
9.95kΩ  
10V SPAN  
DAC OUT  
19.95kΩ  
0.5mA  
1
15T  
AD584  
+15V  
5kΩ  
R2  
100Ω  
I
2
3
REF  
OP AMP  
OUTPUT  
±10V  
REF  
GND  
DAC  
6
4
20kΩ  
I
=
OUT  
I
8kΩ  
O
4 × I  
× CODE  
REF  
OP1177  
–15V  
CODE INPUT  
–V  
POWER  
GND  
EE  
MSB  
LSB  
0.1µF  
–15V  
Figure 19. Precision 12-Bit DAC  
Rev. C | Page 10 of 12  
 
 
 
 
Data Sheet  
AD584  
OUTLINE DIMENSIONS  
REFERENCE PLANE  
0.5000 (12.70)  
MIN  
0.1850 (4.70)  
0.1650 (4.19)  
0.1000 (2.54)  
BSC  
0.2500 (6.35) MIN  
0.0500 (1.27) MAX  
0.1600 (4.06)  
0.1400 (3.56)  
5
6
8
4
0.2000  
(5.08)  
BSC  
3
7
0.0450 (1.14)  
0.0270 (0.69)  
2
1
0.1000  
(2.54)  
BSC  
0.0190 (0.48)  
0.0160 (0.41)  
0.0340 (0.86)  
0.0280 (0.71)  
0.0400 (1.02) MAX  
0.0210 (0.53)  
0.0160 (0.41)  
0.0400 (1.02)  
0.0100 (0.25)  
45° BSC  
BASE & SEATING PLANE  
COMPLIANT TO JEDEC STANDARDS MO-002-AK  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 20. 8-Pin Metal Header [TO-99]  
(H-08)  
Dimensions shown in inches and (millimeters)  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 21. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body (N-8)  
Dimensions shown in inches and (millimeters)  
Rev. C | Page 11 of 12  
 
AD584  
Data Sheet  
ORDERING GUIDE  
Initial Accuracy  
Output  
Voltage (VO) mV  
Temperature Coefficient  
(ppm/°C)  
Temperature Package  
Range (°C)  
Package Ordering  
Model1  
%
Description Option  
Quantity  
100  
50  
AD584JH  
AD584JNZ  
AD584KH  
AD584KNZ  
AD584SH  
AD584SH/883B 2.5  
AD584TH 2.5  
AD584TH/883B 2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
7.5  
7.5  
3.5  
3.5  
7.5  
7.5  
3.5  
3.5  
0.30  
0.30  
0.14  
0.14  
0.30  
0.30  
0.14  
0.14  
0.30  
0.30  
0.12  
0.12  
0.14  
0.30  
0.30  
0.12  
0.27  
0.27  
0.11  
0.11  
0.27  
0.27  
0.11  
0.11  
0.30  
0.30  
0.10  
0.10  
0.30  
0.30  
0.10  
0.10  
30  
30  
15  
15  
30  
30  
20  
20  
30  
30  
15  
15  
30  
30  
15  
15  
30  
30  
15  
15  
30  
30  
15  
15  
30  
30  
15  
15  
30  
30  
15  
15  
0 to 70  
8-Pin TO-99  
8-Lead PDIP  
8-Pin TO-99  
8-Lead PDIP  
8-Pin TO-99  
8-Pin TO-99  
8-Pin TO-99  
8-Pin TO-99  
8-Pin TO-99  
8-Lead PDIP  
8-Pin TO-99  
8-Lead PDIP  
8-Pin TO-99  
8-Pin TO-99  
8-Pin TO-99  
8-Pin TO-99  
8-Pin TO-99  
8-Lead PDIP  
8-Pin TO-99  
8-Lead PDIP  
8-Pin TO-99  
8-Pin TO-99  
8-Pin TO-99  
8-Pin TO-99  
8-Pin TO-99  
8-Lead PDIP  
8-Pin TO-99  
8-Lead PDIP  
8-Pin TO-99  
8-Pin TO-99  
8-Pin TO-99  
8-Pin TO-99  
H-08  
N-8  
0 to 70  
0 to 70  
0 to 70  
H-08  
N-8  
100  
50  
−55 to +125  
−55 to +125  
−55 to +125  
−55 to +125  
0 to 70  
H-08  
H-08  
H-08  
H-08  
H-08  
N-8  
100  
100  
100  
100  
100  
50  
AD584JH  
AD584JNZ  
AD584KH  
AD584KNZ  
AD584SH  
AD584SH/883B 5.0  
AD584TH 5.0  
AD584TH/883B 5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
15.0  
15.0  
6.0  
0 to 70  
0 to 70  
0 to 70  
H-08  
N-8  
100  
50  
6.0  
15.0  
15.0  
6.0  
−55 to +125  
−55 to +125  
−55 to +125  
−55 to +125  
0 to 70  
H-08  
H-08  
H-08  
H-08  
H-08  
N-8  
100  
100  
100  
100  
100  
50  
6.0  
AD584JH  
AD584JNZ  
AD584KH  
AD584KNZ  
AD584SH  
AD584SH/883B 7.5  
AD584TH 7.5  
AD584TH/883B 7.5  
7.5  
7.5  
7.5  
7.5  
7.5  
20.0  
20.0  
8.0  
0 to 70  
0 to 70  
0 to 70  
H-08  
N-8  
100  
50  
8.0  
20.0  
20.0  
8.0  
−55 to +125  
−55 to +125  
−55 to +125  
−55 to +125  
0 to 70  
H-08  
H-08  
H-08  
H-08  
H-08  
N-8  
100  
100  
100  
100  
100  
50  
8.0  
AD584JH  
AD584JNZ  
AD584KH  
AD584KNZ  
AD584SH  
AD584SH/883B 10.0  
AD584TH 10.0  
AD584TH/883B 10.0  
10.0  
30.0  
30.0  
10.0  
10.0  
30.0  
30.0  
10.0  
10.0  
10.0  
10.0  
10.0  
10.0  
0 to 70  
0 to 70  
0 to 70  
H-08  
N-8  
100  
50  
−55 to +125  
−55 to +125  
−55 to +125  
−55 to +125  
H-08  
H-08  
H-08  
H-08  
100  
100  
100  
100  
1 Z = RoHS Compliant Part.  
©1978–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00527-0-5/12(C)  
Rev. C | Page 12 of 12  
 
 

相关型号:

AD584TQ

Voltage Reference
ETC

AD584TQ/883

Voltage Reference
ETC

AD584TQ/HR

Voltage Reference
ETC

AD584_12

Pin Programmable, Precision Voltage Reference
ADI

AD585

High Speed, Precision Sample-and-Hold Amplifier
ADI

AD585A

High Speed, Precision Sample-and-Hold Amplifier
ADI

AD585ACHIPS

Sample/Track-and-Hold Amplifier
ETC

AD585AE

AD585AE
ADI

AD585AQ

High Speed, Precision Sample-and-Hold Amplifier
ADI

AD585AQ

SAMPLE AND HOLD AMPLIFIER, CDIP14, CERDIP-14
ROCHESTER

AD585AQ/+

Sample/Track-and-Hold Amplifier
ETC

AD585J

High Speed, Precision Sample-and-Hold Amplifier
ADI