AD586JRZ-REEL71 [ADI]

High Precision 5 V Reference; 高精度5 V基准
AD586JRZ-REEL71
型号: AD586JRZ-REEL71
厂家: ADI    ADI
描述:

High Precision 5 V Reference
高精度5 V基准

文件: 总16页 (文件大小:479K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Precision  
5 V Reference  
AD586  
FEATURES  
The AD586J, AD586K, AD586L, and AD586M are available in  
an 8-lead PDIP; the AD586J, AD586K, AD586L, AD586A, and  
AD586B are available in an 8-lead SOIC package; and the  
AD586J, AD586K, AD586L, AD586S, and AD586T are  
available in an 8-lead CERDIP package.  
Laser trimmed to high accuracy  
5.000 V 2.0 mV (M grade)  
Trimmed temperature coefficient  
2 ppm/°C max, 0°C to 70°C (M grade)  
5 ppm/°C max, −40°C to +85°C (B and L grades)  
10 ppm/°C max, −55°C to +125°C (T grade)  
Low noise, 100 nV/√Hz  
V
IN  
NOISE REDUCTION  
8
2
AD586  
Noise reduction capability  
Output trim capability  
R
Z1  
R
S
A1  
6
5
V
MIL-STD-883-compliant versions available  
Industrial temperature range SOICs available  
Output capable of sourcing or sinking 10 mA  
OUT  
R
Z2  
R
F
R
T
TRIM  
R
I
GENERAL DESCRIPTION  
4
The AD586 represents a major advance in state-of-the-art  
monolithic voltage references. Using a proprietary ion-implanted  
buried Zener diode and laser wafer trimming of high stability  
thin-film resistors, the AD586 provides outstanding perform-  
ance at low cost.  
GND  
NOTES  
1. PINS 1, 3, AND 7 ARE INTERNAL TEST POINTS.  
MAKE NO CONNECTIONS TO THESE POINTS.  
Figure 1.  
PRODUCT HIGHLIGHTS  
The AD586 offers much higher performance than most other  
5 V references. Because the AD586 uses an industry-standard  
pinout, many systems can be upgraded instantly with the  
AD586.  
1. Laser trimming of both initial accuracy and temperature  
coefficients results in very low errors over temperature  
without the use of external components. The AD586M has  
a maximum deviation from 5.000 V of 2.45 mV between  
0°C and 70°C, and the AD586T guarantees 7.5 mV  
maximum total error between −55°C and +125°C.  
The buried Zener approach to reference design provides lower  
noise and drift than band gap voltage references. The AD586  
offers a noise reduction pin that can be used to further reduce  
the noise level generated by the buried Zener.  
2. For applications requiring higher precision, an optional  
fine-trim connection is provided.  
The AD586 is recommended for use as a reference for 8-, 10-,  
12-, 14-, or 16-bit DACs that require an external precision  
reference. The device is also ideal for successive approximation  
or integrating ADCs with up to 14 bits of accuracy and, in  
general, can offer better performance than the standard on-chip  
references.  
3. Any system using an industry-standard pinout reference  
can be upgraded instantly with the AD586.  
4. Output noise of the AD586 is very low, typically 4 µV p-p.  
A noise reduction pin is provided for additional noise  
filtering using an external capacitor.  
The AD586J, AD586K, AD586L, and AD586M are specified for  
operation from 0°C to 70°C; the AD586A and AD586B are  
specified for −40°C to +85°C operation; and the AD586S and  
AD586T are specified for −55°C to +125°C operation.  
5. The AD586 is available in versions compliant with  
MIL-STD-883. Refer to the Analog Devices Military  
Products Databook or the current AD586/883B data sheet  
for detailed specifications.  
Rev. G  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
AD586  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Load Regulation ............................................................................9  
Temperature Performance............................................................9  
Negative Reference Voltage from an AD586........................... 10  
Using the AD586 with Converters........................................... 10  
5 V Reference with Multiplying CMOS DACs or ADCs ...... 11  
Stacked Precision References for Multiple Voltages .............. 11  
Precision Current Source .......................................................... 11  
Precision High Current Supply ................................................ 11  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 14  
AD586J, AD586K/AD586A, AD586L/AD586B ....................... 3  
AD586M, AD586S, AD586T....................................................... 4  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configurations and Function Descriptions ........................... 6  
Theory of Operation ........................................................................ 7  
Applying the AD586..................................................................... 7  
Noise Performance and Reduction ............................................ 7  
Turn-on Time................................................................................ 8  
Dynamic Performance................................................................. 8  
REVISION HISTORY  
3/05—Rev. F to Rev. G  
Updated Format..................................................................Universal  
Split Specifications Table into Table 1 and Table 2....................... 3  
Changes to Table 1............................................................................ 3  
Added Figure 2 and Figure 4........................................................... 6  
Updated Outline Dimensions....................................................... 13  
Changes to Ordering Guide .......................................................... 14  
1/04—Rev. E to Rev. F  
Changes to ORDERING GUIDE ................................................... 3  
7/03—Rev. D to Rev. E  
Removed AD586J CHIPS..................................................Universal  
Updated ORDERING GUIDE........................................................ 3  
Change to Figure 3 ........................................................................... 4  
Updated Figure 12 ............................................................................ 7  
Updated OUTLINE DIMENSIONS .............................................. 9  
4/01—Rev. C to Rev. D  
Changed Figure 10 to Table 1  
(Maximum Output Change in mV)............................................... 6  
11/95—Revision 0: Initial Version  
Rev. G | Page 2 of 16  
AD586  
SPECIFICATIONS  
AD586J, AD586K/AD586A, AD586L/AD586B  
@ TA = 25°C, VIN = 15 V, unless otherwise noted. Specifications in boldface are tested on all production units at final electrical test. Results  
from those tests are used to calculate outgoing quality levels. All minimum and maximum specifications are guaranteed, although only  
those shown in boldface are tested on all production units, unless otherwise specified.  
Table 1.  
AD586J  
Typ  
AD586K/AD586A  
AD586L/AD586B  
Parameter  
Min  
Max Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
OUTPUT VOLTAGE  
4.980  
5.020 4.995  
5.005  
4.9975  
5.0025  
V
OUTPUT VOLTAGE  
DRIFT1  
0°C to 70°C  
−55°C to +125°C  
GAIN ADJUSTMENT  
25  
15  
5
ppm/°C  
ppm/°C  
%
+6  
+6  
+6  
−2  
−2  
−2  
%
LINE REGULATION1  
10.8 V < + VIN < 36 V  
TMIN to TMAX  
11.4 V < +VIN < 36 V  
TMIN to TMAX  
100  
100  
100  
µV/V  
µV/V  
LOAD REGULATION1  
Sourcing 0 mA < IOUT < 10 mA  
25°C  
100  
100  
100  
100  
100  
100  
µV/mA  
µV/mA  
TMIN to TMAX  
Sinking −10 mA < IOUT < 0 mA  
25°C  
400  
3
400  
3
400  
3
µV/mA  
mA  
QUIESCENT CURRENT  
POWER CONSUMPTION  
OUTPUT NOISE  
2
2
2
30  
30  
30  
mW  
0.1 Hz to 10 Hz  
4
4
4
µV p-p  
Spectral Density, 100 Hz  
LONG-TERM STABILITY  
100  
15  
100  
15  
100  
15  
nV/√Hz  
ppm/1000 hr  
SHORT-CIRCUIT  
CURRENT-TO-GROUND  
45  
60  
45  
60  
45  
60  
mA  
TEMPERATURE RANGE  
Specified Performance2  
0
70  
0
(K grade) 70  
(A grade) +85  
+85  
0
(L grade) 70  
(B grade) +85  
+85  
°C  
°C  
°C  
40  
−40  
40  
−40  
Operating Performance3  
−40  
+85  
1 Maximum output voltage drift is guaranteed for all packages and grades. CERDIP packaged parts are also 100°C production tested.  
2 Lower row shows specified performance for A and B grades.  
3 The operating temperature range is defined as the temperature extremes at which the device will still function. Parts may deviate from their specified performance  
outside their specified temperature range.  
Rev. G | Page 3 of 16  
 
 
 
 
AD586  
AD586M, AD586S, AD586T  
@ TA = 25°C, VIN = 15 V, unless otherwise noted. Specifications in boldface are tested on all production units at final electrical test. Results  
from those tests are used to calculate outgoing quality levels. All minimum and maximum specifications are guaranteed, although only  
those shown in boldface are tested on all production units, unless otherwise specified.  
Table 2.  
AD586M  
Typ  
AD586S  
Typ  
AD586T  
Typ  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
OUTPUT VOLTAGE  
4.998  
5.002  
4.990  
5.010  
4.9975  
5.0025  
V
OUTPUT VOLTAGE  
DRIFT1  
0°C to 70°C  
−55°C to +125°C  
GAIN ADJUSTMENT  
2
ppm/°C  
ppm/°C  
%
20  
10  
+6  
+6  
+6  
−2  
−2  
−2  
%
LINE REGULATION1  
10.8 V < +VIN < 36 V  
TMIN to TMAX  
11.4 V < +VIN < 36 V  
TMIN to TMAX  
100  
µV/V  
µV/V  
150  
150  
LOAD REGULATION1  
Sourcing 0 mA < IOUT < 10 mA  
25°C  
100  
100  
150  
150  
150  
150  
µV/mA  
µV/mA  
TMIN to TMAX  
Sinking −10 mA < IOUT < 0 mA  
25°C  
400  
3
400  
3
400  
3
µV/mA  
mA  
QUIESCENT CURRENT  
POWER CONSUMPTION  
OUTPUT NOISE  
2
2
2
30  
30  
30  
mW  
0.1 Hz to 10 Hz  
4
4
4
µV p-p  
Spectral Density,  
100 Hz  
100  
100  
100  
nV/√Hz  
LONG-TERM STABILITY  
15  
45  
15  
45  
15  
45  
ppm/1000 hr  
mA  
SHORT-CIRCUIT  
CURRENT-TO-GROUND  
60  
60  
60  
TEMPERATURE RANGE  
Specified Performance2  
Operating Performance3  
0
−40  
70  
+85  
−55  
−55  
+125  
+125  
−55  
−55  
+125  
+125  
°C  
°C  
1 Maximum output voltage drift is guaranteed for all packages and grades. CERDIP packaged parts are also 100°C production tested.  
2 Lower row shows specified performance for A and B grades.  
3 The operating temperature range is defined as the temperature extremes at which the device will still function. Parts may deviate from their specified performance  
outside their specified temperature range.  
Rev. G | Page 4 of 16  
 
 
 
AD586  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
Parameter  
Rating  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
VIN to Ground  
36 V  
Power Dissipation (25°C)  
Storage Temperature  
500 mW  
−65°C to +150°C  
Lead Temperature (Soldering, 10 sec) 300°C  
Package Thermal Resistance  
θJC  
22°C/W  
θJA  
110°C/W  
Output Protection  
Output safe for indefinite  
short to ground or VIN.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. G | Page 5 of 16  
 
AD586  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
NOISE  
NOISE  
REDUCTION  
NOISE  
1
1
1
TP  
V
1
2
3
4
8
7
6
5
TP  
V
1
2
3
4
8
7
6
5
TP  
V
1
2
3
4
8
7
6
5
REDUCTION  
REDUCTION  
AD586  
TOP VIEW  
(Not to Scale)  
1
AD586  
TOP VIEW  
(Not to Scale)  
1
1
TP  
AD586  
TP  
TP  
IN  
IN  
1
IN  
1
TP  
GND  
V
1
TP  
V
OUT  
TP  
GND  
V
TOP VIEW  
(Not to Scale)  
OUT  
OUT  
TRIM  
GND  
TRIM  
TRIM  
1
TP DENOTES FACTORY TEST POINT.  
NO CONNECTIONS, EXCEPT DUMMY PCB PAD,  
SHOULD BE MADE TO THESE POINTS.  
1
1
TP DENOTES FACTORY TEST POINT.  
NO CONNECTIONS, EXCEPT DUMMY PCB PAD,  
SHOULD BE MADE TO THESE POINTS.  
TP DENOTES FACTORY TEST POINT.  
NO CONNECTIONS, EXCEPT DUMMY PCB PAD,  
SHOULD BE MADE TO THESE POINTS.  
Figure 2. Pin Configuration (N-8)  
Figure 3. Pin Configuration (Q-8)  
Figure 4. Pin Configuration (R-8)  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic  
Description  
1
2
3
4
5
6
7
8
TP1  
Factory Trim Pad (No Connect).  
Input Voltage.  
Factory Trim Pad (No Connect).  
Ground.  
Optional External Fine Trim. See the Applying the AD586 section.  
Output Voltage.  
Factory Trim Pad (No Connect).  
VIN  
TP1  
GND  
TRIM  
VOUT  
TP1  
NOICE REDUCTION  
Optional Noise Reduction Filter with External 1µF Capacitor to Ground.  
Rev. G | Page 6 of 16  
 
AD586  
THEORY OF OPERATION  
V
IN  
IN  
The AD586 consists of a proprietary buried Zener diode refer-  
ence, an amplifier to buffer the output, and several high stability  
thin-film resistors, as shown in the block diagram in Figure 5.  
This design results in a high precision monolithic 5 V output  
reference with initial offset of 2.0 mV or less. The temperature  
compensation circuitry provides the device with a temperature  
coefficient of under 2 ppm/°C.  
2
V
6
5
V
OUTPUT  
O
AD586  
NOISE  
REDUCTION  
8
10kΩ  
TRIM  
OPTIONAL  
NOISE  
REDUCTION  
CAPACITOR  
C
1µF  
N
GND  
4
Using the bias compensation resistor between the Zener output  
and the noninverting input to the amplifier, a capacitor can be  
added at the noise reduction pin (Pin 8) to form a low-pass  
filter and reduce the noise contribution of the Zener to the  
circuit.  
Figure 6. Optional Fine-Trim Configuration  
NOISE PERFORMANCE AND REDUCTION  
The noise generated by the AD586 is typically less than 4 µV p-p  
over the 0.1 Hz to 10 Hz band. Noise in a 1 MHz bandwidth is  
approximately 200 µV p-p. The dominant source of this noise is  
the buried Zener, which contributes approximately 100 nV/√Hz.  
By comparison, contribution by the op amp is negligible. Figure 7  
shows the 0.1 Hz to 10 Hz noise of a typical AD586. The noise  
measurement is made with a band-pass filter made of a 1-pole  
high-pass filter with a corner frequency at 0.1 Hz, and a 2-pole  
low-pass filter with a corner frequency at 12.6 Hz, to create a  
filter with a 9.922 Hz bandwidth.  
V
IN  
NOISE REDUCTION  
8
2
AD586  
R
Z1  
R
S
A1  
6
5
V
OUT  
R
Z2  
R
F
R
T
TRIM  
R
I
If further noise reduction is desired, an external capacitor can  
be added between the noise reduction pin and ground, as  
shown in Figure 6. This capacitor, combined with the 4 kΩ RS  
and the Zener resistances, forms a low-pass filter on the output  
of the Zener cell. A 1 µF capacitor will have a 3 dB point at  
12 Hz, and will reduce the high frequency (to 1 MHz) noise to  
about 160 µV p-p. Figure 8 shows the 1 MHz noise of a typical  
AD586, both with and without a 1 µF capacitor.  
4
GND  
NOTES  
1. PINS 1, 3, AND 7 ARE INTERNAL TEST POINTS.  
MAKE NO CONNECTIONS TO THESE POINTS.  
Figure 5. Functional Block Diagram  
APPLYING THE AD586  
The AD586 is simple to use in virtually all precision reference  
applications. When power is applied to Pin 2 and Pin 4 is  
grounded, Pin 6 provides a 5 V output. No external components  
are required; the degree of desired absolute accuracy is achieved  
simply by selecting the required device grade. The AD586  
requires less than 3 mA quiescent current from an operating  
supply of 12 V or 15 V.  
1µF  
5s  
1µF  
An external fine trim may be desired to set the output level to  
exactly 5.000 V (calibrated to a main system reference). System  
calibration may also require a reference voltage that is slightly  
different from 5.000 V, for example, 5.12 V for binary applica-  
tions. In either case, the optional trim circuit shown in Figure 6  
can offset the output by as much as 300 mV with minimal effect  
on other device characteristics.  
Figure 7. 0.1 Hz to 10 Hz Noise  
Rev. G | Page 7 of 16  
 
 
 
 
AD586  
1mS  
10V  
5V  
200µV  
50µS  
V
IN  
C
N
= 1µF  
V
OUT  
NO C  
N
Figure 8. Effect of 1 µF Noise Reduction Capacitor on Broadband Noise  
Figure 10. Extended Time Scale  
TURN-ON TIME  
10V  
1mV  
100mS  
V
Upon application of power (cold start), the time required for  
the output voltage to reach its final value within a specified  
error band is defined as the turn-on settling time. Two compo-  
nents normally associated with this are the time for the active  
circuits to settle, and the time for the thermal gradients on the  
chip to stabilize. Figure 9, Figure 10, and Figure 11 show the  
turn-on characteristics of the AD586. It shows the settling to be  
about 60 µs to 0.01%. Note the absence of any thermal tails  
when the horizontal scale is expanded to l ms/cm in Figure 10.  
IN  
V
OUT  
Output turn-on time is modified when an external noise reduc-  
tion capacitor is used. When present, this capacitor acts as an  
additional load to the current source of the internal Zener  
diode, resulting in a somewhat longer turn-on time. In the case  
of a 1 µF capacitor, the initial turn-on time is approximately  
400 ms to 0.01% (see Figure 11).  
Figure 11. Turn-On with 1µF CN Characteristics  
DYNAMIC PERFORMANCE  
The output buffer amplifier is designed to provide the AD586  
with static and dynamic load regulation superior to less com-  
plete references.  
10V  
1mV  
V
IN  
Many ADCs and DACs present transient current loads to the  
reference, and poor reference response can degrade the per-  
formance of the converter.  
V
OUT  
Figure 12, Figure 13, and Figure 14 display the characteristics of  
the AD586 output amplifier driving a 0 mA to 10 mA load.  
V
OUT  
3.5V  
500  
20µS  
5V  
0V  
V
L
AD586  
Figure 9. Electrical Turn-On  
Figure 12. Transient Load Test Circuit  
Rev. G | Page 8 of 16  
 
 
 
 
 
AD586  
5V  
200mV  
1µS  
1µS  
5V  
50mV  
V
L
C
L
= 0  
V
OUT  
C
L
= 1000pF  
Figure 16. Output Response with Capacitive Load  
Figure 13. Large-Scale Transient Response  
LOAD REGULATION  
2µS  
5V  
1mV  
The AD586 has excellent load regulation characteristics. Figure 17  
shows that varying the load several mA changes the output by a  
few µV. The AD586 has somewhat better load regulation per-  
formance sourcing current than sinking current.  
V
L
V  
(µV)  
OUT  
V
OUT  
1000  
500  
2
4
6
8
10 LOAD (mA)  
0
–6  
–4  
–2  
–500  
Figure 14. Fine-Scale Setting for Transient Load  
–1000  
In some applications, a varying load may be both resistive and  
capacitive in nature, or the load may be connected to the AD586  
by a long capacitive cable.  
Figure 17. Typical Load Regulation Characteristics  
Figure 15 and Figure 16 display the output amplifier  
characteristics driving a 1000 pF, 0 mA to 10 mA load.  
TEMPERATURE PERFORMANCE  
The AD586 is designed for precision reference applications  
where temperature performance is critical. Extensive tempera-  
ture testing ensures that the device maintains a high level of  
performance over the operating temperature range.  
V
OUT  
C
L
3.5V  
500  
1000pF  
5V  
0V  
V
L
AD586  
Some confusion exists with defining and specifying reference  
voltage error over temperature. Historically, references have  
been characterized using a maximum deviation per degree  
Celsius, that is, ppm/°C. However, because of nonlinearities in  
temperature characteristics that originated in standard Zener  
references (such as “S” type characteristics), most manufacturers  
have begun to use a maximum limit error band approach to  
specify devices. This technique involves measuring the output at  
three or more different temperatures to specify an output volt-  
age error band.  
Figure 15. Capacitive Load Transient Response Test Circuit  
Rev. G | Page 9 of 16  
 
 
 
 
AD586  
Table 5. Maximum Output Change in mV  
Maximum Output Change (mV)  
Figure 18 shows the typical output voltage drift for the AD586L  
and illustrates the test methodology. The box in Figure 18 is  
bounded on the sides by the operating temperature extremes  
and on the top and the bottom by the maximum and minimum  
output voltages measured over the operating temperature  
range. The slope of the diagonal drawn from the lower left to  
the upper right corner of the box determines the performance  
grade of the device.  
Device  
Grade  
0°C to 70°C −40°C to +85°C  
−55°C to +125°C  
AD586J  
AD586K  
AD586L  
8.75  
5.25  
1.75  
AD586M 0.70  
AD586A  
AD586B  
9.37  
3.12  
V
–V  
MAX  
MIN  
SLOPE = T.C. =  
–6  
(T  
MAX  
–T  
) × 5 × 10  
MIN  
AD586S  
AD586T  
18.00  
9.00  
5.0027 – 5.0012  
=
=
–6  
(70°C – 0) × 5 × 10  
4.3ppm/°C  
T
T
MAX  
MIN  
SLOPE  
NEGATIVE REFERENCE VOLTAGE FROM AN AD586  
5.003  
V
MAX  
The AD586 can be used to provide a precision −5.000 V output,  
as shown in Figure 19. The VIN pin is tied to at least a 6 V supply,  
the output pin is grounded, and the AD586 ground pin is con-  
nected through a resistor, RS, to a −15 V supply. The −5 V output  
is now taken from the ground pin (Pin 4) instead of VOUT. It is  
essential to arrange the output load and the supply resistor, RS,  
so that the net current through the AD586 is between 2.5 mA  
and 10.0 mA. The temperature characteristics and long-term  
stability of the device will be essentially the same as that of a  
unit used in the standard +5 V output configuration.  
V
MIN  
5.000  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°  
C)  
Figure 18. Typical AD586L Temperature Drift  
+6V +30V  
10V  
2.5mA <  
–I < 10mA  
L
R
S
Each AD586J, AD586K, and AD586L grade unit is tested at 0°C,  
25°C, and 70°C. Each AD586SQ and AD586TQ grade unit is  
tested at −55°C, +25°C, and +125°C. This approach ensures that  
the variations of output voltage that occur as the temperature  
changes within the specified range will be contained within a  
box whose diagonal has a slope equal to the maximum specified  
drift. The position of the box on the vertical scale will change  
from device to device as initial error and the shape of the curve  
vary. The maximum height of the box for the appropriate tem-  
perature range and device grade is shown in Table 5. Dupli-  
cation of these results requires a combination of high accuracy  
and stable temperature control in a test system. Evaluation of  
the AD586 will produce a curve similar to that in Figure 18, but  
output readings could vary depending on the test methods and  
equipment used.  
2
V
IN  
6
V
AD586  
OUT  
GND  
4
I
L
–5V  
R
S
–15V  
Figure 19. AD586 as a Negative 5 V Reference  
USING THE AD586 WITH CONVERTERS  
The AD586 is an ideal reference for a wide variety of 8-, 12-, 14-,  
and 16-bit ADCs and DACs. Several representative examples are  
explained in the following sections.  
Rev. G | Page 10 of 16  
 
 
 
 
AD586  
22V TO 46V  
2
5 V REFERENCE WITH MULTIPLYING  
CMOS DACs OR ADCs  
V
IN  
The AD586 is ideal for applications with 10- and 12-bit  
multiplying CMOS DACs. In the standard hookup, as shown  
in Figure 20, the AD586 is paired with the AD7545 12-bit  
multiplying DAC and the AD711 high speed BiFET op amp.  
The amplifier DAC configuration produces a unipolar 0 V to  
−5 V output range. Bipolar output applications and other  
operating details can be found in the individual product data  
sheets.  
6
5
V
15V  
OUT  
TRIM  
GND  
AD586  
10kΩ  
4
2
V
IN  
6
5
V
10V  
5V  
OUT  
AD586  
10kΩ  
TRIM  
R2  
68  
+15V  
+15V  
GND  
2
4
V
+15V  
0.1µF  
IN  
2
C1  
33pF  
6
5
V
18  
20  
V
IN  
OUT  
TRIM  
GND  
AD586  
R
V
FB  
DD  
AD586  
10kΩ  
7
1
2
2
OUT 1  
6
5
19  
V
V
REF  
OUT  
V
AD711K  
4
6
OUT  
0V TO5V  
4
3
10kΩ  
AGND  
TRIM  
AD7545K  
0.1µF  
DGND  
3
GND  
4
Figure 22. Multiple AD586s Stacked for Precision 5 V, 10 V, and 15 V Outputs  
DB11TODB0  
–15V  
PRECISION CURRENT SOURCE  
Figure 20. Low Power 12-Bit CMOS DAC Application  
The design of the AD586 allows it to be easily configured as a  
current source. By choosing the control resistor RC in Figure 23,  
the user can vary the load current from the quiescent current  
(typically, 2 mA) to approximately 10 mA. The compliance volt-  
age of this circuit varies from about 5 V to 21 V, depending on  
the value of VIN.  
The AD586 can also be used as a precision reference for multi-  
ple DACs. Figure 21 shows the AD586, the AD7628 dual DAC,  
and the AD712 dual op amp hooked up for single-supply opera-  
tion to produce 0 V to −5 V outputs. Because both DACs are on  
the same die and share a common reference and output op  
amps, the DAC outputs will exhibit similar gain TCs.  
+V  
IN  
+15V  
+15V  
2
2
17  
3
V
IN  
V
IN  
RFB A  
V
A
5V  
REF  
OUT A  
6
I
=
+ I  
BIAS  
V
V
AD586  
2
6
4
L
OUT  
OUT  
R
C
R
DAC A  
C
V
A=  
(500MIN)  
OUT  
0TO5V  
GND  
4
AD586  
AGND  
RFB B  
14  
7
1
DB0  
DATA  
INPUTS  
GND  
4
AD7628  
AD712  
DB7  
19  
20  
OUT B  
Figure 23. Precision Current Source  
4
V
B
DAC B  
REF  
V
B=  
OUT  
0TO5V  
PRECISION HIGH CURRENT SUPPLY  
DGND  
5
For higher currents, the AD586 can easily be connected to a  
power PNP or power Darlington PNP device. The circuit in  
Figure 24 and Figure 25 can deliver up to 4 amps to the load.  
The 0.1 µF capacitor is required only if the load has a significant  
capacitive component. If the load is purely resistive, improved  
high frequency supply rejection results can be obtained by  
removing the capacitor.  
Figure 21. AD586 as a 5 V Reference for a CMOS  
STACKED PRECISION REFERENCES FOR  
MULTIPLE VOLTAGES  
Often, a design requires several reference voltages. Three  
AD586s can be stacked, as shown in Figure 22, to produce  
5.000 V, 10.000 V, and 15.000 V outputs. This scheme can be  
extended to any number of AD586s, provided the maximum  
load current is not exceeded. This design provides the addi-  
tional advantage of improved line regulation on the 5.0 V  
output. Changes in VIN of 18 V to 50 V produce output changes  
that are below the noise level of the references.  
Rev. G | Page 11 of 16  
 
 
 
 
 
AD586  
15V  
15V  
220Ω  
220  
2N6285  
2N6285  
0.1µF  
0.1µF  
2
2
V
V
IN  
IN  
5V  
6
I
=
+ I  
6
OUT  
V
V
V
L
BIAS  
OUT  
5V @ 4 AMPS  
OUT  
AD586  
AD586  
R
C
R
C
GND  
4
GND  
4
Figure 24. Precision High Current Current Source  
Figure 25. Precision High Current Voltage Source  
Rev. G | Page 12 of 16  
AD586  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
PIN 1  
5.00 (0.1968)  
4.80 (0.1890)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210  
(5.33)  
MAX  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-001-BA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
Figure 26. 8-Lead Plastic Dual In-Line Package [PDIP]  
(N-8)  
Figure 28. 8-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(R-8)  
Dimensions shown in inches and (millimeters)  
Dimensions shown in millimeters and (inches)  
0.005 (0.13) 0.055 (1.40)  
MIN  
MAX  
8
5
0.310 (7.87)  
0.220 (5.59)  
1
4
PIN 1  
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150 (3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
0.023 (0.58)  
0.014 (0.36)  
SEATING  
PLANE  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 27. 8-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-8)  
Dimensions shown in inches and (millimeters)  
Rev. G | Page 13 of 16  
 
AD586  
ORDERING GUIDE  
Initial  
Error  
Temperature  
Coefficient  
Temperature  
Range  
Package  
Description  
Package  
Option  
Quantity Per  
Reel  
Model  
AD586JN  
20 mV  
20 mV  
20 mV  
20 mV  
20 mV  
20 mV  
20 mV  
5 mV  
5 mV  
5 mV  
5 mV  
5 mV  
5 mV  
5 mV  
5 mV  
5 mV  
2.5 mV  
2.5 mV  
2.5 mV  
2.5 mV  
2.5 mV  
2.5 mV  
2.5 mV  
2.5 mV  
2 mV  
2 mV  
5 mV  
5 mV  
5 mV  
5 mV  
5 mV  
2.5 mV  
2.5 mV  
2.5 mV  
2.5 mV  
2.5 mV  
2.5 mV  
10 mV  
2.5 mV  
2.5 mV  
25 ppm/°C  
25 ppm/°C  
25 ppm/°C  
25 ppm/°C  
25 ppm/°C  
25 ppm/°C  
25 ppm/°C  
15 ppm/°C  
15 ppm/°C  
15 ppm/°C  
15 ppm/°C  
15 ppm/°C  
15 ppm/°C  
15 ppm/°C  
15 ppm/°C  
15 ppm/°C  
5 ppm/°C  
5 ppm/°C  
5 ppm/°C  
5 ppm/°C  
5 ppm/°C  
5 ppm/°C  
5 ppm/°C  
5 ppm/°C  
2 ppm/°C  
2 ppm/°C  
15 ppm/°C  
15 ppm/°C  
15 ppm/°C  
15 ppm/°C  
15 ppm/°C  
5 ppm/°C  
5 ppm/°C  
5 ppm/°C  
5 ppm/°C  
5 ppm/°C  
5 ppm/°C  
20 ppm/°C  
10 ppm/°C  
10 ppm/°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
PDIP  
PDIP  
CERDIP  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
CERDIP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
PDIP  
PDIP  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
CERDIP  
CERDIP  
CERDIP  
CERDIP  
N-8  
N-8  
Q-8  
R-8  
R-8  
R-8  
R-8  
N-8  
N-8  
Q-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
Q-8  
Q-8  
Q-8  
Q-8  
AD586JNZ1  
AD586JQ  
AD586JR  
AD586JR-REEL7  
AD586JRZ1  
AD586JRZ-REEL71  
AD586KN  
AD586KNZ1  
AD586KQ  
1,000  
1,000  
AD586KR  
AD586KR-REEL  
AD586KR-REEL7  
AD586KRZ1  
AD586KRZ-REEL1  
AD586KRZ-REEL71  
AD586LN  
AD586LNZ1  
AD586LR  
AD586LR-REEL  
AD586LR-REEL7  
AD586LRZ1  
AD586LRZ-REEL1  
AD586LRZ-REEL71  
AD586MN  
AD586MNZ1  
AD586AR  
AD586AR-REEL  
AD586ARZ1  
AD586ARZ-REEL1  
AD586ARZ-REEL71  
AD586BR  
AD586BR-REEL7  
AD586BRZ1  
AD586BRZ-REEL1  
AD586BRZ-REEL71  
AD586LQ  
2,500  
1,000  
2,500  
1,000  
2,500  
1,000  
2,500  
1,000  
0°C to 70°C  
0°C to 70°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
0°C to 70°C  
2,500  
2,500  
1,000  
1,000  
2,500  
1,000  
AD586SQ  
AD586TQ  
AD586TQ/883B2  
−55°C to +125°C  
−55°C to +125°C  
−55°C to +125°C  
1 Z = Pb-free part.  
2 For details on grade and package offerings screened in accordance with MIL-STD-883, refer to the Analog Devices Military Products Databook or the current  
AD586/883B data sheet.  
Rev. G | Page 14 of 16  
 
 
 
 
AD586  
NOTES  
Rev. G | Page 15 of 16  
AD586  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00529–0–3/05(G)  
Rev. G | Page 16 of 16  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY